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Local Stability of the Median LMS Filter

W. A. Sethares, Member, IEEE, and J. A. Bucklew, Member, IEEE

Abstract— Local stability properties of the recently proposed
median LMS adaptive filter are investigated by relating the be-
havior of the algorithm to the behavior of an associated ordinary
differential equation. With independent inputs, the differential
equation and the algorithm are shown to be locally stable. On
the other hand, several classes of (periodic, nonindependent)
inputs are described which cause the differential equation and
the algorithm to be unstable about its equilibrium, even in the no
disturbance case. This will help delineate those applications for
which the median LMS is an appropriate adaptive algorithm.

1. INTRODUCTION

ONVENTIONAL least mean squares (LMS) adaptive

algorithms adjust a vector of adaptive filter weights Wi
using an instantaneous approximation to the gradient of the
error surface [13], resulting in the algorithm

Wit1 = Wi + nXpex (1
where X, is typically a regressor vector of past inputs
Xy = (@k, k-1, Thonp1)” 2)

ex is the scalar error between the desired signal and the filter
output, and p is the adaptive gain. Observe that this algorithm
is vulnerable to impulsive disturbances in the input since a
single noise impulse in the input z; will directly corrupt the
weight estimates in (1) for n successive time steps.

Recently, the median LMS (MLMS) algorithm has been
proposed [5]

Wi = Wi
+yumed,, (Xrer, Xp_1€k-1, s Xk—mt1€k-m+1) (3)
(m is odd) to ameliorate this vulnerability. The function med,,

in (3), operating on m n-tuples, should be interpreted as an
element by element median of length m, that is
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in which med(a1;, azi, - - -, @mi) is the median of the m scalars

a;, a2, - -, Gm;. Intuitively, there is good reason to expect the
MLMS algorithm (3) to outperform LMS (1) in an impulsive
environment, since the presence of the median function tends
to discard impulsive values. Indeed, extensive analysis and
simulations were carried out in [15] which convincingly verify
this intuition for certain classes of inputs and impulsive
disturbances.

Recall that LMS is derived as an approximation to a gradient
descent on a quadratic error surface. The MLMS algorithm,
on the other hand, has no such interpretation, and there is
the possibility that certain inputs might cause the algorithm
to climb, rather than descend, the squared error surface.
This was pointed out in [15], where a simple 3 periodic
input sequence was shown to destabilize the algorithm. The
current paper pursues the stability question for MLMS using
the weak convergence approaches of [2], [7], [10] which
relate the behavior of an adaptive algorithm to an associated
ordinary differential equation (ODE). The (local) stability and
instability properties of the ODE can be readily determined,
and translated back to (local) stability and instability results
for the algorithm. A key feature of many of the examples
of divergence for MLMS is that the mean and the median
of the input process have different signs. This suggests that
applications which have inputs with symmetric densities (and
others for which the means and medians have the same
sign) are good candidate applications for the median LMS,
while those which fail this property may encounter stability
problems.

Introducing the “ideal” value W* and the parameter error
term W, = W™ — Wy, shifts the equilibrium solution of (3) to
the origin. The error e;. can be rewritten as e, = W,CTX;c + Dy,
where Dy, represents both disturbances to the algorithm and
any unmodelled dynamics which cannot be matched by the
adaptive filter. The algorithm is then described by

Wk+1 ‘—‘Wk - umedm{Xk(WkTXk + Dk),
Xp1 (WL Xio1 + Di—1),
s Xpemrt (W 41 Xk—m41 + Dimmir)}-

For simplicity, suppose that the median length is m = 3 (any
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odd m will proceed identically). Define

Yi = (Xk, Xi—1. Xk—2, Dk—1, Di—2)
Ukyr = Di

and H in the obvious way. Then {W}} is of the form
Wigr = Wi = pHWi, Wi, Wi, Yy, Ug ). (5)

To initialize this difference equation, assume Wy = W_; =
W_o = wq. The first step in the analysis (Section II) is to
relate (5) to the limiting differential equation

W(t):wo—/o HW(s). W(s), W(s))ds  (6)

where H is a “smoothed” version of the nonlinearity H.
This ODE is then linearized about its equilibrium at W = 0
and its local stability properties can be determined as in
Section III. It will be seen that stability and instability are
primarily dependent on the properties of the input sequence
Xk, and examples of both stability and instability are given.
Conclusions are drawn in the final section.

II. TECHNICAL SETUP

This section presents the theoretical results which relate the
behavior of the adaptive algorithm (5) to the ODE (6). The
adaptive update term H(-) in (5) has three arguments

* the parameter estimate error Wy

« a function Y} of the inputs to the adaptive filter

+ the present disturbance term U, .

Assume that the {W},} are R? valued random variables, where
d is the number of adaptive parameters and that {Y3} is a
stationary, ergodic, random sequence with distribution vy-.
The disturbance term is allowed to be a function of both the
state Wj, and the inputs Yy, though the random component of
Uy, must be independent of Wy and Yj. Thus, assume there
exists ii.d. random variables {1}, independent of {¥%}, and
a measurable function g such that Uy = q(Wg, Yk, ¥x). For
instance, the disturbance may be a moving average of either
the state or input, hence it is not required that the disturbance
itself be i.i.d.
Define

P(Uks1 € C|(Wi. Y. Ui _)
= P(q(Wi, Ye, %) € Cl(W,, Y, U)E_ )
= (Wi, Y2 C).

Also, define a smoothed version of the update term
H(w,y) = /H(wfy,u)n(w.y,du) @)

where w € R4 x R x R?. Assume that H is continuous (in
both its arguments) and that the expectations of H and H are
finite, that is, for some K € Rt

E{supw:|w‘§K|H(w, Yi. q(w. Yy, l/’km} <00

E{supw:|w‘§K|ﬁ(11J,Yk)|} < . 8)
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Note that there are no assumptions on the autocorrelations of
the inputs or disturbances. H is allowed to be discontinuous,
provided that the expectation over 7 is smooth enough to make
H continuous. Just as H averages H, the distribution of Y} is
used to average H over the inputs Y%, and the doubly averaged
quantity

fi(w) = / H(w, y)vy (dy) ©

is the key ingredient in the ODE and to the questions of
stability.

Let W, (t) = W}y, define a time scaled continuous version
of the discrete W}, process where [2] represents the integer
part of z. For K € ®F, let 75X = inf{t:|W,(t)] > K}
be the first time that W, (t) reaches the value K, and let

K
Wit (1) = Wa(- A 7)) define the corresponding “stopped”
process, that is, the process that is equal to W, (t) from time
zero to the stopping time 'Tlf{ , and is then held constant for all
t> T‘f{ . The terminology a Ab means the minimum of ¢ and b.

If the solution (denote it W (t)) of the ODE (6) is unique,
then for every ¢ > 0,0 < T < o0

lim P( sup |W,:“A - W) > e) =0. (10)
#=0 \o<t<rX AT :
A version of this result was presented in [3] and it is proven
in detail in [4]. It is closely related to prior results due
to Benveniste, Kushner, Ljung and their coworkers, and the
books [1], [7] provide an excellent introduction to this area.

Equation (10) says that for small x and finite observation
times, the algorithm generically follows the trajectory of
the ODE solution. Thus the behavior of the algorithm can
be predicted by investigating the behavior of the ODE. In
particular, if the ODE is locally stable at the origin (its
equilibrium point), then the algorithm will be well behaved
near the origin also, for a finite observation time and small
enough p. There is a complicated interconnection between
the length of time over which the algorithm remains near
the ODE and the stepsize. Any model of this type will
eventually make large excursions from a given operating point.
In [12], we argued that the time intervals between these large
excursions could be approximated by a suitable compound
Poisson process.

Suppose for instance that the ODE solution does not blow
up in finite time. Then we may dispense with the stopping
times and it is true that

lim P( sup |[W,(t)— W(t)| > e) =0.
#=0  \o<t<T

However, typically P(Supgc;coo [Wu(t) = W(t)| > €) = 1,
for all > 0. One must be careful. The step size must be
made smaller as the observation window becomes larger. It
is possible to be more precise here via related Central Limit
Theorem type results. It can be shown that a scaled version of
W, (t) — W(t) is asymptotically a Gaussian random process
with a certain covariance structure (see e.g., [1], {31, [4], [7D.
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III. MEDIAN LMS ALGORITHM

Application of the methodology of Section II to the median
LMS filtering problem requires derivation of the functional
forms of H and H. The local stability of the algorithm can
then be readily determined for particular inputs by checking
the stability of the linearized system with transition matrix
—H (w,w, w). The first step is to smooth H over the present
dlsturbancc. For notational simplicity, let X3, w3, D3 represent
the present terms, while X3, w,, D3 are delayed one timestep,
and X1, wi, D; are delayed two timesteps. Denote w =
(w3, wz,w1) and D = (D3, Dy, D). Define

gi(w, D) = med{z3;(w] X3 + D3), x2;(w X5 + Ds),

wli(w{X1+D1)} i=1,---,n.

where z;; is the jth element of the vector X;. Then

g1(w, D)

ga(w, D)

H(ws, w2, w1,y) = Ep,

gn(w, D)

To streamline the following discussion, assume that the distur-
bance sequence { Dy} is i.i.d. and symmetric with distribution
function F(-) and density f(-). Then

H(w,y) = (h1(w,y), ha(w,y), -+, hn(w,y))T
where

’_lj(ﬂa y) :F( mm) min (u1]7u2])lz3J >0

+ (1 - F(£"")) min (u15,u2;)1eq;<0
+ (1 - F( Jmax)) max (u1j1u2j)lzg]->0

+ F( max) max (ulj, 'u,2j)113]<0

max
P

+'T311$3:>0/, zdF(z)
Zmin
7

+ T3 1.1:3])0 (w;Xs) [F(z;nax) _ F(Z;-nin)]
z;nin

+ Z3jley, <0 / 2dF(z)

+ 2311, <olw] Xo) [P (2) = ()]

and where
T
Ui = xij('wi X+ Di),
; T
z'.ni“ _ mm(ulj, 'u.zj) - .’123]"(1}3 X3
J T3,
and
T
ymax _ Max(uij, ug;) — z3;wi Xy
f] T3; :
Note that

F(Z;nin) = P(uaj = min Of{ulj, ug;, U3j})
and

1- F(Z;nax) = P(’u,3j = maxof{ulj, uzj, ugj}).
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Note also that H is continuous in all of its arguments. The next
step is to smooth the nonlinearity over the inputs by taking the
expectation with respect to the Y variables, yielding

H = Ey(H). (11)

It is easy to see from (6) that an equilibrium for the differential
equation occurs at w = 0. Local stability of the ODE about
this equilibrium can then be determined by linearization, which
requires calculation of

a

where

hijr(w)|w=0
= Ey { [F(”"”'D2
$3]’
+ SL’3]‘{E3,~ [F(wlle

X (123j >0 —

+ [(m1j$1T113j>0 + $2j$27'123j<0)1D111j>D2232j

z1;D1
)IL’zj:E?r - F(
.’12‘3]'

)Il7'z11
x3; 1133;'

123j<0)(1D1z1] >Daxy; — lDlzu<Dzer’)

+ (1810 Loy <0 + 22i%2r 124;50) 1D, 20, < Do, | }

where all terms involving the density f(-) cancel because
of the assumed symmetry. The question of stability becomes
essentially a study of the positive definiteness of the above
matrix. The ODE (and hence the algorithm) will be locally
stable if M is positive definite, and will be unstable if M
has any eigenvalues with negative real parts. Note that the
above theoretical development makes no assumptions about
the independence of the inputs and the disturbances. To
calculate the required smoothed update terms H and H in
closed form, however, it is simplest to suppose the i.i.d. case in
which the input vectors X}, are independent. Strictly speaking,
this cannot occur due to the nature of X}, as a regressor vector
(2), but it is a common assumption in adaptive filtering [11],
[13] and tends to give results which closely approximate the
behavior of the algorithms.

Example: Suppose {X,,Xk,X,} are zero mean indepen-
dent random variables for all i # k # 1. Then it is easy to
venfythath],( )=0ifj #Tandh]r( )>0if 5 =r.
Hence ﬁjr(w)|w=o is positive definite and the median LMS
algorithm is stable.

A. No Disturbance Case

Though the median LMS is designed to reject impulsive
disturbances, it is instructive to consider problems when such
disturbances are not present.

For this setting, the local stability conditions can be ex-
pressed nicely. With {Ux} = 0, H = H. The expression of
interest for H(w) = (hy,ha,---, hy,)T is given by
i"j(w) = EX3,X2,X1

{med(z3;(w” X3), z2;(w” X3),z1;(w” X1))}.
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Again, local stability at the origin can be assured when the
matrix

o0 -
%H(w, w, w)

has all of its eigenvalues positive. This leads immediately to
several corollaries. We suppose that z;; = z;-1,;-1Vj,¢ =
2,---,m.
Corollary 1: In the scalar no disturbance case, the median
LMS algorithm is locally stable at the origin.
Proof of Corollary: If the input is identically
zero, then the algorithm remains where it is. Let us

suppose then that the input is not identically zero.
Note that H(w) =  E{med(X3wT X3, XowT Xy, X)
wlX1)} =  wE{med(X? X2 X?)}, since in the
scalar case X;wTX; = wXIX; = wX? Hence
2 H(w) = E{med(X3, X3,X})} > 0.

Corollary 2: Let 31,82, -, s, denote the elements of one
period of an n-periodic input sequence. Let my,mo, - -, m,

denote one period of the n-periodic sequence obtained by
passing the input sequence through the median filter. Then, if

> si>0(<0)and Y mi < 0(>0), (12)

that sequence will cause the algorithm to not be locally stable
at zero.

Proof of Corollary: All we need to do is show to instabil-
ity in a particular w “direction.” Choose (wy,wa, -+, wy,) =
(Aw,Aw,---, Aw), ie., all components of the w vector
are equal. Denote > .s; = 3,5 .m; = 7. Then it is
straightforward to verify that fzj (w) = Awsm,j=1,---,n.

Example: For n = 3, and median window size of 3,
consider any three periodic sequence whose median value is
negative and whose average value is positive, e.g. {3, -1, —1}.
By the previous corollary, the median LMS algorithm is not
stable for that input.

Corollary 3: Let n be an even integer. Let 53, $o, -+, 8,
denote the elements of one period of an n-periodic input
sequence. Define a new sequence §; = (—1)iTls;. If the 3
sequence is not stable as in (12) of corollary 2, then the original
sequence s causes the algorithm to not be locally stable at the
origin.

Proof of Corollary: The proof follows as in the proof of
the previous corollary except we choose the w direction to be
w = (Aw, —Aw, Aw, —Aw, -, —Aw, Aw).

Example: For n = 4, and median window size of 3,
consider s = [5,1,—2,1]. Hence § = [5,—1,—2,—1]. This
has a positive mean value and negative mean median value.
Hence s causes instability of the median LMS algorithm.

It is possible that for a given fixed value of p, the algo-
rithm will not be driven into instability by one of the above
“unstable sequences” since these sequences were derived by
linearizing a nonlinear differential equation. For sufficiently
small p, however, the unstable sequences drive the algorithm
into instability, and these the divergent behaviors are readily
observable in simulations for a variety of stepsizes.
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IV. DISCUSSION AND CONCLUSION

This paper examines the behavior of the median LMS
adaptive algorithm using a weak convergence approach in
which the evolution of the parameter estimates (for small
step sizes) is related to the behavior of an associated ODE.
Depending on the characteristics of the input sequence, the
ODE can be either locally stable (indicating probable success
of the adaptive scheme) or locally unstable (indicating that
the algorithm will not remain in close proximity to the desired
equilibrium). The ODE associated with the MLMS algorithm
is fairly complicated. The stability results were derived in the
simple i.i.d. setting, while the instability results were found
by investigating certain directions where symmetry arguments
could be exploited.

A common theme throughout the corollaries of Section III
is that misbehavior tends to be associated with inputs that have
a mean value opposite in sign from its median value. Why is
this?

Consider the special case of an n-periodic input sequence
in an n-dimensional problem. Speaking loosely, the di-
rection 17 = (1,1,---,1)7 acts like an “eigenvector” of
med(XXTW), that is

med(XX7T1) = med(X)XT1 = cl.

If ¢ is positive, then the algorithm tends to be stable (since the
transition matrix (/ —pcl) is a contraction). If ¢ is negative, the
transition matrix is an expansion, and the algorithm tends to
be destabilized. Since X1 is precisely the mean of the input
sequence ;, ¢ is the product of the mean and the median of
the input sequence.

Applications in which the mean and the median of the
input have the same sign (any symmetric density, for instance)
are good candidate settings for application of the median
LMS algorithm. Conversely, situations in which the mean and
median of the input differ in sign are likely to be poor settings
for the median LMS algorithm.

We reiterate that this is only a rule of thumb, since it is
possible to concoct examples which violate it. Nevertheless,
the heuristic arguments combined with the concrete analysis
of the previous sections, suggests that this is a good general
guideline to help delineate feasible application settings from
those for which it may be dangerous (from a stability point of
view) to use the median LMS.

The instability examples do not imply that the median LMS
algorithm is useless. Indeed, several studies have shown that
the algorithm is able to improve resistance to impulsive noises
dramatically. Thus, this paper should be read as a warning to
the potential user of MLMS: some a priori knowledge of the
input statistics are needed.
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