
IEEE SIGNAL PROCESSING LETTERS, VOL. 9, NO. 11, NOVEMBER 2002 341
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Abstract—This letter exploits the cyclic prefix to create a blind
adaptive globally convergent channel-shortening algorithm, with a
complexity like least mean squares. The cost function is related to
that of the shortening signal-to-noise solution of Melsaet al., and
simulations are provided to demonstrate the performance of the
algorithm.

Index Terms—Adaptive, blind, cyclic prefix, equalization, mul-
ticarrier, orthogonal frequency division multiplexing (OFDM),
TEQ.

I. INTRODUCTION

M ULTICARRIER systems, such as orthogonal frequency
division multiplexing or discrete multitone, have less

stringent equalization requirements than single-carrier systems.
If the channel is shorter than the cyclic prefix (CP), then the ef-
fect of the channel is flat fading on each carrier. If the channel
exceeds this length, then interchannel interference (ICI) and in-
tersymbol interference (ISI) will be present. The standard so-
lution is to use a channel-shortening (time-domain) equalizer
(TEQ).

There are currently many methods which, when given a
channel, can compute the optimal equalizer (for some metric)
[1]–[3]. There are also many suboptimal and/or adaptive
approaches, such as [4]–[7]. Most approaches to TEQ design
are nonadaptive, have high complexity, and require training
or a channel estimate. While there are methods for blind
channel identification for multicarrier systems, there is only
one “blind” adaptive method that directly equalizes the channel
[7]. However, [7] performs complete equalization rather than
channel shortening. This not the desired criterion, so the
overall performance is expected to be worse. Furthermore, [7]
requires two matrix–vector multiplies per update, which is
more computationally intensive than the proposed method. We
propose a blind adaptive channel-shortening algorithm that has
significantly lower complexity than [7].
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II. SYSTEM MODEL

The (baseband) system model is as follows. Each of the
frequency bins is modulated with a quadrature amplitude-mod-
ulated signal, although often some bins are left as null car-
riers [7]. Modulation is performed via an inverse fast Fourier
transform (FFT), and demodulation is accomplished via an FFT.
Channel shortening is performed by a TEQ, and the resulting
shortened combined channel is equalized by a bank of one-tap
frequency-domain equalizers (FEQs). After the CP is added, the
last samples are identical to the firstsamples in the symbol,
i.e.,

(1)

where is the total symbol duration, andis the
symbol index. To simplify the notation, henceforth we assume

(without loss of generality). The received datais ob-
tained from by

(2)

and the equalized datais similarly obtained from by

(3)

where is the length of the equalizer. The combined channel
is denoted by .

III. M ERRY ALGORITHM

The channel destroys the relationship in (1), because the ICI
and ISI that affect the CP are different from the ICI and ISI that
affect the last samples in the symbol. Consider a system with

, , and . The CP contains
, and the symbol contains . Note that

, but at the receiver, the interfering samples before
sample 2 are not all equal to their counterparts before sample 10.
If , , and were zero, then .

If the channel order , then the last sample in the CP
should match the last sample in the symbol. One cost function
that reflects this is

(4)
where is the symbol synchronization parameter, which is in-
cluded because this approach requires knowledge of where the
symbol begins. The choice ofwill change the cost function.
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The proposed algorithm “Multicarrier Equalization by
Restoration of RedundancY” (MERRY) performs a stochastic
gradient descent of (4), with a constraint to avoid the trivial
solution . This algorithm is as follows:

For symbol k = 1; 2; . . . and for tap j = 0; 1; . . . ; T � 1

(5)

where � denotes complex conjugation.

Possible implementations of the constraint include renormal-
izing after each iteration or fixing one tap to unity. Note that
the algorithm only updates once per symbol.

IV. PROPERTIES OF THESOLUTION

We now analyze the cost function and relate it to the short-
ening signal-to-noise (SSNR) solution of [3]. We assume the
following.

1) Inverse FFT (IFFT) input is zero-mean, white, and wide-
sense stationary (thus, the IFFT output bins are uncorre-
lated).

2) (the FFT size is at least as large as the
combined channel-equalizer length).

3) Noise autocorrelation function for
.

4) Noise is uncorrelated with the data.

A. Cost Function

The following theorem relates our work to that in [3]. It says
that MERRY attempts to produce a “don’t care” region with a
width of taps.

Theorem 1: The cost function (4) simplifies to

(6)

where , and .
Proof: Consider the following definitions:

(7)

Then (4) simplifies to

(8)

In going to the second line, we have assumed that the noise and
the data are uncorrelated. Observe that

(9)

The values of that enter additively have a highest index of
, whereas the values ofthat enter with a minus sign have

a smallest index of . If , then
the highest index in the first group will be lower than the lowest
index in the second group. If this requirement and assumption
1) above hold, then will be diagonal. Furthermore, the
middle terms in (9) are all zero, due to (1). Thus

diag (10)

The matrix simplifies as well:

(11)

If assumption 3) holds, then the middle two terms are zero. The
remaining two terms each equal the noise autocorrelation ma-
trix, so . Substituting into (8), we have

(12)

Thus, is proportional to the energy of the combined impulse
response outside of a lengthwindow, plus a noise gain term.
This completes the proof.

Theorem 1 suggests that MERRY finds a solution similar to
the one found in [3]. MERRY minimizes the sum of the energy
outside of a length window plus the energy of the filtered
noise, subject to a constraint (e.g., ). In contrast, [3]
minimizes the energy of the combined impulse response out-
side of a window of length (rather than ), subject to the
constraint that the energy inside the window is unity. Note that
[3] does not limit the noise gain, whereas MERRY does.

B. Minima

This section outlines a proof of global convergence of a gra-
dient descent of (4). (MERRY is astochasticgradient descent
of (4), so it should follow the average system and converge as
well for small . See [8, Sect. 2.5] for a discussion of how a
stochastic gradient algorithm performs the averaging.) Define

(13)

Adding a Lagrangian constraint to the cost function, we have
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Fig. 1. Achievable bit rate versus time.

The gradient if and only if are an eigenpair of
. Then, the Hessian is positive definite only if

we choose to be the smallest eigenvalue. If the smallest eigen-
value is repeated, then there will be multiple minima, but all will
have the same cost (equal to the eigenvalue). This proves global
convergence of the gradient descent algorithm. Furthermore, in
the noiseless case, , where , and

is the channel convolution matrix with the middlerows
removed, as in [3]. Using this, it can be shown that modifying
the constraint from to makes the minima of
(6) and [3] identical.

V. SIMULATIONS

Fig. 1 shows a digital subscriber loop (DSL) simulation using
carrier serving area (CSA) loop 1, a standard DSL test channel
[5]. The Matlab code is available at [9]. The CP length is 32;
the TEQ had 16 taps; and dB. (Robustness to
crosstalk will be considered in future work.) Initialization was a
single spike. The DSL performance metric is the achievable bit
rate for a fixed probability of error

SNR

where SNR is the signal to interference and noise ratio in fre-
quency bin . (We assume a 6-dB margin and 4.2-dB coding
gain; for more details, refer to [1].) Fig. 1 shows that MERRY
can rapidly provide a solution approaching the maximum SSNR
solution and the optimal MERRY solution. For DSL, MERRY
should converge within 16 000 symbols in order to perform bit
allocation at the end of the initialization period, whereas in a
broadcast environment, tracking speed is more of an issue than
converging within a set time. Fig. 2 shows the bit rate versus
SNR. Here, the bit rate was computed by running for 5000 sym-
bols and gradually decreasing the step size over time. For all
these SNR values, MERRY approaches the max SSNR solution.
The jaggedness is due to the random input.

Fig. 2. Achievable bit rate versus SNR at input to receiver.

VI. CONCLUSION

The MERRY algorithm performs blind adaptive channel
shortening, which has not hitherto been attempted (although de
Courville et al. [7] attempt full equalization for a multicarrier
system without a cyclic prefix). The MERRY algorithm is
low complexity and globally convergent. Future work will
involve improving the convergence speed of the algorithm and
expanding upon the analysis of the cost function.
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