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Abstract

In linear image restoration, the point spread function of the degrading system is assumed
even though this information is usually not available in real applications. As a result, both blur
tification and image restoration must be performed from the observed noisy blurred image
paper presents a computationally simple iterative blind image deconvolution method which is
on non-linear adaptive filtering. The new method is applicable to minimum as well as mixed
blurs. The noisy blurred image is assumed to be the output of a two-dimensional linear shift-in
system with an unknown point spread function contaminated by an additive noise. The method
the noisy blurred image through a two-dimensional finite impulse response adaptive filter who
rameters are updated by minimizing the dispersion. When convergence occurs, the adapti
provides an approximate inverse of the point spread function. Moreover, its output is an estim
the unobserved true image. Experimental results are provided.
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1. Introduction

The purpose of image restoration is to reconstruct an unobservable “true” image
a degraded observation. Blur and observation noise are the main sources of degr
An observed image can be written, ignoring additive noise, as the two-dimensional
convolution of the true image with a linear shift-invariant (LSI) blur, known as the p
spread function (PSF). Restoration in the case of known blur, assuming the linear de
tion model, is calledlinear image restoration and it has been investigated extensively in
last three decades giving rise to a variety of solutions including inverse filtering, W
filtering, least-squares (LS) filtering, Kalman filtering, and iterative deconvolution me
[1–4]. In many practical situations, however, the blur is unknown. Hence, both blur id
fication and image restoration must be performed from the degraded image. Restor
the case of unknown blur is calledblind image restoration (deconvolution).

Kundur and Hatzinakos [5,6] provide excellent tutorials which categorize blind im
deconvolution methods into two major groups: (i) those which estimate the PSF a
independent of the true image so as to use it later with one of the linear image re
tion methods, and (ii) those which estimate the PSF and the true image simultan
Algorithms belonging to the first class are computationally simple, but they are lim
to situations in which the PSF has a special parametric form, and the true image h
tain features. Algorithms belonging to the second class, which are computationally
complex, must be used for more general situations.

In this paper, a new iterative blind image deconvolution method that belongs
second class is proposed. The method is based on non-linear adaptive filtering and
applicable to six or less-bit gray scale images. The proposed method utilizes a cost fu
like all other iterative non-linear adaptive filtering methods in order to update the pa
ters of the adaptive filter. The constant-modulus (CM) cost [7,8], which is one of the
studied and implemented methods of blind adaptive equalization for data communic
over dispersive channels, is used as the cost function. First, it is shown how the m
can be extended to the 2-D case. Then, this 2-D extension is applied to the blind
deconvolution problem.

2. Problem statement

Consider the single-input single-output (SISO) discrete-time LSI system depic
Fig. 1, in whichf (m,n), h(m,n), v(m,n), andg(m,n) represent the (m,n)th pixel of the
true image, the PSF of the degrading system, additive noise that is independent off (m,n),
and the degraded image, respectively.

It is clear from Fig. 1 that the observedM × N noisy blurred imageg(m,n) can be
written as

g(m,n) = f (m,n) ∗ h(m,n) + v(m,n)

=
M∑ N∑

f (k, l)h(m − k,n − l) + v(m,n) (1)

k=1 l=1
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Fig. 1. General linear image deconvolution.

for m = 1, . . . ,M , n = 1, . . . ,N . In Eq. (1),∗ denotes the 2-D linear convolution opera
andh(m,n), (m,n) ∈ Sh assumes non-zero values only overSh. Since blurs are usuall
modelled as 2-D finite impulse response (FIR) filters,Sh is a proper subset of the set
2-D integers.

In linear image restoration, the PSF is given and the true image is estimated using
the well-known linear image restoration algorithms. But, the PSF of the degrading sy
h(m,n), is usually unknown in most real applications. Hence, the true image mu
estimated directly from the noisy blurred image using only partial information abou
true image and the PSF. This process is calledblind image deconvolution.

3. Image deconvolution via dispersion minimization

This section explains the proposed method in detail. In the remainder of the pap
true image pixels are assumed to have (odd integer) gray levels±1,±3, . . . ,±(L − 1),
whereL is the number of gray levels in the true image, unless otherwise stated. No
most of real images are 8-bit having 256 gray levels between 0 and 255. These
can be transformed to have gray levels±1,±3, . . . ,±(L − 1) by a uniform thresholding
even though non-uniform thresholding based on the distribution of pixels in the tru
age may yield better results. General linear image deconvolution formulation and th
cost on which the proposed method depends are explained next before the new me
described.

3.1. Supervised linear image deconvolution

Consider the general supervised image deconvolution problem depicted in Fig. 1,
the unobservable true imagef (m,n) is blurred by a PSF modelled as a 2-D FIR
ter h(m,n) with support[−A,A] × [−B,B], and is contaminated by an additive no
v(m,n), which is independent off (m,n). The goal is to estimate the true image usin
2-D FIR filterw(m,n) with support[−C,C] × [−D,D].

The notationz(m,n) ∼ z will be used to mean that thez(m,n) are independent an
identically distributed (i.i.d.) random variables for anym andn whose distribution is iden
tical to that of some random variablez. For the sake of making the analysis simple
will be assumed that (i) the true image is zero mean i.i.d.f (m,n) ∼ f with varianceσ 2

f ,
(ii) additive noise is zero mean i.i.d.v(m,n) ∼ v with varianceσ 2

v , (iii) the PSF is LSI with
impulse responseh(m,n).

Let f(m,n), v(m,n) andw(m,n) denote the following lexicographically ordered ve
tors:
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f(m,n) := [
f (m + P,n + Q), . . . , f (m − P,n − Q)

]T
, (2)

v(m,n) := [
v(m + C,n + D), . . . , v(m − C,n − D)

]T
, (3)

w := [
w(−C,−D), . . . ,w(C,D)

]T
, (4)

whereP = A + C, Q = B + D. Then, the estimatêf (m,n) can be written as

f̂ (m,n) = fT (m,n)Hw + vT (m,n)w, (5)

whereH is a suitable(2P + 1)(2Q + 1) × (2C + 1)(2D + 1) matrix whose entries ar
constructed from the PSF coefficientsh(m,n). In the absence of additive noisev(m,n),
Eq. (5) leads to support and zero conditions for perfect image deconvolution (PID
f̂ (m,n) = f (m − m0, n − n0) for some fixed integer-valued vector(m0, n0). PID requires
the zero-forcing system impulse response

h(m0,n0) = Hw = [0, . . . ,0,1,0, . . . ,0]T , (6)

where the non-zero coefficient is in the(m0, n0)th position, where(m0, n0) must satisfy
−P � m0 � P and−Q � n0 � Q. In order to achieve this particular response, the sys
of linear equations described byh(m0,n0) = Hw must have a solution. For PID under ar
trary (m0, n0), H must be full row rank which implies thatH must have at least as ma
columns as rows. Hence,

(2C + 1)(2D + 1) � (2P + 1)(2Q + 1). (7)

From Eq. (7), it is clear that no 2-D FIR filter can perfectly cancel out the effect of a
trivial blur even in the absence of additive noise since the row dimension ofH always
exceeds its column dimension (recall thatP = A + C, Q = B + D).

In the presence of noise, it is common to minimize the expected value of the squ
the recovery errore(m,n) given by

e(m,n) := f̂ (m,n) − f (m − m0, n − n0) (8)

for a particular choice of delay(m0, n0). Using Eq. (5),e(m,n) can be written as

e(m,n) = fT (m,n)Hw + vT (m,n)w − f (m − m0, n − n0)

= fT (m,n)Hw + vT (m,n)w − fT (m,n)h(m0,n0)

= fT (m,n)(Hw − h(m0,n0)) + vT (m,n)w. (9)

It was assumed that additive noise and the true image are i.i.d. and independent w
spective variancesσ 2

v andσ 2
f . Using this assumption yields

E
[
e2(m,n)

] = ‖Hw − h(m0,n0)‖2
2σ

2
f + ‖w‖2

2σ
2
v , (10)

where‖ · ‖2 represents thel2-norm of a vector. Note that (10) is proportional to the t
image-power normalized mean-squared error (MSE)JMSE given by

JMSE = ‖Hw − h(m0,n0)‖2
2 + λ‖w‖2

2, (11)

whereλ = σ 2
v /σ 2

f . From Eq. (11), the adaptive filter parameter vector minimizingJMSE is
given by

w∗ = (HT H + λI)−1HT h(m ,n ). (12)
0 0



C. Vural, W.A. Sethares / Digital Signal Processing 16 (2006) 137–148 141

imator
s MSE

cost
chan-
for a
. This
alued
e
er of

age,

[9].
space.

sed

d gray

isper-
ct GD
appli-
tic GD

vec-
From (11) and (12) the optimal MSE is

J ∗
MSE = hT

(m0,n0)

(
I − H(HT H + λI)−1HT

)
h(m0,n0). (13)

The MSE cost defined in (10) constitutes a well-known and useful measure of est
performance. The performance of the new method can be quantified by comparing it
to the minimum achievable MSE given an identical true image and blur.

3.2. The CM cost

Traditional uses of the CM cost have all been one-dimensional (1-D). The CM
term was introduced for blind equalization of communication signals over dispersive
nels by Godard [7] and Treichler and Agee [8]. The reader is referred to Ref. [9]
comprehensive introduction to the CM cost in the context of adaptive equalization
section generalizes the CM cost for use in 2-D by reformulating the cost for a real-v
zero-mean true imagef (m,n) and a real-valued PSFh(m,n) in additive zero-mean nois
v(m,n). It is assumed that each gray level of the true image is equally likely. The ord
topics follows that in Ref. [9]. The CM cost is given by

JCM := E
[
(f̂ 2(m,n) − γ )2] = E

[
f̂ 4(m,n)

] − 2γE
[
f̂ 2(m,n)

] + γ 2

= E
[
f̂ 4(m,n)

] − 2σ 2
f κf E

[
f̂ 2(m,n)

] + σ 4
f κ2

f , (14)

whereγ andκf are the dispersion constant and normalized kurtosis of the true im
respectively. They are defined by

κf := E[f 4(m,n)]
(E[f 2(m,n)])2

, (15)

γ := E[f 4(m,n)]
E[f 2(m,n)] . (16)

Note thatγ = σ 2
f κf . A detailed analysis of the CM cost for the 1-D case is given in Ref.

Since the analysis for the 2-D case can be made similarly, it is omitted here to save
It is evident from Eq. (14) that the CM cost penalizes the deviations off̂ 2(m,n) from

the dispersion constantγ . This interpretation of the CM cost explains why the propo
method is calledblind image deconvolution using dispersion minimization. Table 1 gives
the dispersion constant and normalized kurtosis of a zero mean uniformly distribute
scale image for various gray levels.

Gradient descent (GD) methods are generally used to solve for CM estimators (d
sion minimizers) because closed form expressions do not usually exist. Since exa
requires statistical knowledge of the degraded image, which is not available in real
cations, stochastic GD methods are utilized. The algorithm that performs a stochas
minimization ofJCM is referred to as theconstant modulus algorithm or CMA [9]:

wj+1 = wj − µ
(
f̂ 2

j (m,n) − γ
)
f̂ (m,n)g(m,n). (17)

Equation (17) is written in terms of the lexicographically ordered adaptive filter input
tor at pixel(m,n) given by

g(m,n) = [
g(m + C,n + D), . . . , g(m − C,n − D)

]T
, (18)
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Table 1
Dispersion constant and normalized kurtosis for a zero
mean uniformly distributed image having different gray
levels

Gray levels γ κf

2 1.00000 1.0000
4 8.20000 1.6400
8 37.0000 1.7169
16 152.200 1.7905
32 613.000 1.7977
64 2456.20 1.7994
128 9829.00 1.7999
256 39320.0 1.8000

the lexicographically ordered adaptive filter parameter vectorwj at thej th iteration, the
adaptive filter outputf̂j (m,n), a small positive step-sizeµ and the true image dispersio
constantγ . Plotting the CM cost versus the adaptive filter parameters results in a s
calledthe CM cost surface. CMA attempts to minimize the CM cost by starting at so
location on the surface and following the trajectory of the steepest descent.

3.3. Proposed algorithm

Consider the general blind image deconvolution problem depicted in Fig. 1. The m
consists of a cascade connection of a linear degrading systemh(m,n) and a deconvolution
filter w(m,n). The nature of the PSF is determined by the type of the blur. The system
to reconstruct the true imagef (m,n) given the observed blurred imageg(m,n). Equiva-
lently, it is required to design a blind deconvolution filterw(m,n) that is the (approximate
inverse of the unknown PSF, with the degrading system input being unobservabl
true image is assumed to have i.i.d. pixels which are uniformly distributed, and the P
assumed to have finite support. No other information is assumed.

The iterative blind deconvolution method is shown in Fig. 2, where the observed i
g(m,n) is applied to a 2-D FIR adaptive filterw(m,n) which tries to remove the blu

Fig. 2. Block diagram of the proposed method.
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Thus, output of the adaptive filter at thej th iterationf̂j (m,n) is an estimate of the tru
image given by

f̂j (m,n) =
C∑

k=−C

D∑
l=−D

wj (k, l)g(m − k,n − l) (19)

for m = 1, . . . ,M , n = 1, . . . N , wherewj(k, l) are the adaptive filter coefficients at thej th
iteration for−C � k � C, −D � l � D. Ordinarily, the estimatêfj (m,n) at pixel (m,n)

is not reliable enough. However, it may be used in an adaptive scheme to obtain a
estimate for the next pixel. If the true imagef (m,n) were known, then the differenc
betweenf̂j (m,n) andf (m,n) could be used to provide an efficient update of the fi
parameters. In blind image deconvolution, however, the true image is unavailable.
adaptive equalization, one possibility is to attempt to minimize the dispersion off̂j (m,n)

using the CM costJCM. Since it is not possible to minimize an expected value directly
method uses an instantaneous estimate ofJCM given by

J = 1

4

(
f̂ 2(m,n) − γ

)2
(20)

to obtain an implementable algorithm, whereγ is the dispersion constant of the true ima
Note that the function of the zero memory nonlinearity (the rightmost term in Fig. 2)
produce an artificially generated desired imagef̂NL,j (m,n) for the algorithm so that th
difference between̂fNL,j (m,n) and the output of the adaptive filter̂fj (m,n) can be used
to update the adaptive filter coefficients. The zero memory nonlinearity is chosen su
this difference is equal to negative of the gradient ofJ .

The stochastic GD minimization is used to update the adaptive filter parameter
derivative ofJ with respect to the adaptive filter parameters is needed in order to imple
the stochastic GD minimization. Letwj , g(m,n) denote the following lexicographicall
ordered vectors:

wj :=




wj(−C,−D)

wj (−C,−D + 1)

wj (−C,−D + 2)
...

wj (C,D)




, g(m,n) :=




g(m + C,n + D)

g(m + C,n + D − 1)

g(m + C,n + D − 2)
...

g(m − C,n − D)




(21)

for m = 1, . . . ,M , n = 1, . . . ,N . In Eq. (21),wj(m,n) stands for the(m,n)th coefficient
of the adaptive filter at thej th iteration, where−C � m � C and−D � n � D. Using
vectorswj andg(m,n), the output of the adaptive filter for pixel(m,n) at thej th iteration
can be written as

f̂j (m,n) = wT
j g(m,n), (22)

whereT denotes vector transposition. Now, the derivative ofJ with respect towj can be
evaluated, which is given by

dJ

dw
= dJ

ˆ
df̂j (m,n)

dw
= [

f̂ 2
j (m,n) − γ

]
f̂j (m,n)g(m,n). (23)
j dfj (m,n) j
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Hence, the adaptive filter is updated according to

wj+1 = wj − µ
dJ

dwj

= wj − µφ
(
f̂j (m,n)

)
g(m,n), (24)

whereµ is a small positive step-size (usually between 10−4 and 10−7 depending on the
gray levels in the true image) that guarantees stability of the algorithm andφ(f̂j (m,n)) :=
[f̂ 2

j (m,n) − γ ]f̂j (m,n) is called theprediction error function. The prediction error func
tion φ(·) has some interesting and important properties when the coefficients o
adaptive filter are near the global minimum ofJCM. The static and dynamic convergen
analysis of the new method in the vicinity the global minimum ofJCM can be performed
by using important features ofφ(·) which were presented in detail in Ref. [10]. Finally, t
relationship between̂fNL,j andfj (m,n) will be provided before concluding this sectio
Note thatej (m,n) is related toJ via

ej (m,n) = − dJ

df̂j (m,n)
= [

γ − f̂ 2
j (m,n)

]
f̂j (m,n),

whereej (m,n) is the error between̂fNL,j (m,n) andf̂j (m,n) at thej th iteration. Hence
f̂NL,j (m,n) can be written in terms of̂fj (m,n) as

f̂NL,j (m,n) = f̂j (m,n) + ej (m,n) = f̂j (m,n)
[
1+ γ − f̂ 2

j (m,n)
]
.

Equations (22)–(24) constitute the proposed algorithm for blind deconvolution of
blurred images. Each iteration of the algorithm corresponds to processing a pixel
blurred image. When convergence occurs,f̂j (m,n) provides an estimate of the true ima
f (m,n), andwj is an approximate inverse of the PSF.

4. Simulation results

1-D CMA analysis has shown that the performance of the CMA depends strong
the source kurtosis, the signal-to-noise ratio (SNR), among other factors. Effectiven
the new method is conjectured to depend on the normalized kurtosis (or the num
gray levels) of the true image and the blurred signal-to-noise ratio (BSNR). Results
computer experiments are provided in this section in order to support this conjectur
first experiment illustrates how the method performs in the absence of observation n
true image kurtosis increases, while the second experiment demonstrates the beh
the method as a function of BSNR for a fixed number of gray level in a true image.

The classical 8-bit gray-scaleLena image was chosen as a test image. Histogram eq
ization was performed on the test image which results in approximately uniformly di
uted image. Then, its mean was subtracted from the histogram equalized image y
a zero-mean uniformly distributed image. Finally, uniform quantizations having diffe
step-sizes were applied to the zero-mean uniformly distributed image to obtain tru
ages having different gray levels which fullfill most of the assumptions made abo
true image.



C. Vural, W.A. Sethares / Digital Signal Processing 16 (2006) 137–148 145

-

s were
ents a

noise

r-

algo-

can be

local
e
pike
ortion

may
hat the

es are
d be-
reases).
emain

M
rther-

excess
n the

mance
ctori-
ional
In order to obtain artificially generated blurred images, a 5× 5 scatter blur with para
meterβ = 2 whose coefficients are given by

h(m,n) = K

(β2 + (m2 + n2))3/2
(25)

was applied to the true images, where the constantsK are chosen such that
∑

m

∑
n h(m,

n) = 1 to preserve the mean value of the true image. Zero-mean Gaussian noise
added to the blurred images to get observed noisy blurred images. In all experim
5× 5 support was used for the adaptive filter.

In image restoration studies, the degradation modelled by blurring and additive
is referred to in terms of the metric BSNR. This metric for a zero meanM × N image is
given by [4]

BSNR= 10log10

{ 1
MN

∑M
m=1

∑N
n=1 z2(m,n)

σ 2
v

}
, (26)

wherez(m,n) is the noise free blurred image andσ 2
v is the additive noise variance. Perfo

mance of the method was tested at several BSNRs by adjusting the noise varianceσ 2
v .

For the purpose of objectively testing the performance of linear image restoration
rithms, the improvement in SNR (ISNR) is often used. This metric is given by [4]

ISNR= 10log10

{ ∑M
m=1

∑N
n=1 [f (m,n) − g(m,n)]2∑M

m=1
∑N

n=1 [f (m,n) − f̂ (m,n)]2
}
, (27)

wheref (m,n) andg(m,n) are the original and degraded images andf̂ (m,n) is the es-
timated true image. ISNR cannot be used when the true image is unknown, but it
used to compare different methods in simulations when the true image is known.

Note that the CM cost is non-convex. Hence, the new method may converge to a
minimum instead of the global minimum ofJCM depending on how it is initialized. If ther
is no a priori information about the PSF, the adaptive filter is initialized using a 2-D s
characterized by a non-zero coefficient usually located somewhere in the central p
of the adaptive filter. If there is a priori information about the PSF, this information
aid in selection of the non-zero element in the adaptive filter. Since it was assumed t
PSF is unknown, a 2-D impulse function was used as the initial filter for the method.

Figures 3–6, in which the true images, blurred images and estimated true imag
depicted in the left, middle and right column, respectively, illustrate how the metho
haves as the number of gray levels increases (as the kurtosis of the true image inc
According to 1-D CMA analysis [9], increases in the source kurtosis as long as they r
sub-Gaussian (γ < 3) do not effect the location of CM cost minima, they flatten the C
surface which means that the algorithm will converge to the minima more slowly. Fu
more, increases in the source kurtosis raise the CM surface, and in turn, increase the
CM cost. It is clear from Figs. 3–6 that performance of the new method depends o
normalized kurtosis of the true image. As the true image kurtosis increases, perfor
degrades, which is in agreement with the 1-D theory. However, it is impossible to pi
ally verify the 1-D results given in Ref. [9] since the CM cost surface is a 25-dimens
space for a 5× 5 adaptive filter.
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Fig. 3. Blind deconvolution result for a binary image, no noise. True image (left); blurred image (middle)
mated true image (right), ISNR= 19.93 dB.

Fig. 4. Blind deconvolution result for a 2-bit image, no noise. True image (left); blurred image (middle); est
true image (right), ISNR= 13.66 dB.

Fig. 5. Blind deconvolution result for a 3-bit image, no noise. True image (left); blurred image (middle); est
true image (right), ISNR= 10.56 dB.

As stated in Section 3, the adaptive filter provides an approximate inverse of the
convergence. Figure 7 supports this claim by showing the magnitudes of the 32× 32-point
two-dimensional discrete-time Fourier transform (DTFT) of the scatter blur and the
tive filter at convergence for the 2-gray level case. Here, we are showing only one
because of space limitation. It is clear from Fig. 7 that the adaptive filter is an approx
inverse of the blur at convergence for this case. Similar results were obtained for the
gray levels.
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Fig. 6. Blind deconvolution result for a 4-bit image, no noise. True image (left); blurred image (middle); esti
true image (right), ISNR= 6.12 dB.

Fig. 7. The magnitudes of the 32× 32-point DTFT of 5× 5 scatter blur withβ = 2 (left); adaptive filter at
convergence (right).

Next, performance of the method is demonstrated as a function of BSNR for a
2-bit true image. In 1-D, if the additive noise is the only violation of of the global con
gence conditions, location of global CM minimum shifts towards the origin in equa
parameter space and the minimum achievable CM cost is increased [9]. Similar eve
likely to happen in 2-D. Table 2 gives ISNR results for for several BSNRs from which
obvious that performance worsens as the BSNR increases for a fixed true image k
Therefore, results again support the 1-D theory. It appears from simulation results th
new method is useful as long as the BSNR is greater than 30 dB.

5. Conclusions

A new method that is based on non-linear adaptive filtering for blind deconvolutio
noisy blurred images was proposed in this paper. The new method is essentially
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Table 2
ISNR values obtained using the new method
for a 2-bit true image at several BSNRs

BSNR (dB) ISNR (dB)

No noise 13.66
70 13.64
50 13.35
40 10.75
30 4.2

extension of the CMA. The method can be used to initialize an adaptive blind deco
tion method or it can be used by itself. An important aspect of the method is that im
which were blurred by mixed-phase phase blurs can be recovered. This is due to t
the method does not impose constraints on the phase of the blur. Another important
is that the method is computationally simple, which makes its implementation easy fo
applications. Simulations have shown that the performance of the new method depe
the normalized kurtosis or equivalently the number of gray levels of the true image a
BSNR. The algorithm was justified via simulation. Further research is needed to im
computational aspects of the algorithm, to concretely describe its behavior in a var
situations and to transform it into a reliable and robust technique for blind image d
volution. To this end, the static and dynamic convergence analysis of the method n
global minimum ofJCM was performed in Ref. [10], according to which, given a step-
and a PSF, there is an optimum support for the adaptive filter that can be determined
imentally. Note that the new method could be implemented using an auotoregressiv
filter instead of an FIR filter. In the AR implementation, there is no need to determin
optimum filter support experimentally if the support of the PSF is known. The AR ca
fully discussed in Ref. [10].

References

[1] H.C. Andrews, B.R. Hunt, Digital Image Restoration, Prentice Hall, Englewood Cliffs, NJ, 1977.
[2] M.I. Sezan, A.M. Tekalp, Survey of recent developments in digital image restoration, Opt. Eng. 29 (5)

393–404.
[3] A.K. Katsaggelos (Ed.), Digital Image Restoration, Springer-Verlag, New York, 1991.
[4] M.A. Bahnam, A.K. Katsaggelos, Digital image restoration, IEEE Signal Process. Mag. 14 (2) (1997)
[5] D. Kundur, D. Hatzinakos, Blind image deconvolution, IEEE Signal Process. Mag. 13 (3) (1996) 43–
[6] D. Kundur, D. Hatzinakos, Blind image deconvolution revisited, IEEE Signal Process. Mag. 13 (6) (

61–63.
[7] D. Godard, Self-recovering equalization and carrier tracking in two-dimensional data communicatio

tems, IEEE Trans. Commun. 28 (11) (1980) 1867–1875.
[8] J.R. Treichler, B.G. Agee, A new approach to multipath correction of constant modulus signals, IEEE

Commun. 31 (2) (1983) 459–473.
[9] J.R. Johnson, et al., Blind equalization using the constant modulus criterion: A review, Proc. IEEE 8

(1998) 1927–1950.
[10] C. Vural, Blind image deconvolution via dispersion minimization, Ph.D. thesis, University of Wisco

Madison, 2002.


