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1. Introduction

A pitch collection may comprise the pitches of tones in a chord, a scale, a tuning, or the
virtual and spectral pitches heard in response to complex tones or chords. Modelling the
perceived distance (the similarity or dissimilarity) between pairs of pitch collections has
a number of important applications in music analysis and composition, in modelling of
musical cognition, and in the design of musical tunings. For example, voice-leading dis-
tances model the overall distance between two chords as a function of the pitch distance
moved by each voice (see [1] for a survey); musical set theory considers the similarities
between the interval (or triad, tetrad, etc.) contents of pitch collections (see [4] for a sur-
vey); psychoacoustic models of chordal distance [2, 3] treat tones or chords as collections
of virtual and spectral pitches [5, 6] to determine their affinity; tuning theory requires
measures that can determine the distance between scale tunings and, notably, the extent
to which different scale tunings can approximate privileged tunings of intervals or chords
(e.g., just intonation intervals with frequency ratios such as 3/2 and 5/4, or chords with
frequency ratios such as 4 : 5 : 6 : 7).

This paper presents a novel family of embeddings (expectation arrays), and associated
metrics, that can be applied to the above areas. Expectation arrays model the uncertain-
ties of pitch perception by “smearing” each pitch over a range of possible values, and the
width of the smearing can be derived directly from experimentally determined frequency
difference limens [7]. The arrays can embed either absolute or relative pitches (denoted
absolute and relative expectation arrays, respectively): in the latter case, embeddings of
pitch collections that differ only by transposition have zero distance; a useful feature that
relates similarity to structure.

To avoid confusion, it is worth making some definitions explicit. A tone is defined as
any stimulus capable of producing a perception of pitch. The probability of hearing a
tone or a specific pitch is, following Parncutt [2], denoted salience (the context should
make clear whether salience refers to a tone or a pitch). Two assumptions are made to
simplify the analysis: any given tone can be heard as having no more than one pitch and
the hearing (or not) of a tone does not affect the chance of hearing another tone. Thus a
single note played by an instrument can still be treated as a single perceptual entity or as
a set of virtual or spectral “tones”. Pitch collections are treated as multisets—duplication
of the same pitch is meaningful because two different tones may induce the same pitch
while both remain discriminable.

2. Category domain embeddings

There are some circumstances where each tone in a pitch collection can be meaningfully
related to a unique tone in another collection. This occurs when there are d categories in
each pitch collection; for example, categorisation may be by voice (e.g., bass, tenor, alto,
soprano), ordinal position within a scale (the scale degree), or the ordinal or metrical
position within a theme or melody. When such categorisations occur, pitches may be
embedded into a category domain vector where the position (index) indicates category
and the value indicates pitch. Any standard metric applied to two such category domain
vectors provides a pairwise comparison between the pitches of tones in the same category.
For example, Chalmers [9] measures the distances between differently tuned tetrachords
using a variety of metrics such as Euclidean `2, taxicab, `1, and max-value `∞, and the
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Table 1. These pc-vectors represent several musical scales with b = 2
(the octave) and q = 1200 cents: 12 equal division of the octave (12-
edo), the major scale in 12-edo, 10-edo, and a just intonation major
scale.

12-edo (0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100) R12

Maj-12 (0, 200, 400, 500, 700, 900, 1100) R7

10-edo (0, 120, 240, 360, 480, 600, 720, 840, 960, 1080) R10

Maj-JI (0, 204, 386, 498, 702, 884, 1088) R7

use of various metrics to measure voice-leading distance are discussed by Tymoczko [1].
To be concrete, a pitch vector xpi ∈ Rd contains elements xpii

indexed by i ∈ N : 1 ≤
i ≤ d, where d ∈ N is the number of tones. The index i indicates the tone category and
the value of the element xpii indicates pitch. A typical example is a logarithmic function
of frequency

xpii
= q logb

(
fi

fref

)
, (1)

where 0 < b ∈ R is the frequency ratio of the period (typically the octave, so b = 2),
q ∈ N determines the number of pitch units that make up the period (typically q = 12
semitones or q = 1200 cents), fi ∈ R is the frequency of tone i, and fref ∈ R is the
frequency given a pitch value of zero (typically C−1, which is 69 semitones below concert
A, so fref = 440 × 2−69/12 ≈ 8.176 Hz). With these constants, a four-voice major triad
in close position with its root on middle C is (60, 64, 67, 72), which is also the MIDI note
numbers for a C major chord.

A pitch class vector or pc-vector,

xpci
= xpii

(mod q), (2)

is invariant with respect to the period of the pitches since 0 ≤ xpci
≤ q − 1. This makes

it useful for concisely describing periodic pitch collections, such as scales or tunings that
repeat every octave. The variable fref specifies which pitch class has a value of 0 (in a
tonal context, it may be clearest to make it equal to the pitch of the root, or tonic).
For example, a major triad may be notated (0, 4, 7) or (1, 5, 8), or more generally as
(x, 4 + x, 7 + x) mod q. Table 1 shows some musical scales represented as pc-vectors.

The pc-vector may have an associated weighting vector,

xw ∈ Rd, (3)

which contains elements 0 ≤ xwi
≤ 1. This can be used to represent amplitude, loudness,

salience, and so forth. This paper assumes the weighting vector denotes salience, the
probability of hearing a tone. For example, if four voices sound the pitch classes (0, 3, 3, 7)
and have an associated weighting vector (.9, .6, .6, .9), listeners are expected to hear the
pitch of an outer tone in nine out of ten trials and the pitch of an inner tone in six out
of ten trials.

Category domain embeddings, and metrics reliant upon them, are unsuitable when
the pitches cannot be uniquely categorised. For example, when modelling the distance
between the large sets of spectral or virtual pitches heard in response to complex tones
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or chords (see Ex. 6.2), there is no unique way to reasonably align each spectral pitch
of one complex tone or chord with each spectral pitch of another [8] and, even if there
were, it is not realistic to expect humans to track the “movements” of such a multitude
of pitches.

A simpler example is provided by the scales in Table 1, where the categories are the
indices of the scale elements. From a musical perspective, it is clear that some such
tunings can be thought of as closer than others. For instance, a piece written in Maj-JI
can be played in a subset of 12-edo (such as Maj-12) without undue strain, yet may not
be particularly easy to perform when the pitches are translated to a subset of 10-edo.
Thus it is desirable to have a metric that allows a statement such as “Maj-JI is closer to
12-edo than to 10-edo.”

When two pc-vectors have the same number of elements, any reasonable metric can
be used to describe the distance between them; for example, the distance between Maj-
12 and Maj-JI can be easily calculated because they both contain seven pitch classes.
However, when two pitch collections have different cardinalities, there is no obvious
way to define a metric since this would require a direct comparison of elements in Rn

with elements in Rm for n 6= m. One strategy is to identify subsets of the elements
of the pitch collections and then try to calculate a distance in this reduced space. For
instance, one might attempt to calculate the distance between Maj-JI and 12-edo by
first identifying the seven nearest elements of the 12-edo scale, and then calculating the
distance in R7. Besides the obvious problems with identifying corresponding tones in
ambiguous situations, the triangle inequality will fail in such schemes. For example, let
pitch collection x be 12-edo, pitch collection y be any seven note subset drawn from
12-edo (such as the major scale), and pitch collection z be a different seven note subset
of 12-edo. The identification of pitches is clear since y and z are subsets of x. The
distances d

(
x,y

)
and d

(
x, z

)
are zero under any reasonable metric since y ⊂ x and

z ⊂ x, yet d
(
y, z

)
is non-zero because the pitch classes in the two scales are not the

same. Hence the triangle inequality d
(
y, z

)
≤ d

(
y,x

)
+ d
(
x, z

)
is violated. Analogous

counter-examples can be constructed whenever n 6= m.

3. Pitch domain embeddings

A way to compare pitch collections with differing numbers of elements is use a pitch do-
main embedding where the index represents pitch and the value represents the probability
of a pitch being heard, or the expected number of tones heard at that pitch. Because
the cardinality of the pitch domain embedding is independent of the cardinality of the
pc-vector they are derived from, such embeddings (and metrics reliant upon them) are
able to compare pitch collections with different numbers of tones such as the spectral and
virtual pitches heard in response to a complex tone or chord, or scales and their tunings.
The following examples are shown as transformations of pc-vectors (2), but they can also
be given in terms of pitch vectors (1).

A pc-vector xpc can be transformed into a characteristic function and weighted by its
salience vector xw. The d row vectors are then arranged into a d× q matrix to allow the
saliences of the voices to be individually convolved and appropriately summed. Formally,
the elements of the pitch class salience matrix Xpcs ∈ Rd×q are given by

xpcsi,j
= xwi

δ(j −
[
xpci

]
), (4)
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Figure 1. Pitch domain embeddings of two tones—one with a pitch of 400 cents, the other with
a pitch of 401 cents. On the left, no smoothing is applied, so their distance under any standard
metric is maximal; on the right, Gaussian smoothing (standard deviation of 3 cents) is applied,
so their distance under any standard metric is small.

where [x] rounds x to the nearest integer and δ(k) is the Kronecker delta function that
is 1 when k = 0 and 0 for all k 6= 0.

Example 3.1 Given q = 12, xpc = (0, 3, 3, 7) (i.e., a close position minor chord with a
doubled third), and xw = (1, .6, .6, 1), (4) gives the pitch class salience matrix Xpcs =(

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 .6 0 0 0 0 0 0 0 0
0 0 0 .6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

)
.

Pitch values in the pc-vector are rounded to the nearest pitch unit (whose size is
determined by q and b) when embedded in the pitch domain. Using a low value of q (like
12 in the Example 3.1) makes such pitch domain embeddings insensitive to the small
changes in tuning that are important when exploring the distances between differently
tuned scales, or between collections of virtual and spectral pitches. Embedding into a
more finely grained pitch domain (such as q = 1200) must be done with care. For example,
under any standard metric, the distance between a tone with a pitch of 400 cents and a
tone with a pitch of 401 cents is maximally large (i.e., there is no pair of pitches that will
produce a greater distance, see the left side of Figure 1). This is counter to perception
since it is likely that two such tones will be heard as having pitches that are identical.

The solution is to smooth each spike over a range of pitches to account for perceptual
inaccuracies and uncertainties. Indeed, a central tenet of signal detection theory [11] is
that a stimulus produces an internal (perceptual) response that may be characterised as
consisting of both signal plus noise. The noise component is typically assumed to have a
Gaussian distribution, so the internal response to a specific frequency may be modelled as
a Gaussian centred on that frequency. It is this noise component that makes the frequency
difference limen greater than zero: when two tones of similar, but non-identical, frequency
are played successively, the listener may, incorrectly, hear them as having the same pitch.
The right side of Figure 1, for instance, shows the effect of smoothing with a Gaussian
kernel with a standard deviation of 3 cents. See Appendix A for a detailed discussion of
this parameter.

The smoothing is achieved by convolving each row vector in the pitch class salience
matrix Xpcs with a probability mass function. The pitch class response matrix Xpcr ∈
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Rd×q is given by

xpcri,j
= xpcsi,j

∗ pj (5)

where pj is a discrete probability mass function (i.e., pj ≥ 0 and
∑
pj = 1), and ∗ is

convolution (circular over the period q when a pc-vector is used). The result of (5) is
that each Kronecker delta spike in Xpcs is smeared by the shape of the probability mass
function and scaled so the sum of all its elements is the salience of the voice.

Example 3.2 Let the probability mass function be triangular with a full width at half
maximum of two semitones; this is substantially less accurate than human pitch percep-
tion and a much finer pitch granulation (like cents) would ordinarily be required, but it
illustrates the mathematics. Applying this to the pitch class salience matrix of Example

3.1 gives the pitch class response matrix Xpcr =
(

.5 .25 0 0 0 0 0 0 0 0 0 .25
0 0 .15 .3 .15 0 0 0 0 0 0 0
0 0 .15 .3 .15 0 0 0 0 0 0 0
0 0 0 0 0 0 .25 .5 .25 0 0 0

)
.

4. Expectation arrays

The values in the pitch class response matrix represent probabilities; this means it is
possible to derive two useful types of array embeddings: (a) expectation arrays indicate
the expected number of tones, ordered pairs of tones, ordered triples of tones, and so
forth, that will be heard as having any given pitch, dyad of pitches, triad of pitches, and
so forth; and (b) salience arrays indicate the salience of any given pitch, dyad of pitches,
triad of pitches, and so forth.

Example 3.2 will help to clarify this distinction: The expected number of tones heard
at pitch class 3 is 0.6 (the sum of elements with j = 3); this does not mean it is possible
to hear a non-integer number of tones, it means that over a large number of “trials” an
average of 0.6 tones will be heard at pitch class 3 (e.g., given one hundred trials, listeners
might hear two tones at pitch class 3 in nine trials, one tone at pitch 3 in forty two trials,
and hear no tones at pitch 3 in forty nine trials). The salience (probability of hearing) a
pitch class of 3 is 1−((1− 0)(1− .3)(1− .3)(1− 0)) = .51 so, given one hundred trials, we
expect listeners to hear pitch class 3 a total of fifty-one times (regardless of the number
of tones heard at that pitch). This paper focuses on expectation arrays.

Expectation arrays may be absolute or relative: absolute expectation arrays, denoted
Xe, distinguish pitch collections that differ by transposition (e.g., the scales C major and
D major), while relative expectation arrays, denoted X̂e, do not.

Expectation arrays enable different pitch collections to be compared according to their
monad (single pitch), dyad, triad, tetrad, and so forth, content. To see why such com-
parisons are significant, consider a simple example using major and minor triads (0, 4, 7)
and (0, 3, 7) with q = 12. These contain the same set of intervals (and hence they have
zero dyadic distance) but these intervals are arranged in different ways (and hence have
non-zero triadic distance). Thus the two types of embedding may capture the way major
and minor triads are heard to be simultaneously similar and different. matlab rou-
tines were used to calculate the arrays discussed below; they can be downloaded from
http://eceserv0.ece.wisc.edu/~sethares/pitchmetrics.html.
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4.1. Monad expectation arrays

The absolute monad expectation vector X
(1)
e indicates the expected number of tones that

will be heard as corresponding to each possible pitch (class) j. It useful for comparing the
similarity of pitch collections where absolute pitch is meaningful; for example, comparing
the spectral or virtual pitches produced by two complex tones or chords in order to
determine their affinity or fit (see Ex. 6.2). The elements of X

(1)
e are

xej
=

d∑
i=1

xpcri,j
, (6)

which is equivalent to the column sum of Xpcr. Applied to Example 3.2, (6) produces
X

(1)
e = (0.5, 0.25, 0.3, 0.6, 0.3, 0, 0.25, 0.5, 0.25, 0, 0, 0.25).
When there is no probabilistic smoothing, and every voice has a salience of 1, the

monad expectation vector is equivalent to a multiplicity function of the rounded pitch

(class) vector; that is, xej
=

d∑
i=1

δ(j −
[
xpci

]
). For example, given the pitch class vec-

tor for a four-voice minor triad with a doubled third (0, 3, 3, 7), a weighting vector
of (1, 1, 1, 1), and no smoothing, the resulting absolute monad expectation vector is
X

(1)
e = (1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0).

The relative monad expectation scalar X̂
(0)

e gives the overall number of tones that
will be heard (at any pitch). It can be calculated by summing X

(1)
e over j or, more

straightforwardly, as the sum of the elements of the weighting vector

x̂e =
q−1∑
j=0

xej
=

d∑
i=1

xwi
(7)

Applied to Example 3.2, (7) gives X̂
(0)

e = 3.2.

4.2. Dyad expectation arrays

The absolute dyad expectation matrix X
(2)
e indicates the expected number of tone pairs

that will be heard as corresponding to any given dyad of absolute pitches. It is useful
for comparing the absolute dyadic structures of two pitch collections; for example, to
compare scales according to the number of dyads they share—the scales C major and F
major contain many common dyads and so have a small distance (.1548), the scales C
major and F] major contain just one common dyad {B, F} and so have a large distance
(.7818). (These distances are calculated with a cosine metric (17) and q = 12.)

For the dyad arrays, and the higher-dimensional arrays discussed subsequently, an
additional family of indices is required: k2, k3, . . . , kr indicate the pitch of tones relative
to a specified pitch j. Thus j, k2, k3 identifies a pitch collection with the pitches j, j+k2,
and j + k3.

Given two tones indexed by 1 and 2, there are two ordered pairs (1, 2) and (2, 1);
the probability of hearing tone 1 as having pitch j and tone 2 as having pitch j + k2
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is given by xpcr1,j
xpcr2,j+k2

. Similarly, the probability of hearing tone 2 as having pitch
j and tone 1 as having pitch j + k2 is given by xpcr2,j

xpcr1,j+k2
. Given two tones, the

expected number of ordered tone pairs that will be heard as having pitches j and j + k2

is, therefore, given by xpcr1,j
xpcr2,j+k2

+ xpcr2,j
xpcr1,j+k2

.
Similarly, given three tones indexed by 1, 2, and 3, there are six ordered pairs (1, 2),

(1, 3), (2, 1), (2, 3), (3, 1), and (3, 2); the probability of hearing each pair as having
pitches j and j + k2, respectively, are xpcr1,j

xpcr2,j+k2
, xpcr1,j

xpcr3,j+k2
, xpcr2,j

xpcr1,j+k2
,

xpcr2,j
xpcr3,j+k2

, xpcr3,j
xpcr1,j+k2

, xpcr3,j
xpcr2,j+k2

. Given three tones, the expected num-
ber of ordered tone pairs heard as having pitches j and j+ k2 is given by the sum of the
above probabilities.

Generalising for any number of tones, the absolute dyad expectation matrix, X
(2)
e ∈

Rq×q, contains elements

xej,k2
=

∑
(i1,i2)∈D2:

i1 6=i2

xpcri1,j
xpcri2,j+k2

, (8)

where D = {1, 2, . . . , d}. Element indices j and k2 indicate the pitches j and j + k2. The
element value indicates the expected number of ordered pairs of tones heard as having
those pitches.

Equation (8) requires O(d2) operations for each element. Letting Xk represent the kth
column of the pitch class response matrix Xpcr and 1′d ∈ Rd be the vector of all ones,
this can be simplified to O(d) using Lemma B.1 to

xej,k2
=
(
1′dXj

) (
1′dXj+k2

)
−X′jXj+k2 . (9)

For example, given the pitch class vector for a four-voice minor triad with a doubled third
(0, 3, 3, 7) and a weighting vector of (1, 1, 1, 1), the resulting absolute dyad expectation

matrix is X
(2)
e =



0 0 0 2 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 2 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

. This example is indexed from top to bottom by

j = 0, 1, . . . , 11, and from left to right by k2 = 0, 1, . . . , 11. The first row shows there are
two ordered pairs of tones containing the dyad of pitches {0, 3} (ordered tone pairs (1, 2)
and (1, 3)); and one ordered tone pair comprising the dyad of pitches {0, 7} (tone pair
(1, 4)). Similarly, row 4 shows there are two ordered tone pairs containing the dyad of
pitches {3, 3} (tone pairs (2, 3) and (3, 2)); two ordered tone pairs containing the dyad
of pitches {3, 7} (tone pairs (2, 4) and (3, 4)); two ordered pairs containing the dyad of
pitches {3, 0} (tone pairs (2, 1) and (3, 1)). And so forth.

The relative dyad expectation vector X̂
(1)

e indicates the expected number of tone pairs
that will be heard as corresponding to any given dyad of relative pitches. It is useful for
comparing the intervallic structures of two or more pitch collections regardless of trans-
position. For example, to compare the number of intervals that two pitch collections have
in common or to compare different pitch collections by the number, and tuning accu-
racy, of a specific set of privileged intervals they each contain (for a specific application,
see Example 6.4, which compares thousands of scale tunings to a set of just intonation
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intervals).

Summing X
(2)
e over j gives the relative dyad expectation vector X̂

(1)

e ∈ Rq with elements
x̂ek2

indexed by 0 ≤ k2 ≤ q − 1, where the index indicates interval class:

x̂ek2
=
∑

j

xej,k2
(10)

Assuming the independence of voice saliences, the values are the expected number of
ordered tone pairs heard as having that interval, regardless of transposition.

When there is no probabilistic smoothing applied, and the salience of every tone
is 1, the relative dyad expectation vector simply gives the multiplicity of ordered
pairs of tones that correspond to any possible interval size. For instance, given the
pitch class vector for a four-voice minor triad with a doubled third (0, 3, 3, 7) and a

weighting vector of (1, 1, 1, 1), the resulting relative dyad expectation vector is X̂
(1)

e =
(2, 0, 0, 2, 2, 1, 0, 1, 2, 2, 0, 0). The elements of this vector show that this chord voicing con-
tains 2 ordered pairs of tones with sizes of zero semitones (tone pairs (2, 3) and (3, 2)),
no ordered pairs of tones with a size of one semitone, no ordered pairs of tones with a
size of two semitones, 2 ordered pairs of tones with sizes of three semitones (tone pairs
(1, 2) and (1, 3)), 2 ordered pairs of tones with sizes of four semitones (tone pairs (2, 4)
and (3, 4)), and so forth.

When there are no tones with the same pitch class (this is always the case, by defi-
nition, when using a pitch class set rather than a multiset), the zeroth element of the
interval class vector always has a value of 0. Because the values of all its elements are
symmetrical about the zeroth element, no information is lost by choosing the subset{
x̂ek2

: 1 ≤ k2 ≤ b q
2c
}

and, when q is an even number, dividing the last element by two
(otherwise it is double-counted). When q = 12, this subset is identical to the interval
vector of atonal music theory [10]. The relative dyad expectation array can, therefore,
be thought of as a generalisation of a standard interval vector: generalised in that it can
deal meaningfully with doubled pitches and the uncertainties of pitch perception.

4.3. Triad expectation arrays

The absolute triad expectation array X
(3)
e indicates the expected number of ordered tone

triples that will be heard as corresponding to any given triad of absolute pitches. It is
useful for comparing the absolute triadic structures of two pitch collections; for example,
to compare two scales according to the number of triads they share—the scales C major
and F major have many triads in common (e.g., {C, E, G}, {C, D, E}, and {D, F, G})
and so have a small distance (.1702), the scales C major and F] major have no triads
in common—they share only two notes {B, F}—and so have the maximal distance of 1.
(These distances are calculated with the generalised cosine metric (17) with q = 12.)

Given three tones indexed by 1, 2, and 3, there are six ordered triples (1, 2, 3), (2, 1, 3),
(2, 3, 1), (1, 3, 2), (3, 1, 2), (3, 2, 1); the probabilities of hearing each triple as having pitches
j, j+k2 and j+k3, respectively, are xpcr1,j

xpcr2,j+k2
xpcr3,j+k3

, xpcr2,j
xpcr1,j+k2

xpcr3,j+k3
,

xpcr2,j
xpcr3,j+k2

xpcr1,j+k3
, xpcr1,j

xpcr3,j+k2
xpcr2,j+k3

, xpcr3,j
xpcr1,j+k2

xpcr2,j+k3
, and

xpcr3,j
xpcr2,j+k2

xpcr1,j+k3
. Given three tones, the expected number of ordered tone
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triples heard as having pitches j, j + k2, j + k3 is given by the sum of the above
probabilities.

Generalising for any number of tones, the absolute triad expectation array, X
(3)
e ∈

Rq×q×q contains elements

xej,k2,k3
=

∑
(i1,i2,i3)∈D3:

i1 6=i2,i1 6=i3,i2 6=i3

xpcri1,j
xpcri2,j+k2

xpcri3,j+k3
(11)

where D = {1, 2, . . . , d}. Element indices j, k2, and k3 indicate the pitch (classes) j,
j+ k2, and j+ k3; assuming the independence of voice saliences, element value indicates
the expected number of ordered triples of tones heard as having those three pitches.

Equation (11) requires O(d3) operations for each element, but can be simplified as in
Lemma B.2 to

xej,k2,k3
=
(
1′dXj

) (
1′dXj+k2

) (
1′dXj+k3

)
−
(
1′dXj+k3

)
X′jXj+k2 (12)

−
(
1′dXj+k2

)
X′jXj+k3 −

(
1′dXj

)
X′j+k2

Xj+k3 + 21′d (Xj .Xj+k2 .Xj+k3) ,

where A.B means the element by element product of the vectors A and B and where
j+km is taken as j+km (mod q) when using pitch class vectors. Equation (12) requires
O(d) operations for each element of X

(3)
e .

The relative triad expectation matrix X̂
(2)

e indicates the expected number of ordered
tone triples that will be heard as corresponding to any given triad of relative pitches. It
is useful for comparing the triadic structures of two or more pitch collections, regardless
of transposition. For example, to compare the number of triad types two pitch collections
have in common; or to compare pitch collections by the number, and tuning accuracy,
of a specific set of privileged triads they each contain (for a specific application, see
Example 6.4, which compares thousands of scale tunings against a just intonation triad).

Summing X
(3)
e over j gives the relative triad expectation matrix X̂

(2)

e ∈ Rq×q indexed
by 0 ≤ k2, k3 ≤ q − 1, with elements

x̂ek2,k3
=
∑

j

xej,k2,k3
. (13)

Element indices k2 and k3 indicate two intervals with j (which together make a triad).
Assuming independence of voice saliences, the element values are the expected number
of ordered tone triples heard as corresponding to that triad of relative pitches.

For example, given the pitch class vector for a four-voice minor triad with a doubled
third (0, 3, 3, 7) and a weighting vector of (1, 1, 1, 1), the resulting relative triad expec-

tation matrix is X̂
(2)

e =



0 0 0 0 2 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 2 0 0 0 0
2 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 2 0 0 0
2 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

. This example is indexed from top to

bottom by k2 = 0, 1, . . . , 11, and from left to right by k3 = 0, 1, . . . , 11. The first row
shows there are two ordered tone triples with the triadic structure {j, j + 0, j + 4} (tone
triples (2, 3, 4), and (3, 2, 4)); and two ordered tone triples with the triadic structure
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{j, j + 0, j + 7} (triples (2, 3, 1) and (3, 2, 1)). Row 4 shows there are two ordered tone
triples containing the triadic structure {j, j+ 3, j+ 3} (triples (1, 2, 3) and (1, 3, 2)); and
two ordered tone triples with the triadic structure {j, j + 3, j + 7} (triples (1, 2, 4) and
(1, 3, 4)). And so forth.

4.4. r-ad expectation arrays

The definitions and techniques of Sections 4.1–4.3 can be generalised to an array with

any number of dimensions. An absolute r-ad expectation array, X
(r)
e ∈ R

r︷ ︸︸ ︷
q × q × · · · × q,

contains elements

xej,k2,...,kr
=

∑
(i1,...,ir)∈Dr:

in 6=io

r∏
m=1

xpcrim,j+km
(14)

where D = {1, 2, . . . , d}, and k1 = 0. Element indices j, k2, . . . , kr indicate the pitches j,
j + k2, . . . , j + kr; assuming the independence of voice saliences, element value indicates
the expected number of ordered r-tuples of tones heard as having those r pitches.

Equation (14) is symbolically concise, but cumbersome to calculate since each element
of X

(r)
e requires d!(r−1)

(d−r)! operations. Fortunately, the computational complexity can be
reduced by algebraic manipulation as in Appendix B and by exploiting the sparsity of
the arrays to calculate only non-zero values. Furthermore, due to their construction,
the arrays are invariant with respect to any transposition of their k indices so only non-
duplicated elements need to be calculated. To minimise memory requirements, the arrays
can be stored in a sparse format.

The absolute r-ad expectation arrays can be made invariant with respect to transpo-
sition by summing over j. This creates an (r − 1)-dimensional relative r-ad expectation

array, X̂
(r−1)

e =
∑
j
xej,k2,...,kr

∈ R

r−1︷ ︸︸ ︷
q × q × · · · × q containing elements x̂ek2,...,kr

. Element

indices k2, . . . , kr indicate a set of intervals with j (which together make an r-ad); assum-
ing the independence of voice saliences, element value indicates the expected number of
ordered r-tuples of tones that are heard as corresponding to that r-ad of relative pitches.

5. Metrics

The distance between a pair of vectors or arrays can be calculated with any standard
metric. This section details two particular metrics (the `p and the cosine) which are used
in the applications of Section 6.

It is reasonable to model the perceived pitch distance between any two tones with
their absolute pitch difference (e.g., the pitch distance between tones with pitch values
of 64 and 60 semitones is 4 semitones). The `p-metrics are calculated from absolute
differences so they provide a natural choice for calculating the overall distance between
pairs of category domain pitch vectors. When there are d different tones in each vector,
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there are d different different pitch differences; the value of p determines how these are
totalled (e.g., p = 1 gives the taxicab measure which simply adds the distances moved
by the different voices; p = 2 gives the Euclidean measure; p = ∞ gives the largest
distance moved by any voice). As discussed in Section 2, the use of such metrics is a
well-established procedure [1, 9].

The metrics may be based on the intervals between pairs of pitch vectors in Rd

dw (x,y) =

(
d∑

i=1

wi (xi − yi)
p

)1/p

, (15)

where x and y may be two pitch vectors as in (1) or two pc-vectors as in (2). The weights
wi may be sensibly chosen to be the product of the saliences wi = xwi

ywi
from (3) [2].

The metrics may also treat the unordered pitch class intervals

dc (x,y) = dw ((x− y) mod q, (y − x) mod q) . (16)

Equation (15) provides a measure of pitch height while (16) provides a measure of pitch
chroma.

To calculate the distance between two multidimensional expectation arrays X
(r)
e and

Y
(r)
e ∈ R

r︷ ︸︸ ︷
q × q × · · · × q, the `p-metrics can be applied in an element by element fashion.

The simplest way to write this is to reshape the r-dimensional matrices into column
vectors x and y ∈ Rqr

which may be applied in (15). It may also be convenient to
normalise the resulting distance to the interval [0, 1], in which case every element of x
can be normalised by 1

2||X(r)
e ||p

and every element of y can be normalised by 1
2||Y(r)

e ||p
.

The cosine metric between two vectors x and y ∈ Rd is

dcos (x,y) = 1− x′y√
(x′x)(y′y)

, (17)

where ′ denotes the transpose operator. This may be applied to pitch vectors or to pc-
vectors. It may also be applied to multidimensional expectation arrays in an element by
element fashion by reshaping the arrays into column vectors.

Use of the cosine metric on interval vectors is an established procedure [12, 13] and, for
expectation arrays, its meaning is easier to discern than that of the `p-metrics: It gives
a normalised value for the expected number of ways in which each different r-ad in one
pitch collection can be matched to a corresponding r-ad in another pitch collection. For
example, consider the absolute triad expectation arrays for the scales C major and D
major, where each tone has a salience of 1 and no probabilistic smoothing is applied. The
numerator of the division counts the number of triad matches: both contain the triad
{G, A, B}, which gives a count of 1; both contain the triad {A, C, E}, which increases
the count to 2; both contain the triad {A, B, E}, which gives a cumulative total of 3;
and so on, for all possible triads. The denominator of the division then normalises the
value to the interval [0, 1]. Similarly, for a relative triad expectation array, both C major
and D major contain three root-position major triads each, so there are a total of 9 ways
they can be matched; both contain one root-position diminished triad each, so there is
1 way they can be matched, making a cumulative total of 10; and so on, for all possible
relative triads. The denominator of the division again normalises.
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Figure 2. Fundamental pitch affinities of a C major reference triad with all possible 12-edo
triads that contain a perfect fifth. (Fundamental affinity is here modelled with a cosine metric
on absolute monad expectation arrays embedding the fundamental pitches of each triad’s tones;
three cents standard deviation Gaussian smoothing has been used.) The horizontal axis shows
the pitch distance from the reference triad’s root and fifth, the vertical axis shows the pitch
distance from the reference triad’s third. The spatial distance between any two triads indicates
their Euclidean voice-leading distance. The greyscale indicates the fundamental pitch affinity with
the reference triad (the darker, the greater the fundamental affinity). Several common triads are
labelled, capital letters represent major chords and small letters are minor.

6. Applications

This section provides some applications of the embeddings and metrics discussed in this
paper. The matlab routines used to calculate them can be downloaded from http:
//eceserv0.ece.wisc.edu/~sethares/pitchmetrics.html.

6.1. Tonal distances

The pitch similarity of two chords can be modelled as a linear combination of voice-
leading distance and fundamental pitch affinity : the first can be calculated by applying
metrics (15) and (16) to pitch vectors; the second by applying a metric (e.g., cosine) to
their absolute monad embeddings. This gives d+ 4 free parameters whose values may be
determined by experimental testing—the d weights for each voice, the value of p used in
the metric, and the parameters that weight the three different distance measures.

Example 6.1 Voice-leading distance and fundamental pitch affinity. This example illus-
trates the difference between voice-leading distance and fundamental pitch affinity. Figure
2 shows the fundamental pitch affinities (the darker the greater the fundamental affinity)
between a 12-edo reference major triad (with three voices) and all possible 12-edo triads
containing a perfect fifth. All possible root-position major and minor triads lie upon the
central diagonal, some of which are labelled.
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Figure 3. Spectral pitch affinities of a C major reference triad with all possible 12-edo triads that
contain a perfect fifth. (Spectral affinity is here modelled with a cosine metric on absolute monad
expectation arrays embedding the first ten partials of each triad’s tones; three cents standard
deviation Gaussian smoothing has been used.) The horizontal axis shows the pitch distance from
the reference triad’s root and fifth, the vertical axis shows the pitch distance from the reference
triad’s third. The spatial distance between any two triads indicates their Euclidean voice-leading
distance. The greyscale indicates the spectral pitch affinity with the reference triad (the darker,
the greater the spectral affinity). Several common triads are labelled, capital letters represent
major chords and small letters are minor.

Observe how there are local maxima of fundamental pitch affinity at those triads that
have common tones with the reference C major triad (e.g., F major and A[ major),
and that the greatest maxima occur at triads that have two common tones with the
reference C major triad (e.g., c minor, e minor, and a minor—which correspond to the
Riemannian transformations P, L, and R). A linear combination of voice-leading distance
and fundamental pitch affinity may, therefore, provide an effective measure of the overall
pitch similarity of different chords [3].

Any complex tone or chord produces a large number of spectral and virtual pitch
responses [5, 6], which suggests that the distances between collections of spectral or
virtual pitches may provide an effective model for the perceived tonal affinity of tones
or chords [2, 3]. There are so many of these pitches, it is unlikely they can be mentally
categorised; for this reason, the appropriate distance function is a metric on pitch, not
category, domain embeddings.

Example 6.2 Voice-leading distance and spectral pitch affinity. This example illustrates
the difference between spectral pitch affinity and voice-leading distance and, comparing
it with Example 6.1, the difference between the spectral and fundamental pitch affinities.
Figure 3 shows the spectral pitch affinities (darker colour indicates greater spectral affin-
ity) between a 12-edo reference major triad (with three voices) and all possible 12-edo
triads containing a perfect fifth. All possible root-position major and minor triads lie on
the central diagonal, some of which are labelled.

Observe how there is a more complex patchwork of differing affinities than in Figure 2;
this model suggests that the triad pair {C major, d minor} has greater spectral affinity



May 14, 2010 7:15 Journal of Mathematics and Music ”Expectation Arrays”

Journal of Mathematics and Music 15

than the neighbouring triad pair {C major, D major}; the triad pair {C major, F major}
has greater spectral affinity than the neighbouring triad pair {C major, F] major};
the triad pair {C major, e minor} has greater spectral affinity than the neighbouring
triad pair {C major, E major}; and so forth. These results seem indicative of the tonal
function of these triad pairings: the latter pair in each case is typically heard as requiring
resolution, the former pair in each case is not. This suggests that such metrics may provide
effective models for the feelings of expectation and resolution induced by successions of
chords in tonal-harmonic music [3].

6.2. Temperaments

The embeddings and metrics can be used to find effective temperaments, which are lower-
dimensional tunings that provide good approximations of higher-dimensional tunings
[14]. The dimension of a tuning is the minimum number of unique intervals (expressed
in a log(f) measure like cents or semitones) that are required to generate, by linear
combination, all of its intervals.

Many useful musical pitch collections are high-dimensional; for example, just in-
tonation intervals and chords with frequency ratios 4:5:6 and 4:5:6:7 are three- and
four-dimensional, respectively. But lower-dimensional tunings (principally one and two-
dimensional) also have a number of musically useful features; notably, they facilitate
modulation between keys, they can generate scales with simply patterned structures
(equal step scales in the case of 1-D tunings, well-formed scales in the case of 2-D tun-
ings [15]), and the tuning of all tones in the scale can be meaningfully controlled, by a
musician, with a single parameter [16].

Given the structural advantages of low-dimensional generated scales, it is useful to find
examples of such scales that also contain a high proportion of tone-tuples whose pitches
approximate privileged higher-dimensional intervals and chords. A familiar example is
the chromatic scale generated by the 100 cent semitone, which contains twelve triads
(one for each scale degree) tuned reasonably close to the just intonation major triad;
another familiar example is the meantone tuning of the diatonic scale (generated by a
period of approximately 1200 cents and a generator of approximately 697 cents), which
contains three major triads whose tuning is very close to the just intonation major triad.
There are, however, numerous alternative—and less familiar—possibilities.

Given a privileged pitch class collection embedded in an expectation array, it is easy
to calculate its distance from a set of n-edos (up to any given value of n).

Example 6.3 1-D approximations to 4:5:6 (JI major triad). The just intonation major
triad contains all (and only) the common-practice harmonic consonances (i.e., the perfect
fifth and fourth, and the major and minor thirds and sixths). It is, therefore, interesting
to find tunings that produce simple scales containing many of these intervals. The just
intonation major triad with tuning ratios of 4 : 5 : 6 is approximated by (0, 386.3, 700)
cents. Figure 4 shows the cosine distance between the relative dyad expectation array
embeddings of the JI major triad and all n-edos from n = 2 to 102.

Observe that the distances approach a flat line where increasing n is no longer ben-
eficial, and that the most prominent minima fall at the familiar 12-edo and at other
alternative n-edo’s (e.g., 19-, 22-, 31-, 34-, 41-, 46-, and 53-edo) that are well-known in
the microtonal literature.
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Figure 4. The distance (using the cosine metric on relative dyad expectation embeddings with a
Gaussian smoothing kernel of 3 cents standard deviation) between a just intonation major triad
(0, 386.3, 702) and all n-edos from n = 2 to n = 102.

A two-dimensional tuning has two generating intervals with sizes, in log (f), denoted α
and β. All intervals in the tuning can be generated by α and β. A β-chain is generated by
stacking integer multiples of β for all integers in a finite range of values, so a 19-tone β-
chain might consist of the notes jα−9β, jα−8β, . . . , jα+8β, jα+9β. Given an arbitrary
set of privileged intervals with a period of repetition ρ (typically 1200 cents), how can
similar two-dimensional tunings be found? It is logical to make the tuning of α = ρ/n,
for n ∈ N. For a given α, the procedure is to generate β-chains of a given cardinality
and to iterate the size of the β-tuning over the desired range. At each iteration, the
distance to the set of privileged intervals is measured using the relative dyad expectation
embeddings and a cosine metric.

Example 6.4 2-D approximations to 4:5:6 (JI major triad). Figure 5 shows the distance
between the relative dyad embeddings of a just intonation major triad and 19-tone β-
tunings ranging over 0 ≤ β ≤ 1199.9 cents in increments of 0.1 cents. On the right-hand
side, the Gaussian smoothing function has a standard deviation of 3 cents; on the left,
a standard deviation of 6 cents. Note that when using a single smoothing width, these
charts are perfectly symmetrical about the centre line passing through 0 and 600 cents
because a β-chain generated by β = B cents is identical to that generated by β = α−B
(assuming α and β are in a log value such as cents) [14].

Observe the following distance minima at different β-tunings: 503.8 cents corresponds
to the familiar meantone temperament; 498.3 cents to the helmholtz temperament; 442.9
cents to the sensipent temperament; 387.8 cents to the würschmidt temperament; 379.9
cents to the magic temperament; 317.1 to the hanson temperament; 271.6 cents to the
orson temperament; 176.3 cents to the tetracot temperament (the names for each of these
temperaments has been taken from [17]). It is interesting to note that the classic meantone
tunings of approximately 504 (or 696) cents are deemed closer than the helmholtz tunings
of approximately 498 (or 702) cents when the smoothing has 6 cents, and vice versa when
the smoothing has a 3 cent standard deviation.

Figure 6 compares the distance between between a just intonation major triad and
seven-tone β-chains (with β-tunings ranging from 0 to 1199.9 cents in increments of 0.1
cents) when embedded in relative dyad and relative triad expectation arrays. The left
side shows triad embeddings, the right side shows dyad embeddings.

Observe that, for low cardinality generated scales (like this seven-tone scale), only a
few tunings provide tone triples that are reasonably close to the just intonation major
triad: the meantone generated scale (β ∼ 696 cents) contains three major triads, the
magic scale (β ∼ 820 cents) contains two major triads, the porcupine scale (β ∼ 1, 037
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Figure 5. The cosine distance between relative dyad embeddings of a just intonation major
triad {0, 386.3, 702} and a 19-note β-chain whose β-tuning ranges from 0 to 1,199.9 cents. The
smoothing is Gaussian with standard deviations of 6 cents (left side), and 3 cents (right side).
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Figure 6. The cosine distance between relative dyad embeddings (right) and relative triad embed-
dings (left) of a just intonation major triad {0, 386.3, 702} and a 7-tone β-chain whose β-tuning
ranges from 0 to 1,199.9 cents. The smoothing is Gaussian with a standard deviation of 3 cents.
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Figure 7. The cosine distance (using a Gaussian smoothing kernel with a 3 cents standard de-
viation) between a just intonation Bohlen-Pierce “major” triad {0, 884.4, 1466.9}, with a period
of 1902 cents, and a 19-tone β-chain whose β-tuning ranges from 0 to 1901.9 cents.

cents) contains two major triads (but with less accurate tuning than the magic), the
hanson scale (β ∼ 883 cents) scale contains only one major triad (tuned extremely close
to just intonation). As the cardinality of the β-chain is increased, the distances between
the triadic embeddings approach those of the dyadic.

Example 6.5 2-D approximations to 3:5:7 (7-limit Bohlen-Pierce triad). The above two
examples have used familiar tonal structures (the octave of 1200 cents and the major
triad), but the methods are equally applicable to any alternative structure. One such
is the Bohlen-Pierce scale, which is intended for spectra containing only odd numbered
harmonics. It has a period of 3/1 (the “tritave”), which is approximated by 1902 cents.
The 3 : 5 : 7 triad, which is approximated by {0, 884.4, 1466.9} cents, is treated as a
consonance. Figure 7 shows the distance of a β-chain of 19 notes with 0 ≤ β ≤ 1901.9
cents with a Gaussian smoothing of 3 cents standard deviation. The closest tuning is
found at 439.5 cents, which is almost equivalent to 3 × 1902/13 and so corresponds to
the 13-equal divisions of the tritave tuning suggested by Bohlen and Pierce.

6.3. Pitch set theory

There is a rich heritage of measures used to determine the distance between pitch col-
lections in musical set theory, but these measures are typically predicated on the use
of 12-tone equal temperament. Expectation arrays can be used to measure the distance
between pitch collections in any tuning (up to the pitch granularity determined by q) as
well as taking into account perceptual uncertainties.

The relative dyad embedding is of the TnI type—that is, it is invariant with respect to
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Table 2. Cosine distances between a selection of pc-sets related by
Z-relation, inversion, and transposition. Distances calculated with
relative embeddings are in the lower triangle, absolute embeddings
in the upper triangle; dyad embeddings on the top line, triad em-
beddings on the second line.

(0, 1, 4, 6) (0, 1, 3, 7) (0, 2, 5, 6) (1, 2, 5, 7)

(0, 1, 4, 6)
dyad 0 .833 .833 1
triad 0 1 1 1

(0, 1, 3, 7)
dyad 0 0 1 .833
triad 1 0 1 1

(0, 2, 5, 6)
dyad 0 0 0 .833
triad 1 0.5 0 1

(1, 2, 5, 7)
dyad 0 0 0 0
triad 0 1 1 0

transposition and inversion of the pitch collection it is derived from. It is also invariant
over Z-relations (Z-related collections, such as {0, 1, 4, 6} and {0, 1, 3, 7}, have the same
interval content but are not related by transposition or inversion [10]). Relative triad
(and higher-ad) embeddings are invariant only with respect to transposition—that is
they are of the Tn type. The absolute embeddings have no invariances.

Example 6.6 Distances between pc-sets related by Z-relation, inversion, and transposi-
tion. Table 2 shows the cosine distances between the absolute and relative dyad and
triad embeddings of pitch class vector (0, 1, 4, 6), its Z-relation (0, 1, 3, 7), its inversion
(0, 1, 3, 7), and its transposition (1, 2, 5, 7). Distances calculated from absolute embed-
dings are in the top-right triangle, while those calculated from relative embeddings are
in the bottom-left triangle. In each case, the upper number is the distance calculated
using dyad embeddings, the lower number with triad embeddings.

A model of overall similarity could be calculated as a linear combination of absolute
and relative embeddings of differing dimensions.

7. Discussion

This paper has presented a novel family of embeddings and metrics for determining the
distance between pitch collections. The embeddings are based upon psychoacoustic prin-
ciples (through the use of Gaussian smoothing) and may be useful as components in
broader models of the perception and cognition of music. Indeed, to model any specific
aspect of musical perception, a variety of appropriate embeddings may be linearly com-
bined, with their weightings, the weightings of the tone saliences (if appropriate), and
the type of metric, as free parameters to be determined from experimental data.

This paper has focused on expectation arrays, but the underlying pitch (class) response
matrices can also be used to generate salience arrays, which give the probability of hearing
any given r-ad of pitches. There may also be scope in applying Fourier transforms to the
embeddings in order to determine similarities in the spectrum of n-edos that approximate
various pitch collections.

The methods are also applicable to any domain involving the perception of discrete
stimuli. An obvious example is the perception of timing in rhythms, with time replacing
pitch so the smoothing represents perceptual or cognitive inaccuracies in timing; for
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example, it might be possible to embed a rhythmic motif containing four events in a
relative tetrad expectation matrix (in the time domain), and compare this with a selection
of other similarly embedded rhythm patterns to find one with the closest match (i.e., one
that contains the greatest number of patterns that are similar to the complete motif).
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Appendix A. Standard deviation of Gaussian probability mass function

In a two-alternative forced-choice (2-afc) experiment, the frequency difference limen
(frequency dl) is normally defined as the value at which the true positive and false
positive rates indicate a d′ (also known as d prime) of approximately one (a true positive
is when two tones with different frequencies are identified as having different pitches, a
false positive is when two tones with the same frequency are identified as having different
pitches). The value of d′ is defined as the distance, in standard deviations, between the
mean of the responses to the signal-plus-noise stimuli and the mean of the responses to
the noise-alone stimuli (for the above test, a signal-plus-noise stimulus corresponds to two
different frequencies; a noise-alone stimulus to two identical frequencies). This implies
the internal response to a tone of pitch j is a Gaussian centred at j, with a standard
deviation equivalent to the frequency dl at j.

Experimentally obtained data (e.g., [18]) typically give a frequency dl, for tones with
harmonic partials, that is equivalent (over a broad range of musically useful frequencies)
to a pitch dl of approximately 3 cents. Such results are obtained in laboratory con-
ditions with simple stimuli and minimal time gaps between tones (hence comparisons
are conducted from auditory sensory (echoic) memory, or short-term memory): in real
music, tones and chords are presented as part of a complex and distracting stream of
musical information, and there may be long gaps between the presentations of the tone
collections (hence requiring long-term memory, which is less precise). For these reasons,
it may be appropriate to treat 3 cents as a minimum standard deviation; larger values
may provide more effective results in some models.

Appendix B. Algebraic reduction of expectation arrays

The general form of the terms that must be summed in the expectation arrays is

∑
(i1,...,ir)∈Dr

ij 6=ik

r∏
m=1

xm,im
, (B1)

where the indices im range over the integers between 1 and d. It is useful to think of xm

as a vector in Rd with individual elements of xm indexed by im as xm,im
(so, for each

product, each of the r different xm vectors represents a column from the matrix Xpcr,
and each of the d different im values represents a row of that column vector). Observe
that the sum is not taken over all possible indices, it excludes all cases where any of the
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indices ij and ik are the same. It is this dependence that makes (B1) difficult to simplify.
The first result considers the r = 2 case.

Lemma B.1 Let A = (a1, a2, ...ad)′ and B = (b1, b2, ...bd)′ be two column vectors in Rd

and let 1 ∈ Rd be the vector of all ones. Then∑
i,j
j 6=i

aibj = (1′A)(1′B)−A′B. (B2)

Proof : Without the dependence among the indices,∑
i

∑
j

aibj =
∑

i

ai

∑
j

bj = (1′A)(1′B). (B3)

The dependence between i and j in (B2) can be expanded as the difference∑
i,j
j 6=i

aibj =
∑

i

∑
j

aibj −
∑

j

ajbj . (B4)

The final term in (B4) is the sum of the element by element product of A and B, which
can be notated A′B. Substituting this and (B3) into (B4) gives (B2). �

The r = 3 case proceeds similarly.

Lemma B.2 Let A = (a1, a2, ...ad)′, B = (b1, b2, ...bd)′, and C = (c1, c2, ...cd)′ be three
vectors in Rd. Then∑

i,j,k
k 6=j,k 6=i,j 6=i

aibjck = (1′A)(1′B)(1′C)−(1′C)A′B−(1′A)B′C−(1′B)A′C+21′(A.B.C) (B5)

where . represents the element by element multiplication of vectors.

Proof : The dependencies between i, j, and k in (B5) can be expanded by first summing
all the terms over all i, j, and k, and then subtracting out the terms that are disallowed
in desired sum. Thus (B5) becomes∑

i,j,k
k 6=j,k 6=i,j 6=i

aibjck =
∑
i,j,k

aibjck −
∑
i,k
i 6=k

aibick −
∑
j,k
j 6=k

akbjck −
∑
i,j
i 6=j

aibjcj −
∑

i

aibici. (B6)

The first term in (B6) has no dependencies among the indices and so∑
i,j,k

aibjck =
∑

i

ai

∑
j

bj
∑

k

ck = (1′A)(1′B)(1′C). (B7)

The final term in (B6) is easily rewritten as∑
i

aibici = 1′(A.B.C). (B8)
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Each of the three middle terms has the same form as in Lemma B.1, thus∑
i,k
i 6=k

(aibi)ck = (1′C)A′B − 1′(A.B.C)

∑
j,k
j 6=k

(akck)bj = (1′B)A′C − 1′(A.B.C)

∑
i,j
i 6=j

ai(bjcj) = (1′A)B′C − 1′(A.B.C)

Substituting these along with (B7) and (B8) into (B5) gives the desired result. �

The case for general r can now be constructed in an organized fashion from those for
smaller r by following the logic of Lemma B.2. First, partition the dependencies among
the indices by following the logic of (B6). This rewrites the r-dimensional sum with
dependent indices in terms of

(1) an r-dimensional sum with independent indices
(2) a collection of

(
r
2

)
(r − 1)-dimensional sums, which are of the same form as the

(r − 1)-dimensional problem
(3) a collection of

(
r
3

)
(r − 2)-dimensional sums which are of the same form as the

(r − 2)-dimensional problem
(4) etc.

Since (i) can be rewritten easily (as in (B3) and (B7)), and since all the lower order
problems have already been solved, the complete expression is obtained by adding all
the terms with appropriate signs. For example, the r = 4 case is:

∑
i,j,k,`

i 6=j,i6=k,i6=`
j 6=k,j 6=`,k 6=`

aibjckd` = (1′A)(1′B)(1′C)(1′D)

−A′B(1′C)(1′D)−A′C(1′B)(1′D)−A′D(1′B)(1′C)

−B′C(1′A)(1′D)−B′D(1′A)(1′C)− C ′D(1′A)(1′B)

+ 21′(A.B.C)(1′D) + 21′(A.B.D)(1′C) + 21′(A.C.D)(1′B) + 21′(B.C.D)(1′A)

+A′BC ′D +A′CB′D +A′DB′C

− 61′(A.B.C.D) (B9)

using the same notations as in Lemma B.2.


