D3.21

Approaches to Blind Equalization of Signals with Multiple Modulus

William A. Sethares, Gonzalo A. Rey*, C. Richard Johnson, Jr.*

Dept. of Electrical and Computer Engineering, *School of Electrical Engineering
University of Wisconsin, Madison, WI, 53706 Cornell University, Ithaca, NY, 14853

Abstract

The Constant Modulus Algorithm (CMA) and Decision Directed (DD) equalizer are two
tools to approach blind equalization of signals
which are known to lie on a circle of fixed radius,
but where specific values at any given time are
unknown. In M-ary Quadrature Amplitude
Modulation, the signals lie on n circles of known
radius. This paper presents two possible
approaches to the n-modulus problem, both
in the spirit of "feature reconstruction"
analogs. The Multiple Modulus Algorithm uses
a straightforward generalization of the CMA cost
function to derive its update, while the Decision
Adjusted Modulus Algorithm is a hybrid of the
CMA and the DD approaches. The algorithms are
analyzed and compared in a simple problem
setting.

1. Introduction

Blind equalization is a notoriously difficult
task. Consider the scenario of figure 1, where a
signal y is sent across a channel and a corrupted
version x is received. Suppose that the channel
can be modeled by the linear autoregression
1/W(q⁻¹). The task of the blind equalizer is to
build the inverse of the channel. If ̂W(q⁻¹) could
be made equal to kq⁻¹W(q⁻¹), then the source
could be adequately reconstructed. But how can
such ̂W(q⁻¹) be built?

If nothing is known about the character of
the transmitted signal, then blind equalization is
patently impossible. Often, however, the source
will have some known property which can be
exploited to help determine how the received
signal has been corrupted. In the baud
synchronous binary phase shift keying problem,
for instance, the source consists of just two
possible values, +1 and -1. In this case there are
two popular methods used to adjust the
coefficients of the ̂W(q⁻¹) polynomial.

The first, the Decision Directed (DD)
equalizer (see [2] and [6]) compares the
reconstructed signal ̂y to the nearest value +1 or
-1, and uses this difference to drive the adaptive

* supported by NSF grant MIP8608787

algorithm. Thus the "decision" to compare ̂y to +1
or to -1 "directs" the subsequent evolution of the
adaptive filter parameters. The second approach,
the Constant Modulus Algorithm (CMA) [1]
atttempts to minimize the difference between
unity and the modulus of the reconstructed
signal. The cost function JCMA(k) = (| ̂p(k) |- 1)²
is used to define the gradient descent algorithm

̂W(k+1) = ̂W(k) - μ ̂y(k) | ̂p(k) - 1 | X(k) (1)

where ̂W(k) is a vector of the weights of the
adaptive filter at time k, X(k) = (x(k), x(k-1),....,
x(k-n)) is a regressor vector of past received
signals, and μ is a small positive stepsize. Thus
the error between ̂p² and 1 drives the adaptive
update. Analysis of the local stability of real
CMA can be found in [3]. Throughout this paper
we restrict discussion to the 1-D real case
instead of the 2-D complex case, with the
understanding that the same philosophy applies
in the more general setting.

\[
\begin{array}{ccc}
\text{Transmitted} & \text{Received} & \text{Reconstructed} \\
\text{Source} & \text{Signal} & \text{Signal} \\
\hline
y & 1 & x \\
W(q^{-1}) & \hat{W}(q^{-1}) & \hat{y} \\
\end{array}
\]

Figure 1: Blind Equalization

Sometimes the transmitted signal does not
have a single constant modulus as in the above
example. In M-ary QAM (Quadrature Amplitude
Modulation [5]), for instance, the transmitted
source can assume a whole constellation of
possible values which can generally be
considered to lie on several circles of known
modulus. The DD strategy can be employed, but
as the number of points increases, finer
distinctions must be made, and the probability of
erroneous decisions increases. CMA can also be
applied, but it can only adapt to match a single
constant modulus. Straightforward application of
the algorithm to the n-modulus problem will
cause the parameters to converge to some
average location which is a tradeoff between the
various moduli.
Yet the idea of "feature reconstruction" that underlies CMA is enticing. If the source lies on several known circles, why not reconstruct this feature by generalizing the cost function to one which attempts to minimize the error between the reconstructed signal and each of the known moduli? This leads to the Multiple Modulus Algorithm (MMA) of section 3. Alternatively, why not reconstruct this feature by minimizing the error between the reconstructed signal and the nearest of the known moduli - essentially "deciding" at each step which "constant" to use. This leads to the Decision Adjusted Modulus Algorithm (DAMA) of section 4, which combines many of the strengths of CMA with the DD approach.

2. CMA in a Multiple Modulus Setting

Consider a simple test case where the transmitted source y is known to consist of the four real values +1, -1, +3, and -3. The channel model is the simple first order autoregression \(w_{k+1} = w_k x(k) + w_1 \) with \(w_1 = 1, w_2 = -9 \), and the adaptive equalizer consists of two adjustable parameters \(\hat{\phi}_1 \) and \(\hat{\phi}_2 \). The reconstructed signal is calculated as

\[
\hat{y}(k) = \hat{\phi}_1(k) x(k) + \hat{\phi}_2(k) x(k-1).
\]

(2)

Note that if \(w_1 = \hat{\phi}_1 \) and \(w_2 = \hat{\phi}_2 \), then \(\hat{y}(k+1) \) exactly reconstructs \(y(k) \). If the ratios \(\hat{\phi}_2/\hat{\phi}_1 \) and \(w_2/w_1 \) are equal, this is an admissible solution, since then \(\hat{W}^{-1} = kQ^{-1} \) for some \(k \) and \(d \). The job of CMA is to adapt the \(\hat{\phi}_n \) based only on measurements of the \(x \) and knowledge that \(y \) consists of +/-1 and +/-3 (but without knowing the actual value of \(y \) at any particular time).

Suppose that the four \(y \) values are chosen independently and uniformly, and apply the CMA update (1). Then the parameter estimates \(\hat{\phi}_1, \hat{\phi}_2 \) tend to converge to (0.3489, -0.3149) or its negative, depending on the initialization. The ratio \(\hat{\phi}_2/\hat{\phi}_1 \) is -0.9025, which is the admissible value of -0.9 to within experimental accuracy. Suppose, however, that \(y \) is chosen in a heavily dependent way, say by the Markov chain detailed in Figure 2. Then the CMA updates tend to converge to (0.2988, -0.2544) or its negative, which are not admissible solutions since the value of the ratio is -0.85.

Such behavior appears to be generic when the transmitted source is white and uniform, then CMA can converge to an admissible solution. When the source is highly correlated and nonuniform, CMA does not attain an admissible solution. What we desire, then, is an algorithm for which an admissible solution is always a point of local stability, irrespective of the correlation and uniformity of the source. We propose two candidate algorithms.

3. The Multiple Modulus Algorithm

Suppose that the transmitted source lies on \(n \) circles of known modulus, where \(M_1, \ldots, M_n \) designate the squares of the moduli. The feature reconstruction idea suggests that it might be desirable to try to minimize the cost function

\[
J_{\text{MMA}}(k) = \sum (\hat{y}^2(k) - M_1)^2 (\hat{y}^2(k) - M_2)^2 \cdots (\hat{y}^2(k) - M_n)^2.
\]

(3)

One way to proceed with this minimization is to pursue a gradient descent strategy, updating the parameter estimates \(\hat{W} \) in the direction opposite the gradient at each timestep. The MMA adaptive algorithm is then

\[
\hat{W}(k+1) = \hat{W}(k) - \mu \frac{\partial J_{\text{MMA}}}{\partial \hat{W}(k)}.
\]

(4)

Since \(\hat{y}(k) = xT(k) \hat{W}(k) \), this derivative can be evaluated directly as

\[
\frac{\partial J_{\text{MMA}}}{\partial \hat{W}} = \sum (\hat{y}^2 - M_1) \left(\sum_{i=1}^{n} \prod_{j=1}^{n} (\hat{y}^2 - M_j) \right).
\]

(5)

Due to its form as a gradient minimization of the cost function \(J_{\text{MMA}} \), analysis of (4) can proceed similarly to the analysis of CMA in [3] and [4]. The algorithm (4) will stop updating, on average, whenever

\[
\text{avg} \left(\frac{\partial J_{\text{MMA}}}{\partial \hat{W}(k)} \right) |\hat{W}(k) = W^*| = 0
\]

(6)

where "avg" represents an appropriate time sample average and \(W^* \) indicates an averaged equilibrium. Moreover, in order for this stationary point \(W^* \) to be locally exponentially stable we will need

\[
\text{avg} \left(\frac{\partial J_{\text{MMA}}}{\partial \hat{W}^2(k)} \right) |\hat{W}(k) = W^*| > \alpha > 0,
\]

(7)

and a sufficiently small stepsize.
Once local stability is established for a given average equilibrium point, the key question concerns the size of the region of attraction. Since (5) contains high powers of \(\dot{y} \), (4n-1, to be exact), one might anticipate numerical problems. Indeed, typical simulations require step sizes on the order of \(10^{-8} \). A practical modification, then, is to normalize the step size by the largest even power of \(\dot{y} \) found in the update term. Such normalization is common in LMS to take into account variations in the size of signals.

For the example of the previous section, \(n=2 \), \(M_1=1 \), and \(M_2=9 \). Substituting (5) into the gradient algorithm form (4) and normalizing yields the update form

\[
\hat{w}(k+1) = \hat{w}(k) + \mu \dot{y} \left(y^2(k) - M_1 - y^2(k)M_2 \right) x(k)
\]

(8)

where \(\mu_k = \mu / (\dot{y}^2(k) + 1) \) is the normalized step size.

There are several equilibria for (8), which correspond to \(\hat{w} \) values that cause \(\dot{y} = 0 \), \(\dot{y}^2 = M_1 \), \(\dot{y} = M_2 \), and \(\dot{y} = (M_1 + M_2)/2 \). To examine the stability of these equilibria, we can construct the matrix of partial derivatives as in (7). This gives

\[
\begin{align*}
\frac{\partial^2 \text{MMA}}{\partial \hat{w}^2} &= (\dot{y}^2 - M_1) (\dot{y}^2 - M_2) (2\dot{y}^2 - (M_1 + M_2)) X X^T \\
&+ 2 \dot{y}^2 (\dot{y}^2 - M_2) (2\dot{y}^2 - (M_1 + M_2)) X X^T \\
&+ 2 \dot{y}^2 (\dot{y}^2 - M_1) (2\dot{y}^2 - (M_1 + M_2)) X X^T \\
&+ 4 \dot{y}^2 (\dot{y}^2 - M_1) (\dot{y}^2 - M_2) X X^T
\end{align*}
\]

(9)

where the time index \(k \) has been dropped for conciseness.

Each term in (9) consists of a scalar, dependent on \(\dot{y} \), \(M_1 \) and \(M_2 \) multiplied by the vector outer product \(XX^T \). Since \(XX^T \) can itself never be positive definite, it is necessary to consider the average of (9). In particular, if \(\text{avg}(XX^T) > \alpha > 0 \), (often called the persistence of excitation condition) and if the sum of the scalar multiples in (9) is positive for particular \(\dot{y} \), \(M_1 \) and \(M_2 \), then (7) will hold and the algorithm will be locally exponentially stable about that averaged equilibrium value. For the equilibrium at \(\dot{y} = 0 \) (which corresponds to \(\hat{w} = 0 \)), the second, third and fourth scalars of (9) are zero, while the first is \(-M_1M_2(M_1 + M_2) \). Thus this equilibrium point is unstable, since \(M_1 \) and \(M_2 \) are positive. The equilibria at \(\dot{y} = M_1(1) \) corresponds to the "correct" answer at \(\hat{w} = w^* \) and to its negative at \(\hat{w} = -w^* \). The scalar is \(2M_1((M_1 - M_2) (2M_1 - (M_1 + M_2)) \), which equals the positive constant \(2M_1(M_1 - M_2)^2 \), indicating stability for both of these answers. A symmetric argument shows that the equilibria at \(\dot{y}^2 = M_2 \) are also stable. The last pair of equilibria, at \(\dot{y}^2 = (M_1 + M_2)/2 \) has the scalar

\[
4 \frac{(M_1 + M_2)^2}{2} - M_1 \left(\frac{(M_1 + M_2)^2}{2} - M_2 \right).
\]

(10)

Since exactly one of the last two factors must be negative, these are unstable equilibria.

Using the simple test case outlined above and the MMA algorithm (8), we simulated the adaptation of the coefficients from a variety of different initial locations. In the simulations, the step size was \(\mu = 0.0002 \), and the four possible values of \(y \) were chosen independently from a uniform distribution. This is adequate to ensure that the persistence of excitation condition is fulfilled, and the simulations verify that if the \(\hat{w} \) parameters are initialized near the stable equilibrium values, then they tend to converge to the equilibrium, while if they are initialized near one of the unstable equilibria, they tend to move elsewhere. Not only do the parameters converge to (1.0, 0.9) or its negative, but they may also converge to (0.35, -0.32) or its negative. This corresponds to when \((\dot{y}^2 - M_1) \) is on average zero, even though it never equals zero. All these solutions are admissible.

The second method used to examine the behavior of the algorithm in this example is to plot the "arrow" diagrams as studied in [7]. These are essentially the averaged, discrete-time equivalent of continuous-time flow lines. The circles of figure 3 represent the bases, or starting points, and the lines represent the average direction of parameter motion from the base. Each line is averaged over 3,000 inputs. One may think of figure 3 as approximating the "error surface" over which the MMA algorithm moves. It is not a quadratic surface.

Due to the intricacy of this error surface, and the corresponding possibility of spurious equilibria, we consider an alternative algorithm, which is essentially a hybrid of the DD and CMA approaches.

4. The Decision Adjusted Modulus Algorithm

Once again, suppose that the transmitted source is known to lie on \(n \) circles of known radius, and let \(M_1, \ldots, M_n \) designate the squares

\[
J_i(k) = (\dot{y}^2 - M_i)^2 \quad i=1,\ldots,n,
\]

(11)

which correspond to the \(n \) known radii. The update at each time instant is then

\[
\hat{w}(k+1) = \hat{w}(k) - \mu \dot{y} M_1 \hat{w}(k) \hat{m}(k)^2 X(k)
\]

(12)
where the "min" function compares the reconstructed signal to the nearest M_k at each time k.

In essence, DAMA acts like n CMAs, one for each of the known radii. While CMA is incapable of matching more than one circle, DAMA (like MMA) holds the promise of adapting to all n. Unlike MMA, DAMA does not seem to suffer from a bizarrely shaped error surface. It makes a decision at each timestep and adapts the coefficients towards the nearest circle. Due to the nondifferentiability of the minimum function, it is not trivial to apply the averaging style results to the study of DAMA. On the other hand, the application of averaging requires only a Lipschitz continuity in the algorithm update term, and one can envision an averaging approach based on the conical properties of the derivative of the "min" function.

Figure 4 shows the arrow diagram for the same equalization setup as in the previous section, utilizing the DAMA algorithm in place of MMA. Both algorithms converge to the same correct answer ($\hat{W}=W^*$), the same negative answer ($\hat{W}=-W^*$), and the same pair of "other" admissible values at (0.35, -0.32) and (-0.35, 0.32), depending on the initialization.

5. Conclusions

This paper provides a starting point from which a discussion of blind equalization of multiple modulus signals can begin. We have presented two possible approaches, one based solely on the feature reconstruction idea as in CMA, and the other a hybrid of CMA and DD. By drawing "arrow" diagrams, we compared the performance and region of attractions of the two algorithms in one simple problem setting. After convergence, the performance of the two algorithms appears to be roughly comparable, but the size of the region of attraction appears to be somewhat larger for DAMA than for MMA. Clearly, a lot of work remains to be done before such adaptive schemes are ready for application.

6. References