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Abstract

This paper explores a variety of density and kernel-based techniques that
can smoothly connect (crossfade or “morph” between) two functions. When
the functions represent audio spectra, this provides a concrete way of ad-
justing the partials of a sound while smoothly interpolating between exist-
ing sounds. The approach can be applied to both interpolation-crossfades
(where the crossfade connects two different sounds over a specified dura-
tion) and to repetitive-crossfades (where a series of sounds are generated,
each containing progressively more features of one sound and fewer of the
other). The interpolation surface can be thought of as the two dimensions
(time and frequency) of a spectrogram, and the kernels can be chosen so as
to constrain the surface in a number of desirable ways. When successful, the
timbre of the sounds is changed dynamically in a plausible way. A series of
sound examples demonstrate the strengths and weaknesses of the approach.
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A common cinematic effect is the morphing of one image to another: a person
transforms smoothly into a werewolf or the features of one person change fluidly
into those of another. The analogous effect in audition is sometimes called a cross-
fade, and this paper examines two kinds of generalized crossfades that allow one
sound to smoothly transform into another. Using ideas from differential equations
and probability theory, the “kernel” of the crossfade is defined, and its structure
helps to determine the behavior of the resulting sound in terms of audible ridges.
A number of sound examples present the uses and limitations of the method.
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1 Introduction
Crossfading between two sounds can be simple: one sound decreases in volume as
the second sound increases in volume. More interesting crossfades may attempt
to maintain common aspects of the sounds while smoothly changing dissimilar
aspects. For example, it may be desirable to gradually transform one sound into
another while requiring that nearby partials sweep between nearby partials, or it
may be advantageous to require that the sound retains its harmonic integrity over
the duration of the crossfade. Sometimes called audio morphing, such generalized
crossfades are an area of investigation in the computer music field [16], [17] and
the techniques may also find use in speech synthesis, where smoothly connecting
speech sounds is not a trivial operation [4].

Two kinds of crossfades may be distinguished based on the information used
and the desired time over which the fade is to be conducted. In interpolation cross-
fades, two sounds A and B are separated in time by some interval t. The goal of
the fade is to smoothly and continuously change from A (the source) to B (the
destination) over the time t. The fade “fills in” the time between a single (starting)
frame in A and a single (ending) frame in B. Figure 1(a) shows this schemati-
cally. In a repetitive crossfade, the goal is to create a series of intermediate sounds
Mi, i = 1, 2, . . . n each of which exhibits progressively more aspects of B and
fewer aspects of A, as shown in Fig. 1(b). Observe that repetitive crossfading is
formally analogous to image morphing since it creates a series of intermediaries
between the specified start and end points. Interpolation crossfades, by filling in
a silence between two sounds, can be thought of as a time-stretching procedure
where the start and end sounds may be chosen arbitrarily. In both cases, kernel-
based techniques can be used to place constraints on and guide the crossfade.

Perhaps the most common strategy for creating audio morphings is to:

(i) derive sets of features fA and fB,

(ii) create a correspondence where features in sound A are assigned to features
in sound B

(iii) interpolate between the corresponding features over the specified time of
the morph

(iv) synthesize the morphed sound from the interpolated features.

Most current approaches to morphing follow the general plan (i)-(iv). For exam-
ple, [1] models the sound as a Gaussian Mixture which is trained on notes from
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Figure 1: Audio crossfades generate sounds that change smoothly between a
source and a destination sound. In interpolation crossfades (a), the sound be-
gins as A and over time smoothly becomes like B. The total duration of the
output sound is independent of the duration of A and B and the cross only de-
pends on the sound in the starting and ending frames. The overall effect is one
of stretching time under the constraint that the sound must emerge continuously
from A and merge continuously into B. In repetitive crossfades (b), a series of
intermediate sounds Mi merge aspects of A and B, analogous to the intermedi-
ary photographs of an image morph that merges various aspects of the starting
and ending photographs. The duration of each output sound Mi is equal to the
common duration of A and B. Thus interpolation crosses begin as one sound and
end as another while in a repetitive cross, each Mi contains features of both of
the original sounds. For instance, an interpolation crossfade might start with the
attack portion of a cymbal and end with the final moments of a lion’s roar. The
interpolation crossfade is the transition that occurs over a user specified time. In
contrast, each intermediate sound in a repetitive crossfade merges aspects of both
the complete lion sound (from start to end) with those of the complete cymbal
(from attack through decay).
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the same instrument played with different intensities, or on notes from different
instruments. Other approaches exploit the sinusoidal plus noise decomposition
of Serra [13] or use the bandwidth-enhanced sinusoidal approach [5] to allow for
the more faithful reproduction of nonsinusoidal elements in the sound. A variety
of spectral manipulations including audio morphings are suggested by Erbe [3]
and Polansky [12]. Our previous work [15] separated the noise part of the sound
from the tonal part using a median filter, then morphed the two parts indepen-
dently. Most such methods incorporate peak-finding routines (as may be familiar
from McAulay and Quatieri’s tracking method [9]) in the choice of features and
use some kind of ad hoc assignment method for creating the correspondences.
Tellman [17] describes some of the issues that arise when carrying out complex
assignments.

This paper suggests an alternative procedure for the construction of smooth
audio connections that generalizes to any sensible kernel function. An advantage
of this method is that two of the common problems in the general scheme (i)-(iv)
are avoided. First, no choice of specific features is made and there is no need to
locate significant partials or features in the sound. Hence there can be no mistakes
made in identifying such features. Second, since the crossfade is defined by a PDE
or, in a probabilistic sense, as a density or kernel function, no correspondence of
features is required, and hence there is no possibility of error in the assignment of
such correspondences.

Section 2 presents the conceptual and analytical foundations of the method,
which reside in the specification of a pair of density-like functions fz|L and fz|R
that describe how the left and right spectra of the sound are propagated and a pair
of mixing functions GL and GR that describe how the spectra are combined. Sec-
tion 3 presents a number of crossfades between sinusoids that are simple enough
to approach analytically, and the idea of a ridge able to connect nearby partials
is introduced and analyzed. Section 4 then presents several sound examples that
demonstrate the basic functioning of the generalized crossfading process and a
selection of examples are conducted between both instrumental and environmen-
tal sounds, including a set of fades between clarinet multiphonics. Section 4.2
then provides details on the repetitive crossfades along with corresponding sound
demonstrations.
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2 Crossfading, Potentials, and Probability Theory
Given two functions of a real variable, S0(y) and Sd(y), the solution to the mathe-
matical crossfade problem may be defined to be a real-valued function of two real
variables S(x, y) with domain D = {(x, y) ∈ <2 : 0 ≤ x ≤ d, y ∈ (−∞,∞)}
and such that S(0, y) = S0(y) and S(d, y) = Sd(y). The domain D is an infinite
strip of width d in the <2 plane, with the strip extending from x = 0 to x = d and
extending infinitely in the positive and negative y directions. The two functions
S0 and Sd act as boundary conditions on the left and right margins (respectively)
of the infinite strip. A solution to the crossfade problem is then any real valued
function over the strip that when restricted to the left (right) margin is S0 (Sd).
We often impose additional conditions in order to avoid useless and/or trivial an-
swers. For example, in this paper, we always require that S(x, y) have some sort
of smoothness or differentiability on the interior of D to insure that the surface
S(x, y) is smooth.

This is analogous in many ways to the Dirichlet problem which consists of
finding a solution to Laplace’s equation on some domain D where the solution on
the boundary ofD is equal to a given function. Perhaps the simplest field equation
is Laplace’s equation, which is the linear, second order, steady-state elliptic PDE

∇2u = 0 (1)

where∇2 is the Laplacian operator. For 2-D rectangular coordinates,

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
. (2)

Problems of great physical diversity can be studied using this equation. For exam-
ple, in the thermal case the field potential function u(x, y) represents the temper-
ature, in gravitational problems it is the gravitational potential, in hydrodynamics
it is the velocity potential, and in electrostatics it is the voltage.

Laplace’s equation is the condition required from a variational analysis for
minimizing the field energy of a surface “stretched across” the boundaries [6].
Imagine a rectangular wire frame where the contour of the left hand side is spec-
ified by the spectrum of the sound A (given by the function S0(y)), the contour
of the right hand side is given by the spectrum of the sound B (given by Sd(y)),
and where the top and bottom are set to zero as depicted in Fig. 2. This is tan-
tamount to an assumption that there is no sound energy at DC and none at high
frequencies, for instance, those outside the normal range of hearing. If this wire
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frame is dipped into a pool of soapy water and carefully retracted, a smooth sheet
forms that is characterized as the surface that minimizes the surface energy where
the height of the sheet at each point is u(x, y). Mathematically, this can be stated
as the PDE (1) with the specified boundary conditions. Reinterpreting the contour
of the soap film (i.e., the field values) as sound provides the audio output, which
can be heard to smoothly interpolate from the left hand spectrum to the right hand
spectrum. This views the crossfade function as the solution to a boundary value
problem over a two-dimensional domain defined by the spectrum of the sound in
the y dimension and the duration of the crossfade in the x direction. The soapy
film is, in essence, reinterpreted as a spectrogram.
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Figure 2: A crossfade surface can be defined by Laplace’s equation∇2u(x, y) = 0
with boundary conditions given by the spectra of two sounds A andB. The x-axis
(representing time) proceeds from time 0 to time t∗ while the y-axis (representing
frequency) covers the range from DC (at 0) to the Nyquist rate (at 1). The surface
is formally analogous to a spectrogram and can be inverted back into the time
domain using any of a variety of standard techniques.

Close connections exist between potential theory and the theory of Markov
processes. Most famously, the solution to the Dirichlet problem can be expressed
as a functional of the mean hitting time of a standard Brownian motion. Suppose
that Bz is a standard two dimensional Brownian motion whose value at time zero
is z = (xz, yz) ∈ D. Let Ez[·] denote the expectation operator with respect
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to this Brownian motion and let τ∂D denote the time that the Brownian motion
first hits the boundary of the strip ∂D = {x = 0} ∪ {x = d}. The value of
Bz at this time is Bz(τ∂D). Defining the “initial condition” function over ∂D as
S∂D(x, y) = 1{x=0}S0(y) + 1{x=d}Sd(y), the solution to the Dirichlet problem can
be rewritten

S(z) = Ez[S∂D(Bz(τ∂D))].

A Brownian motion that begins at the point z in the interior of D wanders about in
D until (with probability one) it hits either the left {x = 0} or the right {x = d}
boundary. It is true (and intuitive) that areas on the boundary closer to z have a
greater chance of being hit than areas further away, and the probability distribution
of the points hit on the boundary (the so-called hitting distribution) is

fz(x, y) =
1

2d
(P (

xzπ

d
,
(y − yz)π

d
)1{x=0}+P (π− xzπ

d
,
(y − yz)π

d
)1{x=d}), (3)

where

P (a, b) =
sin(a)

cosh(b)− cos(a)
(4)

is the so-called Poisson kernel. The indicator functions keep track of the hitting
distributions on the left and right boundaries. 1A = 1 if A is true and is zero if A
is false. Since ∫ ∞

−∞
P (x, y)dy = 2(π − x),

it can be shown that starting from the point z = (xz, yz), the Brownian motion will
hit the left boundary with probability 1−G(xz) = 1−xz/d and the right boundary
with probability G(xz) = xz/d. Thus, the hitting distribution conditioned on the
event that the left boundary is hit first is

fz|L(y) =
1

2(d− xz)
P (
xzπ

d
,
(y − yz)π

d
) (5)

and the hitting distribution conditioned on the event that the right boundary is hit
first is

fz|R(y) =
1

2xz
P (π − xzπ

d
,
(y − yz)π

d
). (6)

This allows an alternate form for the solution to the Dirichlet problem

S(z) = GL(xz)

∫ ∞
−∞

fz|L(y)S0(y)dy +GR(xz)

∫ ∞
−∞

fz|R(y)Sd(y)dy (7)

where GL(xz) = 1−G(xz) and GR(xz) = G(xz). Observe that
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(i) G(x) is a cumulative distribution function with conditions G(0) = 0 and
G(d) = 1.

(ii) fz|L(y) converges to the Dirac delta function δ(y − yz) as xz approaches
zero.

(iii) fz|R(y) converges to the Dirac delta function δ(y − yz) as xz approaches d.

These conditions imply that S(z) converges to the boundary conditions as z ap-
proaches the boundary. The form of the solution in (7) allows straightforward
generalizations. The functions GL(x) and GR(x) discount the further boundaries
and emphasize the nearer boundaries, they need not be restricted to the form (i).
The Poisson kernel form of the hitting distributions fz|L(y) and fz|R(y) allows the
probabilistic calculation of S(z) = S(xz, yz) to equal the field potential function
u(xz, yz) given by the heat equation (2). In the crossfade setting, however, there is
no compelling reason that this must be the exact form of the constraints. The role
of the hitting distributions may be played by any kernels that satisfy the bound-
ary constraints. By choosing these functions judiciously, fades with a variety of
different properties can be selected.

Example 1 (Simple Linear Crossfade) Let G(x) = x/d, fz|L(y) = δ(y−yz), and
fz|R(y) = δ(y − yz). Then S(z) = (1− xz/d)S0(yz) + (xz/d)Sd(yz).

This crossfade is the standard audio crossfade in which the volume of the first
sound is lowered proportionally as the volume of the second is raised. Fortunately,
there are more interesting forms of crossfades.

Example 2 (Heat Equation) With fz|L(y) and fz|R(y) chosen as in (5) and (6) and
with G(x) = x/d, this is the standard heat equation corresponding to the solution
given by (2) (and the intuition of Fig. 2).

The heat equation formulation is used in several of the sound examples as it gives
a smooth fade that connects nearby partials at the two endpoints. For instance,
a frequency f at the left boundary sweeps smoothly upwards to meet another
frequency g at the right boundary. By its nature, the heat equation diffuses energy
as it moves away from the boundaries, and this can sometimes be heard as a
lowering of the volume of the sound towards the middle of the crossfade surface.

9



Example 3 (Harmonic Integrity) Since the human auditory apparatus perceives
pitches (roughly) on a log scale, it makes sense to allow the hitting distribution to
scale so that it is wider at higher frequencies. Let f(z) be an arbitrary probability
density function and choose a reference frequency y0. For a point z = (xz, yz),
define the left hitting density

fz|L(y) =
1

xz

yz
y0
f

(
(y − yz)

yz
xzy0

)
and the right hitting density

fz|R(y) =
1

d− xz
yz
y0
f

(
(y − yz)

yz
(d− xz)y0

)
.

This strategy tends to maintain the perceptual integrity of a harmonic collection.
A number of other choices for the functional forms of GL(x), fz|L(y), GR(x), and
fz|R(y) are investigated in the following sections.

3 Crossfades Between Sinusoids
The simplest setting is where the starting and ending sounds both consist of a
small number of sinusoids. In the first example, a pair of sinusoids with normal-
ized frequencies ωL1 = 5 and ωL2 = 12 at the left boundary are crossed with
a pair of sinusoids with normalized frequencies ωR1 = 6 and ωR2 = 11 at the
right boundary. Accordingly, the left boundary function is the (one-sided) Fourier
transform S0(y) = δ(y − ωL1) + δ(y − ωL2) and the right boundary function is
Sπ(y) = δ(y − ωR1) + δ(y − ωR2). For simplicity, the duration of the crossfade
is scaled to be d = π and the two boundary functions only consider positive fre-
quencies (the negative frequencies proceed analogously). Because the boundary
functions have a simple form (as a sum of δ() functions) the crossfade surface (7)
can be integrated exactly as

S(x, y) =
1

2π

(
x sin(x)

cos(x) + cosh(ωR2 − y)
+

x sin(x)

cos(x) + cosh(ωR1 − y)
...

+
(π − x) sin(x)

cosh(ωL2 − y)− cos(x)
+

(π − x) sin(x)

cosh(ωL1 − y)− cos(x)

)
when the kernels are chosen to mimic the heat equation as in Example 2.
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This is plotted in Fig. 3(a). The boundaries at the left and right show the
two sinusoids (as delta functions at their respective frequencies) while the surface
gradually descends to the middle where they meet. Observe that there are two
shapes that connect the nearby frequencies ωL1 to ωR1 and ωL2 to ωR2 . These
are local maxima (in the y direction) which form a connected set as x varies over
its range; call these ridges. Observe that there is a significant loss of height in
the ridges of Fig. 3(a). Since the magnitude of the surface corresponds to the
amplitude of the spectral components, this may be perceptible as a drop in the
volume towards the middle of the crossfade region.

Figure 3: Sinusoids of frequencies ωL1 = 5 and ωL2 = 12 are crossed with
frequencies ωR1 = 6 and ωR2 = 11 using the Poisson kernel and three different
G(x) functions (see text for details). Though the ridges connecting the nearby
frequencies appear in all three figures, the drop in (a) is likely to be heard as a
drop in volume over the course of the first half of the crossfade.
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Figure 3(b) also uses the Poisson kernel (4) but definesGL(x) = (π−x) sin(x)
and GR(x) = x sin(x). This tends to increase the total mass in the middle of the
crossfade, and the ridge sags less than in (a). Figure 3(c) defines

GL(x) = GR(x) = sin(x) (8)

which boosts the ridge to a (near) constant height as it spans the duration to con-
nect the sinusoidal pairs on the two boundaries. Observe that in all three cases
the sinusoids sweep smoothly from their starting to their ending frequencies. In
contrast, a linear combination of the two sounds (as in the cross fade of Example
1) has no ridges: the amplitudes of the two starting frequencies die away to zero
over the duration of the fade while the amplitudes of the two ending frequencies
slowly increase.

The kernels used in Fig. 3 have the same width at all frequencies y, which
may not be desirable when attempting to cross more complex sounds. Consider
a source sound with partials at (relative) frequencies 8, 16, 32 and 64 and a desti-
nation sound with partials at 9, 18, 36 and 72. If these sounds are to be spectrally
crossed, it is desirable to have 8→ 9, 16→ 18, 32→ 36, and 64→ 72. With an
equal width between all pairs, this is impossible since the distance between 9 and
16 (two partials which should not be connected by a ridge) is less than 8 while the
distance between 64 and 72 (two partials which should be connected by a ridge)
is 8. This is shown in the left side of Fig. 4. While the lower ridges appear as
expected, the upper two pairs are not joined together by a ridge. Once again, the
freedom to modify the kernels allows a solution. The right hand side of Fig. 4
shows a kernel, as suggested by Example 3, that is narrow at lower frequencies
and wider at higher frequencies, allowing ridges to form for all the pairs. The
specific kernel used is

f(x, y) =
sin(x)

cosh( y−y0
0.12y0

)− cos(x)
, (9)

which scales the f(x, y) values so that they stretch more for larger y.
The above discussion emphasizes the importance of the ridges, and it is crucial

to be able to make good choices of kernels that lead to desirable ridges. While it is
difficult to prove in general when ridges will occur and how wide they are, in the
simple case where the kernel is a rectangle function, the existence and behavior
of ridges can be described analytically. Viewing the smooth kernels as having
a support that can be approximated by an appropriate set of rectangle functions
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Figure 4: The ridges in the crossfade surface on the left are equally wide irrespec-
tive of the absolute frequency. In some situations, it may be advantageous to allow
the width of the ridges to become wider at higher frequencies, as shown on the
right. This can be accomplished by defining the kernels as suggested in Example
3.

suggests that insights gained from studying the rectangle kernels may be useful in
more general situations.

The rectangle function rect(x) is defined as one for x ∈ (−1/2, 1/2) and zero
otherwise. For a > 0, let f(x) = arect(ax) and define the kernel as in Example
3. The support of the left boundary hitting density is [y − xy

ay0
, y + xy

ay0
] and the

support of the right boundary hitting density is [y − (d−x)y
ay0

, y + (d−x)xy
ay0

]. The
support of the left density varies linearly in x (if y is held constant) from zero at
x = 0, to a maximum of 2dy/y0a at x = d (and similarly for the support of the
right density). Consider the crossfade between a pure frequency ωL on the left
boundary to a pure frequency ωR on the right boundary. Thus S0(y) = δ(y − ωL)
and Sd(y) = δ(y − ωR). The crossfade surface is

S(z) =(1−G(x))fz|L(ωL) +G(x)fz|R(ωR)

=(1−G(x))
a

x

y0
y

rect
(
a(ωL − y)

y0
xy

)
+G(x)

a

d− x
y0
y

rect
(
a(ωR − y)

y0
(d− x)y

)
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A ridge is said to exist whenever there is a trajectory T = {(x, y(x)) : ∀x ∈
[0, 1] such that both terms in the above expression are nonzero}.

Theorem 1 (The Ridge Theorem) Suppose that ωR > ωL and that d < 2ay0. A
ridge exists if and only if

ωR
ωL

< 1 +
d

2ay0
. (10)

A proof is given in Appendix A.1.

4 Audio Crossfades
This section presents a series of experiments that carry out generalized crossfades
between a variety of sounds, including sinusoids, instrumental, and environmental
sounds. The experiments demonstrate the ridge theorem concretely by showing
the interaction between the width of the kernel and the frequencies joined by the
ridges. To be practical, it is desirable to have ridges that connect partials of the
starting and ending sounds when the frequencies are close and to not have ridges
when the frequencies of the partials are distant.

In order to implement the crossfade procedure, it is necessary to discretize the
two dimensions, to choose the size n of the FFTs that will be used to specify the
boundary spectra, and to select a window that will extract the n samples from the
sound waveforms. These choices are familiar from short-time Fourier transform
(STFT) modeling [11], and the same tradeoffs apply. In addition, n must be equal
to the number of points in the vertical y direction. We have found n = 210, 211,
and 212 to be convenient and have used a standard Hann window. In the horizontal
x direction we have typically used between m = 200 and m = 500 points.

The inversion of the two-dimensional surface S(x, y) of (7) into a sound wave-
form can be accomplished using any of the techniques that would invert an STFT
image into sound. The sound examples of this section implement a “phase vocoder”
strategy that is well known in applications such as time scaling and pitch trans-
position [2], [8], [14]). This method synthesizes phase values for a given set
of magnitude values, effectively choosing phase values that guarantee continuity
across successive frames. To be explicit, suppose that the frequency fi is to be
mapped to some value g. Let k be the closest frequency bin in the FFT vector,
i.e., the integer k that minimizes

∣∣k sr
n
− g
∣∣ where sr is the sampling rate. Then

the kth bin of the output spectrum at time index j + 1 has magnitude equal to the
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magnitude of the ith bin of the input spectrum with corresponding phase

θj+1
k = θjk + 2π dt g (11)

where dt is the time separation between consecutive frames. The phase values in
(11) guarantee that the resynthesized partials are continuous across frame bound-
aries, reducing the likelihood of discontinuities and clicks. An advantage of this
approach is that it allows the duration of the fade to be freely chosen after the so-
lution to the crossfade surface has been obtained. Thus the relationship between
t∗ in Fig. 2 and real time can be freely adjusted even after the calculation of the
surface S(x, y).

A series of generalized crossfades demonstrate that the ridges of Figures 3 and
4 are perceived as pitch glides. Sound examples 220to230.wav, 220to240.
wav, through 220to270.wav are available at the website [18] (as are all other
soundfiles discussed throughout the paper). All examples use the kernel f(x, y)
in (9) and the transition function G(x) of (8). In each case, the crossfade starts
at the pitch corresponding to the first frequency and rises smoothly to the pitch
corresponding to the second frequency, as shown graphically in Fig. 5(a). The
frequency values are calculated from the output of the phase vocoder using an
analysis that interpolates three frequency bins in each FFT frame. In these graphs,
the method is accurate to about 2 Hz (far better than the 44100

2048
≈ 22 Hz resolution

of the FFT bins).
When the frequencies of the sinusoids at the start and end are far apart, there

is less interaction. The sound example in 220to300.wav begins as a sine wave
at 220 Hz and ends as a sine wave at 300 Hz. What happens is that the starting
sinusoid decreases in amplitude and the ending sinusoid increases in amplitude
throughout the process. Essentially, the kernel is no longer wide enough to form
ridges and the connecting sound has become a simple crossfade. The instanta-
neous frequencies of the two sines are shown in Fig. 5(b), which shows that both
sines are individually identifiable throughout the process. The pitches are not
completely fixed at 220 and 300, but bend slightly towards each other. The fi-
nal sinusoidal example shows how superposition applies to the crossfade process
when the sine waves are far apart in frequency. In the example 220to260+
440to400.wav, a sine at 220 glides smoothly to 260 while a sine at 440 glides
smoothly to 400. The two are effectively independent. Indeed, the output to the
two crossfaded pairs is (almost exactly) the sum of outputs to the two pairs cross-
faded separately.
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Figure 5: (a) Six different crossfades begin at 220 Hz and proceed to 220, 230,
240, 250, 260, and 270 Hz. Each sounds like a single sine wave that slowly
increases in pitch up to the specified frequency. (b) A sinusoid at 220 Hz is cross-
faded with a sinusoid at 300 Hz. Because the pitches only bend slightly, the
process is almost indistinguishable from a simple amplitude crossfade.

4.1 Instrumental and Environmental Crossfades
The crossfades in this section are conducted as interpolation crossfades, which
stretches time proportional to the x-width of the surface S(x, y). Again, the kernel
used is f(x, y) of (9) and the transition function G(x) is (8). The first two exam-
ples cross between single-tone instrumental sounds. In morph-PianoClarinet.
wav, an A2 attack on the piano changes slowly into a sustained A2 on the clar-
inet. Similarly, in morph-ViolinTrumpet.wav, both instruments play a C4
as the attack of the violin crossfades into the sustained portion of the trumpet.
Two spectrally rich sounds, a chinese gong and a low C on a minimoog synth,
are crossed in morph-GongMinimoog.wav. Several nonobvious effects can
be heard including the rising and falling pitch contours, and the slow swelling of
the low C towards the end. Then in morph-GongLion.wav, the same gong
recording is crossed with the roar of a lion. Spectrally rich sounds seem to cross-
fade particularly well.

Multiphonics occur in wind instruments when the coupling between the driver
(the reed or lips) and the resonant tube evokes more than a single fundmantal
pitch. The sounds tend to be inharmonic and spectrally rich, the timbres range
from soft and mellow to noisy and harsh. We recorded Paris-based instrumentalist
Carol Robinson playing a large number (about 80) of multiphonics. These ranged
in duration from brief (a few hundred milliseconds) to fully sustained (several
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seconds). The timbres ranged from soft and mellow to noisy and harsh. For the
present application, a number of these were selected, and sustained crossfades
were calculated between a variety of starting and ending multiphonics. These are

morph-MultiXMultiY.wav

where (X,Y) take on values (13, 23), (29, 66), (32, 14), (39, 28), (48, 64), and
(74, 53). All of these can be heard (along with the original recordings of the
multiphonics) on the website for the paper [18]. Despite the variety of starting
and ending timbres, the crossfades connect smoothly. There are partials that move
in frequency (as suggested by the experiments of Sec. 3) and the basic level of
noisiness in some of the samples also changes smoothly throughout the process.

4.2 Repetitive Crossfades
Interpolation crossfades tend to change the timbre of the sounds in proportion to
the amount time is stretched. Repetitive crossfades more closely parallel visual
morphing since the output is a collection of sounds that are each the same du-
ration as the sounds A and B. In this case the sounds are not partitioned into
frames and the boundaries of the crossfade surface are the complete spectra of the
sounds. Each column of the solution S(x, y) represents the spectrum of a different
intermediate sound.

This distinction has several implications. First, the sounds cannot be too long
since they must be analyzed (and inverted) all at once; at the normal CD sampling
rate, this limits the duration to a few seconds. Second, the horizontal axis needs
only have as many points as the desired number of output (intermediate) sounds
(recall that for the interpolation crossfades, there needs to be as many mesh points
as there are frames in the duration t). Thus, while the frequency y dimension is
significantly larger, the time dimension x is significantly smaller. It is possible
to be clever. Appendix A.2 shows how, when using the Poisson kernel (4), it is
possible to calculate the crossed signal at the midpoint d/2 without calculating
the complete surface, that is, to calculate S(d/2, y) in isolation. This can reduce
the numerical complexity significantly. The method of the Appendix can also be
iterated to yield the solutions for S(d/4, y), S(3d/4, y), etc.

Perhaps the greatest difference is in the reinterpretation of the S(x, y) into
sound. In the interpolation crossfade, it is necessary to reconstruct the phases
of the spectra in some way (for instance, using the phase vocoder strategy as in
(11)). In the repetitive crossfade, it is possible to use the complete complex-valued
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spectra as the boundary conditions; the surface S(x, y) becomes complex-valued
and each column represents the complete spectrum of the sound.

The first two examples of the repetitive crossfade are between single-tone in-
strumental sounds. In repmorph-PianoClarinet.wav, anA2 attack on the
piano is crossed with an A2 on the clarinet. Each of the sounds was truncated to
about 2.5 seconds, and nine different intermediate sounds were generated. In the
soundfile, each of the nine sounds is separated by about 0.25 seconds of silence.
The first sound is the trumpet (sound A), the last is the clarinet (sound B), and
the others are the intermediaries. Similarly, in repmorph-TrumpetViolin.
wav, both instruments play a C4 as the attack of the trumpet is crossed into the
violin.

Two spectrally rich sounds, a chinese gong and a low C on a minimoog synth,
are crossed in repmorph-MinimoogGong.wav. The first 2.5 second sound is
the minimoog note, and the next several slowly incorporate increasing amount of
gong noise. The final segment is the pure gong sound. Observe that this is quite
a different set of effects from the interpolation crossfades of the same sounds.
In repmorph-Gong1Gong2.wav, two different gong sounds are faded to-
gether, creating a variety of “new” intermediate gong-like sounds. Finally, in
repmorph-LionGong.wav, the same gong recording is crossed with the roar
of a lion. Spectrally rich sounds cross easily, and the middle sounds are plausible
hybrids.

5 Conclusion
By formalizing the idea of a crossfade function as one which smoothly connects
two signals, this paper provides a basis for studying processes that underly sound
transitions. The use of a variety of kernels is key, as this specification connects
a family of uninteresting transitions (such as simple crossfades) with more inter-
esting transitions (such as spectral crossfades). The ridge theorem delineates in
a simple setting when spectral peaks in one signal connect to those in another.
The methodology (of regarding the spectrogram as a surface defined by hitting
points of a stochastic process) provides some hope that similar questions can also
be handled analytically. The mathematics is applied concretely to the problems
of interpolation and repetitive crossfades, and each is demonstrated in a handful
of sound examples where the strengths and weaknesses of the approach become
apparent. In many of the examples, it is possible to clearly hear the ridges, in-
dicating that these plausibly correspond (in an audio sense) to the smooth ridges
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that appear in Figures 3-4.
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A Appendix

A.1 Proof of the Ridge Theorem
Fix a value of x in the interval [0, d]. There is a nonzero contribution from both
terms as long as the upper part of the rectangle for the first term extends further
than the lower part of the rectangle for the second term. The y value for where the
upper part of the rectangle for the first term terminates satisfies

(y − ωL)
ay0
xy

=
1

2

y =
ωL

1− x
2ay0

.

Similiarly the y value for where the lower part of the rectangle for the second term
terminates satisfies

(y − ωR)
ay0

((d− x)y
=− 1

2

y =
ωR

1− d−x
2ay0

.

Thus the condition for overlap is

ωL
1− x

2ay0

>
ωR

1− d−x
2ay0

ωR
ωL

<
2ay0 + (d− x)

2ay0 − x

It is easy to verify that the right hand side of the above inequality is increasing in x
and thus takes on its minimum value at x = 0. This gives the theorem statement.
∆

19



A.2 A Computational Simplification
Let P (x, y) be the Poisson kernel (4). The line where x = d/2 = π/2 represents
the center strip of the crossfade surface. A Brownian motion started on this center
strip has the hitting distribution

fπ/2(y) =
1

2π
(P (π/2, y)1L + P (π − π/2, y)1R)

=
1

2π
(

1

cosh(y)
1L +

1

cosh(y)
1R)

=
1

2π
(

2 exp(|y|)
exp(2|y|) + 1

)(1L + 1R).

To find the characteristic function or Fourier Transform of this probability density

zx(y) =
P (x, y)

2(π − x)

=
1

2(π − x)

sin(x)

cosh(y)− cos(x)
.

The following transform pair can be found in [10], Table 1A, Even Functions, #
201:

f(x)⇐⇒g(y)

1

2N

1

cosh(ax) + cos(b)
⇐⇒ 1

N

1

a
π csc(b)

sinh( by
a

)

sinh(πy
a

)

where N = b
a

csc(b)b < π. Letting a = 1, b = π − t, and N = (π − t) csc(π − t)
gives the transform relation

1

cosh(x)− cos(t)
⇐⇒ 2π

sin(π − t)
sinh[(π − t)y]

sinh[πy]

Hence,

zx(y) =
1

2(π − x)

sin(x)

cosh(y)− cos(x)

⇐⇒ π

(π − x)

sin(x)

sin(π − x)

sinh[(π − x)ω]

sinh[πω]

=
π

(π − x)

sinh[(π − x)ω]

sinh[πω]

= Zx(ω)
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where Zx(ω) is the characteristic function (and Fourier Transform since we are
dealing with even functions) of zx(y).
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