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Suboptimal Identification of Nonlinear ARMA
Models Using an Orthogonality Approach

Ho-En Liao and William A. Sethares

Abstract—This paper proposes a scheme based on orthogonal
projection to identify a class of nonlinear auto-regressive, moving-
average (NARMA) models. The scheme decouples the nonlinear
and linear identification problems, and hence there are two steps.
The first step extracts nonlinearities for each delay element within
the model via conditional expectations. The second step evaluates
dispersion functions to weight the nonlinear functions so that the
cost is minimized. This paper focuses on the second step of the
proposed scheme, the characteristics of the identification scheme
are studied, and simulations are provided.

I. INTRODUCTION

N MANY applications where data is generated by a nonlin-

ear mechanism, linear models are unacceptable and iden-
tification schemes fail. While the theory of identification of
linear dynamic systems is well established, e.g., [1]-[3], the
theory of identification of nonlinear dynamic systems is not yet
satisfactory though much research [4],[5] has been conducted.
This is mostly due to the fact that for general nonlinear systems
there are no universally applicable models. Volterra series
expansions can represent very general nonlinear systems, but
they are often severely overparameterized. To reduce the
effort of identification, parsimonious models such as nonlinear
auto-regressive, moving-average (NARMA) models [6],[7] are
adopted. A Nth-order NARMA model can in general be
expressed by

y(n) = ]:(y(n_ 1)7"'ay(n" N)vw(n)’
w(n—1),...,w(n — N))

where F(-) is some nonlinear function, y(n) and w(n) are the
current output and input, and y(n — i)’s and w(n — i)’s for
1 # 0 are the delayed outputs and inputs.

Identification schemes for nonlinear dynamic systems usu-
ally consist two mutually dependent parts, e.g., [8]-[12], the
linear identification in which correlation analysis is used, and
the nonlinear identification. The nonlinear characteristics of
these models are often assumed to be of polynomial form, and
usually with memory. For identification of NARMA models
[12], especially, the nonlinear characteristics are determined by
regression methods. In this kind of scheme, a critical step is
to predetermine a set of delay elements, and the crossrelations
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among these nonlinear delay elements. Then the regression
methods based on some criterion can be applied to include
or exclude a given nonlinear delay element. The identification
effort will be greatly increased if such information cannot be
obtained.

It is the purpose of this paper to develop a new scheme
for identification of NARMA models. The goal is to iden-
tify a suitable NARMA process to match two given se-
quences of steady state input and output data w and y
(in the following, the process x is used to represent either
w or y unless specifically noted). The inputs and outputs,
which are assumed stationary, are collected from some causal,
bounded-input/bounded-output stable, time-invariant nonlinear
system. The orthogonal projection based scheme allows the
determination of significant delay elements and ignores the
crossrelations among these elements. Hence the scheme is
suboptimal. Furthermore, the nonlinrear characteristics within
the model are not restricted to be of polynomial forms but can
be the class of Borel functions.

Before defining cost functions for the proposed scheme,
some notations used in the paper are introduced.

(1) The input sequence w and the output sequence y are
both denoted by x.

(2) The delay element z(n — i) is denoted by z;.

(3) The current output y(n) is denoted by y.

Consider the following mean-squared-error criterion for the
N-th order NARMA model identification

C=E{((y- EW)) - A(E[y | x] - Ely]))*}, (-1
where Ely | x] = E[y | z1] Ely | z2]---E[y | zn])T (the
superscript “T” denotes the transpose) is a N X 1 column
vector, Ely] = [Ely] E[y]---E[y]]T is a N x 1 column
vector, and A are N x 1 row vectors which are to be
determined so that C are minimized (as is familiar from the
linear case). The cost function C is similar to the cost function
introduced in [13] where the mean value of the output process
is assumed to be zero. Note that C is different from the usual
orthogonality-based cost function E{(y — Arx)?} defined in
linear system identification, since they contain the conditional
expectation of y given x rather than x itself.

The cost function as defined in (1-1) makes the identification
a two-step procedure. The first is to determine the nonlinear
function for each delay element. This step is not studied
in this paper and some possible techniques for identifica-
tion of nonlinear characteristics are given in the references.

1057-7122/95$04.00 © 1995 IEEE



LIAO AND SETHARES: SUBOPTIMAL IDENTIFICATION OF NONLINEAR ARMA MODELS 15

There are in general two catagories for such identification,
parametric methods based on least-squared-error [14] when
polynomial forms are assumed, and nonparametric methods,
e.g., [15]-[19].

The second step is to put weights on each nonlinear function
determined in the first step. This can be achieved by solving
a set of linear equations with dispersion functions serving as
the coefficients as we will show later. The N-th order model
thus identified has output y,

y=Ao(Ely | x] - Ely]) + Ely]

for the cost defined by (1-1), where A equation represents
the optimal version of A. The identified model is pictorially
shown in Fig. 1 by assuming the output process y has zero
mean, where ag,a1,...,an, b1,...,bn are the elements of
Ay, filw(n —1)) = Ely(n) | win —9)] fori =0,1,...,N
and g;(y(n — 7)) = E[y(n) | y(n —i)] for i = 1,...,N. Or,
explicitly, rewrite (1-2) as

(1-2)

N N-1
y= bigi(yi) + Y aifiws). (1-3)
i=1 i=0

From (1-2), it is understood that the scheme not only de-
couples the linear and nonlinear identification problems but
also decomposes the nonlinear characteristics to each delay
element. And, as mentioned above, the nonlinear functions f;
and g;, are not restricted to polynomial but can be any Borel
functions.

In Section II, dispersion functions are briefly reviewed. A.
method of solving for Ay from the cost C is discussed in
Section III. Section IV describes the characteristics of the two-
step scheme proposed for nonlinear identification. In Section
V, two simulations are conducted.

II. DISPERSION FUNCTIONS

Dispersion functions were first proposed by N. S. Rajbman
[20]. Some of their properties and application to nonlinear
system identification such as the determination of the nonlinear
degree of plants can be found in [20]-[22].

Three catagories of dispersion functions [23] are defined
in the following. For three random processes z(s),s €
T;,y(t),t € T,, and 2(u),u € T., the cross-dispersion
function, denoted by 6,,.(t, s), is

By12(t, ) = cov{E[y(t) | z(s)], E[y(t) | x(s)]}.

The auto-dispersion function 6,,(t,s,) is the special case
where y(t) = z(t) and t € T,,

Oy1y(t, 5) = cov{Ey(t) | y(s)], Ely(t) | y(s)l},

and the generated-dispersion function, denoted by 9y|z\z(t, s,
u), is

2-bH

(2-2)

Oy)z|2(t, 5,u) = cov{Ey(t) | z(s)], E[y(t) | z(u)]}. (2-3)

In the above definitions, cov{-, -} is the covariance operator of
two random processes and E[-|-] is the conditional expectation.

Fig. 1. The N-th order nonlincar ARMA (NARMA) model for system
identification.

The cross-dispersion function 6,.(t,s) represents, for the
given values of the arguments ¢ and s, the variance of
the conditional expectation of y(t) relative to z(s), and
it characterizes the overall variance of y(t) on the o-field
generated by the random process z(s). Similarly, the auto-
dispersion function 6,,(t, s) represents, for the given values
of the argments ¢ and s, the conditional expectation of y(t)
relative to y(s), and it characterizes the overall variance of
y(t) on the o-field generated by the random process y(s). The
generated-dispersion .. (t, s,u) represents, for the given
values of the arguments ¢, s and u, the covariance between
the random processes E[y(t) | z(s)] and E[y(t) | 2(w)]. In
the case when all random processes are jointly stationary, the
dispersion functions in (2-1) and (2-2) become functions of
(t - s), ie,

Byja(t, 8) = Oy (T)
and
gyly(ta 5) = 0y|y('r)7

where 7 = t — s.

Dispersion functions are the nonlinear analog of correla-
tion functions. 6, (t, s) is an analog of the cross-covariance
function Cy.(t, s)(=E{(y(t) — Ely(t)])(z(s) — E[z(s)])})
which characterizes the strength of the relation between the
two random processes y(t) and z(s). Similarly 6, (¢, s) is an
analog of the auto-covariance function Cy,(t, s)(=E{(y(t) —
Ely(t)])(y(s) — Ely(s)])}) which characterizes the internal
structure of the random process y(t). However, Cy.(t,s)
and Cy,(t,s) measure the relationship among the random
processes z(s), y(s) and y(t) only when they are linearly
related, while 8y, (¢,s) and 6, (t,s) provide a measure of
the relationship among these random processes even when they
are nonlinear functions of each other. -

Conditional expectation can be interpreted as an “orthog-
onal projection” assuming that E[y%(t)] < oo [24], ie.,
E{(y(t) - Ely(®) | () Ely(t) | 2(s)]} = 0 and E{(y(t) -
F(@(s))2} > {(y(t) - Ely(t) | a(s)])2}, where y(t), 2(s)
are random processes, and f(-) is some nonlinear (Borel)
function. Therefore, dispersion functions measure the “power”
of y(t) after the “orthogonal projection” on some o-fields or
the “significance” y(t) relative to some random variable. Some
properties of dispersion functions are listed in Appendix I.
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III. SOLVING FOR THE OPTIMAL LINEAR WEIGHTS

In this section, the optimal weights are determined by
minimizing the cost function C in (1-1). The first subsection
studies the general case for solving the optimal weights which
are dependent on evaluation of dispersion functions. The
second subsection gives a special case, where NMA models
with uncorrelated input are assumed.

111.1. The Optimal Weights: General Case

Consider a given system with input sequence w and current
output y. Consider the cost function C in (1-1)

C = E{((y - Ely)) - A(E[y | x] - E[y]))*}-

The objective of the identification is to determine the vector
A that minimizes the cost function C. Expanding (1-1) for
C gives

C=E{((y - Ely)) - A(Ely | x] - Ely])
x ((y ~ Ely]) - A(Ely | x] - E[y]))"}
= o, - 2AE{(y - Ely))(Ely | x] ~ E[y])}
+AE{(Ely | x| - Ely])(Ely | x] - E[y])"}AT,
where 05 is the variance of the output process. Since C > 0
is a quadratic form with respect to the row vector A, the
minimum value of the cost function can be determined by
setting dC/dA = 0 (0 is the null column vector), which
results in
E{(Ely | x] - Ely))(Ely | x] - E[y))"}AT
= E{(y - EWI)(Ely | x] - E[y])}-

The above equation can be denoted in a matrix form as

HAT =R, (3-1)
where
H=E{(Ely|x] - Ely))(Ely | x| - E[y})"}
Ely | 1] - E[y]
(Ely | zn] — Ely)
X [(Ely | 1] - E[y])--- (Ely | zn] - E[y])]}-
Thus

(Hli; = E{(Ely | 2:] - E[y]))(Ely | z;] - E[y])}
fori,7=1,...,N

is a N x N square matrix. Similarly
R = E{y(Ely | x] - E[yD},

and

[R]: = E{y(Ely | z:| - Ely])}
= E{(Bly | z:] - Ely])*}[24]

isa N x 1 column vector. Note that the elements of H and
R are the “dispersion functions” defined in (2-1), (2-2), and
(2-3). Hence

Hli; = Oyia, e,
and
Rl = Oyjo. (2. = Oyja,-

Note also that the elements of R are just the diagonal elements
of H. Analogous to the covariance matrix in linear case, the
matrix H has following properties:
1. [H];; = [H];; and thus H is symmetric;
2. Since H is symmetric, H has real eigenvalues and a set
of orthonormal eigenvectors.
3. H is positive semi-definite.

Proof (of the third property):
Let s = t(E[y | x] — Ely]), where t # 0 is an arbitrary 1 x N
row vector. Then

s* = t(Ely | x] — Ely])(Ely | x| - E[y])"t",
and
E[s%] = tE{(E[y | x]-E[y])(E[y | x]-E[y])" }t* = tHt".

Since E[s?] > 0, H is positive semi-definite. QE.D.
Assume H is nonsingular so that the optimum of A (denoted
by Ap from now on) can be solved as AT = H™!R, the cost

function C is minimized. The minimum cost C (denoted by
CO) is

Co= oj - AgR. (3-2)
I1.2. The Optimal Weights: A Special Case

Consider the following NMA model of order N where the
output is contaminated by some noise source v,

y(n) = filw(n — 1))+ -+ fy(w(n = N)) +v(n),

where f;’s are assumed to be Borel functions. For notational
simplicity, rewrite this as

y=fi+-+fn+wo, (3-3)

and assume that the inputs w(n — ¢)’s and v(n) are mutually
uncorrelated. Then, 6y}, |, = 0 for ¢ # J since

E{Ely | w]Ely | w;]}
=E{(fi+Elfi+ -+ fx+vo—fi])
X(fi+Efi+-+fn+vo—Ff)}
=E{(fi+Elfi+ -+ fv+v - fi])}
X E{f; + E[fi+--+ fn +vo — fi])}
=E[fi+--+ fn+v]E[fi + -+ N + vo]
= E?[y).

Therefore,

Oyjw,jw, = E{E[y | wi]Ely | w;]} = 0.
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Thus (3-1) becomes
Oyjw, 0 a1 Oy)w,
= |- 69
0 gyluw aN ‘gy}ww
Note that H is diagonal and it is easy to see that a1 = ap =

- = ay = 1 as desired. That is, according to (1-2), the
current output of this case is

e

Ao(Ely | W]~ ElyD) + Elyl = ) Ely | wi] — (N — 1)E[y]

i
L

Il
.MZ

fi- (3-5)

~
Il
-

Futhermore, 8., = E[f?] — E*[f]. Since

E{E*[y | wi]}
= E{yEly | wi]}
=E{y(fi+ E[fi+ -+ v +vo— fi])}
= Elyfil + EWE[(f1+ -+ fn + o) — fi]
=E[(fi+-+ fv+v— fi + fi)fil + E[y)Ely - fi]
= E[fi]Ely - fi] + E[f}] + E*[y] - E[Y)E[f:]
= E[ff] - E*[fi] + E°[y)-

Therefore,

Oyw: = E{E*[y | wi]} — E*[y] = E[f] - E*[fi].

The variance of the output process, 05, can be computed
straightforwardly using the fact that the w(n — ¢)’s and v are

mutually uncorrelated. Hence, using (3-6), the result is

(3-6)

D08 = Oy, o Oyuy + 05 3-7)

where 030 is the variance of the noise process vg. Therefore,

Co=0,-AR=07. (3-8)

1I1.3. Remarks

Remark 3-1: Subtraction of the mean value of the output
process y can not be omitted in C defined in (1-1). Suppose
another cost function C defined without the subtraction, i.e.,
C = E{(y - AEJy | x])?}, then it can be shown that
C > C. This can be explained in the following. Consider
the special case discussed in II1.2. From (3-3), Ely | w;] =
fi + E[3°;4; f;], we can see that the result deviates from
the desired function f; by a dc-bias E[}°;; f;]. These dc-
biases are accumulated for each nonlinear function and are
removed by the subtraction of (N — 1) E[y] as shown in (3-5).
For the general case, Ely | ;] = fi + 3., Elf; | =i, the
situation becomes more complicated. Nonlinear functions f/s,
fori =1,..., N, can not be recovered and are represented by
some other forms because of the correlated data. The terms
22 Elfj | @] accumulate as in the special case where
dc-biases accumulate and the effect can be reduced by the
subtraction of E[y] and the linear wieghting.

Remark 3-2: In the above discussion, the scalar case is
adopted, i.e., E[y|z;] is the orthogonal projection of y on the
o-field generated by z;. This can be extended to the vector
case so that the projection is on the o-field generated by several
random processes. This means that E[y|z;] can be replaced by,
for example, E[y|z1,Z2,...,Zx]. In this variation, the mean
squared error will be reduced (this is expected as properties
of orthogonal projection and, thus, properties of dispersion
functions listed in Appendix I). This is especially obvious
when delay elements have strong cross-relationship, i.e., they
are cross terms to each other. One possible disadvantage of
this extension is that the identification effort is increased since
multi-dimensional estimates of nonlinear characteristics are
needed.

IV. CHARACTERISTICS OF THE ALGORITHM

The proposed identification strategy is a two-step scheme.
First of all, the nonlinear functions for individual delay el-
ements are determined using techniques such as nonlinear
regression, polynomial fitting and splines. Then dispersion
functions are evaluated so that weights are determined for each
nonlinear function using (3-1). Some important characteristics
of the algorithm are discussed below.

IV.1. Consistency of the Orthogonal Projection

The cost function C defined in (1-2) is analogous to
the usual mean squared error defined in linear identification
and the minimized result is closly related to the orthogonal
principle although a slight modification must be made, i.e., the
additional mean value of the output process must be subtracted
out. To see this, rewrite H(AJ) = R as

E{(Ely | x] - Ely))(Ely | x] - Ely])"}A{
= E{y(E[y | x] - E[y])},

which results in

E{(Ao(Ely | x] ~E[yD)((y—Ely]) - Ao(Ely | x] - E[y])}
+ E{E[y|(Ely | x] - E[y])} = 0.

Note that the second term in the above equation equals zero
for E{E[y | z;]} = El[y]. Therefore,

E{Ao(Ely | x]-E[y])((y—E[y])-Ao(Ely | X]—E[Y]))}(‘: (13)

In (4-1), the term (y — Efy]) — Ao(Ely | x] - E[y]) is
the error after y — E[y] is projected on the space spanned
by (Ely | z;] — Ely]). Hence, as in the linear case, the
minimization of C is an orthogonal projection on the space
spanned by {(E[y | z;]}},. At the same time, it can be shown
that the error is also orthogonal to the individual estimation
in the first step of the algorithm, i.e. [(y — E[y]) — Ao(Ely |
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x| — E[y])] is orthogonal to (E[y | ;] — E[y]). This is shown
below.

E{((y - Ely]) — Ao(Ely | x] - E[y]))(Ely | z:] — E[y])}
=E{(y— AoEly | x])E[y | =]}
= E{(y — AoEly | x))E[y))}
— E{(Ely] — AoE[y))Ely | z:]}
+ E{(E[y] — AoE[y])E[y]}
(note the difference between the second and the fourth
terms is zero) .
= E{(y - AoE[y | x])E[y | z:]}
— E{(Ely] — AoE[y])Ely | z:]}
(note that E{yE[y | z:|} = E{E*[y | z:]})
= (E{E?[y | z:]} — E*[y])
— (Ao(E{E[y | z:]Ely | x] — E*[y))}
(then by the definition of dispersion function)
0

ylzilzy

=0y, — Ao

ylz:
03/|$i|IN

(the second term is equal to 6, from (3-1), i.e. the

i-th row of H times A7 equals to 6

=0.

ylri)

Hence, as desired,

By~ Blu)~Ao(Ely | ) ~Biy))(Bly | ]~ B} =0

From (4-1) and (4-2), the overall minimum error in the
two-step algorithm is orthogonal to both of the two esti-
mation results consistently. This implies that although the
algorithm consists of two seperate steps (nonlinear and lin-
ear identifications), the result coincides with the orthogonal
principle.

IV.2. Nonincreasing Error Performance

In the minimization problem for linear identification, the
mean-squared-error will be reduced as the order of the model
is increased. This is not true in general for nonlinear system
identification. The following shows that the scheme proposed
has nonincreasing error as the order of the model is increased
and gives a formula for the performance difference between
two consecutive orders. Let the minimum mean-squared-errors
of N-th order and (N —1)-th order estimations be C{"’ (=02—
ASN)RN) and CE)N_I)(=JS - Angl)RN_l) respectively.
Then
e V-V =A{VRy — AL VRy

=RYHN'Ry-RL_ H' Ry, (43)

The second term in the right-hand-side of the above equation
can be rewritten as

Ry _ Hy. Ry, = RyH Ry,

where

HY, ©0
Hy' = :

oT 0

Similarly, Hy and R% can be partitioned as

Hy_, D8
Hy = : ;
67 D oOn
RY = [R%—l | GN]T§
where bfo = [eyll‘lll‘N e 01/|1N—1|IN]T7 Rj}:’—l =
[y|z, - Oyjzn_,] and Ox = B, . Then (4-3) becomes

ci¥ Y —c{™ = RE{Hy' - Hy'}Ry.

Furthermore, the above equation can be simplified to (using
the formula shown in Appendix II),

_ (AJ 710 —6N)?

C(N‘l) _ C(N) — ,
0 0 On — OTH: 0

(4-4)

and in Appendix III, 85 — bfﬂTHg,l_lbfﬂ is shown to be
greater than zero. Hence, as the order of the model is increased,
the mean-squarred-error is nonincreasing. Equation (4-4) also
gives a measure of whether an extra delay element should
be added to the current model without the need to solve the
linear equations of higher order.

IV.3. Interaction of the Delay Elements

As it is mentioned in Section II, the larger the dispersion
functions are, the more significant the corresponding delay
elements are. For a second order model, suppose the identified
model is

y— Ely] = a1(Ely | z1] — E[y]) + a2(Ely | z2] — E[y)).

Then the contributed “power” difference between the two
delay elements z; and 2 to this model is

E{a}(Ely | 2] - E[y))*} - B{a}(Ely | 2] ~ E[y))*}

—_ 42 2
= alﬁym - a20y|,;2.

It can be shown (by solving a; and ay for the second order
model explicitly) that whenever fy1,, > 0y5,, a0y, —
a%Oym > 0. This result coincides with the previous argument.
But this is not always true for higher order cases, i.e., &fGym -
a30y(c, is sign indefinite even if 6, > 0,,,, where &
and ap are the solutions for the higher order model. The
dispersion functions 8y|;,|z, for i = 2,..., N and 8z, s,
for j =1,3,...,N of a N-th order model will influence the
“power” distribution. 8y, .., is the measure of the correlation
between the two random processes Efy | z;] and Ely | z;].
If 05,1z, is very large, Oy(¢,(c, & Oyje, < By|s, for example,
then some amount of “power” contributed by z; will be
consumed by z; after the orthogonal projection on the span
of {Ely | #1],...,E[y | zn]}. Therefore, this allocation of



LIAO AND SETHARES: SUBOPTIMAL IDENTIFICATION OF NONLINEAR ARMA MODELS 19

Oyjz,|z;, for i # j causes the sign of @0y, — &fﬂym to
be indefinite. The rule of thumb is that when 6, for some
delay element z(n — k) is null (or very smail compared with
the others since 6, may be contaminated by the noise) then
z(n — k) should not be included into the model. Such small
fy|s, in the matrix H makes the solution of (3-1) very ill-
conditioned where the condition number of H is defined as
the ratio of the maximum eigenvalue, Amax to the minimum
eigenvalue \min of H. Since, by Raleigh’s quotient,

where Oax = max{fy|z, bics and Omin = min{fy|e, }ies is
some positive integer set.

V. SIMULATIONS

Given two sequences of data w and y (input and output
in steady state) of an unknown system, the goal is then to
build a class of NARMA models as depicted in Fig. 1 so
that the output of the model can mimic the output of the
given system. The proposed scheme in this paper consists of
two steps, evaluating the nonlinear function for each delay
element and then solving a set of linear equations composed
of dispersion functions. Two simulations are given in Sections
V.2 and V.3, which identify a NMA model and a NAR
model respectively. The procedures used in the simulations are
explained in the following subsection. The procedure, though
naive, gives convincing results. In the simulations, the output
processes are assumed to be ergodic so that the mean values
can be evaluated by averaging the time sequences.

V.1. Simulation Procedures

A. Evaluation of the Nonlinear Functions, Ely | z;):

1) “Quantize” each delay element by dividing it into M
small intervals of equal width é. Let this sequence of
intervals be denoted by {Im}5_;.

2) Evaluate the average value of the output process within
each interval. This gives the “estimation” of Efy |
x; € Iy] for m = 1,..., M and denote these discrete
nonlinear functions as f;(z(n — 1)) (or gi(z(n — 1)).
Hence fi(z(n —i)) has M values, one corresponding to
each interval.

3) Use least mean square polynomial (of degree fifteen)
fit to estimate the “continuous version” of f;(z(n — 1))
(or gi(z(n — 1))) and denote it as p;(z(n — %)) (or
gi(z(n — i))).

B. Solving the Row Matrix Ay:

1) Pointwise multiply fi(z(n — %)) and f;(z(n — j)) for
each interval I,,,. There are M values after the pointwise
multiplication.

2) Average these M values of the above multiplication and,
then, subtract the average value of the output process.
This results in 6,)z;|z;.

3) Construct the matrix H and solve (3-4) for Ag.
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Fig. 2. The estimated nonlinear function for the delay element w(n).

For each simulation, 5000 pairs of input and output data
are given (generated from the “unknown” system). The first
500 data points are discarded to let the system converge to its
steady state and the rest of data is used for the identification.
The final results are obtained by averaging 20 independent
experiments. The model output, denoted by ¥, will, according
to (1-2), be

i) = Y ai(win - )+ Bl (1- T o).

i€s i€S

for NMA processes and

i(n) = Y aiasly(n — i) + Bly] (1 - 2)
i€s i€S
for NAR processes. Where a; represents the elements of Ag.
Mean-squared-errors are then computed, by feeding new sets
of data to the “unknown systems” and the identified models
with the same initial conditions, to investigate the performance
of the identified models.

V.2.. Identification of NMA Process

Let y be the output process generated by the following
system,

y(n) = exp(—|w(n — 1)]) + 0.25sin(2rw(n - 2)) + v(n),

where the input sequence w is uncorrelated and uniformly
distributed, (—0.5, 0.5), and v is added white noise (normally
distributed with zero mean) uncorrelated to w. The output
process y of the above system has variance equal to 0.0436.
Assume that the third order NMA model of Fig. 1 is used to
identify the given system. Following the procedures described
in Section V.1, Figs. 24 depict the evaluated nonlinear func-
tions for the delay elements w(n), w(n — 1) and w(n — 2),
and we have

00 0.0 0.0
0.0 0.0129 0.0001
0.0 0.0001 0.0318

H=
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Fig. 4. The estimated nonlinear function for the delay element w(n — 2).

(note that “0.0’s” in H are not exactly zeros but some very
small values, each less than 10™%),

Ao = [2.4273 0.9954 1.0001],

and the mean-squared-error for this identification (msenma3)
is

msenmas = 2.7493 x 1074,

The sum of the diagonal elements of H approximates the
variance of the output processes, that is 05, which coincides
with (3-7). The off-diagonal elements of H are all very small,
which is also expected from (3-4) of Section III.2. Since the
first diagonal element of H is very small, we can eliminate
the first column and the first row of H. Actually it can be seen
from Fig. 2 that the nonlinear function of w(n) is noisy, which
implies that w(n) is insignificant in representing the unknown
system. A for this case is

Aj = [0.9943 0.9977],
and

msenmaz = 1.3428 x 1074,
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Fig. 5. The estimated nonlinear function for the delay element y(n — 1).

The mean square error msenp a2 approximates the variance of
the added noise (o2 = 10~*), hence this result is convincing,
i.e., see (3-8). The importance of the subtraction of the mean
value of the output process in (1-2) is observed from Fig. 3 and
Fig. 4. In Fig. 4, especially, a sine wave is clearly displayed,
which is a shifted version of the sine wave in the given system,
that is the term 0.25sin(2wrw(n — 2). This shift action is
caused by the term, exp(—|w(n — 1)|). The subtraction of
the mean value in (1-2) supresses the dc-bias in the evaluation
as discussed in Remark 3-1.

V.3. Identification of NAR Process
Let y be the output of the following NAR system

y(n) = exp(—|y(n — 2)|) + 0.25 cos(2ry(n — 3)) + v(n),

where v is added white noise (normally distributed with zero
mean). The output process of this “unknown” system has
variance 0.0062. Assume that the third order NAR model of
Fig. 1 is used to identify the given system. Following the
procedures described in Section V.1, Figs. 5-7 pictorically
show the estimated nonlinear functions for the delay elements
y(n —1) (g1 and q1), y(n — 2) (g2 and g2) and y(n — 3) (g3
and g3), and we have

0.0023 0.0011 0.0006

0.0011 0.0088 0.0048 |,

0.0006 0.0048 0.0058

Ay =[0.5749 0.7631 0.3064],
and the mean-squared-error for this identification (msenaR) is

msenaRr = 5.9310 x 1074,

H-=

The small mean-squared-error shows the scheme works well.
Notice that in the estimation of the nonlinear functions, the
fitted polynomials have to be carefully chosen so that they are
bounded in the region where the output takes values. Actually,
one could use other types of basis functions. The simulation
results are also effected by the distribution of the output
process (which is unknown), i.e. intervals where there is not
enough data will have inaccurate estimates of the conditional
expectation and cause larger errors.
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VI. CONCLUSION

This paper proposed a novel scheme for suboptimal non-
linear system identification using the cost C defined in (1-1).
Though the scheme is a two-step strategy, it is unified. The
first step is the extraction of nonlinear characteristics for
each delay element via conditional expectation that has the
meaning of “orthogonal projection” and hence minimizes the
two-norm error. The second step, also based on projection,
results in a linear combination of the nonlinear functions
evaluated in the first step. Therefore, the proposed scheme
not only decouples the linear and nonlinear identification
problems but also decouples the nonlinear characteristics to
each delay element. Furthermore, as mentioned in Remark
3-2, this subclass of NARMA model can be generalized to
other similar NARMA models if cross-relations among delay
elements are considered.

Some areas for further investigation are:

1) The estimates of the conditional expectations (for es-
timating nonlinear functions in the first step, and the
evaluation of dispersion functions in the second step)
in the identification scheme are not studied analyti-
cally. Unfortunately, there is no unbiased method for
such estimates. Nonparametric identification for nonlin-
ear characteristics was proposed by Greblicki [25]-[28],
where Hammerstein systems and Wiener systems are
considered. This may extend to the model shown in
Fig. 1.

In the above simulations, least square polynomial fitting
is utilized to approximate the nonlinear functions. These
polynomials must be carefully chosen such that the
identified model is stable. Hence appropriate polyno-
mials and degrees, or the study of nonlinear functions
which are not based on polynomials should be further
considered.

2)

APPENDIX [

Property 1: 0 < 0,,(t,s) < o2(t), where o2(t) is the
variance of the random process y(t).
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Property 2: If y(t) is independent of z(s) then 8y|z(t, s) =
0.

Property 3: 0y.(t,s) = 02,(t) if y(t) and z(s) are related
by some (possibly nonlinear) functional relation f(-), i.e., if
there is a function f(-) such that y(t) = f(z(s),t,s).

Property 4: 8y, (t, 5)0y|0, (t,u) > 9;21|a:1|:c2 (t,s,u) and
eyizl (t’ 8)0”12 (t’ 3) 2 29§|x1 7

Property 5: Oz, (t,8) < Oyjz, 2, (¢, 8, u), where
9y|11,12(t,5,u)
= cov{E[y(?) | z1(s), z2(u)], Ely(t) | z1(s), z2(u)]}.
APPENDIX II

Let V be a N x N square matrix. Consider a partitioned
form of V

A b,
V=1 ... .. b

b2 C

where A is (N — 1) x (N — 1) square matrix, b; and b] are
1 x (N — 1) column vector and c is a scalar. Then

A b,
vl= , (A-1)
by é
where
. 1 -1
A= <A - Zblbg) ;
-1
by = J(A - l|:.1b2) b;
c C
_ 1 1 -1
by = —=bg (A — Eble) ;
and
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APPENDIX III

Fact: Let V be symmetric and positive definite, VI = V
and V > 0. Consider the partitioned form of V as shown in
(A —1) with by = b = b. Then ¢ — bTA~!b > 0.

Proof: Note that

det(V) = det(A)det(c — bTA~'b).

Therefore,

det(V)

—bTA-1p) = —_bTA-1b) — )
(c—Db b) = det(c—b"A™'b) det(A)

Since V. > 0, det(V) > 0 and det(A) > 0, and, thus,

(c=bTA 1b) > 0.

(11
[2]
3]
4]

(5]

(73

[8

=

91

[101
[11]
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[14]
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