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Abstract

In linear image restoration, the point spread function of the degrading system is assumed known
even though this information is usually not available in real applications. As a result, both blur iden-
tification and image restoration must be performed from the observed noisy blurred image. This
paper presents a computationally simple iterative blind image deconvolution method which is based
on non-linear adaptive filtering. The new method is applicable to minimum as well as mixed phase
blurs. The noisy blurred image is assumed to be the output of a two-dimensional linear shift-invariant
system with an unknown point spread function contaminated by an additive noise. The method passes
the noisy blurred image through a two-dimensional finite impulse response adaptive filter whose pa-
rameters are updated by minimizing the dispersion. When convergence occurs, the adaptive filter
provides an approximate inverse of the point spread function. Moreover, its output is an estimate of
the unobserved true image. Experimental results are provided.
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1. Introduction

The purpose of image restoration is to reconstruct an unobservable “true” image from
a degraded observation. Blur and observation noise are the main sources of degradation.
An observed image can be written, ignoring additive noise, as the two-dimensional (2-D)
convolution of the true image with a linear shift-invariant (LSI) blur, known as the point
spread function (PSF). Restoration in the case of known blur, assuming the linear degrada-
tion model, is calledinear image restoration and it has been investigated extensively in the
last three decades giving rise to a variety of solutions including inverse filtering, Wiener
filtering, least-squares (LS) filtering, Kalman filtering, and iterative deconvolution methods
[1-4]. In many practical situations, however, the blur is unknown. Hence, both blur identi-
fication and image restoration must be performed from the degraded image. Restoration in
the case of unknown blur is callétind image restoration (deconvolution).

Kundur and Hatzinakos [5,6] provide excellent tutorials which categorize blind image
deconvolution methods into two major groups: (i) those which estimate the PSF a priori
independent of the true image so as to use it later with one of the linear image restora-
tion methods, and (ii) those which estimate the PSF and the true image simultaneously.
Algorithms belonging to the first class are computationally simple, but they are limited
to situations in which the PSF has a special parametric form, and the true image has cer-
tain features. Algorithms belonging to the second class, which are computationally more
complex, must be used for more general situations.

In this paper, a new iterative blind image deconvolution method that belongs to the
second class is proposed. The method is based on non-linear adaptive filtering and is most
applicable to six or less-bit gray scale images. The proposed method utilizes a cost function
like all other iterative non-linear adaptive filtering methods in order to update the parame-
ters of the adaptive filter. The constant-modulus (CM) cost [7,8], which is one of the most
studied and implemented methods of blind adaptive equalization for data communications
over dispersive channels, is used as the cost function. First, it is shown how the method
can be extended to the 2-D case. Then, this 2-D extension is applied to the blind image
deconvolution problem.

2. Problem statement

Consider the single-input single-output (SISO) discrete-time LSI system depicted in
Fig. 1, in which f (m, n), h(m, n), v(m, n), andg (m, n) represent thex{, n)th pixel of the
true image, the PSF of the degrading system, additive noise that is independémt af,
and the degraded image, respectively.

It is clear from Fig. 1 that the observed x N noisy blurred image; (m,n) can be
written as

g(m,n) = f(m,n)*h(m,n) +v(m,n)
N

M
:ZZf(k,l)h(m—k,n—l)+v(m,n) 1)
k=

17=1
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g(m,n) N
f(m,n) —— h(m,n) w(m,n) —» f(m,n)

v(m,n)

Fig. 1. General linear image deconvolution.

form=1,...,M,n=1,...,N.In Eqg. (1), denotes the 2-D linear convolution operator
andh(m,n), (m,n) € S, assumes non-zero values only o\t Since blurs are usually
modelled as 2-D finite impulse response (FIR) filte§s,is a proper subset of the set of
2-D integers.

In linear image restoration, the PSF is given and the true image is estimated using one of
the well-known linear image restoration algorithms. But, the PSF of the degrading system,
h(m,n), is usually unknown in most real applications. Hence, the true image must be
estimated directly from the noisy blurred image using only partial information about the
true image and the PSF. This process is cailéat image deconvolution.

3. Image deconvolution via dispersion minimization

This section explains the proposed method in detail. In the remainder of the paper, the
true image pixels are assumed to have (odd integer) gray levkIS3, ..., (L — 1),
whereL is the number of gray levels in the true image, unless otherwise stated. Note that
most of real images are 8-bit having 256 gray levels between 0 and 255. These images
can be transformed to have gray level$, +3, ..., £(L — 1) by a uniform thresholding
even though non-uniform thresholding based on the distribution of pixels in the true im-
age may yield better results. General linear image deconvolution formulation and the CM
cost on which the proposed method depends are explained next before the new method is
described.

3.1. Supervised linear image deconvolution

Consider the general supervised image deconvolution problem depicted in Fig. 1, where
the unobservable true imagé(m, n) is blurred by a PSF modelled as a 2-D FIR fil-
ter h(m, n) with support[—A, A] x [—B, B], and is contaminated by an additive noise
v(m, n), which is independent of (m, n). The goal is to estimate the true image using a
2-D FIR filter w(m, n) with support{—C, C] x [—-D, D].

The notationz(m, n) ~ z will be used to mean that thgm, n) are independent and
identically distributed (i.i.d.) random variables for anyandn whose distribution is iden-
tical to that of some random variabte For the sake of making the analysis simple, it
will be assumed that (i) the true image is zero mean if.@z, n) ~ f with varianceo]%,

(ii) additive noise is zero mean i.i.d(m, n) ~ v with variancayvz, (iif) the PSF is LSI with
impulse responsk(m, n).

Let f(m,n), v(m,n) andw(m, n) denote the following lexicographically ordered vec-

tors:
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fom,n):=[fm+P,n+Q),..., fm—P,n— )], )
v(m,n) := [v(m—I—C,n+D),...,v(m—C,n—D)]T, 3)
w:=[w(=C,-D),...,w(C, D)]", (4)

whereP = A+ C, Q =B+ D. Then, the estimatf(m, n) can be written as

fm,ny =" (m,n)HW + V" (m, n)w, (5)
where H is a suitable2P + 1)(20 + 1) x (2C + 1)(2D + 1) matrix whose entries are
constructed from the PSF coefficieritén, n). In the absence of additive noisém, n),
Eq. (5) leads to support and zero conditions for perfect image deconvolution (PID), i.e.,

f(m,n) = f(m —mo, n —ng) for some fixed integer-valued vectong, ng). PID requires
the zero-forcing system impulse response

Nonone) = HW=10,...,0,1,0,...,0]7, (6)

where the non-zero coefficient is in tl®o, ng)th position, whergmg, ng) must satisfy
—P <mo < Pand—Q <np < Q. In order to achieve this particular response, the system
of linear equations described by}, ., = Hw must have a solution. For PID under arbi-
trary (mo, no), H must be full row rank which implies thai must have at least as many
columns as rows. Hence,

(2C + 12D +1) > 2P + 1)(20 + 1). (7)

From Eq. (7), itis clear that no 2-D FIR filter can perfectly cancel out the effect of a non-
trivial blur even in the absence of additive noise since the row dimensidii afways
exceeds its column dimension (recall ttha= A + C, Q = B + D).

In the presence of noise, it is common to minimize the expected value of the square of
the recovery erroe(m, n) given by

e(m,n) = f(m,n) — f(m —mo,n — no) ®)
for a particular choice of delagno, no). Using Eq. (5)¢(m, n) can be written as
e(m,n) =" (m,n) HW + Vv (m, )W — f(m —mo, n — no)
=T (m, n)HW + VT (m, n)w — 7 (m, N g o)
=7 (m, n) (HW — Ngng.ng)) + V7 (m, n)w. (9)

It was assumed that additive noise and the true image are i.i.d. and independent with re-
spective variances? ando}%. Using this assumption yields

E[e?(m,n)] = [|HW = Nmong) [150% + [IW[502. (10)

where|| - |2 represents thé&-norm of a vector. Note that (10) is proportional to the true
image-power normalized mean-squared error (M&ke given by

ImsE = | HW — N noy I3 + AlIWI13, (11)

wherex = avz/a]%. From Eq. (11), the adaptive filter parameter vector minimizipge is
given by

W= (HTH + 1) H g ng)- (12)
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From (11) and (12) the optimal MSE is
oy (I = H(HT H + 2D H YN, (13)

The MSE cost defined in (10) constitutes a well-known and useful measure of estimator
performance. The performance of the new method can be quantified by comparing its MSE
to the minimum achievable MSE given an identical true image and blur.

Juse=nh

3.2. TheCM cost

Traditional uses of the CM cost have all been one-dimensional (1-D). The CM cost
term was introduced for blind equalization of communication signals over dispersive chan-
nels by Godard [7] and Treichler and Agee [8]. The reader is referred to Ref. [9] for a
comprehensive introduction to the CM cost in the context of adaptive equalization. This
section generalizes the CM cost for use in 2-D by reformulating the cost for a real-valued
zero-mean true imagg(m, n) and a real-valued PSHm, n) in additive zero-mean noise
v(m, n). Itis assumed that each gray level of the true image is equally likely. The order of
topics follows that in Ref. [9]. The CM cost is given by

Jom == E[(f2(m,n) — v)?] = E[ f*(m,m)] — 2y E[ f2(m, )] + y?
=E[f4(m,n)]—ZGfoE[fz(m,n)]+U;}K%, (14)

wherey andky are the dispersion constant and normalized kurtosis of the true image,
respectively. They are defined by

ELf*0m, m)]
= 15
T EL 2, )2 (18)
_ ELf*m,n)] (16)

YT EL 2. )

Note thaty = UZKf. A detailed analysis of the CM cost for the 1-D case is given in Ref. [9].
Since the analysis for the 2-D case can be made similarly, it is omitted here to save space.

It is evident from Eq. (14) that the CM cost penalizes the deviation&26f:, n) from
the dispersion constamt. This interpretation of the CM cost explains why the proposed
method is calledlind image deconvolution using dispersion minimization. Table 1 gives
the dispersion constant and normalized kurtosis of a zero mean uniformly distributed gray
scale image for various gray levels.

Gradient descent (GD) methods are generally used to solve for CM estimators (disper-
sion minimizers) because closed form expressions do not usually exist. Since exact GD
requires statistical knowledge of the degraded image, which is not available in real appli-
cations, stochastic GD methods are utilized. The algorithm that performs a stochastic GD
minimization of Jcu is referred to as theonstant modulus algorithm or CMA [9]:

Wjr1=wW; — pu(fF(m,n) —y) fm,n)g(m, n). (17)

Equation (17) is written in terms of the lexicographically ordered adaptive filter input vec-
tor at pixel(m, n) given by

gom,n) =[gm+C,n+D),...,gm—C,n—D)], (18)
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Table 1
Dispersion constant and normalized kurtosis for a zero
mean uniformly distributed image having different gray

levels

Gray levels y Ky

2 1.00000 1.0000
4 8.20000 1.6400
8 37.0000 1.7169
16 152.200 1.7905
32 613.000 1.7977
64 2456.20 1.7994
128 9829.00 1.7999
256 39320.0 1.8000

the lexicographically ordered adaptive filter parameter vestoat the jth iteration, the
adaptive filter outpuyfj (m, n), a small positive step-size and the true image dispersion
constanty . Plotting the CM cost versus the adaptive filter parameters results in a surface
calledthe CM cost surface. CMA attempts to minimize the CM cost by starting at some
location on the surface and following the trajectory of the steepest descent.

3.3. Proposed algorithm

Consider the general blind image deconvolution problem depicted in Fig. 1. The model
consists of a cascade connection of a linear degrading sysiem:) and a deconvolution
filter w(m, n). The nature of the PSF is determined by the type of the blur. The system tries
to reconstruct the true imagé(m, n) given the observed blurred imagén, n). Equiva-
lently, it is required to design a blind deconvolution filie(n, n) that is the (approximate)
inverse of the unknown PSF, with the degrading system input being unobservable. The
true image is assumed to have i.i.d. pixels which are uniformly distributed, and the PSF is
assumed to have finite support. No other information is assumed.

The iterative blind deconvolution method is shown in Fig. 2, where the observed image
g(m,n) is applied to a 2-D FIR adaptive filtan(m, n) which tries to remove the blur.

/.

fm.n) Zero-memo fumn)
- - ry NL
g(mn) —  w(mn) | Nonlinearity =
A
Optimization e(m,n)
Algorithm

Fig. 2. Block diagram of the proposed method.
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Thus, output of the adaptive filter at théh iterationfj(m,n) is an estimate of the true
image given by

C D
fimony="Y"">" wjk.hgtm —k,n—1) (19)

k=—Cl=-D

form=1,...,M,n=1,... N,wherew;(k, ) are the adaptive filter coefficients at tfid
iteration for—C < k < C, —D <1 < D. Ordinarily, the estimatg?j (m, n) at pixel (m, n)

is not reliable enough. However, it may be used in an adaptive scheme to obtain a better
estimate for the next pixel. If the true imag&m, n) were known, then the difference
betweenfj(m, n) and f(m,n) could be used to provide an efficient update of the filter
parameters. In blind image deconvolution, however, the true image is unavailable. As in
adaptive equalization, one possibility is to attempt to minimize the dispersig?;‘(mf, n)

using the CM coslicm. Since it is not possible to minimize an expected value directly, the
method uses an instantaneous estimat&-gf given by

1, 4
J =3 (F2m.m) —y)° (20)

to obtain an implementable algorithm, wherés the dispersion constant of the true image.
Note that the function of the zero memory nonlinearity (the rightmost term in Fig. 2) is to
produce an artificially generated desired imq@@,j(m, n) for the algorithm so that the
difference betwee[fNL,j(m, n) and the output of the adaptive filtéy (m,n) can be used
to update the adaptive filter coefficients. The zero memory nonlinearity is chosen such that
this difference is equal to negative of the gradient of

The stochastic GD minimization is used to update the adaptive filter parameters. The
derivative ofJ with respect to the adaptive filter parameters is needed in order to implement
the stochastic GD minimization. Let;, g(m, n) denote the following lexicographically
ordered vectors:

w;(=C,—D) gm+C,n+ D)
w;(—=C,—-D+1) gm+C,n+D—-1)
wj = w;(=C,—-D+2) i g(m, n) == gm+C,n+ D —2) (1)
w;(C, D) gm—C,n— D)

form=1,...,M,n=1,...,N.InEQq. (21),w;(m, n) stands for th&m, n)th coefficient
of the adaptive filter at thgth iteration, where-C < m < C and—D < n < D. Using
vectorsw; andg(m, n), the output of the adaptive filter for pixeh, n) at the jth iteration
can be written as

fim,n) =wlg(m,n), 22)

whereT denotes vector transposition. Now, the derivative/ afiith respect tov; can be
evaluated, which is given by

dJ  dJ dfjm.n) T




144 C. Wral, WA. Sethares/ Digital Sgnal Processing 16 (2006) 137-148

Hence, the adaptive filter is updated according to

dJ

Md—Wj =W;j _M‘P(fj(man))g(m,n), (24)

Wj+1=W; =
wherep is a small positive step-size (usually betweenr4@nd 107 depending on the
gray levels in the true image) that guarantees stability of the algorithrep aﬁdm n)) ;=
[f]:’-(m, n) —y1f;(m,n) is called theprediction error function. The prediction error func-
tion ¢ () has some interesting and important properties when the coefficients of the
adaptive filter are near the global minimum &fy. The static and dynamic convergence
analysis of the new method in the vicinity the global minimum/ef, can be performed
by using important features gf(-) which were presented in detail in Ref. [10]. Finally, the
relationship betweeanL,j and f; (m, n) will be provided before concluding this section.
Note thate; (m, n) is related to/ via

dJ
dfj(m,n)

wheree; (m, n) is the error betweengL,j(m, n) andf, (m, n) at thejth iteration. Hence,
fNL,j(m, n) can be written in terms ofj (m,n) as

=[y = ffom,m)]fjm,n),

ej(m,n) =—

INLjm,n) = fi(m,n) +ej(m,n) = fim,m)[1+y — fFm,n)].

Equations (22)—(24) constitute the proposed algorithm for blind deconvolution of noisy
blurred images. Each iteration of the algorithm corresponds to processing a pixel in the
blurred image. When convergence occ1frﬁm, n) provides an estimate of the true image
f(m,n), andw; is an approximate inverse of the PSF.

4. Simulation results

1-D CMA analysis has shown that the performance of the CMA depends strongly on
the source kurtosis, the signal-to-noise ratio (SNR), among other factors. Effectiveness of
the new method is conjectured to depend on the normalized kurtosis (or the number of
gray levels) of the true image and the blurred signal-to-noise ratio (BSNR). Results of two
computer experiments are provided in this section in order to support this conjecture. The
first experiment illustrates how the method performs in the absence of observation noise as
true image kurtosis increases, while the second experiment demonstrates the behavior of
the method as a function of BSNR for a fixed number of gray level in a true image.

The classical 8-bit gray-scalésna image was chosen as a testimage. Histogram equal-
ization was performed on the test image which results in approximately uniformly distrib-
uted image. Then, its mean was subtracted from the histogram equalized image yielding
a zero-mean uniformly distributed image. Finally, uniform quantizations having different
step-sizes were applied to the zero-mean uniformly distributed image to obtain true im-
ages having different gray levels which fullfill most of the assumptions made about the
true image.
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In order to obtain artificially generated blurred images,a % scatter blur with para-
meters = 2 whose coefficients are given by

K
(B2 + (m? +n?))3/2

was applied to the true images, where the constingse chosen such that,, >, h(m,
n) =1 to preserve the mean value of the true image. Zero-mean Gaussian noises were
added to the blurred images to get observed noisy blurred images. In all experiments a
5 x 5 support was used for the adaptive filter.

In image restoration studies, the degradation modelled by blurring and additive noise
is referred to in terms of the metric BSNR. This metric for a zero miar N image is
given by [4]

h(m,n) = (25)

M_lN Z%:l Z}’]LVZ]_ z2(m, n) }’ (26)

2
v

BSNR= 10|og10{

[}

wherez(m, n) is the noise free blurred image anﬁ is the additive noise variance. Perfor-
mance of the method was tested at several BSNRs by adjusting the noise vaﬁance

For the purpose of objectively testing the performance of linear image restoration algo-
rithms, the improvement in SNR (ISNR) is often used. This metric is given by [4]

M SN [ fmn) — gm, n)1? }
M SN fmon) — fm.m2)

where f(m,n) andg(m, n) are the original and degraded images aﬁm,n) is the es-
timated true image. ISNR cannot be used when the true image is unknown, but it can be
used to compare different methods in simulations when the true image is known.

Note that the CM cost is non-convex. Hence, the new method may converge to a local
minimum instead of the global minimum d§y depending on how it is initialized. If there
is no a priori information about the PSF, the adaptive filter is initialized using a 2-D spike
characterized by a non-zero coefficient usually located somewhere in the central portion
of the adaptive filter. If there is a priori information about the PSF, this information may
aid in selection of the non-zero element in the adaptive filter. Since it was assumed that the
PSF is unknown, a 2-D impulse function was used as the initial filter for the method.

Figures 3-6, in which the true images, blurred images and estimated true images are
depicted in the left, middle and right column, respectively, illustrate how the method be-
haves as the number of gray levels increases (as the kurtosis of the true image increases).
According to 1-D CMA analysis [9], increases in the source kurtosis as long as they remain
sub-Gaussiam{ < 3) do not effect the location of CM cost minima, they flatten the CM
surface which means that the algorithm will converge to the minima more slowly. Further-
more, increases in the source kurtosis raise the CM surface, and in turn, increase the excess
CM cost. It is clear from Figs. 3—6 that performance of the new method depends on the
normalized kurtosis of the true image. As the true image kurtosis increases, performance
degrades, which is in agreement with the 1-D theory. However, it is impossible to pictori-
ally verify the 1-D results given in Ref. [9] since the CM cost surface is a 25-dimensional
space for a 5 5 adaptive filter.

ISNR= 10I0g10{ 27)
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Fig. 3. Blind deconvolution result for a binary image, no noise. True image (left); blurred image (middle); esti-
mated true image (right), ISNR 19.93 dB.

Fig. 4. Blind deconvolution result for a 2-bit image, no noise. True image (left); blurred image (middle); estimated
true image (right), ISNR= 13.66 dB.

Fig. 5. Blind deconvolution result for a 3-bitimage, no noise. True image (left); blurred image (middle); estimated
true image (right), ISNR= 10.56 dB.

As stated in Section 3, the adaptive filter provides an approximate inverse of the blur at
convergence. Figure 7 supports this claim by showing the magnitudes of th83point
two-dimensional discrete-time Fourier transform (DTFT) of the scatter blur and the adap-
tive filter at convergence for the 2-gray level case. Here, we are showing only one result
because of space limitation. It is clear from Fig. 7 that the adaptive filter is an approximate

inverse of the blur at convergence for this case. Similar results were obtained for the other
gray levels.
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Fig. 6. Blind deconvolution result for a 4-bit image, no noise. True image (left); blurred image (middle); estimated
true image (right), ISNR=6.12 dB.

:‘ i
o
B

f
X
N
% """’/’ [/
Wi
\:\fo 7

Fig. 7. The magnitudes of the 3232-point DTFT of 5x 5 scatter blur with8 = 2 (left); adaptive filter at
convergence (right).

Next, performance of the method is demonstrated as a function of BSNR for a given
2-bit true image. In 1-D, if the additive noise is the only violation of of the global conver-
gence conditions, location of global CM minimum shifts towards the origin in equalizer
parameter space and the minimum achievable CM cost is increased [9]. Similar events are
likely to happen in 2-D. Table 2 gives ISNR results for for several BSNRs from which itis
obvious that performance worsens as the BSNR increases for a fixed true image kurtosis.
Therefore, results again support the 1-D theory. It appears from simulation results that the
new method is useful as long as the BSNR is greater than 30 dB.

5. Conclusions

A new method that is based on non-linear adaptive filtering for blind deconvolution of
noisy blurred images was proposed in this paper. The new method is essentially a 2-D
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Table 2
ISNR values obtained using the new method
for a 2-bit true image at several BSNRs

BSNR (dB) ISNR (dB)
No noise 1%6

70 1364

50 1335

40 1075

30 42

extension of the CMA. The method can be used to initialize an adaptive blind deconvolu-
tion method or it can be used by itself. An important aspect of the method is that images
which were blurred by mixed-phase phase blurs can be recovered. This is due to the fact
the method does not impose constraints on the phase of the blur. Another important aspect
is that the method is computationally simple, which makes its implementation easy for real
applications. Simulations have shown that the performance of the new method depends on
the normalized kurtosis or equivalently the number of gray levels of the true image and the
BSNR. The algorithm was justified via simulation. Further research is needed to improve
computational aspects of the algorithm, to concretely describe its behavior in a variety of
situations and to transform it into a reliable and robust technique for blind image decon-
volution. To this end, the static and dynamic convergence analysis of the method near the
global minimum ofJcy was performed in Ref. [10], according to which, given a step-size
and a PSF, there is an optimum support for the adaptive filter that can be determined exper-
imentally. Note that the new method could be implemented using an auotoregressive (AR)
filter instead of an FIR filter. In the AR implementation, there is no need to determine the
optimum filter support experimentally if the support of the PSF is known. The AR case is
fully discussed in Ref. [10].
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