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Excursions of Adaptive Algorithms via the Poisson
Clumping Heuristic

William A. Sethares, Member, IEEE, and James A. Bucklew, Member, IEEE

Abstract—This paper details the application of the Poisson
clumping heuristic (PCH) to the least mean square adaptive al-
gorithm and its signed variants. Under certain conditions on
the input and disturbance statistics, the parameter estimate er-
rors form a Markov process. The PCH asserts that large ex-
cursions of the parameter estimates occur in clumps, and that
these clumps are distributed in a Poisson manner with param-
eter ),. Expressions are derived for each of the four algorithms
in the scalar case, which allows calculation of ), in a relatively
straightforward manner. These values are compared to simu-
lations of the algorithms. Given that the results are asymptotic
in b, the close agreement between simulated and theoretical
values is striking, even for very modest b. The four algorithms
are then compared in terms of A,. Some observations are made
regarding the relative performance of the four variants, and no
single LMS variant always outperforms the others. Suggestions
are made as to how this technique might be applied in the vec-
tor case, and a crucial ‘‘monotonicity property”’ is verified.

I. INTRODUCTION

N certain adaptive filtering tasks, the numerical com-

plexity of algorithms such as recursive maximum like-
lihood (RML) or normalized least mean square (NLMS)
is too high for a given throughput. This encourages the
use of the least mean square (LMS) algorithm [1] or the
simpler ‘‘signed’’ variants in which the n multiplications
per iteration of LMS are replaced by n compare opera-
tions [2]. What is sacrificed (or gained) in terms of per-
formance for this simplification?

This paper addresses the issue of performance of LMS
and its three signed variants in terms of the Poisson
clumping heuristic (PCH) [3], which gives a measure of
the probability of large parameter excursions. Given a sta-
tionary input, the parameter estimate errors are an asymp-
totically stationary random process. Exact expressions for
these asymptotic distributions are forbidding, but the PCH
provides a way of gathering information about the steady
state behavior in a relatively straightforward way. For a
given input and disturbance distribution, the behavior of
the four algorithm forms can be compared.

Large parameter errors occur due to large inputs or dis-
turbances from the ‘‘tail”’ of the distributions, or due to
a long string of (unlikely but inevitable) malicious events.
In either case, these events are rare, and may be investi-
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gated for certain models using large deviations theory [4],
[22]. The large deviation methodology can give more in-
formation (e.g., when the algorithms are convergent),
though we argue that the present method appears more
tractable for the study of steady state behavior. In [5], the
probability density function of the LMS adaptive weights
is derived under the assumption that the input process is
zero mean independent identically distributed (i.i.d.)
Gaussian. The present technique makes no assumptions
about the input process other than that it is i.i.d. and its
distribution function is known. The characteristic func-
tion of (complex) scalar LMS weights is investigated in
[6], again under the Gaussian assumption, and the adap-
tive weights are shown to act in an essentially Gaussian
fashion.

Rather than investigating this stationary distribution it-
self, we suppose that a measure of performance for an
adaptive algorithm is stated in terms of a desired bound
on the maximum parameter error b. This is apparent when
one is more interested in a catastrophic error than the long
term average behavior. For instance, systems which in-
volve a feedback of the error signal back into the input of
the adaptive element (e.g., [19], [20], [22]) may become
unstable if the parameter error becomes too large. Mean
time to instability can be predicted via the likelihood of
large parameter excursions while a mean square error cri-
terion ignores these destabilizing events since they are of
low probability.

The structure of the algorithm (when driven by i.i.d.
inputs) implies that the parameter estimate errors form a
Markov process. This suggests the use of the PCH as a
tool for understanding the behavior of the algorithm, in
terms of the possibility of attaining the error b. The PCH
asserts that ‘“hits’’ of the error b, for b large, will tend to
occur in ‘‘clumps,’” and that these clumps will be distrib-
uted in a Poisson manner. For certain input processes, the
Poisson parameter N, can be calculated analytically as a
function of the stepsize p and the error b. For other in-
puts, numerical techniques are used to derive expressions
for the hitting rate, given particular distributions on the
input and disturbance, and assuming that the two pro-
cesses are independent. This allows a comparison of the
performance of the various algorithms, where perfor-
mance is gauged by the likelihood of such large parameter
excursions. Interestingly, no one of the algorithms ‘‘out-
performs’’ the others in all cases. We have chosen to con-
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centrate primarily on the scalar case, since our purpose is
to compare the four variants of LMS and to demonstrate
the usefulness of the PCH as a tool for measuring the per-
formance of adaptive algorithms.

Section II recalls four popular adaptive algorithms and
then provides a brief introduction to the PCH by formally
defining a mosaic process and the related notions of
clumps and hits. Central to any application of the PCH is
that the process must behave in an essentially monotonic
fashion for large excursion levels. We argue that if the
input process to the algorithm fulfills a persistence of ex-
citation condition then the desired monotonicity holds.

Section 111 develops detailed expressions for the hitting
rate A, of the error bound b for each of the four algo-
rithms. This involves a formula for the stationary distri-
butions of the parameter estimates in terms of the input
distribution and the distribution of the disturbance, as well
as the actual calculation of \,. The section concludes with
an examination of the possibility of extending the results
to the vector case. We derive a result for inputs and dis-
turbances possessing spherical symmetry in their (multi-
dimensional) probability distributions.

Section IV derives working expressions for the calcu-
lation of N\, where the disturbance is an i.i.d. collection
of Bernoulli random variables. This is our test case, for
which we compare all four algorithms when excited by
three different input distributions (Gaussian, double sided
Rayleigh, and Laplacian). Two sets of experiments are
reported. The first set verifies that the calculations of A,
agree with straightforward simulations of the algorithms.
The second set compares N, for the four algorithms. No
one of the algorithms outperforms the others in all cases.
The last section presents conclusions and areas for further
investigation.

II. PROBLEM SETUP
A. Discussion of the Algorithms

The LMS algorithm is well known as a recursive gra-
dient algorithm that tends to adjust a set of filter coeffi-
cients so as to minimize the mean squared error between
an input process {x;} and a given signal. If w, represents
the error between the current set of estimates and the op-
timal weights, then the adaptive update on w is given by

Wir1 = W — mxowe + dy) (D

where p is a step size coefficient typically chosen to be
much smaller than the expected value of x2, and d, rep-
resents the essentially unpredictable (or disturbance) por-
tion of the given signal.

Several variants of the LMS are in common use. If it is
desired to minimize the mean absolute error (rather than
mean square error), then the algorithm becomes

Wiey = We — X sgn (wex + dy) (2)

where sgn () represents the signum function. This was
first proposed in [7], and has been analyzed more recently
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in [8], [9]. One justification for the use of this signed error
form is that it is numerically simpler to implement than
LMS, and claims have been made that it tends to reject
disturbances better than LMS. Our results indicate that for
certain distributions on the input and disturbance se-
quences these claims are justified, while for others they
are not.

An alternative which preserves the numerical simplicity
of (2) is to take the signum function of the input data
stream. This is known as the signed regressor (or clipped)
LMS algorithm, and was proposed in [10]. This algorithm
has been analyzed more recently in [11}-[13]:

Wip1 = Wi — pSg0 () (wexe + di). 3

Finally, the sign-sign version of LMS applies the signum
function to both the input data and the error signal:

Wip1 = W — psgn (xp) sgn (wx, + dy). @)

First proposed in [14], this version has found extensive
use in adaptive equalization and in adaptive pulse code
modulation [15].

B. Introduction to the Poisson Clumping Heuristic

The Poisson clumping heuristic (PCH) is applicable to
a large class of stationary probability models which have
a certain monotonicity property for large excursions. The
probability that such a process will achieve a large value
is asymptotically small, and is distributed in a Poisson
fashion with parameter \, where b is the large value of
interest. Moreover, these hits of the bound b tend to occur
in clumps rather than in isolation. To formalize these no-
tions, we first define a mosaic process which is a formal-
ization of the idea of ‘‘throwing sets down at random.”’
Let ® be a collection of sets. Think of each B € & as
being a “‘small’’ set located near the origin. Let C be a
probability distribution over ®. Given a set Band at €
®, define the translation of the set Bast + B = {t + x:
x € B}. Mark out points { y;} on the real axis according
to the events of a Poisson point process of rate A. Define
the mosaic process

S=U(Yi+Bi)

where the B; € ® are chosen via the distribution C. We
call the y;, centers and the y; + B;, clumps. The clump
endpoints of y; + B; are y; + max {x: x€ B;} and y; +
min {x: x € B;}. § is the union of i.i.d. shaped clumps
with Poisson random centers.

The probability that a stationary stochastic process (in
our case, the adaptive algorithm) makes a large excur-
sion, can be related to the centers and clumps of the mo-
saic process. Consider some stationary real valued ran-
dom process {w;}. Suppose we are interested in the dis-
tribution of

My max Wy

ke{0.1,- - ,N}
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for large N. Defining the random set S, = {k
gives the fundamental relation

W =

b},

P(My < b) = P(S, N {0, 1, -+, N} is empty).

For b large, S, is a sparse stationary random set. It is
stationary and random since {w,} is assumed to be a sta-
tionary random process, and it is sparse in the sense that
if b is large, there are very few indices contained in S,.
The PCH assumes that S, is a mosaic process with some
clump rate A\, and some clump distribution C,.

The clump rate N, is derived as follows:

)\b = lim
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Think of it this way. Large excursions are the result of
large input values or large disturbance values. These tend
to be fairly rare events, and the possibility of multiple rare
events occurring near each other in time is a ‘‘rare
squared’’ event. Ignoring such extra-rate events justifies
the approximation of P(w; < b, w, = b, +++ , w, <
blwy = b) by P(wy,, < b|w, = b). Moreover, as the
bound increases, the approximation gets better. The sim-
plest way to guarantee this rarity of successive large events
on which the monotonicity property rests is to assume that
the inputs are i.i.d.

P(some clump endpoint lies in (0, 3))

50+ )

I

lim P(the clump containing O ends in (0, &), 0 € ;)

50+

P (the clump containing 0 ends in (0, 8)|0 € §})

PO €S, lim

50+

In discrete time, replace ‘8’ with ““1’’ to obtain
N = P(0 € Sp)P(clump ends at 0|0 € S;)

= P(w,

v

b)P(clump ends at 0|0 € S;)

v

= Pwy = b)P(w, = b,w, < b, -+

w, < blwy = b)

&)

for n ““large’” compared to a clump diameter. From the
fact that the clumps are arriving as a Poisson process

P( max

ke{0,1,- - - ,N}
= P(My < b)
P, N {0, 1, - -+, N} empty)

Wksb)

U

P(no centers have hit in interval [0, N])

exp (—NNy).

©)

Note also that the mean time to an escape over the level
b of {w,} is the interarrival time between clumps and it
is given by 1/)\,. Both of these observations are of inter-
est in trying to characterize the large excursion behavior
of adaptive algorithms. Refer to Section IV-B and IV-C
for a more concrete presentation.

C. The Monotonicity Property

Our application of the PCH requires that the parameter
estimate errors decrease in a monotonic fashion for large
excursion levels. While this is not always true for the four
algorithms above, it is the generic behavior. We now give
a formal definition of the required property:

Monotonicity Property:

Pw, <b,w, <b, -
P(w; = blwy

lim b) =

b— o

, W, < blwy =
=

b)

6

To be more concrete, rewrite the LMS update equation
(1) as

Wit = (1 — pxDwe — pxedy.

Given that the algorithm is operating in its normal region
(with w, small), w,, can attain a large value in one of
two ways. Either the input x, can be very large (causing
1 - ux%) to be an expansion rather than a contraction),
or the disturbance d, can be large. Both occurrences are
rare. On the other hand, when w, is large, only another
rare event can cause it to increase in magnitude, since
(1 — pxd) is strongly contractive for normal sized x;.
Similar arguments apply to each of the variants of LMS.
The exception to this rule is when the input fails to be
persistently exciting [16] for the particular algorithm. This
is explored in [2], where excitation conditions are derived
for three of the four algorithms above.

III. DEVELOPMENT
A. Scalar System Case

This section develops general expressions for the cal-
culation of the Poisson parameter A, for each of the al-
gorithms of interest. Under the assumption that the inputs
and disturbances are independent identically distributed
sequences, the coefficient error processes are Markovian.

The PCH requires that we obtain the following proba-
bility:

p = P(clump ends at time 0|0 is in clump)

=Pw, <b wy,<b, - ,w, <bw=Db

M

where n is small compared to the average interclump dis-
tance.

All of the stochastic models we consider approximate
the ‘‘monotonicity property”” for small step sizes, that is,
the magnitude of the parameter error tends to decrease
monotonically once it has reached a large level. Hence,
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we make the approximation
p = P(w, < blwy, = b). (8)

Let F,(+)(f,(+)) denote the distribution (density, if it
exists) function of the random variable a. We let
F, (") (f,()) denote the stationary distribution (density,
if it exists) of the coefficient error Markov process. Sim-
ilarly define F,}.,(¥|z) = P(w, < y|w, = 2), the con-
ditional probability distribution of w; given that wy = z.
The associated conditional density (if it exists) is denoted
fuwo(¥]2). Assume that the processes have been running
for a long time and that all marginal distributions have
settled into the stationary distributions. Then

b~ r P(w, < blwy = 2) dF,,(2)

b [1 = F,,(d)]
- r P(w, < blw, = 2) dF,(2)
b [1 — F,(b)]
* Foju(bl2) dF, )
= Twijwo 7 ie) T wie)
S,, [1—-F,®b)] ©

The clump rate A, is given by
Ny = P(clump ends at time 0|0 is in clump)
+ P(0 is in clump)
=p* Pw = b)
=p- (1= F,b)

= Sb FW|1wn(b|z) de(Z). (10)

Hence, in order to find expressions for the clump rate
N\, (10) requires expressions for the transition structure
F\\wo(+ | +) and for the stationary distribution F,,(-). These
two requirements are interrelated. To find the stationary
distribution, consider

ka“()’) = S lelwo(y|z) dek(z)'

(11)
Taking the limit as k approaches o gives
If densities exist, then
fo(y) = waxlwo(yk)fw(z) dz. (13)

The conditional distribution corresponding to the coef-
ficient error models (1) are given by

Fim (y]2) = P@@ = pxo(zxo + do) < y) (14)
Fim(¥|2) = P(z — pxosgn (zxp + dg) < y) (15)
Fliwm(¥12) = P(z — psgn (xg)(zxo + do) < y) (16)

F35w(¥2) = Pz = p sgn (xo) sgn (zxo + do) < y)
an
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where the {x;} are the i.i.d. input sequence and the {d;}
are the i.i.d. disturbance sequence ({x;} and {d;} are in-
dependent of each other). The superscripts Ims, se, sr,
and ss indicate which algorithm the expression applies to,
and the notation F,,,,(-|-) without any further super-
scripts, means that the expression is valid for all four al-
gorithms. For simplicity, suppose that the distribution
function F, () is absolutely continuous (does not have
point masses) and hence has an associated density. Note
also that F,,},, (- | +) depends entirely on the distributions
of xy and dj.

We see from expressions (10), (12), and (13) that
F,jw(+|+) is the crucial quantity to compute for each of
the models. Expressions (12) and (13) imply an iterative
method to find the stationary distributions (or densities)
of the coefficient error random processes and (10) gives
the explicit expression for the clump rate.

B. Classical LMS

A more detailed expression for the conditional distri-
bution FL‘,':?WO( y|2) is from (14):

Finteo(¥2)

S P(z — px’z — pxdy < y) dF,(x)

_ _ 2
(Z—y aa z)) dF,, ()
ux

0 v — 2
N S Fy <M> dF,, (0.
—o0 [LX )

(18)

I
ey
© 8
TN

|
S

C. Signed Error LMS
Let 1,(x) denote the indicator function for the set 4,

i.e.,
1
Lx) = 0

For a real nonrandom parameter d:

forxe A
for x ¢ A.

a9

P(z — pxosgn 2xg +d) < y)

P<x0 sgn (z2xp + d) = - y)

- d
Lo, (@ [P (Xo =1 p y’ Xg = ——>

- d
A rom i )]
n

+ 1(—0:,0)(z) l:P <x0

- d
+P<—x02 Z y,xoz ——>].
u Z

I\
~<
=
S
IA
|
| &
N
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Hence,

wllwo(y|2) Pz — KX SgN (ZXO + d()) =

I

S P(z — pxysgn (zxg + d) < y) dF,;(d)
(21)

where we may now substitute (20) into (21) to obtain a
final expression.

Unlike standard LMS, the signed error algorithm can-
not converge to zero even when there is no disturbance.
Thus there always exists a nontrivial stationary distribu-
tion. In this case, a closed form analytic solution can be
found for at least one example.

No Disturbance Case: Suppose P(d, = 0) = 1 for all
k. Then (20) and (21) imply

=222)
u

Fe (ol = 1[0,w)P<|xo|

y—z
+ lwoP <xo| = > (22)
U
Hence, if densities exist
s z—y\1
fwellwo(y|Z) = 1[0,°°)fix0|< > -
b/ m

- 1
+ 1(—00,())f|x0{ <u> - (23)
"
which when substituted into (13) gives
fw(y) = S fxo\ < > fw(z) dz
0
+ S fxo|< > -f@dz.  (24)

Using (10) and (22), the expression for the clump rate is

Ay = S P <|x0| = ﬂ) dF,(2).
b M

Example: Suppose that |x| has the probability density
exp (—x) forx = 0. It is then easy to check that a solution
of (24) is obtained if f,,( y) = (1/2u) exp (—| y| /p). Sub-
stituting into (25) shows that A, = 1/4 exp (—b/p).

(25)

D. Signed Regressor LMS

In order to get more detailed expressions, consider the
special case where {x,} and {d,} are symmetric sequences
of random variables. If x; has a symmetric distribution
about zero, then |x,| and sgn (x,) are independent random
variables. Note also that d, sgn (x;) has the same distri-
bution as d,. Hence, from (16),

Flim(Y|2) = P (z = pzlxo| + udy sgn (xp) < y)

I

S P(z — pzlxo| + pd < y) dF,(d). (26)
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It is easy to check that
P@(l = plxol) = y = pd)
1 — ud
= 1.0y @ <1 = Fiy <— <1 - y—”))
u Z
1 - ud
+1(°°0F,m'< <1—y Z" >> @7)

Substituting this last expression into (26) and taking a de-
rivative with respect to the y variable yields

1 — ud
31 = | A <— <1 e >> dF4(d).
B z |z|p

(28)
E. Sign-Sign LMS

The conditional distribution F?;, .., ( y|z) for the sign-sign
LMS is from (17)

I

P (Sgﬂ (xp) sgn (zxy + dp) = ¢ ; y>

A > dF,(x)
u
0 -z
+ S P<sgn (zx + dy) = Y >
—w® u

s dF,(x)

SO 1(_],11_ <§——y> P(Sgn (Zx + do) =0

u
-
dFy() + 1o ) <——y>
I
0 y -z
N S " < >
o i Ty

- P(sgn (zx + dy) < 0) dF,,(x).

S P<sgn (zx + dy) =
0

29
Note that
P(sgn (zx + dy) > 0)
= P((zx + dy) > 0) = P(dy > —2zx)
=1 - Fup(-2zx)
and similarly
P(sgn (zx + dp) < 0) = Fy(—2zx).

Hence we obtain the expression

S8 Z - y Z - y
Fliwe(YD) = 1icw —p (T) + 1[-1,1]( ” >

: [So (1 = Fy(—2x)) dF(x)

0
+ S Fy(=2zx) dFm(x)]. (30)
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F. Vector System Case

In this subsection, we indicate the possibility of ex-
tending these techniques beyond the scalar case by work-
ing out an example involving LMS for certain inputs and
disturbances. The main drawback is that we assume the
inputs are i.i.d. vectors. This assumption is not strictly
correct in the vector case although it is a common sim-
plifying assumption, see [17].

Consider the expression for the sum of squares coeffi-
cient error of the LMS algorithm:

Wi Wip1 = WiWe = 2RX{WW L,

+ pixixe{w + )
= wiw, + Wxx — 2p)@{w, + dy’. (31)
We need to compute

Pwiw, < ylwgwy = 2)

= S Pwiw, < ylwiwy = z, x(xg = x) dF,7, (¥).

(32)
Suppose that x; has a spherically symmetric distribution
in n-dimensional space. Then xjwy = |lxoll - {[woll cos (8)

where 0 is the angle between the two vectors. Since x
and w, are independent and the angle of x, is uniformly
distributed with respect to any fixed angle, then it is true
that 6 is also uniformly distributed on an interval of length
27, say [0, 27]. Then (32) becomes

S P(z + (% = 2) (Vaz cos (6) + do)* < 3) dF,r, ()

= S <(\/_z cos () + do) —_—Z>
2/n

- 2u
2/
y—2z
-
* S—mP - uzx-—2u>
CdF1 ()

_ S‘” S F _y-z _d

2/u SO\ Nxz(p™ -2 Vxz
_F _y-z 4
s ® xz(p’x =20 xz

2/u
dFdo(d) d xxo(x) + S S

—o

1| F _y-z 4
CONNx(wx = 20 Vxz
_F _ly=-z 4
cos (8) )CZ(sz _ 2”’) \/;E

© dFy(d) dF7, (v). (33)

©dFg ()

((\/x_z cos (0) + d(,)2
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Note that the distribution function of cos (6) can be writ-
ten as

a>1

Fos@la) = —l<a<1 (34

N = =

1
+ — arcsin (a)
T

o

a < —1

for real arguments a, and should be taken to be zero for
imaginary ones.

IV. REsuLTS

This section conducts a series of specific computational
examples to verify that the PCH is applicable to the var-
ious adaptive schemes and to compare the clump rate A,
for the different algorithms.

A. Example Setup

Suppose that the disturbance sequence is an i.i.d. col-
lection of Bernoulli random variables:

1 lfdo > €
Fp) =43 if —e<dy=<e (35)
0 ifdy< —

where € is a positive real number.

It is easier to work with the transition densities instead
of distributions for finding the stationary densities. For
LMS, expression (18) may be differentiated with respect
to the y variable to give

L.y (€’ 1® = 4uz(y = 2))
\/ezuz —4duz(y — 2)
. {f <*ep. + Velu? — dpz(y - Z)>

Zuz

Ims

wiiwo()"Z)

s <*ep. — Velu? — 4pz(y - Z)>
2uz

‘1 <ep, + Veu? —Z4p.z(y - Z)>

s <€M — Velu —z4p,z(y - z)>]

(36)
The transition density for signed error LMS is

L (¥12) = 10,00(2) [ <ﬁco ( y>
u
z-y z—y
+ﬂ°( w >> /s, ( p >
el ()
n B u
Li—e/ze/n <Z ; y>:|
* 1m0 { <ﬁm < y>
w
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(552 e (52
I

2u * g
R T WERE <Z ; y>}

For the signed regressor LMS algorithm with symmetric
input density we have

1 <f|x0\ <l <1 P #€>>
wlz| w 4
+ fiu <1 <1 SR L 6>>> (38)
n z

Finally the expression for the sign-sign version of LMS
is

(37)

f?«z\m)(y‘z) =

1
fivs'l\nn(ylz) = l(O.m)(Z) [5()’ - (@ + ﬂ)) E [Fxo <§>

*me (;2)] +8(y - @ — W)
=3l () == GO

+ 1wn@ {B(y — (@ + W)

) )]

+ 8y — - m)

A (9]

We note that the sign-sign version is different in a sub-
stantive way from the other three cases. The most obvious
difference is that the values of the error always remain on
a lattice, e.g., if wy = 0O then w, € uZ Vv k, where Z
denotes the integer lattice. The Markov chain describing
the error propagation no longer has a stationary distribu-
tion since the chain is periodic. This is because at even
time instants w,, € 2uZ V k and at the odd time instants
Wy 41 €202 + p V¥ k. Hence the chain alternates between
odd and even multiples of x. To handle this situation, let
[b] denote the largest element of the lattice uZ not larger
than b. The ‘‘monotonicity property’’ holds as before, so
the relevant quantity to compute is

(39)

P(w, < blwy = b)

=P(W1 <b,W()=[b+pL]lW02b)

:P(Wl = [b), wo = [b + u], wy = b)
P(wy = b)

_Pw = [bY|lwo = [b + p)P(wy = [b + p))

P(wy = b)
(40)
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This implies that
N = P(w; < blwy = B)P(wy = b)

= P(w, = [bl|wo = [b + pDP(wy = [b + ul)

_[1_1P<~_67< . _¢ ﬂ
R N T R R

“ Pwy = [b + pul).

4D

Although there is no stationary distribution, there is one
for the even time instants and one for the odd time in-
stants. The average of these two gives a stationary distri-
bution in the ‘‘average sense,’’ and the calculation of P (w,
= [b + u]), and A, is then straightforward.

B. Verification of Model and Discussion

The PCH is a heuristic, it is not a theorem. The asser-
tion that the calculated A, values give information about
the behavior of the algorithms must be verified experi-
mentally. Towards this end, we calculated A, for partic-
ular input/disturbance distributions, and then compared
these values with direct simulations of the algorithms op-
erated with the same input/disturbance distributions.
Overall, the comparisons are striking, far exceeding our
expectations. Since the PCH is an asymptotic result (in
b), we expect to see a close match for large b. As the
evidence shows, however, the calculated and simulated
value of \, agree remarkably well at the very modest lev-
els of only two times the algorithm step size. Also pre-
sented is one case where the A,’s fail to agree until 6-7
times the step size. This relatively poor performance is
attributed to a failure of the monotonicity assumption at
the small levels.

For all experiments, the adaptive gain was set at u =
0.2. The integration step size used in the calculation of
the stationary densities and the calculation of A, was 0.01.
In the simulations, hits and clumps were counted over a
period of 1 million iterations, allowing a direct compari-
son between simulated and calculated values of A\,. The
disturbance distribution was an i.i.d. Bernoulli random
variable, and the input distribution was chosen from
among Gaussian, Laplace, double-sided Rayleigh, and
uniform.

In Fig. 1, curves (a), (b), and (¢) show three typical
comparisons of the simulated versus computed A,. As ex-
pected, the curves approach each other for larger values
of b, which correspond to large parameter excursions.
Somewhat unexpected is the close correlation at small
values—the simulations match the theoretical values to
within a few percent even for bounds b that are only twice
the algorithm stepsize. We observed this close correlation
in numerous experiments (not just those reported), and
this gives us confidence to use the calculated values of A,
as a measure of the algorithm’s performance.

Indeed, the calculated A, give information that is diffi-
cult to gather via direct simulation. To attain a certain
degree of confidence in a particular set of simulation data,
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Fig. 1. Model verification; N, calculated and simulated for (a) LMS with
Gaussian inputs, (b) SE with Gaussian inputs, (¢) SS with Gaussian inputs,
(d) (failure of ) SE with uniform inputs.

many hits of a bound b are required. As the bound grows
larger, these hits become rarer, and the required number
of simulation timesteps increases dramatically. The cal-
culation of \,, on the other hand, is insensitive to the par-
ticular bound chosen. Thus, N\, grows more accurate pre-
cisely as simulation begins to fail. Thus a real strength of
the proposed method is that asymptotic data is easily gath-
ered.

Recall that A, represents the probability that a particular
bound b will be attained. The inverse, 1/\, represents the
average time until this bound is attained. Consider an ap-
plication (such as adaptive control [18], the adaptive hy-
brid problem in telephony [19], active noise cancellation
[20], or in the IIR whitener/predictor [21]), in which the
identification portion of the system is embedded inside a
feedback loop. In each of these cases, the stability of the
entire system requires that parameter error estimates
within the adaptive portion remain moderate, since such
a system can be destabilized by large excursions of the
parameter estimates. On the other hand, if properties of
the inputs and disturbances are known or can be mea-
sured, then the PCH could be used to estimate the mean
time until failure of the adaptive system.

In Fig. 1, the pair of curves labeled (d) shows that the
simulated curve may differ significantly from the calcu-
lated A,,. The source of this failure is that the monotonicity
property on which the PCH is based does not hold for
small b. Consider (2) (the SE algorithm) with Bernoulli
disturbances d, = +(1/2) and uniform [—3, 3] inputs.
For small parameter estimate errors w;, with w, < 1, sgn
(wex, + dp) is equally likely to be +1 as —1, irrespective
of the sign of wy, implying that the w, process is not
monotonic in this region. Consequently, one cannot ex-
pect the PCH to return accurate values of A, for b smaller
than (at least) 1 + u. This is, indeed, when we observe
the curves begin to coalesce. Situation (d) provides a use-
ful warning that estimates based on the PCH must be ex-
amined carefully to ascertain if the desired monotonicity
property is fulfilled in the region for which A, is calcu-
lated.

C. A Comparison of the Four Algorithms

Given the striking agreement between the calculated
and simulated values of \,, we approach the comparison
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of the algorithms with some measure of confidence. Each
of the four algorithms was excited by inputs from each of
three distributions: Gaussian (mean = 0, variance = 1),
double sided Rayleigh (with parameter = 1), and La-
placian (with o = 1). This was enough to demonstrate
conclusively that no single algorithm was always better
(had smaller \;) than any other algorithm.

Consider Figs. 2-4, which display calculated A, values
for the four algorithms. While LMS was the clear winner
for Gaussian inputs (as one might expect), it is the clear
loser for large excursions of the parameter estimate errors
when the input comes from a Laplacian distribution. Sim-
ilarly, the SR algorithm had the smallest A, when excited
by Rayleigh inputs, but the largest for Gaussian inputs.
While the SE algorithm has uniformly the largest A, for
small b over all three cases, for large b it tends towards
zero faster than LMS and SR when the inputs were chosen
from the Laplacian distribution.
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The SS algorithm has uniformly the smallest A, over
the input distributions considered for small b. For large
b, the SS algorithm also performs remarkably well, though
it is only rarely ‘‘the best.”” If this is truly the generic
behavior of this algorithm (and not a fiction of just the
particular input/disturbance distributions we examined),
then this may account for the algorithms popularity when
used in a nonstationary environment. Speaking loosely,
one might think of a nonstationary process as one which
moves from one ‘‘stationary’’ distribution to another. An
algorithm that was able to perform well over large classes
of stationary distributions would thus be highly desirable.

V. CONCLUSIONS

The Poisson clumping heuristic allows a comparison of
the LMS adaptive algorithm and its signed variants in
terms of the likelihood that the parameter estimate errors
in these processes will achieve large bounds. Such hits of
large values are rare events which are hard to simulate
using straightforward techniques. The PCH gives a way
of calculating these rare events that is essentially inde-
pendent of the bound.

This is useful in two ways. First, large parameter ex-
cursions imply that the output of the adaptive filter will
be far from its desired value, and so provides a measure
of performance for the various algorithms. Second, in
adaptive systems which involve a feedback of the esti-
mated output back into the input of the estimator, there is
a possibility that large parameter errors will destabilize
the system. If a bound on this stability region is known,
and if the input/disturbance statistics are known or can be
measured, then the PCH can be used to determine the
mean time until failure of the adaptive system.

Although the PCH is a heuristic (and not a theorem),
there are substantial theoretical underpinnings for its use
in the adaptive setting. For example, Markov chains with
a countable state space and certain strong recurrence con-
ditions can be shown (via regeneration theory arguments)
to exhibit exponential waiting times between visits to
small probability sets [3]. Our chains have continuous
state spaces (except for SS), but they exhibit a strong re-
currence property (e.g., the ‘‘monotonicity property’’).
Moreover, a fine quantization of the state space (in order
to make it countable) is unlikely to introduce quantita-
tively different behavior from the unquantized versions.
It would be of great theoretical interest, however, to ver-
ify these statements rigorously.
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