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Modern ultrasound systems can output video images containing more spatial and temporal information than still images.
Super-resolution techniques can exploit additional information but face two challenges: image registration and complex
motion. In addition, information from multiple available frequencies is unexploited. Herein, we utilised these information
sources to create better ultrasound images and videos, extending existing technologies for image capture. Spatial and
frequency-based super-resolution processing using multiple motion estimation and frequency combination was applied to
ultrasound videos of deforming models. Processed images are larger, have greater clarity and detail, and less variability in
intensity between frames. Significantly, strain measurements are more accurate and precise than those from raw videos, and
have a higher contrast ratio between ‘tumour’ and ‘surrounding tissue’ in a phantom model. We attribute improvements to
reduced noise and increased resolution in processed images. Our methods can significantly improve quantitative and
qualitative assessments of ultrasound images when compared assessments of standard images.
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1. Introduction

Ultrasound images provide a crucial diagnostic tool in

both clinical and scientific applications. While individual

still images can be viewed and interpreted by trained

personnel, modern imaging systems are capable of

outputting ultrasound video. While it is evident that a

video contains more temporal information than a still

image (since it contains information about motion over

time), video also contains more spatial information than is

immediately apparent. It is not practical to manually

examine the information in every frame of the video, so

automated methods are becoming crucial. The motivation

for this study was to develop a method to create better

ultrasound images by exploiting a technique called super-

resolution, which combines a collection of small images

(number of pixels) into one larger (and more detailed)

image.

Super-resolution (Blomgren et al. 2002; Freeman et al.

2002; Park et al. 2003; Farsiu et al. 2004; Shechtman et al.

2005) is perhaps best known as a way of merging multiple

camera shots into a larger panorama, but can also be

applied when combining multiple (near-identical) video

frames into larger pictures. Super-resolution consists of

image registration and interpolation. Image registration

defines the different locations of the same objects (points)

in different frames. It is responsible for aligning the

images and retrieving their relative locations. The goal of

this study was to create larger, more detailed images from

a series of consecutive ultrasound video frames by

mimicking this technique. For example, four images that

are each 200 by 200 pixels may be combined into one

larger image that is 400 by 400 pixels. Applying this

procedure to frames {1, 2, 3, 4} of a video, then repeating

for frames {2, 3, 4, 5}, then for frames {3, 4, 5, 6} and so

on leads to a video that is twice as large (in terms of pixel

size) as the original. When the procedure works well,

details that were difficult to see in the original, smaller,

video become easier to see in the processed, enlarged,

video. Image registration is crucial to successful

application of super-resolution. Various image registration

algorithms may be used in the super-resolution process.

Some apply statistical analyses (Elad & Feuer 1997;

Borman & Stevenson 1998; Patanavijit & Jitapunkul 2006;

Humblot & Mohammad-Djafari 2006; Ho & Zeng 2007;

Martins et al. 2007), others use back projection (Haralick

et al. 1973; Capel & Zisserman 2000; Ji & Fermuller

2009), and yet others apply frequency domain information

(Balci & Foroosh 2006; Vandewalle et al. 2006) for the

image registration step. Many image registration algor-

ithms, such as scale invariant feature transform (Lowe

2004) and speeded-up robust features (Bay et al. 2008),

perform registration based on certain key points that are

usually bright spots, sharp edges and/or well-defined

corners. Because ultrasound images do not have sharp
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edges and well-defined corners, keypoint methods do not

return useful alignment information.

The second technical challenge was the character of the

motion in the ultrasound images. There are many ways of

conducting the needed steps within the image registration.

Because of the large number of different motions that

may occur in the ultrasound images, global methods are

inapplicable (Zitová & Flusser 2003). While the individual

photographs that are to be combined into a panorama may

differ in angle or in spatial placement, the overall mapping

that needs to be identified is a single rigid perspective

transformation; hence the complete alignment can be

accomplished by identifying a single affine mapping. With

common ultrasound images (such as tendon images, arterial

images and echocardiograms), the range of possible

motions is much larger, with some portions of the image

moving in one direction and other portions moving in other

directions; accordingly, the alignment is needed to consider

a broader range of possible mappings.

The ability to gather information from the multiple

excitation frequencies available in ultrasound imaging

(this might be analogous in the camera application to

photos in visible light, infrared and ultraviolet) is a

previously unexploited possibility. Different frequencies

may lead to different image qualities. Lower frequencies

travel further but carry less detail. Higher frequencies do

not travel as deeply into the tissue before they damp out,

but they contain more texture detail. People have

attempted to quantify the attenuation and backscatter of

ultrasound in human tissues (D’Astous & Foster 1986;

Miller et al. 2008; Sun et al. 2012) and examine the

difference of human tissues captured at different

frequencies. Fort et al. (1995) proposed to determine

texture information by estimating the texture information

by singular value decomposition in Fourier domain. Liu

et al. (2006) enhanced ultrasound-induced heating by

generating the thermal lesions with high frequency and

enhancing the bubble activity with low frequency. Ikeda

et al. (2006) proposed to use two different frequencies to

control cloud cavitation, which refers to structures caused

by the collapse or condensation of vapour bubbles formed

in a liquid in the body. It is therefore possible to combine

images over a range of frequencies to achieve higher

resolution and more accurate imaging. Reflected ultra-

sound waves at a given frequency amplify and interfere

with each other in certain locations, creating a grainy

image; these patterns are different for different frequen-

cies. Combining frequencies then offers the possibility of

filling in information from the interference gaps for image

enhancement. The incorporation of combining these

multiple frequency images into the super-resolution

scheme presents a third technical challenge.

In order to apply a modified super-resolution technique

which successfully resolves these three challenges, images

(individual frames in the ultrasound videos) were

subjected to (1a) a super-resolution processing using (2a)

multiple motion estimation, followed by (3a) combining

the multiple frequency images. This method results in a

processed video called SuperResolutionVideo 1. Alter-

natively, it is possible to reverse the order to first (1b)

combine the different frequency images, then (2b) super-

resolve the results using (3b) the multiple motion

estimation; this results in a processed video called

SuperResolutionVideo 2. Both SuperResolution videos

exploit spatial and frequency diversity to create higher

resolution (and more accurate) videos.

2. Materials and methods

2.1 Spatial super-resolution of ultrasound

The typical approach to super-resolution of images is to

combine the information from a set of slightly different (i.e.

differing in angle or spatial displacement) low-resolution

(LR) images of the same scene and use image registration to

construct the set into a higher resolution image. In the

present case, the set of LR images are consecutive frames in

a dynamic ultrasound video. Due to the nature of ultrasound

images, it is highly unlikely that complete alignment of the

LR images can be achieved by a single affine transform-

ation. To account for this, the imageswere partitioned into a

collection of 36 sub-images, and motion was estimated in

each partition separately. The partitioning of the image is

shown in Figure 1.

Figure 1. Partitioning of ultrasound images. (a) One frame from an ultrasound video of a small piece of tendon with a hard-edged bead.
(b) Ultrasound video frame partitioned into 36 equally sized sub-images.
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Each sub-image of every LR image is called fLR,p,m
(where p ¼ 1, . . . , 36 partitions and m ¼ 1, . . . ,M, where

M is the total number of LR images, which will be

combined four at a time). These partitions were multiplied

by a Tukey window to make them circularly symmetric

so that they could be more accurately registered. The

windowed sub-images are called fLR,w,p,m. The Fourier

transform FLR,w,p,m was then computed for each windowed

sub-image.

Sub-images from the corresponding partition of con-

secutive LR images, fLR,w,p,mþ1, fLR,w,p,mþ2, fLR,w,p,mþ3

(m ¼ 1, . . . ,M–3 and p ¼ 1, . . . , 36), were used to

estimate the rotation of the sub-images with respect to

the reference sub-image fLR,w,p,m, and the polar coordi-

nates (r, u) for pixels in each of the sub-images were

calculated, with the origin occurring at the centre of each

sub-image. To estimate the rotation between sub-images

fLR,w,p,m and fLR,w,p,n (n ¼ m þ 1, m þ 2, m þ 3) for every

angle a, we computed the average value hp,n(a) of the

Fourier coefficients for which

a2 1 , u , aþ 1; ð1Þ

and

0:1r , r , rmax; ð2Þ

where r is the image radius (or half the size of the

circularly symmetric sub-image). The angle where the

maximum of the correlation between hp,m(a) and hp,n(a) is
the estimated rotation angle wn. To cancel the rotation, the

sub-image fLR,w,p,n was rotated 2wn degrees.

The horizontal and vertical shifts between the sub-

images fLR,w,p,mþ1, fLR,w,p,mþ2, fLR,w,p,mþ3 and the refer-

ence sub-image fLR,w,p,m were estimated. A translation of

the sub-image in the space domain can be expressed in the

Fourier domain as a linear phase shift. It is well known that

the shift parameters can be computed as the slope of the

phase difference /(FLR,w,p,n/FLR,w,p,m). To reduce the

sensitivity to noise, a plane was fitted through the phase

differences using a least squares method. The shift

parameters were the least squares solutions to the linear

equations describing a plane through the computed phase

differences [following the method used by Vandewalle

et al. (2006)].

A high-resolution image was reconstructed using

normalised convolution (Pham et al. 2006) from the four

registered sub-images. The reconstructed sub-image had

twice as many pixels in both dimensions as the LR

sub-image. For every sub-image fLR,p,n, we computed the

coordinates of its pixels in the coordinate frame of fLR,p,m
using theestimated rotation angles and estimated shifts.From

this, we interpolated the values on a regular high-resolution

grid using bicubic interpolation (Keys 1981). Each of these

high-resolution sub-images was then pasted back together to

form a complete high-resolution ultrasound image.

2.2 Frequency-based super-resolution

The texture of ultrasound images depends on the

frequency of the ultrasound; changing frequencies leads

to altered image qualities. Ultrasound waves at lower

frequencies travel further into the tissue but carry less

detail, whereas higher frequencies cannot travel as deeply

into the tissue before significant damping, as the shorter

wavelengths at higher frequencies cause the energy in the

ultrasound waves to dissipate more quickly as they

traverse the tissue, but they can carry more detailed texture

information (Cross & Jain 1983). Figure 2 demonstrates

this concept using two ultrasound images of the same

construct (Figure 2(a)), one captured at a frequency of

8MHz (Figure 2(b)) and one at a frequency of 13MHz

(Figure 2(c)). The 13MHz image delivers more detailed

texture on the ‘teeth’, whereas the 8MHz image is brighter

but more blurred (note especially the gaps between the

teeth). The 13MHz image attenuates faster than the 8MHz

image, and therefore is darker overall.

As ultrasound waves cannot carry information about

the details of an object smaller than the wavelength,

shorter wavelengths can carry more information and tend

to create a sharper image than longer wavelengths.

The relationship between frequency and wavelength is

v ¼ fl; ð3Þ

where l is the wavelength, f is the frequency of the wave

and v is the speed of the wave.

Four frequencies were used in this study: 8, 10, 12 and

13MHz. The speed of ultrasound wave is about 1540m/s

Figure 2. Digital (a) and ultrasound images (b and c) of a plastic device to demonstrate the difference in intensity and detailed texture
of a solid object captured at different frequencies; (b) ultrasound image captured at 8MHz and (c) ultrasound image captured at 13MHz.
The higher frequency image displays more detail but less brightness, while the lower frequency image is brighter but blurred.
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in soft tissue, so the wavelength of frequency 8 and

13MHz is 0.1925 and 0.1185mm, respectively. Thus, the

wavelength of the 8MHz signal is close to twice the

wavelength of the 13MHz signal, so the 13MHz images

can carry more detailed information than frequency

8MHz. This is perceived as a sharper image.

Since different frequencies contain different image

information (and have different patterns of attenuation and

cancellation), it is advantageous to combine the images

from all of the frequencies. The algorithm utilised in this

study combined images taken from four frequencies,

preserving the detailed texture from the higher frequencies

while keep the slow attenuation rate from lower

frequencies. It is necessary to weight the images to

account for the fact that images from lower frequencies are

usually brighter than those from higher frequencies.

Suppose the number of frequencies built in the ultrasound

machine is R. To eliminate the difference between the

overall image brightness captured at different frequencies,

the standardisation of overall image brightness captured at

different frequencies is essential. Therefore, all pixel

values f rði; jÞ in the rth image were scaled by the factor:

sumð f RÞ
sumð f rÞ ; ð4Þ

where r ¼ 1; 2; . . . ;R and represents the index of the

frequency in ascending order, and fr is the image intensity

from the corresponding frequency. In our case, R ¼ 4, and

r ¼ 1; 2; 3; 4 represents frequency 8, 10, 12 and 13MHz,

respectively. f 1; f 2; f 3; f 4 are the image intensities from the

four frequencies 8, 10, 12, 13, respectively.

This weighting reduced the total intensity of the

images at frequencies 8, 10 and 12MHz and equalised

them to the total intensity of the 13MHz image. This

prevented the processed images from being dominated by

the intensity of the lower frequency images. The 13MHz

image was used as the base to reduce the overall intensity

of the images taken at 8, 10 and 12MHz; therefore the

images taken at 13MHz itself did not require any intensity

adjustment here.

After intensity equalisation, a new image was created

by weighting the images of all frequencies differently. The

weighting strategy used the attenuation rate of the image

from the highest frequency as the reference:

Pi ¼
Pi *¼i

i *¼1f rði*; JÞPi *¼N
i *¼1 f rði*; JÞ

; ð5Þ

AiJ ¼ i2 L

M 2 L
; ð6Þ

f cði; jÞ ¼ f Rði; jÞþ
XR21

r¼1

AiJ þ r21

R22

� �
122AiJð Þ

� �
Pif rði; jÞ;

ð7Þ

whereM and N are the number of rows and columns of the

image, Pi is the percentage of the accumulative intensity

of the image from row 1 to row I in column J, Aij is an

adjusting factor and L is the maximum row number where

Pi ¼ 0 in column J. In our case, R ¼ 4, and r ¼ 1; 2; 3; 4
represents frequency 8, 10, 12 and 13MHz, respectively.

f 1; f 2; f 3; f 4 are the image intensities from the four

frequencies 8, 10, 12, 13MHz, respectively. The weighting

scheme in our case became:

f cði; jÞ ¼ f 4ði; jÞ þ ð12 AijÞPif 3ði; jÞ þ 0:5Pif 2ði; jÞ
þ AijPif 1ði; jÞ: ð8Þ

As the ultrasound wave from frequency 13MHz attenuates

and Pi increases, more information from the lower

frequencies is contributing to compensate for the

decreasing information from the higher frequencies.

With the weighting mechanism of this algorithm, the

detailed texture from higher frequencies dominated at

shallow depths. As the wave travels and attenuates, less

information in higher frequencies is present, so more and

more information is retrieved from lower frequencies. The

frequency combining portion of the algorithm therefore

created a composite image that preserved detail from the

higher frequencies and also preserved the slow attenuation

rate of the lower frequency images.

2.3 Technical validation: strain measurements in
tendon

Anatomical lengths and tissue strain are frequently

measured in ultrasound images; the accuracy of these

measures is dependent upon the resolution and quality of

the ultrasound images being analysed. We therefore

measured strain in a tendon model in both raw and super-

resolved ultrasound images and compared these to actual

measured strain in the tendon.

Three porcine digital flexor tendons, completely

excised from surrounding tissue but with intact bone-

tendon insertion site, were mechanically tested in a servo

hydraulic test system (MTS 858, Minneapolis, MN, USA).

Original tendon length was recorded for strain calcu-

lations. A bead of graphite-impregnated silicone was

placed on the surface of the tendons to provide a non-

deforming image segment.

Tendons were incrementally stretched, 0.1mm at a

time at the grips, inside a saline-filled bath (which

facilitated transmission of ultrasound waves), to a non-

damaging physiological strain (,6.5% strain). Four

ultrasound images, one each at 8, 10, 12 and 13MHz,

were captured at each stretch increment (GE Logiqe,

Fairfield, CT, USA). Unprocessed images were combined

into four videos (one at each frequency); this is the ‘raw

video’. Images were subjected to (1a) a super-resolution
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processing using (2a) multiple motion estimation,

followed by (3a) combining the multiple frequency

images; this is called ‘SuperResolutionVideo 1’. Raw

images were then combined in the alternative order, first

(1b) combining the different frequency images, (2b) super-

resolving the results and using (3b) the multiple motion

estimation; this is called ‘SuperResolutionVideo 2’.

Each of the videos (raw video, SuperResolutionVideo

1 and SuperResolutionVideo 2) was loaded into a custom

DIC-tracking algorithm to calculate average strain in the

tissue. Accuracy of the strain values was measured by

comparison to the actual strain value, and precision of the

strain values was measured by calculating the coefficient

of variation (CV).

2.4 Technical validation: strain and contrast ratio in
tumour phantom

Several methods of comparing tissues based on relative

stiffness (i.e. elastography) require software to compare

relative strain changes in adjacent tissues; the repeatability

of these measures is dependent on the resolution and

quality of the ultrasound images being analysed. We

therefore measured strain in a breast tumour phantom in

both raw and super-resolved images. Furthermore, the

ability of physicians to use imaging modalities such as

ultrasound to detect and diagnose lesions (i.e. tumours) is

dependent on their ability to visually distinguish the lesion

from the surrounding tissues. Therefore, the ability of an

algorithm to improve the contrast between different

regions in an ultrasound image is highly valuable to this

type of ultrasound application. We also measured the

contrast ratio between the ‘tumour’ and ‘surrounding

tissue’ in the breast tumour phantom.

A silicone breast tumour phantom (provided by

SuperSonic Imagine, Aix-en-Provence, France) was

mechanically compressed in a servo hydraulic test system

(MTS 858, Minneapolis, MN, USA). The ‘breast’ was

incrementally compressed, 0.1mm at a time, with the

ultrasound transducer positioned immediately over the

‘tumour’. Four ultrasound images, one each at 8, 10, 12

and 13MHz, were captured at each compression

increment. Unprocessed images were combined into four

videos (one at each frequency); this is the ‘raw video’.

Images were subjected to (1a) a super-resolution

processing using (2a) multiple motion estimation,

followed by (3a) combining multiple frequency images;

this is called ‘SuperResolutionVideo 1’. Raw images were

then combined in the alternative order, first (1b)

combining the different frequency images, (2b) super-

resolving the results and using (3b) the multiple motion

estimation; this is called ‘SuperResolutionVideo 2’.

Each of the videos (raw video, SuperResolutionVideo

1 and SuperResolutionVideo 2) was loaded into a custom

DIC-tracking algorithm to calculate the average strain in

the tissue. Precision of the strain values was measured by

calculating the CV. Videos (raw videos, SuperResolu-

tionVideo 1 and SuperResolutionVideo 2) were also

loaded into a custom segmentation algorithm to calculate

ultrasound image brightness such that the brightness of the

pixels inside the ‘tumour’ region and in the surrounding

‘breast tissue’ regions could be quantified and compared,

in order to determine the contrast ratio between these two

‘tissue’ types.

2.5 Statistical analysis

The CV was calculated to compare the accuracy of strain

measurements, providing a comparison of the standard

deviation to the mean:

CV ¼ s

m
£ 100%: ð9Þ

ANOVA calculations were performed to compare

parameters from groups of videos larger than 3 or more

(i.e. between the four frequencies), and Student’s t-tests

were performed to compare pairs of parameters (i.e.

between ultra-videos 1 and 2). Significance was set at

p , 0.05.

3. Results

3.1 Raw ultrasound images

Figure 3 shows the raw ultrasound images of a tendon

specimen (with the graphite-impregnated silicone bead

in the white box) acquired at 8, 10, 12 and 13MHz. As

expected, images at 8MHz were brighter than those at

higher (i.e. 13MHz) frequencies due to lower attenuation

rate. The lower attenuation rate was also demonstrated in

the decreased ‘shadowing’ effect behind the silicone bead,

which was quite marked in the 13MHz image.

Furthermore, the blurring effects were more pronounced

in the 8MHz image, as seen by the amount of artefact

present around the silicone bead (lack of a crisp edge, with

a halo effect around the edges of the bead).

Similarly, Figure 4 shows the raw ultrasound images

of the breast tumour phantom acquired at 8, 10, 12 and

13MHz. Again, images at 8MHz were brighter than those

at higher (i.e. 13MHz) frequencies due to the lower

attenuation rate.

3.2 Super-resolution image results

Comparison of the raw videos (at each of 8, 10, 12 and

13MHz) to the processed images shows three major

changes to the video quality: first, the new videos were

larger (in terms of number of pixels). Second, the images

showed greater clarity and detail. Third, there was a

[Q2]
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smooth transition between ultrasound image frames rather

than visual ‘jittering’ between consecutive frames.

The frequency combining portion of the algorithm

created a composite image that preserved detail from the

higher frequencies and also preserved the slow attenuation

rate of the lower frequency images. Figure 5 shows tendon

images from lower (8MHz) and higher (13MHz)

frequencies (Figures 5(a),(b)) along with the image

Figure 3. Raw ultrasound images of a tendon specimen at 8, 10, 12 and 13MHz. Higher frequency waves carried more detailed texture
resulting in sharper edges at the bump in the image (marked by the red box) where there was a halo in the lower frequency image. As the
wave travelled farther into the tissue, it attenuated faster in higher frequency, causing the region behind the bump to appear darker.

Figure 4. Raw ultrasound images of a breast tumour phantom at 8, 10, 12 and 13MHz. Lower frequency images were brighter but more
blurry, while higher frequency images had better clarity but faster wave attenuation.
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created by our algorithm (Figure 5(c)). The algorithm

created an image, which preserved the detailed texture of

the higher frequency images while also exploiting extra

information at depth from lower frequencies. Therefore,

the image showed a sharp image around the bump with no

halo, and it also presented information from lower

frequencies, so the region behind the bump in our image

was brighter than in the higher frequency images.

Similarly, Figure 6 shows breast phantom images from

lower (8MHz) and higher (13MHz) frequencies (Figure 6

Figure 5. Raw and processed ultrasound images of tendon: (a) tendon image captured at 8MHz; (b) tendon image captured at 13MHz
and (c) frequency combined super-resolution image created by the algorithm.

Figure 6. Raw and processed ultrasound images of a breast tumour phantom (dark circle): (a) breast phantom image captured at 8MHz;
(b) breast phantom image captured at 13MHz and (c) frequency combined super-resolution image created by our algorithm.
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(a),(b)) along with the image created by the super-

resolution algorithm (Figure 6(c)). The algorithm created

an image, which preserved the detailed texture of the

higher frequency images while also exploiting extra

information at depth from lower frequencies.

3.3 Technical validation: strain measurements in
tendon

Tendon strain measurements in raw and processed videos

are summarised in Table 1. Tendons 1, 2 and 3 were

stretched to strains of 4.68–6.43%. DIC strain measure-

ments using raw videos ranged from 5.34% to 9.67%,

whereas measurements using SuperResolutionVideos

ranged from 4.38% to 6.65%.

Measurements made from SuperResolutionVideos 1

and 2 are closer to actual values than those made from the

raw videos, and SuperResolutionVideo 1 gives approxi-

mately the same values as SuperResolutionVideo 2. Thus,

spatial and frequency-based super-resolution of ultrasound

images results in improved results regardless of the order

of application. Figure 7 demonstrates these results

graphically, with the raw videos demonstrating variable

and noisy strain tracking results while the super-resolved

videos demonstrate strain tracking results which converge

on the actual, measured strain (4.68%).

There was no significant difference in strain for raw

images at different frequencies ( p ¼ 0.725; ANOVA

calculation), so strain values were averaged across all the

four frequency videos. Also, SuperResolutionVideos 1 and

2 were similarly averaged as there was no significant

difference in strain values ( p ¼ 0.499; t-test calculation).

Table 2 provides further comparative data.

The results in Table 2 demonstrate improved accuracy

(as demonstrated by a reduced strain error; p ¼ 0.018,

t-test comparison) and precision (as demonstrated by a

reduced CV; p ¼ 0.018, t-test comparison) in the super-

resolved images compared with the raw videos.

3.4 Technical validation: strain and contrast ratio in
tumour phantom

Variability in strain measurements of the compressed

tumour phantom is demonstrated in Table 3. The average

CV for raw videos was 20.62%, compared with an average

CV value of 1.18% for super-resolution videos (SRVs).

Thus, spatial and frequency-based super-resolution of

ultrasound images results in reduced variability in strain

measurements in a tumour phantom.

The average contrast ratio in the raw videos was 2.43,

while the contrast ratio in the SRVs was 3.38. Thus, spatial

and frequency-based super-resolution of ultrasound

images results in improved contrast ratio in images of a

breast tumour phantom.

4. Discussion

The challenges discussed in Section 1 regarding image

registration and complex motion have been successfully

resolved in this study. The additional technical challenge

of frequency combination has also been addressed. The

resulting combination algorithm provides a powerful

method for creating better ultrasound images and videos,

extending the existing technologies for image capture by

post-processing. Comparison of the raw videos (at each of

8, 10, 12 and 13MHz) with SuperResolutionVideos 1 (in

which images undergo spatial super-resolution first and

frequency combination second) and 2 (in which images

undergo frequency combination first and spatial super-

resolution second) shows three major changes to the video

quality: (1) videos are larger in terms of number of pixels,

(2) the images show greater clarity and detail and (3)

images have considerably more smooth transitioning of

the ultrasound image from frame to frame (rather than

visual ‘jittering’ between frames). When looking at the

videos, the SRVs are visually cleaner with sharper edges

and better contrast, and should be easier to interpret in a

clinical setting.

In order to validate that the improvements in the SRVs

(over the raw videos) are more than cosmetic, we

measured the strain in the tendon directly from the various

videos. Measurements made from SuperResolutionVideos

1 and 2 are significantly more accurate and precise than

those made from the raw videos. We attribute this

improvement to the extra stability of the image (i.e. the

reduced flicker) and to the increased resolution. Strain and

contrast ratio were also measured in a breast tumour

phantom with similar improvements in precision and

Table 1. Tendon strain measurements (raw videos vs SuperResolutionVideo).

8MHz 10MHz 12MHz 13MHz Actual SRV 1 SRV 2

Tendon 1 Strain (%) 8.84 8.42 8.90 9.67 6.43 6.65 6.60
CV (%) 16.84 27.08 10.45 34.50 1.63 1.34

Tendon 2 Strain (%) 6.14 5.69 5.78 6.57 4.83 5.14 4.38
CV (%) 53.33 33.51 33.98 17.74 9.52 9.68

Tendon 3 Strain (%) 7.39 5.71 7.47 5.34 4.68 4.67 4.68
CV (%) 41.17 33.89 43.55 39.97 2.38 11.10
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increased contrast ratio. We conclude that SuperResolu-

tionVideo 1 is approximately the same as SuperResolu-

tionVideo 2 and that both are significantly more accurate

than the standard B-mode cine images.

Each of the components (frequency combination or

spatial super-resolution) of the super-resolution algorithm

contributed to the improvements in the images using

different approaches; the interpolation used in the spatial

super-resolution results in reduced noise and improved

overall resolution, while the weighting scheme in the

frequency combination creates an image with the

increased detail from the higher frequency images and

the decreased attenuation from the lower frequency

images, resulting in improved contrast and sharper details

within the image. Thus, while the order in which they

occur does not affect the outcome, maintaining both

components of the algorithm is essential to improve the

diagnostic ability of each individual still image while also

improving measurements based on the dynamic videos.

While the testing performed thus far focuses on a

relatively small number of samples from a tendon model

and a tumour phantom, we believe the same general

improvement should occur in any processed ultrasound

images, such as of pulsing aortas, potentially tumorous

lungs or beating hearts. The tendon model was chosen both

because it is readily available and because it is a good

Figure 7. Example tendon strain tracking results. SRV 1 indicates the SuperResolutionVideo in which the spatial super-resolution was
performed first followed by frequency combination. Raw videos had variable and strain tracking results, while the super-resolved videos
had results which converge on the actual strain (4.68%).
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model of linear tensile motion in the body. The breast

tumour model was chosen because it represented an

entirely different motion – the compression of a spherical

object in a dense medium – while still being conducive to

controlled testing. Thus, multiple motions seen in the

body – tension versus compression and linear versus

radial strain – have been demonstrated with these two

models. The success of the algorithm in these different

cases suggests that it will be successful in a wide variety of

ultrasound images.

The range of frequencies chosen is based on the

capabilities of our laboratory ultrasound system. We

believe that further enhancements are possible for more

advanced systems with broader frequency ranges. How-

ever, despite the fact that current ultrasoundmachines offer

multiple frequency selections, they cannot simultaneously

(or nearly simultaneously) save the same image at different

frequencies. Therefore, the setting (displacement) of the

tissue has to remain identical when the ultrasound image

is captured by different frequencies. Otherwise, images

acquired at different settings would result in different pixel

locations between frequencies andwould require alignment

of the same frame number at different frequencies before

being processed. Nearly simultaneous acquisition of

different frequencies could be built into future ultrasound

systems to obviate this issue.

Due to the nature of movement of biological tissues in

ultrasound images, it is highly unlikely that complete

alignment of the LR images can be achieved by a single

affine transformation. To account for this, the images are

partitioned into a collection of 36 sub-images, and motion

is estimated in each partition separately. This number of

sub-images seemed to be adequate for the images in this

study; however, if there is greater motion in future images,

n may need to be increased. Furthermore, if future images

have less resolution, n may be decreased for enhanced

tracking efficiency.

Our algorithm consists of spatial super-resolution and

frequency-based super-resolution. Spatial super-resolution

improves the image quality by gathering information of

the same object from different locations at same

frequency. It creates images with higher resolution and

removes the noise in the raw data (LR images) by

registering and interpolating the consecutive frames at the

same frequency. In the meantime, frequency-based super-

resolution improves the image quality by collecting

information of the same object at the same location but at

different frequencies. It preserves the detailed image

texture from high-frequency images and the brightness

from low-frequency images to create images with higher

image contrast. The combination of these two approaches

gives images with higher resolution, more details, better

quality, less noise, greater contrast and better stability.

The ability of physicians to use imaging modalities

such as ultrasound to detect and diagnose the region of

interest (e.g. pathological region or tumour) is dependent

on their ability to visually distinguish the region of interest

from the surrounding tissues. Therefore, the ability of our

algorithm to improve the contrast between different

regions in an ultrasound image is highly valuable in this

type of ultrasound application.

In conclusion, the present spatial and frequency-based

super-resolution algorithm successfully addressed the

challenges of image registration and complex motion

and exploited the ability to utilise information from

multiple available ultrasound frequencies. The resulting

processed images contain more detail and less noise,

which improved contrast within the images and resulted in

better strain measurements calculated from the images.

Thus, the algorithm could be beneficial to both scientific

analyses and clinical diagnoses.
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