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Introduction

Western moda and tond music generdly conforms to what is known as the 5-limit; thisis often
explaned (e. g., by Hindemith) by stating that the entire tuning system is an expresson of integer
frequency ratios using prime factors no higher than 5. A more correct description isthat al 5-limit
intervas, or raiosinvolving numbers no higher than 5, asde from factors of 2 arisng from inverson and
extension, are treasted as consonances in this music, and thus need to be tuned with some degree of
accuracy. The diatonic scale of seven notes per octave has been in use since ancient Greek times, when
harmonic smultaneties (other than unisons and octaves) were not used and the only important property
of the scde was its melodic structure. As me odic considerations continued to play adominant rolein
Western musica history, scaes other than the diatonic had very limited gpplication, and harmonic usage
was intimately entangled with diatonic scale structure. It is fortuitous that the diatonic scale alowed for
many harmonies that displayed the psychoacoustic phenomenon of consonance, defined by small-
integer frequency ratios, aswell as many that did not.

Medieva music conformed to the 3-limit, the only recognized consonances being the octave
(2:1) and the perfect fifth (3:2) (plus, of course, their octave inversions and extensions, obtained by
dividing or multiplying the ratios by powers of 2; this“octave equivaence’ will beimplicit from here
on.}) The diatonic scales were therefore tuned as a chain of consecutive 3:2s (Pythagorean tuning). By
the end of the 15" century,? the 5-limit hed eclipsed the 3-limit as the standard of consonance and two
new consonant intervals were recognized: the mgor third (5:4) and the minor third (6:5). It was now
possible to create consonant triads, conssting of al three non-equivaent consonant intervals and no
dissonant intervals. There are two such triads: major (6:5:4), and minor (1/4:1/5:1/6).2 The advent of the
5-limit brought with it a new temperament of the diatonic scale, the meantone. Typica varieties of
meantone are well gpproximated in 19- and 31-tone equd temperament; 12-tone equa temperament is
approximately 1/11-comma meantone,” lying about halfway between typical meantone temperaments
and Pythagorean tuning.

Soon anything less than a triad was deemed an incomplete harmony. Use was aso made of
linked 5-limit (or stacked-thirds) chords (“major and minor seventh chords’) and linked 3-limit chords
(“suspended chords’), which contained only one dissonant interval but had to resolve. More dissonant
triads (“diminished”) and tetrads (“dominant, diminished, and haf-diminished seventh chords’), formed
from the same pattern of scale steps as the 5-limit sounds, were normally restricted to cadentid or

The fact that the phenomenon of octave similarity does not lead to exact equivalence of harmonic function is
assumed to have a minor impact on the general conclusions reached by this paper.

Fokker, Adriaan D. 1975. New Music with 31 Notes. Verlag fiir systematische Musikwissenschaft GmbH, Bonn, p. 35.
*Note that the 6:4 interval in these chords is equal to 3:2, the perfect fifth. Recall also that we areimplicitly defining all
octave inversions and extensions of these intervals and chords as consonant. The fact that certain stylestreat 4:3
and its extensions as a dissonance when it includes the bass part is a detail that need not concern us here.

“Barbour, J. Murray. 1951. Tuning and Temperament: A Historical Survey. Michigan State College Press, East
Lansing, p. 35.



modulatory progressions. These chords resulted from the existence of adiminished fifth within the
diatonic scale. Unlike mogt fifthsin the scale, the diminished fifth was congidered dissonant, sinceit did
not gpproximate any 5-limit consonances. A complete resolution was not felt until both members of the
diminished fifth had moved to a consonant chord. The mgor and minor modes gained supremacy
because only in those modes was the diminished fifth digoint from the tonic triad.

As early as the mid-eighteenth century, Tartini observed that the “harmonic 7" is not dissonant
but consonant. . . . it has no need either of preparation or resolution: it may equaly well ascend or
descend, provided that its intonation be true.”® So it seems naturd to try to expand harmony by making
7-limit intervals the fundamenta harmonic units. The new consonant intervals would be 7:4, 7:5, and 7:6.
There would be amgor tetrad (7:6:5:4) and aminor tetrad (1/4:1/5:1/6:1/7), each congsting of the six
non-equivdent 7-limit intervals. However, these chords occur in only one position and with questionable
accuracy in the diatonic system, relaively pure versons obtainable only by certain chromaticaly dtered
chords (such as the augmented sixth) when played in 31-tone equa temperament or Smilar meantone
systems. Therefore an entirdy new scae is required, in which the tetrads can act as the basic
CONsoNances.

Equal temperaments

Figure 1 (dl figures are below the text portion of this document) shows the adequacy with which
the Smplest equal-tempered tunings approximate al justly tuned intervals of the 3- through 15-limits®
The vaue assgned to the “accuracy” of each intervd is proportiona to an estimate of the likelihood of
the nearest equal-tempered approximation being heard as the just intervd it represents. A normal
probability distribution is assumed, centered on the actud interva with an accuracy vaue of 1.0
assigned to the pesk, and with a standard deviation of 1% in log-frequency space.” We do not go
beyond 34 tones because this would alow two notes of the tuning to be within 1% of a given target
pitch. The accuracy of the tuning as awhole is defined as the geometric mean of the accuracies of the
intervals congdered so that (a) even if only oneinterva is badly out-of-tune, the entire tuning receives a
poor rating; and (b) the rank-order of the resultsfor agiven limit isjust that of the mean squared errors
and isindependent of the standard deviation assumption.®

In non-harmonic music, the purity of consonancesis consderably less important, and intervals
beyond the 3-limit are of negligible importance. Figure 1 suggests that among equal temperaments,
scales of 5 and 7 notes per octave ought to be candidates for tuning melodic music, and one indeed
finds many gpproximations to these scales throughout the world. Thai music, which requires equd
temperament so that it can modulate, is played in 7-tone equd temperament, and the 5-tone equa

*Partch, Harry. 1974. Genesis of a Music. Da Capo Press, New Y ork, p. 388.

®For the limit| , all ratios a/b of odd numbers aand b such that 1£b<afl are evaluated. 9:3 is considered a separate, 9-
limitinterval, since it occursin addition to the 3:1 in complete chords of the 9-limit or higher.

"Terhardt sees consonance judgments as having two components, complex pitch formation and roughness. Terhardit,
E. 1974. “Pitch, consonance and harmony.” J. Acoust. Soc. Amer. Vol. 55 p. 1061. According to Goldstein, the
precision with which frequency information is transmitted to the brain’s central pitch processor is between 0.6% and
1.2% within a certain optimal frequency range. Goldstein, J. L. 1973. “ An optimum processor theory for the central
formation of the pitch of complex tones.” J. Acoust. Soc. Amer. Vol. 54 p. 1499. The roughness component is
somewhat more permissive as to mistuning, but a 1% standard deviation would cause the accuracy to fall below %2 at
around the point where benign beating begins to gives way to the roughness effects of the critical band.

8f the tuning is not consistent within a given limit-- that is, if for some odd numbers a, b, and ¢ |ess than or equal to
the limit, the best approximation of b:a plus the best approximation of c¢:b does not equal the best approximation of c:a
-- then no accuracy value is computed. Consistency beyond the 15-limit is not achieved with fewer than 58 equal
steps per octave.



tempered scaleiswidespread in Africa. The huge gain in the accuracy of 3-limit intervals obtained by
using a 12-tone scale (or gpproximation thereof) is what alowed Chinese and medievad Western music
to develop dyadic harmony. It turned out that 12-tone equal-tempered scales, and the diatonic modes
that were in usein the West, were conducive to 5-limit (triadic) harmony as well, with a decent degree
of accuracy (about 78% of perfection, according to figure 1).

Although the moveto 19- or 31-tone equa temperament has been proposed time and again for
the greater consonance that these tunings would afford to moda and tond triadic music, it has been fdt
that the potentia aesthetic advantages are gresatly outweighed by the practical disadvantages, which
could include the need to invent and learn to play anew set of (more complex) instruments. These sorts
of difficulties have been surmounted by Partch, Ben Johnston, and the Dutch 31-toners,® and advances
in dectronic music have made such explorations more widespread. In any case, if we want atuning that
iséat least as accurate in the 7-limit as 12-equd is accurate in the 5-limit, fig. 1 telsusto consder 22,
26, 27, and 31-tonetunings. It will turn out that only 22-equa contains a system analogous to the
diatonic systemn, but which involves harmonies of the 7-limit.

It may be objected that higher-limit intervals may need to be tuned more accurately than lower-
limit ones, since they are more gpt to be confused with other intervas. If the intervals are often sounded
done, thisisindeed the case. Partch stated in his “ Observation One” that the “field of attraction”*° of an
interva isinversdy proportiond to its*“Identity,” or limit. A Smilar result can be derived from the work
of van Eck, when errors in his reasoning are corrected.™ Figure 2 is amodification of fig. 1 in which the
standard deviation used in evaluating each interva isinversaly proportiond to its limit.? The standard
deviation used for 5-limit intervasis dill 1% (this again has no effect on the rank-order of the results
within agiven limit). The same four tunings appear best for the 7-limit, but only two are ill more
accurate than 5-limit 12-equal: 27 and 31. However, we are interested in a style where complete
harmonies, not isolated intervals, are the norm, and in complete harmonies the context of smpler
intervals seemsto ad in the recognition of the more complex ones. For example, the tritone b-f in 12-
equal is ambiguous when heard in isolation, but can be heard as 7:5, 10:7, or 17:12 in the chords g-b-d-
f, ct-gi-b-f, and e-g#-d-b-f, respectively.™® Additionaly, the argument can be made that athough the
recognizability of Smpler ratiosis reduced more dowly than that of more complex ratios when both are
detuned by the same amount, the consonance of the Smple ratios deteriorates at least asrapidly.
Therefore, we will consider figure 1 to be more important for our purposes.

°Fokker., op. cit.

partch, p. 184

"The errorsinvolve viewing pitch height here as alinear, and there as alogarithmic, function of frequency. Using a
logarithmic (e.g., cents) scale consistently would lead to the result that the size of an acceptable range for any just
ratio isinversely proportional to the denominator of theratio in lowest terms (the numerator is assumed to be greater
than the denominator). See the 1994 version of this paper (unpublished) for a derivation of thisresult. Since the
denominator of theratio is never larger than the (odd-number) limit, the greatest lower bound on the sizes of the
acceptable ranges for aninterval and all its octave equivalentsisinversely proportional to the limit. van Eck, C. L.
Van Panthaleon. 1981. J. S. Bach’s Critique of Pure Music. Princo, Culemborg, the Netherlands, Appendix I1. For a
justification for the definition of these acceptable ranges, see Mann, Chester D. 1990. Analytic Study of Harmonic
Intervals. Tustin, Calif.

“Defined as the larger of the two odd numbers defining the interval.

BThisfeatureisimportant in jazz harmony under the rubric of “tritone substitution.”



Generalizing diatonicity

Many of the previous authors who have tried to generaize the diatonic scale have ignored the
fact that 12-equd is not the historica basis for the diatonic scae; in fact the converseistrue, and 12-
equa was chosen over other meantone tunings only for convenience. Bazano focuses on certain group-
theoretical properties of 12-equd and of the diatonic scaleswithin it. For example, his view of harmonic
gructure hinges on the fact that in 12-equd, the Sze of the minor third (3) times the Size of the mgor
third (4) equasthe Sze of the entire set. He proceeds by finding a nine-tone scale in 20-equa with
many of the same properties™* Had he taken the diatonic scale from 19- or 31-equd, systems that
muscians actudly consdered before 12-equad won out, he would not have found many of his
properties. Likewise, Clough and Douthett’ s maximal evenness property™ failsif the diatonic scaeis
taken from any tuning other than 12-, 19-, or 26-equal. Y asser also assumes a 12-tone tuningin
defining the diatonic system as “7+5=12" (seven diatonic plus five dtered notes make the 12 chromatic
notes), which allows him to posit the evolutionary series “2+3=5, 5+2=7, 7+5=12, 12+7=19,
19+12=31" where the chromatic notes in one system become the diatonic notes in the next system, and
the diatonic notes in one system become the atered notes in the next system.*°

Many other theorigts, including Schoenberg, have explained the diatonic scde as arising from
three consecutive triads in achain of fifths. Thisis another reversd of historical facts, as the chords were
constructed from the scale, and not the other way around. VVon Hoerner constructed a scale from three
consecutive 7-limit tetrads in a.chain of fifths, using 31-tone equal temperament.'” The structure of this
scaeistoo bizarrefor it to function as amdodic entity.

A few other theorigts have attempted to preserve some important features of the diatonic system
while proposing musica tones with unusua harmonic spectra. Bohlen and Pierce independently
discovered that the equa-tempered divison of the 3:1 (perfect twefth) into 13 parts contains a nine-
tone scale with excellent 9:7:5:3 and 1/3:1/5:1/7:1/9 chords.™® Pierce suggests that using timbres without
evenrnumbered harmonic partias would not only highlight the consonance of these chords but would
aso cause the phenomenon of octave equivaence to give way to one of “tritave equivaence,” or
equivalence a the perfect twelfth. However octave equivaence seems pervasve, regardiess of the
overtone structure of the timbres used. Goldsmith proposed using tones with inharmonic overtone series
to go dong with adivison of the octave into 16 equa parts. Proceeding by andogy from the magjor
scale, anine-tone scae is derived, with three digoint triads, which could be rendered somewhat
consonant with an appropriate overtone structure.*® However, these triads do not contain anything
resembling a 3:2 interva, which is what confers stability (and aroot) to the triads of diatonic music. We
will restrict our attention to tones with harmonic overtone series because they evoke the sensation of a
sngle pitch and arise from the widest variety of acoudtic and electronic methods of tone generation.

The diatonic scae has many properties that alow it to form the melodic bass for a 5-limit
harmonic syle. A few definitions will alow usto generdize these properties. Given any odd-number
harmonic limit, we can define the set of consonant intervals as al retios of odd numbers less than or

¥Balzano, G. J. 1980. “The Group-Theoretic Description of 12-Fold and Microtonal Pitch Systems,” Comp. Music J.
Vol. 4, No. 4, pp.66-84.

>Clough, John and Douthett, Jack. 1991. “Maximally Even Sets.” Journal of Music Theory Vol. 35 p. 93.

18y asser, Joseph. 1932. A Theory of Evolving Tonality. American Library of Musicology, New Y ork.

von Hoerner, Sebastian. 1974. "Universal Music", Psychology of Music vol. 2, 1974, pp. 18-28.

BMathews, M. V., Pierce, J. R., and Roberts, L. A. 1987. “Harmony and New Scales.” In: Harmony and Tonality. J.
Sundberg, ed. Royal Swedish Academy of Music, Stockholm, pp. 59-84.

9Goldsmith, David S. 1971. "An Electronically Generated Complex Microtonal System of Horizontal and Vertical
Harmony", Journal of the Audio Engineering Society vol.19 no. 10 pp. 851-858.



equal to the limit (aswell asthear octave equivaents, which will contribute factors of 2 to the numerator
or denominator of these fractions), and we define the complete consonant chords as those which

contain al of the consonant intervals and no dissonant (non-consonant) intervals. We will use the
following symbols for tempered intonations of just intervals and their octave equivadents: Q will represent
any tempered intonation of 3:2 (or 4:3, 3:1, etc.); T—5:4 (or 8:5, 5:2, etc.); S—7:4 (or 87, 7:2, etc.);
and U—1:1 (or 2.1, 4:1, etc.). For example, any meantone system has 4Q=T. The Q, the strongest
interva within the chord, determines the root of a consonant chord: the root is that member of the Q that
represents the number 2 in theratio 3:2. Let us define a* characterigtic dissonance’ as any dissonant
interva in the scale that is the same size, as defined by number of scale steps, as a consonant interva.
The only example in the undtered diatonic scae is the diminished fifth (and, of course, the augmented
fourth). The properties that we would like to reproduce in our scae are as follows:

(O) Octave equivdence:
Thereisabasc scde (a subsat of the tuning) which repeatsitsalf exactly at the octave, extending
infinitely both upwards and downwards in pitch.
Octave similarity is universaly perceived, even by some animas®

(1) Scae dructure:
(Verson a- digributiond evenness): The basic scale has two step Szes, and given these step sizes, the
notes are arranged in as close as possible an approximation of an equa tuning with only as many notes
per octave asthe basic scale®
(Verson b - tetrachorddity): The basic scale has a structure emphasizing smilarity a the Q. In
particular, there is a"tetrachordal" structure, that is, within any octave span, the pattern of stepswithin
one gpproximate 4:3 are replicated in another gpproximate 4:3, with the remaining “leftover” interva
gpanned using patterns of step sizes (often just one step) found in the "tetrachord.”
This scae definesthe "key" or "mode’; the set of unatered pitches used in any section of a
composition.?

These properties are enough to ensure an intelligible melodic framework. The following
properties allow harmony to be based on this framework.

(2) Chord gtructure:
There exists a pattern of intervals (defined by number of scae steps, not specific asto exact Sze) which
produces a complete, consonant chord on most scale degrees.
This condition provides for aforma rule governing the origin and use of the consonant chords, so that
they can become recognized, after a reasonable period of exposure to the system, as the structural
harmonies. Or, as Krumhand putsit,

“BJackwell, H. and Scholsberg, H. 1943. “Octave Generalization, Pitch Discrimination and Loudness Threshold in the
White Rat.” Journal of Experimental Psychology vol. 33 p. 407.

ZAn equivalent condition isthat every generic interval (measured in steps of the basic scale) comes in at most two
specific sizes. Clough, John, personal communication.

ZEither of the conditions above provide melodic smoothness and ease of intelligibility to the mode, although | find,
where the two conditions yield differing results, that version (b) leads to more pleasing and comprehensible scal es.
Future musicological research and psychologica experiments may determine which version has more validity.



If chord construction is determined in some principled way by scale structure, then this further servesto
maintain the tonal framework for encoding pitch information.®

(3) Chord relationships.
The mgority of the consonant chords have aroot that lies a Q away from the root of another consonant
chord.
This ensures the existence of smple chord relationships that coud serve as the basis for comprehensible
chord progressions and modulations.

(4) Key coherence:
A chord progression of no more than three consonant chords is required to cover the entire scale.
This redtriction should suffice to ensure that the sense of “key” or postion within the scdleis never logtin
the course of the music, and to dlow anew key to be easly established.

While these properties may suffice for a“modd” style, the rest of the properties have to do with
certain specid, “tona” modes of the basic scale.

(5) Tonicity:
The notes of the scale are ordered, increasing in pitch, so that the first note is the root of a complete
consonant chord, defined hereafter as the “tonic chord.”
This is more a numbering convention than atrue property.

There are two ways of formulating the remaining properties. The stronger will define the primary
tona modes, while the weaker will define secondary modes whaose tonic chords are points of
intermediate sability.

Strong Verson

(6) Homophonic gability:
All characterigtic dissonances are digoint from the tonic chord, with the following possble exception: A
characterigtic dissonance may share a note with the tonic chord if, when played together, they form a
consonant chord of the next higher limit (3P 5, 5p 7, 7P 9).
This ensures that the scale will sound at least as consonant againgt the tonic chord as againgt any other
chord.

(7) Meodic guidance:
The rarest step sizes are only found adjacent to notes of the tonic chord, acting as“signposts’ if not
necessarily leading tones per se.
As Richmond Browne has pointed out, “Rare intervas aid postion finding.

n24

2K rumhansl, Carol L. 1987. “General Properties of Musical Pitch Systems: Some Psychological Considerations.” In:
Harmony and Tonality. J. Sundberg, ed. Royal Swedish Academy of Music, Stockholm, p. 37.
#Browne, R. 1981. “Tonal Implications of the Diatonic Set.” In Theory Only vol. 5 no. 6 pp. 3-12.



Wesk Version

(6) Homophonic sability:
At least one characterigtic dissonance either is digoint from the tonic chord, or shares a note with the
tonic chord such that, when played together, they form a consonant chord of the next highest limit
(3p 5,5b 7,7b 9).
This provides for a“tonicizing” interva, which bears a specid structurd relationship to the tonic chord.
When a characterigtic dissonance is digoint from the tonic, it resolvesto it, producing a“dynamic”
tonality; when a characterigtic dissonance blends with the tonic chord to form a stable quas- consonant
sonority, it produces a“datic’ tondity.

Let's see how these rules apply to 5-limit and 3-limit harmony. The scales are illudtrated by the
divison of the octave into large (L) and smdll () steps. We will userules5-7 asa“seve’ to remove
those modes that do not satisfy dl of them.

5-limit: The diatonic scde.
(1) The octave is divided into five large and two small steps: 5L +2s=U. Possible tunings. 12-
(L=2,s=1), 19- (L=3, s=2), 26- (L=4, s=3), or 31- (L=5, s=3) tone equd temperaments, i.e.,
any meantone system.
(& Thetwo smdll steps are asfar gpart (in acyclic sense) as possble.
(b) The two tetrachords are each composed of one small plus two large steps, with an
additiond large step filling in the octave.
(2) The consonant intervalsare Q=3L+s, T=2L, and Q-T=L+s. The pattern 1, 3, 5 produces a
consonant triad 6 times out of 7.
(3) The six consonant chords form achain of Qs.
(4) Any three consecutive chords in the chain will cover the entire scale,
(5) Removesthelocrian(sL L sL L L) mode.
Strong Verson
(6) Removesthephrygian (sL L L sL L) and lydian (L L L sL L s) modes, since they contain
anote adiminished fifth (stL+L+s, the characteristic dissonance) above the 5" and below
the 1% scale degrees, respectively. The mixolydian (L L sL L sL) anddorian(LSLLL s
L) modes each contain a note a diminished fifth from the 3 scale degree, but it forms a
rough 7-limit tetrad with the respective tonic triads in 12-equd.
(7) Removes the mixolydian and dorian modes® leaving the usud mgor (L L sL L L ) and
natural minor (L sL L sL L) modes.
Wesk Version
(6) Sincethereisonly one characteristic dissonance, the result is the same as for (6) above:
mgor, natura minor (both dynamic), and possbly in 12-equa mixolydian and dorian (both
datic).

“These two modes are commonly used in jazz, though, where the approximate 7-limit tetrads on the root (in
accordance with (6)) are often used as “tonics”, and (7) can be considered to be satisfied in that the “ half steps” are
indeed found adjacent to notes of these tetrads. Schenker labeled the mixolydian “Mischung 3" and the dorian
“Mischung 5.” Schenker, H. 1906. Har monielehre. Union Deutsche V erlagsgesellschaft, Stuttgart. Universal Edition,
Wien, 1935.



3-limit: The pentatonic scale®
(1) 2L+3s=U. Possbletunings. 7- (L=2, s=1), 12- (L=3, s=2), 17- (L=4, s=3), 19- (L=5,
s=3), 22- (L=5, s=4), 26- (L=7, s=4), 27- (L=6, s=5), 29- (L=7, s=5), 31- (L=8, s=5) equd,
or any tuning where theinterva L+2sformsaQ of less than 720 cents.
(& Thetwo large Seps are as far gpart (in a cyclic sense) as possible.
(b) Thetwo “trichords’ are each composed of one smdl plus one large step, with an
additiond smdl gep filling in the octave.
(2) The consonant interval is Q=L+2s. The pattern 1, 4 produces a consonant dyad 4 times out
of 5.
(3) The four consonant chords form a chain of Qs.
(4) Any three chordsthat are not dl consecutive in the chain will cover the entire scale.
(5) RemovestheL sL ssmode.
Strong Verson
(6) The characterigtic dissonanceissts. Themgor (ssL sL) and minor (L ssL s) pentatonic
modes contain anote that isthisinterval above the 1% and below the 4™ degrees of the
scae, but, especidly in ameantone system, this note will form a 5-limit triad with the tonic
chord.
(7) RemovesthesL sL sand sL ssL modes, leaving the mgor and minor pentatonic modes,
a least in meantone tunings.”’
Wesk Verson
(6) ThesL sL sandsL ssL modes (both dynamic) both qudify in addition to the mgor and
minor pentatonic modes (both Setic).

We can even consider a 3-tone scae, abare “tetrachorda” framework, to be a sort of degenerate 1-
limit case
(1) 2L+s=U. Any tuning where L isarecognizable Q will do, including 5-equal (L=2, s=1).
(@ Istrividly stidfied.
(b) May be questionable because the “Ieftover” interva has no counterparts within the
empty “dichords’.
(2) A consonant “monad” exists on every scale degree.
(3) Thethree notesform achain of Qs.
(4) The three monads are the notes of the scale.
(5) Saysnothing.
Strong Verson
(6) The characterigtic dissonanceiss, removingthesL L and L L smodes.
(7) Removesthe L sL mode, leaving none.

%See the discussion of “Infra-Tonality” in Y asser, op. cit.

“Daniel Wolf has suggested that in Thai and Cambodian music,
The fixed pitched instruments may be said to approach a 7-equal tuning, but singers and instruments with variable
pitches sing or play distinctly major or minor thirds, depending upon position in the 5-tone scalein use. The basic
scalar templateis12 35 6, theinterval 1-3 isamost aways "major" and the 3/5, 6/1 intervals are amost always minor.
My sense is that the inner melody of the music is vocal, but that the fixed pitch instruments provide a framework for
transposition.

The most commonly used modesin Thai music are analogous to the familiar major and minor pentatonic modes (one

of the secondary modes (sL sL s) isoccasionally used aswell). Thus (6) may be satisfied fairly well particularly for

those timbres with harmonic partials. Wolf, Daniel, Sept. 21, 1996. Alternate tuning mailing list, digest #3842, topic #2.



Weak Verson
(6) Only the L sL (dynamic) mode isweekly tond.

With verson (a) of rule (1), we can dmost add three scales to our list: the augmented
(hexatonic) scale (1, 4 is dways consonant), the diminished (octatonic) scde (1, 4, 7 isdways
consonant),” both of which fail criterion (3); and Blackwood s ten-tone symmetrical scalein 15-
equa,® (1, 4, 7 is dways consonant) which just misses property (4). The“just” major and minor
diatonic scales® satisfy properties (2) through (5), but fail (1a) since they have three step sizes, and fail
(1b) because not every octave span contains two identical tetrachords.

Tothe 7-limit
Some identities for the equa tunings we will be considering are as follows.

22 26 27 31
22Q=U 26Q=U 27Q=U 31Q=U
9Q=T 4Q=T 9Q=T 4Q=T
-20Q=S -90Q=S -20Q=S 10Q=S
2(S-T)=U 2(S-T)=U 3T=U 35+Q=U

In searching for a scae with tetradic harmonies, rule (4) limits usto scales of twelve or fewer
notes. Rule (3) tells usthat the scae will consst of strings of Qs A single string of Qs, asin the diatonic
scae, is not enough to produce sufficient Tsand Ssin any of the tunings above. However, the last row
of identities suggests that we might try deriving the notes of the scale from 2 or 3 strings of Qs. Such
scalesin 31-tone equa temperament cannot satisfy either version of property (1) without exceeding
fourteen notes. In 27-equd, atweve-tone symmetrica scde satisfying (1b) exigts, but it fails condition
(2) miserably.

Only if werelax rule (4) does 26-equal show some promise. Two diatonic scaes2 or 13
degrees apart can be interlaced to satisfy (1a) or (1b). The pattern 1, 5, 9, 12 produces ten and twelve
consonant tetrads, respectively, out of fourteen. 22-equd exhibits asmilar sructure when interlaced
pentatonic scaes are used, the chord pattern being 1, 4, 7, 9. The resulting “ decatonic” scaes include
modes that do satisfy dl of our conditions for atona scae:

The decatonic scales
Let's step these scales through our diatonicity rules.
(2) 8st+2L=U. Tuning: 22-equa (L=3, s=2).
(@) isstisfied by the five modes of the symmetrical scdelL ssssL ssss sncethe
large steps are a hdf-octave apart.
(b) issatisfied by the ten modes of thescale L sssL sssss, where the “pentachord”
congsts of one large and three smal steps, and two smdl steps span the “leftover”
interval.

%K rumhansl erroneously states that the octatonic scale fails property (2). Krumhansl, op. cit., p.42.

#Blackwood, Easley. 1991. “Modes and Chord Progressionsin Equal Tunings.” Perspectives of New Music Vol. 29
No. 2 pp. 166-200.

¥ n ratios, the just major scaleis 1/1 9/8 5/4 4/3 3/2 5/3 15/8 (2/1), and the just minor scaleis 1/1 9/8 6/5 4/3 3/2 8/5 9/5
(2/1). They differ from the usual diatonic scalesin that they contain two additional characteristic dissonant intervals,
a40:27 fifth and a32:27 third. Structurally equivalent scales exist in 15-, 22-, 27-, and 34-tone equal temperament.



(2) The consonant intervals are Q=L+5s, T=L+2s, Q-T=3s, S=2L +6s, S-Q=L+s (or
equivdently, Q-S=L+7s), S-T=L+4s (or equivdently, T-S=L+4s). The pattern 1, 4, 7, 9
produces a consonant tetrad 8 times out of 10 in the version (8) scale, and 6 times out of 10
inthe verson (b) scae.

(3) Inthe symmetrical scae, there are two chains of Qs with four consonant tetrads each. In the
pentachordd scale, there are two chains of Qs with two consonant tetrads each, and the
other two consonant tetrads are not in achain of Qs.

(4) Veification of this property isleft as an exercise for the reader.

(5) Removesthe symmetricd mode L ssssL ssssand the pentachordad modesL sssL ss
Sss,sLsssLssss ssLsssssL s andsssL sssL ss.

Strong Verson

(6) The characteritic dissonance of the symmetricd scaeis stststs. Thisremovesadl its
remaining modes from consideration. The characteristic dissonances of the pentachorda
scae are ststststsand stststs. The bsinterval removes modessssssL sssL and L
sssssL sss which contain anote thet is thisinterval above the 1% and below the 7"
degrees, respectively. The 4dsinterval removes modesssssL sssL sandsL sssssL s
s, which contain anote that is thisinterval above the 1% and below the 7" degrees,
respectively. The 4sinterval would aso remove modesssL sssL sssandsssL ssss
sL, if it didn't form a complete 9-limit pentad with the tonic tetrad in these modes.

(7) Impoaoses no further restrictions, leaving thessL sssL sss(standard pentachordal major)
and sssL sssssL (standard pentachorda minor) modes.

Wesk Version

(6) One of thetwo 4sintervasin the symmetrica scae forms a complete pentad with the tonic
tetradinssL ssssL ss(datic symmetrica mgor) and sssL ssssL s(détic
symmetrica minor). One of the 4sintervasis digoint from the tonic tetrad insL sSSSL s
s s (dynamic symmetricd mgor) and ssssL ssssL (dynamic symmetrical minor). The
characterigtic interval of the pentachorda scale is 5s, so the standard pentachordal major
and minor modes defined above (both dynamic and static), as well as dternate pentachordal
mgor (sL sssssL ss)and minor (ssssL sssL s) modes (both dynamic), are tond.

So we are left with the following possible decatonic modes (expressed as degrees of the 22-tone equal-
tempered scae):

Standard Pentachordal Mgjor: 024791113161820(22)
Static Symmetrical Mgor: 024791113151820(22)
Alternate Pentachorda Mgor: 025791113151820(22)
Dynamic Symmetricd Mgor: 025791113161820(22)
Standard Pentachorda Minor: 024691113151719(22)
Static Symmetrical Minor: 024691113151720(22)
Alternate Pentachorda Minor: 024681113151720(22)
Dynamic Symmetrica Minor: 024681113151719(22)

named “Mgor” or “Minor” after the quaity of their tonic tetrads. The five types of (1, 4, 7, 9) tetrads
found in these scaes can be named as follows:



Magjor: 0713 18
Minor: 06 13 17
Augmented: 07 14 18
Major-minor: 07 13 17
Minor-magjor: 0 6 13 18

These chords are encountered in the tond modes at the following positions:

Pogtion Qudity Qudity Qudity Qudity Qudity Qudity Qudity Qudity
in gd. ingd. indgatic ingaic indt. in dlt. indyn.  indyn.
pent. pent. symm.  symm. pent. pent. symm.  symm.
magjor minor major minor magjor minor major minor
mode mode mode mode mode mode mode mode

| (tonic) Maj Min Mg Min Maj Min Mg Min
[l (antidominant) Aug Mami Ma Mg Mg Mi-ma Aug Min
[ (antisubmed.) Aug Maj Aug Mg Min Maj Min Mg
IV (mediant) Min Mg Min Aug Min Aug Min Mg
V (subdominanty  Mami Min Min Min Mi-ma Aug Mg Aug
VI (antitonic) Mg Min Mg Min Mg Min Mg Min
VI (dominant) Maj Mi-ma Mg Mg Aug Mam Aug Min
V111 (submed.) Min Maj Aug Maj Aug Maj Min Maj
IX (antimediant) Min Aug Min Aug Min Maj Min Mg

X (antisubdom.)  Mi-ma Aug Min Min Mam Min Ma Aug

The symmetricd scdeis useful asabassfor a keyboard mapping of 22-equd. To wit: leaving
every "E" on the standard keyboard out of the mapping gives two keyboard octaves to one acoustical
octave. The black keys then form a symmetrica scale, which can be thought of asthe "naturd” scde.
Four different pentachordal scales can be played with only one"accidentd™ -- that is, replacing one out
of the ten black keys with a neighboring white key. We can use the numbers 1 through 9 and O for the
“natural” notes, and the symbols D, N, and & to indicate chromatically raised, lowered, and natural
notes. In the following table, we introduce names for intervas in, and notation for, the decatonic scde, in
andogy with ordinary terminology and notation. A subscript of “10” isareminder that the intervals are
measured with respect to the decatonic scae, as opposed to the customary diatonic measurements. The
“key sgnatures’ for the tond decatonic modes are given in the Appendix.



Tablel

Interval in Decatonic Name / Keymap Name / Keymap Approx. Cents for
cents interval Starting at C# Starting at G# ratio ratio
0 perfect 1%, 1/CH 4] GH# 1:1 0

54.5 aug. 1%, 1D/D 4D/ A
dim. 2, 2N /D 5N/ A
109.1 minor 2", 2/ D# 5/ A# 18:17 99.0
17:16 105.0
16:15 111.7
15:14 119.4
163.6 maj. 2", 2D/F 5D/B 12:11 150.6
dim. 3%, 3N/F 11:10 165.0
10:9 182.4
218.2 minor 3, 3/F# 6N /c 9:8 203.9
17:15 216.7
8:7 231.2
272.7 major 3%, 3D/G 6/ c# 7:6 266.9
dim. 4", 4N/ G 20:17 281.4
327.3 aug. 3%, 6D/d 6:5 315.6
minor 4%, 4| Gt 7N/ d 17:14 336.1
11:9 347.4
381.8 major 4", 4D/ A 71 d# 5:4 386.3
5N /A
436.4 aug. 4™, 7D/ f 14:11 4175
dim. 5y, 5/ A# 8N/ f 97 435.1
22:17 446 .4
490.9 perfect 5, 5D/ B 8/ f 4:3 498.0
545.5 aug. 5™y, 8D/g 15:11 537.0
dim. 6y, 6N /c 9N /g 11:8 551.3
600.0 perfect 6™, 6/ c# 9/ gt 7:5 582.5
24:17 597.0
17:12 603.0
10:7 617.5
654.5 aug. 6™y 6D/d 9D/a 16:11 648.7
dim. 7", 7N /d oN/a 22:15 663.0
709.1 perfect 7", 7/ dt 0/ att 3:2 702.0
763.6 aug. 7", 7D/ f 0D/b 17:11 753.6
dim. 8"y, 8N/ f 14:9 764.9
11:7 782.5
818.2 minor 8", 8/ f# N/ ¢ 8:5 813.7
872.7 major 8", 8D/g 1/c# 18:11 852.6
dim. 9"y, oN /g 28:17 863.9
5:3 884.4
927.3 aug. 8"y 1D/ d 17:10 918.6
minor 9", 9/ gt 2N/ d 12:7 933.1
981.8 major 9", 9D/a 2/ d# 7:4 968.8
dim. 10", oN/a 30:17 983.3
16:9 996.1
1036.4 aug. 9", 2D/ f’ 9:5 1017.6
minor 10", 0/att 3N/ 20:11 1035.0
11:6 1049.4
1090.9 major 10", 0D/b 3/f# 28:15 1080.6
15:8 1088.3
32:17 1095.0
17:9 1101.0
1145.5 aug. 10, 3D/g
dim. 11", N/ ¢ 4N/ g




In andogy with the linked 3-limit, or “suspended,” triad of the diatonic scale, the decatonic
scaes contain linked 3-limit and linked 5-limit, as wel asincomplete 9-limit, chords which have four
notes and resolve to the 7-limit tetrads. These are:

Linked 3-limit* 09 13 18 resolves to mgjor
04 13 17 resolves to minor
Linked 5-limit* 0 7 13 20 resolves to mgjor

06 13 19 resolves to minor
0513 18 resolvesto mgor
0813 17 resolvesto minor

Incomplete 9-limit*

In andogy with the linked 5-limit, or “mgor and minor seventh,” chords, we may find pairs of tetradsin
the decatonic scaes that have two notes in common. Unfortunately, each chord has two, rather than
one, unshared notes, resulting in four, rather than one, potentidly dissonant intervas. The rdlevant six-
tone chords possible in decatonic scales are:

Maor+mgor: 027111318

Minor+minor: 026111317

Mg or+minor: 027131820
026131719
02791318
057111318

Perhaps a better anaogue to the diatonic minor and mgor seventh chordsis found through the
“stacking” paradigm. Stacking a 3%, on atetrad leads to a duplication of the root, and stacking another
3" (asit occursin the scale) results in the following five-tone chords:

Major+maj. 3“:
Magjor+min. 3%:
Minor+min. 3%;
Aug.+mg. 3%:

Ma-mi+min. 3%
Mi-ma+min. 3%

071318 (22) 27
071318(22) 26
061317 (22) 26
071418 (22) 27
071317 (22) 26
061318 (22) 26

These may be considered “ safe” additions to the tetrads because they add neither ambiguity nor much
dissonance, but merely provide “color,” to the tetrads arising in ascale.

%Y eft unresolved, these chords form the decatonic equivalent of “quartal” or “quintal” harmony. Linking three or
four Qsin 22-equal leads to good approximationsof 7:6 and 9:7, as opposed to the 6:5 and 5:4 that resultina
meantone tuning.

®These chords, resembling “major and minor seventh” chords, have scalar template 1, 4, 7, 10 and may prove fruitful
as an alternate harmonization of the decatonic scale.

*Though incompletein that they do not contain all of the 9-limit intervals, these chords are saturated: i.e., no note
can be added without introducing an interval beyond the 9-limit. The 0 6 13 19 chord is a saturated 9-limit tetrad as
waell.



Micro-chromaticism

The author hears the standard pentachordal modes as most stable and most likely to define key
centers and modulatory practice. The tonic chords of the dternate pentachordal modes may smply
serve as points of intermediate harmonic stability within the standard pentachordad mode. The
symmetrical modes have aweird, bitond qudity due to their symmetry at the haf-octave. However, it is
worth noting that one can consider al the modes above as arising from amajor mode with mutable 3
and 8" degrees and a minor mode with mutable 5™ and 10™ degrees. When only one of the two
mutable degreesis alowed to vary, consonant tetrads can be formed at nine positionsin the scale; when
ether isalowed to vary, consonant tetrads can be formed at dl ten postionsin the scae. This
congderation may indicate two chrometic aterations that will be common when the key center is not
changing.

Let us assume the standard pentachordal modes do clearly define the key centers. Moving
between one key and another (of the same quality) a Q away often alows short chromatic passagesin
diatonic music, and the same holds true with the decatonic scale. The resulting pattern of stepsis22 32
22211122in22-equd, dlowing for atona harmonization of four consecutive notes of the tuning. A
greater degree of chromaticism is often achieved by combining keys of both qualities on the same root
(pardld keys). The decatonicresultis22212222111112, thusalowing atond harmonization
of amicro-chromatic passage six notes long. In 12-equd, total chromaticism is achieved by combining
magjor and minor diatonic modes on the root, the Q above, and the Q below. The decatonic analogue
leads to only 18 of the 22 chromatic notes. But adding the immediate micro-chromatic neighbors of the
root and the 3:2 above fillsin the gaps. Since the root and the 3:2 above are structuraly the most
important notes, their immediate neighbors can be given an important ornamentd role. Theresult isa
tonal framework for total 22-tone micro-chromaticism.

It iswdl worth noting that just as the 5-limit (diatonic) scale is the complement of the 3-limit
(pentatonic) scalein 12-equd, so the complement of the 7-limit (decatonic) scale in 22-equa may serve
as abasisfor a9-limit (dodecatonic) system. Figure 1 shows the accuracy of 22-equd in the 9-limit as
dightly greater than that of 12-equd in the 5-limit. The interested reader is encouraged to discover how
closaly the “hexachordd” and symmetrical dodecatonic scales satisfy the requirements of a 9-limit tona
system. Note that the definition of “root” may need modification, Snce complete pentads will contain
two Qs (a3:1 and a9:3). The union, starting from the same roct, of the four major (or minor) decatonic
modes described above is a symmetrica dodecatonic scae.

The hexachorda dodecatonic scale contains within it seven consecutive notesin a cycle of Qs.
Thisforms a diatonic scade where the three “minor” triads are tuned 9:7:6 and the three “mgjor” triads
aretuned 1/6:1/7:1/9 — areversd of the usua harmonic/subharmonic digtinctions. For example, the
“minor” mode of this scale, which could be termed “ sub-minor” due to its smal minor thirds, would be O
45913 14 18. This scale can be mapped to the white notes of a keyboard, with the remainder of the
hexachorda dodecatonic scale mapped to the black keys. Then the white-note scale satidfies dl the
properties of the ordinary diatonic scae except that the triads are not complete sonorities (athough they
can al be partidly completed since the 8 or 1/8 is dways a scale tone, the required pattern of scae
sepsis not the same for the minor and mgor cases), and the dorian and mixolydian modes can no
longer support a gatic tondity.

Table 1 showsthat al ratiosinvolving 9, 11, 15, and 17 — in additionto 1, 3, 5, and 7 — can be
expressed consgtently (and with amaximum error of 20.1 cents) in 22-equd, promising a grest wealth
of harmonic possibility when “micro-chromaticism” is explored.® The harmoniesinvolving 11 should

¥This also allows the minor tetrad to be interpreted as 10:12:15:17, for those skeptical of subharmonic interpretations.



prove particularly novel, since they cannot be expressed in 12-equd (in fact, 22 isthe smplest equd
divison of the octave capable of expressng dl ratios through the 11-limit congsently — see footnote 8
for adefinition of condgstency). One scae with which one may begin adding 11-limit flavors has sep
szes4 33333 3. It contains four 5-limit consonant triads, three octave species with pairs of identica
tetrachords, and in this mode, the tonic 4:5:6 triad can be supplemented witha9 and an 11 —admost a
complete 11-limit hexad.

Findly, it isworth noting that 11-tone equa temperament, contained within 22-equd, isa
ridiculoudly dissonant tuning,* containing hardly any tona (root-defining) sounds, and none whatsoever
within the 5-limit. The serid compaoser who iswilling to subtract one from the number of notesin the
row could be freed from the constant effort to avoid those intervals in 12-equa which define akey
center.

Altered scales

Tond music utilizes not only diatonic scaesin their pure form but aso dtered modesin which
one note is displaced from its diatonic position. A generd derivation of such scadesisto replace one
step size with another of asort found in the undtered scale. Either the lower or upper note comprising
the step may be moved in this operation. The dtered modes thus produced must observe rules (2)
through (7), with the following condition: If a certain number of scale steps produces an interval that the
same number of scale steps never producesin the undtered scale, that interval will be largely avoided
and so will not “count” for rules (6) and (7); i.e. the characteristic dissonances and alowed step sizes
remain what they were in the undtered case. Let’ swork out the implications for the scales we have
aready discussed.

Altered diatonic scales

The undtered scale can berepresented asL L sL L L s. Replacing asmall step with alarge one, there
isonly one new scale that can be produced:

i) LsLLLLs

The rest of the scales result from replacing alarge step with asmdl one:
i) s(2L-9ysLLLs

i) (2L-g9)ssLLLs

iv) LLss(2L-9Ls

V) LLs(2L-9sLs

vi) LLsLs(2L-9)s

vi) LL sL (2L-9) ss

(2) removes scales (iv) and (vii), where the pattern 1, 3, 5 produces only three consonant
triads.

(3) doesnot iminate any more scales.

(4) diminates scaes (i) and (iii), each of which has a note not belonging to any of the consonant
triads.

(5) removesscde (i) modesL LLLsLsLsLsLLL,andsLsLLLL;scde(v)modesL
Ls(2L-9)sL s, sLsLLs(2L-s),andsL L s(2L-s) sL; and scde (vi) modesL sL s
(2L-9) sL,(2L-9)sL L sL s,andsL L sL s(2L-9).

%0f all equal tunings, Blackwood says, “ The most effective one for random dissonance is eleven notes.” Keislar,
Douglas. 1991. “ Six American Composers OnNonstandard Tunings.” Perspectives of New Music Vol. 29 No.1 p. 177.



Strong Verson
(6) removesscde (i) modessL LLLsLandL L LsL sL;thescde(v) modess(2L-s) sL

sLL,Ls(2L-s)sL sL,and(2L-s)sL sL L s andthescde (vi) modessL s(2L-s)sL
L,s(2L-9)sL L sL,andL sL s(2L-9) sL; thesemodes dl contain an augmented fourth
below the 5" or above the 1% scale degree. Thescale (i) modesL sL L L L sandL L sL
sL L both contain a note an augmented fourth from the 3 scale degree, but it forms a
rough 7-limit tetrad with the respective tonic triads.

(7) imposes no further restrictions, leaving the usud harmonic minor (L sL L s(2L-s) s) and
harmonic mgor (L L sL s(2L-9) s) modes, and possibly the melodic minor ascending (L s
L L L L s) aswel alesscommon mode known in Carnatic music asMelaCarukes (L L s
L sL L) and sometimes referred to smply as “the Hindu scale” The first two are
dynamic, and the last two are both dynamic and datic.

Weak Verson

(6) removesscade (i) modessL L L LsLandL L LsL sL,scde(v) modess(2L-s)sL sL
LandL s(2L-s)sL sL, and scale (vi) modess(2L-s)sL L sL andL sL s(2L-9 sL, dl
of whose tonic triads share a note with each of the two augmented fourthsin their respective
scaes. Thisleaves, in addition to the strongly tonal modes above, the mode known to the
Hindus as MelaKosalam ((2L-s) sL sL L s), and amode with no recognized name, but
which jazz musicians might describe as phrygian flat 4 (sL s (2L-9) sL L),*" both of which
are dynamic. If rough 7-limit tetrads are alowed, we aso have phrygian sharp 6 or Mela
Natakapriya(sL L L L sL) and lydian dominant or MelaVacaspati (L L L sL sL), both
of which are tic.

Altered pentatonic scales

The undtered scale can be represented asssL sL. Replacing alarge step with asmdl one, thereis
only one new scale that can be produced:

i) sssLL

The rest of the scales result from replacing a smdl step with alarge one:

i) L(2sL)LsL

i) (2sL)LLsL

(2) removesdl three scales, since the pattern 1, 4 produces only two consonant dyadsin any of
them.

Altered decatonic scales
The reader may verify that there are none.

%t should be noted that most of the considerations leading to these scales are foreign to Indian classical music,
which uses these scales purely melodically over atonic drone. These four modes are known, in Schenker’ s system,
asMischungen 4, 2, 1, and 6, respectively. Schenker, op. cit.

%A comprehensive list of over 300 mode names did not include this mode until the author suggested its addition. The
Indian names are taken from thislist. Op de Coul, Manuel, ftp://ella.mills.edu/pub/ccm/tuning/papers/modename.txt.



History of 22-tonetunings

Indian music is described in terms of a 22-sruti division of the octave. Whether this represents
an actua set of pitches, or just ameans of specifying that some scale steps were to be larger than
others, is controversid. Some readings of early accounts suggest a tuning approaching 22-tone equa
temperament.®® Modern accounts describe the three step sizes of the basic seven-tone Indian scales by
taking 4-sruti intervas as 9:8, 3-sruti intervas as 10:9, and 2-sr uti intervas as 16:15. This determines
3:2intervasas 13 sruts, 4:3 as 9 srutis, and 5:4 as 7 srutis. Thus the harmonic structure of these
scaesiswell represented in 22-equd. But the melodic structure can be somewheat different.

The two basic scales gpecified in ancient Indian theory are sa-grama and ma-grama.® Their
structure was described according to the following table (notes named with a+ sign were chromatic
tones recognized by the ancients, the derivation of the ratios is discussed below):

Table2
sruti  pogtionin sa-grama postionin ma-grama
1
2 N+ 3/ (tempered 16/15) Ga+ (2 (tempered 45/32)
3
4 Sa 98 Ma 3/2
5
6 (6/5) [8/5]
7 R 5/4 Pa  5/3
8
9 Ga 43 [16/9]
10
11  Gat 45/32 Dha 15/8
12
13 Ma 32 Ni 11
14
15 (8/5) Ni+ 16/15
16
17 Pa 27116 Sa 9/8
18
19 (9/5) [6/5]
20 Dha 15/8 Ri 5/4
21
22 Ni 2/1 Ga 4/3

If the srutis are indeed 22-equd, the total set of sruti positions for which names are given in table 2
form a pentachorda decatonic scaléel It is therefore concelvable that some of the melodic patterns
specified in Indian music theory™ may be useful for decatonic composition, especialy if they happen to
outline parts of tetradic structures.

One plausble just interpretation of this diagram is that two parald strings on an insrument were
tuned a 4:3 gpart, the sruti numbers referred to fret positions, and the note names were meant to refer
to practicaly the same absol ute pitches on both strings: a set of pitches approximating a diatonic scale.

¥Chakraborty, Satyaban. 1990. Svaras and Srutisin Indian Music. Kalyani Prakashani, West Bengal.
¥A third scale, ga-grama, was reputedly of Himalayan origin and fell out of use at an early stage.
“*Rowell, Lewis. 1992. Music and Musical Thought in Early India. University of Chicago Press.



Another possible interpretation is thet the diagram refers to two methods of playing asingle string, and it
isthe sruti numbers that referred to afixed set of pitches, while the note names conveyed relative
positions within amode. The note names were shifted by one scale degree in later Indian theory, so that
Ni is currently known as Sa, etc., but the names of the gramas have not changed. The earlier
terminology is used in table 2 and henceforth. The undtered sa-grama tones fixed seven of the positions
on the instrument. Ratios are added to the diagram in accordance with the modern, 5-limit specification
of the step Sizes of the unaltered sa-grama, with Ni taken as 1/1 Since it corresponds to an open string
and to the modern tonic Sa

Of those seven pogtions, five could be used in playing notes Ni, Sa, Ri, Ga, and Ma of ma-
grama. The sruti corresponding to note Ri of sa-grama would, in ma-grama, produce a Pa 21.5
cents shy relative to note Pa of sa-grama. Rather than correcting this discrepancy by fixing another
sruti position at such a short distance from an established one, Pawas recognized in two forms, and sa-
grama and ma-grama became the names of the diatonic scale with the two different versons of Pa
Findly, in order to play note Dha of ma-grama, an entirdy new position had to be added, 92.2 cents
above the position corresponding to corresponding to note Ga of sa-grama. (Thistuning is necessary in
the just specification since Pa-Dhaiis a step of 4 sruti, o must be tuned 9:8, in ma-grama.)

This new position corresponded to a chromatic dteration, Gat, on the first string, that may have
been added as a result of this process or may have been previoudy recognized. The former impliesa
tuning of 45/32; in the latter case, tuning it as a 5-limit interva from an existing scae tone can again only
produce 45/32. Note that the just specification of the Step Szesdoneis not sufficient to determine the
tuning of such chromatic dterations the 4-sruti interva of 9:8, minus a 2-sr uti interva of 16:15, leaves
another 2-sruti interva of 135:128, which could conceivably occur either above or below the chromatic
note. The other chromatic dteration recognized by early Indian theory was Ni+. Modern theory takes
the tuning of this note as 16/15. This seems the mogt likely tuning of the notein ma-grama, asitisa5:4
below the open string of that grama. Fixing the postion of sruti 2 in accordance with thistuning in sa-
grama would produce a ma-grama Gat+ of 64/45, while consstently using 45/32 for Ga+ would force
sruti 2 to give asa-grama Ni+ of 135/128. So that a single sruti position could serve both functions,
there is evidence that a compromise between the two was adopted.** In more recent theory, other
altered notes have been added to sa-grama, their smple ratios shown in parentheses in table 2. The 12
sruti postionsin the sa-grama for which ratios have been given are known as the Modern Indian
Gamut.* If the sruti are taken as equally tempered, the Modern Indian Gamut is a hexachordal
dodecatonic scale.

But how did the particular quantification in terms of sruti come about? If we take the 5-limit just
interpretations serioudy, it is difficult to see the sruti as units of a specific Sze, snce the difference
between the 4- and 3-sruti intervasis virtudly identicd to the difference between the two 2-sruti
intervals® One dear feature of Indian music isthe “drone’ congsting of 1/1 and 3/2. The conventional
modern enumeration of the sruti tunes five consecutive 3:2s above the 3/2 and five below the 1/1,
forming a Pythagorean chain of 12 notes. The other ten notes form five just mgor and five just minor
triads with the six central notes of the Pythagorean chain.* Depicting 3:2 relationships as proceeding

“IThe fret corresponding to sruti 2 was typically placed exactly halfway between the nut and the fret for sruti 4 (this
would produce a harmonic mean frequency, 3 cents different from the geometric mean we have assumed); and all 9- or
13-sruti intervals were considered consonant. Chakraborty, op. cit.

“Deva, B. Chaitanya. 1980. The Music of India; A Scientific Study. Munshiram Manoharlal, New Delhi.

®The difference between the differencesis a schisma, or less than 2 cents.

“See for example Ramanathan, S. Feb. 1973. “The Sruti Veena,” inMusical Scales: Report of Symposium. Sangeet
Natak Akademi, New Delhi.



rightwards, 5:4 relationships upwards and to the right, 5:3 relationships upwards and to the left, the
ancient gamut in bold, and the modern additionsin bold Itdics, the srutis can be depicted as follows:

Table3

sa-grama (1/1=0, 3/2=13):

3 16 7 20 11
1 14 ) 18 9 0O 13 4 17 8 21 12
2 15 6 19 10

ma-grama (1/1=13, 3/2=4).

16 7 20 11 2
14 5 18 9 0O 13 4 17 8 21 12 3
15 6 19 10 1

The sruti numbers Smply order the tones according to pitch, with the drone tones numbered asin Table
2. Note that the tuning of the sruti numbered 2 depends on the choice of grama, mativating the
compromise discussed above. Indian theorists could have origindly derived these pitches independently
of the sruti ideaby smply tuning ten consecutive 3:2s above the 3/2 and ten more below the 1/1, which
would result in virtually the same pitches.™ An additiona 3:2 on either end of the chain would result in a
note a Pythagorean comma (23.5 cents) from a drone note, which may be why the theorists stopped a
22,

Kraehenbuehl and Schmidt, inspired by Y asser, proposed an evolution proceeding from
pentatonic to heptatonic to chromatic (12 tones) to “hyperchromatic” (22 tones) to 41 tones per octave,
corresponding with a harmonic limit that increases from 3to 5to 7 to 11. They defined dl the tones with
just ratios and defined the harmonic limit as the highest prime number used in these ratios (thus they
skipped 9). The evolution proceeds by interpolating one new note into each of the larger steps of the
previous system, first using only the older harmonic limit. Then, once the newer system beginsto be
used in its entirety, the next harmonic limit begins to cause “inflections’ in the tuning of the older system
to occur. Once the newer harmonic limit takes effect, the process begins again.*® The “included
chromatic system of the hyperchromatic system” resembles the symmetrica dodecatonic scae
mentioned earlier. Although Kraghenbuehl and Schmidt do not address the issue of temperament, it is
reasonable to suppose that they would alow for equa temperament when it preserves the consonance
relationships of the prevailing harmonic limit, so that the present usage of 12-equa may be seen
according to their theory. Nor do Kraghenbuehl and Schmidt address the relationships between chord
structure and scale structure, perhaps because in just intonation, the number of inflections required to
produce consonant chords on most scale degrees grows rapidly as the limit increases.

The author, unaware of these theories, discovered the decatonic scales geometricaly in 1991.
The diatonic scale can be depicted asin Figure 3. Here the Q and T intervas are represented by solid
lines at 60° angles from one another. The remaining 5-limit interva, 6:5, is represented by a dotted line.

*Thelargest error is again aschisma. Using this “Pythagorean” approach would require that sixth 3:2 in each chain
(theline breaksin table 3) be reckoned as 12 sruti.

“K raehenbuehl, David and Schmidt, Christopher. 1962. “On the Development of Musical Systems.” J. Music Theory
vol. 6 no. 1 pp. 32-65.



The consonant triads of the scale thus form equilaterd triangles. The figure has one equilaterd triangle
for every consonant triad in the scale. “D” gppearstwice and if dl intervals were tuned in just intonation,
“D” would require two distinct tunings, differing by 81:80 or 21.5 cents. Only in ameantone tuning, i.e.
atuning for which 4Q=T, do both occurrences of “D” represent the same pitch. To find asmilar
congruct for the 7-limit, we need an additiona dimension. Figure 4 depicts a 3-dimensond lattice
wherethe Q, T, and S axes are meant to be at 60° angles from one another. The viewpoint is 1° off
perpendicular to the Q- T plane. The solid lines are dl pardld to the axes. Dotted lines are added to
represent the other consonant intervas. 6:5, 7:5, 7:6. Each obliquely distorted “unit cube” of the solid-
line lattice then congsts of two regular tetrahedra and one regular octahedron. The tetrahedra are the
complete, consonant tetrads of 7-limit harmony, the mgor tetrad appearing “right-side-up” and the
minor tetrad “upside-down.”*” The vertices of the lattice are labeled with numbers from 0 through 21
representing 22-tone equa temperament. For example, moving one step in the positive direction aong
the Q axis corresponds to an addition of 13, the T axis an addition of 7, and the S axis an addition of
18, al mod 22. Figure 5 shows a portion of thislattice that contains the Six consonant tetrads of the
pentachorda decatonic scale; note that two notes gppear twice and would thus each need two distinct
tunings, differing by 50:49 or 35.0 cents, in just intonation. Figure 6 is a portion of figure 4 showing the
symmetrica decatonic scale; its eight consonant tetrads would require that four notes exist in two
versons a 50:49 gpart, and two additiona notes have two versions a 64:63, or 27.3 cents, apart, in just
intonation. While figure 3 is the representation of the triads of the diatonic scale with the fewest
replicated notes, figures 5 and 6 are only examples and other equally smple arrangements of the
decatonic tetrads exist.

It turns out that Ben Johnston has employed a 22-tone 7-limit just tuning in his4™ string quartet
(1973). This tuning has been displayed on ajust lattice constructed much like figure 4. When its
structureis reproduced on the 22-equd latice, it forms a one-to-one correspondence with 22-equal.
Johnston was focusing mainly on harmonies, but was likely guided by a degre to achieve rough equality
of the smdlest melodic steps. Thus he may have been the first to hint upon the applicability of 22-equa
to 7-limit harmony in an actud compaosition.

“"The octahedron is a Wilson hexany, while the oblique cube is an Euler-Fokker genus. Indeed, in any number of
dimensions, the “unit hypercube” of the lattice, an Euler-Fokker genus with no repeated factors, can be constructed
by “tiling” al Wilson CPSs (where the set of available factors, assumed to be relatively prime, isthe set of axes).
Fokker, op. cit.; Chalmers, John H. Jr. and Wilson, Ervin M., 1982. "Combination product sets and other

harmonic and melodic structures", Proceedings of the 1981 International Computer Music Conference. ICMA, 1982,
pp. 348-362.

“Gilmore, Bob. 1995. “Changing the Metaphor: Ratio Models of Pitch in the Work of Harry Partch, Ben Johnston, and
James Tenney.” Perspectives of New Music vol. 33 p. 482.



Tuning the decatonic scale

It iswell known that the consonances of the diatonic scale are more accurately expressed in
varieties of meantone tuning other than 12-equd. Figure 1 shows that the accuracy of 19- and 31-equd
in the 5-limit is grester than that of 12-equal, and these are indeed meantone tunings. A meantone tuning
is defined completely by specifying the Sze of the Q. The same istrue for the decatonic scale, Snceit
can be constructed entirely from the Q (perfect 7";0) and the half-octave (perfect 6;0). Since any
perfect 6™ in the scaleis likely to represent 7:5 and 10:7 equally often, the interval achieves its greatest
accuracy at exactly 600 cents. Thusit remains only to vary the size of the perfect 7";0. Maximum
accuracy, accuracy defined asit is for figure 1, is achieved with a perfect 7",
of 30.5+ 7>log, (3) - 5°109,(35)

27

vaue The smdlest equa temperament with an even number of notes (so that there is a hdf-octave)
which better approximates 708.8143 cents is 210-tone equa temperament. Successive improvements
come with each addition of 22 to this number up through 386. If accuracy is defined asit isfor figure 2,
no tuning of the decatonic scaleis very good, but a perfect 7"y of

1186.5+ 231>l0g,(3) -125>10g,(5) - 245°l0g, (7)

971

smallest even equa temperament which improves upon 22-equd is then 76-equal, and successive
improvements come with 98-, 120-, and 218-tone equal temperament.™ The smallest even equdl
temperaments not yet mentioned with an interval between these two optima vaues, and which are not
multiples of 22, come from successive additions of 22 garting with 142. However, in dl of these larger
tuning systems, the increase in accuracy is negligible, and there are better gpproximations to some 7-
limit intervas than those occurring in the decatonic scale. Therefore, if amplicity isat dl anissue, itis
clear that 22-equdl is the best tuning for the decatonic scae.

One can dso congtruct an unequa 22-tone tuning which alows both decatonic and Indian
scaes. Five notes of the Modern Indian gamut form achain of four just Qs from 4/3 to 27/16. Next
thereisachain of two just Qs from 5/4 to 45/32, atempered Q to 3/C2, another tempered Q to 8/5,
and two just Qs to 9/5. Now if we consider the 22 sruti as gpproximating 22-equd, the remaining
twelve Qs can form three different pentachorda and two different symmetrica decatonic scaes. Since
we want the Indian “just” Qsto be as close to just as possible, we make the decatonic Qs as large as
possible. With a perfect 7", any larger than 711 cents, the minor 4™, would possess an error greater
than that of the 600-cent perfect 6™, which must approximate both 7:5 and 10:7 with an error of 17
cents.

octaves, or 708.8143 cents, only 0.3 cents less than the 22-equa

octaves, or 710.0927 cents, is optimal.*® The

“For the diatonic scale, the two optimal values of the perfect fifth are 2- 2X109,(3) + 7409, (5) octavesor
26

696.1648 cents (fig. 1) and 86~ 6620g, (533: 175x109,(5) octaves or 696.0187 cents (fig. 2). These correspond to
7/26-comma meantone and 175/634-comma meantone temperaments, respectively. The former was derived asthe
optimal diatonic tuning in Woolhouse, W. S. B. 1835. Essay on Musical Intervals, Harmonics, and the Temperament
of the Musical Scale, &c. J. Souter, London.

*76-equal is notable for having 19-equal contained within it. It therefore contains all the tonal systems discussed in
this paper (including two distinctly tuned pentatonic systems). A slightly simpler equal tuning with this property is
64-equal, where the accuracy (especially of the minor 4",) is comparatively poor. These are similar in complexity to
72-equal, which has been used for its extremely close correspondence with 11-limit just intonation. 120-equal is
convenient because all intervals are multiples of 10 cents. In 218-equal, the perfect 7", is 0.0010 cent short of its
optimal size with respect to thefig. 2 definition.
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Viewing the tuning as acirde of 3:2s, the haf-cirde that includes the origind five notes (top half
of figure 7) must have four Indian fifths (represented by “i”) plus seven 711-cent perfect 7"y5s
(represented by “d”) add up to 600 cents (mod the octave). That gives an Indian Q of 705.75 cents,
approximately the 17-equal Q. Now the other half-circle has five 711-cent perfect 7S, four Indian
705.75-cent Qs, and what remains represents the two Indian tempered Qs, which must therefore be
tuned to 711 cents— equa to the decatonic Q.

A keyboard mapping for this tuning which alows the available decatonic scalesto use the
amplest key sgnatures (i. e, few or no white keys) isgiven in table 4. If desired, the two different
versions of the tempered sruti 2 may betuned onthe“E” and “F’ of the keyboard, as shown in braces
intable 4. Columns 4 and 5 of table 4 show exact tunings for the two gramas as well as the speculative
ratiosin parentheses. The tunings are shifted so that they have the same pitch at the center of symmetry.
Thelargest error within the gramas is then about 7% cents.

The key signatures of the available symmetrica decatonic scaesin thistuning are{} and {5D, 0D} ; the
pentachordal sgnatures are { 6D}, { 0D}, and { 5D, 9D, 0D} .



Table4

keyboard cents sruti number just ratios and cents for just ratios and cents for decatonic note name

manonina sa-arama (3/2 — 705.75)  ma-arama (1/1 — 705.75)
D 0 0 1/1—3.8 4/3—38
D# 50.25 1 2
{E} {100.5} 2 {45/32 — 96}
E&F 105.75 2 3/¢2 —105.75 (2 —105.75
IR {111 2 {16/15 — 115.5}
F# 161.25 3 3
G 2115 4 9/8 — 207.7 3/2 —207.7
G# 272.25 5 4
A 3225 6 6/5— 319.4 8/5— 319.4
A# 383.25 7 5/4 — 390.1 5/3—390.1 5
B 428.25 8 5C
c 494.25 9 4/3—501.8 16/9 — 501.8 6N
ct 539.25 10 6
d 594.75 11 45/32 — 594 15/8 — 594
d# 650.25 12 7
e&f 705.75 13 3/2 — 705.75 1/1 — 705.75
f# 761.25 14 8
c 816.75 15 8/5— 8175 16/15 — 817.5
ot 872.25 16 9
e 917.25 17 27/16 — 909.7 9/8 — 909.7 [¢]D)
att 983.25 18 0
b 1028.25 19 9/5—1021.4 6/5— 1021.4 oC
c 1089 20 15/8 — 1092.1 5/4 — 1092.1
ct 1139.25 21 1
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Question—What would be most hel pful in music today to the composer, to the performer, and
to the theorizer?

Answver—If we could bring it about, that the diatonic scale be “ spurlos versenkt” and that,
ingtead of busying himsdf with absorbing “a’ scde (thet is, “the’ diatonic scae of the past), the music
pupil devote histime to the invention of scales for his own fun and for entertaining others with music
built of the elements of such scales of hisinvention.

-Max M eyer51

*'Meyer, Max F. 1929. “The Musician’s Arithmetic: Drill Problemsfor an Introduction to the Scientific Study of
Musical Composition.” University of Missouri Studies Val. IV. Colombia, Missouri, p.93.



Appendix: Decatonic Key Signatures
Magor and Minor in thefirst and third columns below refer to the Standard Pentachordal
modes. For the Alternate Pentachordal modes, 1ook at the same row in the opposite column.



Decatonic Key Signatures and Rezsutek Keyboard Layout

The key signatures in the first and third columns refer to the standard pentachardal major and minar modes built on the indicated tanics.
For the altemate pentachordal major and minor modes, match the ley signatures in the first column with the respective tonics in the third

column, and vice versa,
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Figure 2

= 3-limit
= S-litnit
¥ -lirmit

£ Q_lirmit

2
il
-
w
w
ol

= 1 3-lirmit

9 10 11 12 13 14 13 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Hotes Per Octave







cooooook)

—————— "

e

S/

=

L
-

= =
L
~ -
-
T 0
1 . =
'l'\-\.' - -
DY b
E
-
LY

v
5//:

1
o
L
-y
o

4

]

e
"
.

1 L =
‘.I
5l -
-
m
- "
.
-

s
b s

]
=

b
-
b
]

]
' [
=
0 -
'\..\- -
Lt
N

T
i
i
S E

7
/

X

1 T
1 / . ]
L .
- .

.
-

L
ff .
=
=

- 1
.ll
Wt
=

D
L

-_——— == = o

0 ~
1
0 -
iy
=

-_—— = = - o




e ]

L
S hooooooocoooocooel

-
[




L cocoooooocooooookl

RS

- s




