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Abstract—One of the most popular systems for performing error (rather than the original data sequence) is quantized.
high resolution analog to digital conversion is theCA modulator.  Sjgma-—delta modulataf©A) systems are examples of noise
Though common in applications, theoretical analysis of theSA — ga ing coders [8] and have received a great deal of attention

modulator is difficult due to the presence of a discontinuous . h first i d d h
quantizer in the modulator. This paper presents asymptotic SINC€ they were first introduced more than 30 years ago [9]

results regarding the statistical behavior of the A modulator as a means of high resolution analog to digital conversion.
when inside the loop dithering is utilized. In some recent papers YA modulators are well suited for VLSI implementation and
examining the stochastic behavior of theSA, it was shown (via  5re robust to circuit imperfections. As a resti\ systems
simulations) that the input to the quantizer can be accurately findi id d L | . licati
modeled as a stationary Gaussian process. Our analysis shows@r€ 1NAING widespread use in S|g.na -processllng applications.
that both the input to the quantizer and the quantization noise '€cent years there has been growing interest in the us\of

are asymptotically stationary Gaussian processes, under mild for noise shaping in nonoversampling systems.

assumptions on the input and the dither process. The results of  Exact analysis of both DPCM ardA is difficult for all but

this paper are derived by letting the quantizer stepsize approach simplest cases. This is primarily due to the presence of a

zero, and the analytical approach is related to the stochastic . . . .
analysis of adaptive filtering algorithms. Our analysis is valid Nonlinearity (quantizer) in both systems and the fact that both

for a large collection of stochastic input signals, including ARMA ~ systems incorporate feedback. Analyzes based on modeling
processes. Furthermore, previous stochastic analysis assumed thathe nonlinear quantizer as an uniform, signal independent,
the quantizer never overloaded, while the present analysis does 5qditive white noise source are carried out in numerous

not make this assumption. It is also shown that analysis of . .
the Differential Pulse Code Modulator is in fact analogous to papers. For example, the reader is referred to [2] which

the analysis of the~ A modulator. Simulation results presented ConFains papers cqvering many .aspe(_:ts Xbﬁ_ modulator .
for the first-order ©A modulator and two second-order SA design and analysis. Though this white noise assumption

modulators demonstrate the practicality of the analysis. makes the analysis of these systems tractable using linear
Index Terms—Adaptive algorithms, analog to digital convert- techniques, it has been shown to be lacking in simulations for
ers, differential pulse code modulators, noise shaping systems,lower-order systems. The assumption fails in practical systems

oversampling data converters, sigma—delta¥A) modulators. because the quantization noise is a function of the input signal.
Another approach used in the analysis of these nonlinear
I. INTRODUCTION systems is the use describing functions. The strengths and

. o shortcomings of this approach are detailed in [7]. In [5],
HE PROCESS of amplitude quantization is fundamentggalysis of the quantization noise in a first-ordeén\ is

in many modern communication systems. This is a direcf . . . :
consequence of the ease with which digital data can Bgrned out under jche assumpnon thqt .the Input sequence Is
nstant. Then, using ergodic theory, it is shown thatiie

stored and transmitted. Various systems have been propose(éoggjula,[or can be modeled as a linear system in a different

guantize continuous amplitude signals into discrete amplitu@e . : . .
sequences. Oversampling techniques for analog to digi? ?ﬁ: Tg':t.hgf;r] rr]noqggl Asn tge(:ctu;ﬁ; tg.sdgfr'}[/hee F;rr]%rr)ﬁ;trﬁ;
conversion have become increasingly popular ever since 2 qut 12 :‘th ! .t' t'X anaty Ith first-oflay
single bit delta modulation (DM) system was proposed in [14 Nnad spectrum ot the quantization noise in the nrst-o

ith constant inputs can be found in [6] and in this paper

The popularity of these systems is directly attributable to the", e e .
advances made in integrated circuit technology. it is shown that the quantization noise is not white. The

DM coders are examples of a more general class of pred?é]alysis in [61 provides extepsions.of the r(_esults found in [1].
tive coding systems called differential pulse code modulatgf&'alysis of higher-orde®:A is carried out in [4] under the

(DPCM), which are based on exploiting intersample depeﬁkssumpnon that the input to thg moQuIator is dithered. The
dencies in the input [10]. In DPCM systems, a predictiofSults of [4] apply to constant, sinusoidal and more generally
guasistationary inputs. In [3], stochastic analysis of &
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tistical properties of the quantization noise and the quantizer D,
input in the single bittA modulator are derived under the
assumption that inside the loop dithering is utilized. In our  x + dy l+
analysis, the distribution of the dither is used to smooth the Q
discontinuous quantization function. The results are asymptotic
in the sense that they are exact only as the quantizer stepsize Xi
approaches zero. Furthermore, in the analysis, it is not assumed
that the quantizer is never overloaded. Both the quantization H
noise process and the quantizer input process are shown to be
asymptotically stationary Gaussian processes and the results
are valid for a large class of stochastic input signals with
arbitrary distribution (not necessarily Gaussian). Fig. 1. DPCM coder.
In Section I, brief introductions t&A and DPCM modu-
Iatprs are presented,_and_the evolution of both the_q“a’?t'za“f’ﬁ"s section shows that the evolution f} and {d;} can
noise and the quantizer input process are described in terms . : . .
of recursive equations. In Section lll, the central limit resuffe described in terms of a recursive equation of the form
of [13] is applied to the recursive equations for the\ Wiy1 = AWy + nG(Wi, Yie, Uga1, 1) 1)
modulator. Application of the central limit result to the re-

cursive equations describing DPCM systems can be carréﬂuation (1) is in the form needed to apply [13, Th. 2] to

out in a similar manner and is thus omitted. In Section I\y,'elid thr? results FE)F?E(I:\}IIO” . h in Fig. 1 h
simulation results for first-order single BitA modulator and or the genera system shown in Fig. 1, assume that

two second-order single bitA modulators are presented.the inputz;, is premultiplied byy, a positive number, and

Section V presents conclusions and extensions for future WOW(.a quantization functpn iasgn(). Thus, both the Input gnd
The Appendix contains technical proofs. the quantization function are scaled py The dither Dy, is

assumed to be a sequence of i.i.d random variables. Observe
that

Il. PRELIMINARIES AND BACKGROUND —d
) ] ) o Gk = 041 T Uk
' Pulsg code modulation (PCM) is the most W|dgly used dig- = dyyr — o 5gn(dygr + Dist)
ital coding system. PCM systems are based on instantaneous . ) . D
quantization of the current input sample using a memoryless ~ — #¥k+1 = Tkl = H sg(pair1 = Etr + D).
quantizer. Ifxx, € R is the input to a memoryless quansSince
tizer, then the output i8)(zx ), where Q)(-) is an increasing

. . . . . . T =up + Tk
right continuous function which mapR into a finite set

{a1,az,---,ax} C R. This paper assumeg(x) = psgn(z), = pak — dy +

where =UTr — Gk
sen(x) = { 1 x>0 the quantization nois¢qg; } satisfies the recursive equation
I =121 <0 ” ”

and ., is some positive number, called the quantizer stepsizeix+1 = Z hiqrv1—j—p |sgn | p -Tk-l—l—z hjzpg1—;

Practical PCM systems are characterized by a high ratio J=1 J=1

of bits per input sample and are particularly inefficient if M

the continuous amplitude sequenfce, } contains intersample + Z hiQrs1—j + Diia

dependencies. quantization error or quantization ngjsés =

defined asg, = sgn(zy) — x. Considerable research been
devoted to the calculation of the statistical properties of this
discrete time process under various assumptions (see, for
example, the list of references in [7]).

M
Tpt1 — Z hjzpii—j
i=1
Note that the above recursion can be put in the form of (1)
Differential Pulse Code Modulators as follows. LetWy = [gr, qx—1,"* > -+ qh—nrg1]” Yeo1 =

. . a1 —XM, wpy1_y, Uy = Dy and
DPCM systems are designed to exploit the dependenmesxlknJrl s=1 Thtl=gs Ok b

the continuous amplitude sequenge, } and yield quantizers hi hz hs - hu

of superior performance [10, ch. 6]. In DPCM systems, depen- 1 0o 0 - 0

dencies are removed prior to quantization and the prediction A=|0 1 0 - 0 [, 2)
error is quantized rather than the original sequencdrefer to S

the block diagram shown in Fig. 1. The general DPCM system o 0 --- 1 0

estimatesr;, based on past information using a FIR filtHr Then

with impulse respons€0, hq,---,hy }. Then quantizes the

error dy, = x5 — &3 plus the ditherDy. Let ¢ = di — uy. Wit = AWy + pG(Wh, Y, Upy1, 1t) 3
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Dk So
§ l " Qg1 = posgn(pzpq1 + Dyyr + haigr + hagroy
k4 - \ k "~ a K + o+ haQri—n)
+ 1 \ — pTrt1 — higy — hoqr—1 — - — hmGry1-m-
q r Define Wy, = (g, qr—1, ", e—nm+1]7
H-1 -
—4 —h1 —hy —hs -+ —hy
, _ _ 1 0 0 - 0
Fig. 2. Block diagram of the sigma—delta modulator. A— 0 1 0 . 0 5)
where 0 0 e 1 0
G(w7 Y, U7 N) = _[Sgn(U + py + h’Tw)_7 07 ) O]T Vi = L1, Ur = Dy and
. G =[sg h h
with w = (wl,---,wM)T,y e RU € R and A = (w7y7 U,N) [Sgn (Ny+U+ 1w + QUJ;
(h1,--+,hp)T. Similarly, it can be shown that the process + o+ hywn) = 0,0+, 0]
{d} satisfies the recursive equation Then
M M W1 = AWy, + pG(Wi, Ye, Upsr, 0)- (6)
k+1 kT ky Lk Uk41, B
i1 = Y hjdipaog = Y hjwngij -
J=1 j=1 Similarly
M M
+p| Trgr = Y bz |- o1 == D hjdip1j
Jj=1 j=1
_ . M
With Wi, = [dy, de—1, 5 de—nr11]" +u Z hjsgn (dyy1—j + Dyy1—j) + Tt
i=1
Yie = [#rt1: T+ Thmi41, Di—1, Dy—ay -+ Dy_prga]* !

which can be put in a form of (4) wittd as in (5),W, =
and U1 = D;, we get [disdp—1, - di—ya]' Ye = [zrg1, Di—1,Dr—2,- -,
Di_nr1|F, Ury1 = Dy, and G defined in an obvious way.
W1 = AWy + pG(Wi, Yi, Up1) 4) In thz ]next stzction the asymptotic behavior of the quantiza-
tion noise process$g;,} and the quantizer input proce$s, }
in the XA is analyzed using the weak convergence results
of [13]. Results for the DPCM systems are similar and thus
omitted.

with G defined in a similar manner as before.

YA Modulator

Fig. 2 shows the error feedback topology of 3AA
modulator. Referring to Fig. 2H has impulse response . ANALYSIS
{1,h1,---,hn} and is called the noise transfer function,
since it filters the quantization noisé — 1 denotes a FIR
filter with impulse respons€0,hy, by, -, hy} and M is

called the order of th&A. A typical example of a low pass ' - .
H has transfer functiof (z) = (1 — =)™ SA modulators equations for the quantization noise procdss} and the

belong to the family of noise shaping coders. This is appare antization input procesgd,}; of the XA modulator show

by noting that the outputy, can be expressed as that both processes are asymptotically stationary Gaussian
random processes. Asymptotically, bath and d; are zero
up, = xx + H[{ex}]. mean Gaussian random variables with mean zero and variance
a?. The expression for? depends on the filter coefficients
Thus, the output is simply the sum of the input and the {hj}j»‘il, the autocorrelation of the input proceés; }, the
gquantization noise filtered byd. dither process D, } and the quantizer stepsize In [3], it
Next, the quantization noise process in tHe&\ and the was verified via simulations thdt/; + Dy } can be modeled as
quantizer input procesg, = z + fi are expressed in termsa stationary Gaussian process. Our theoretical analysis yields
of a recursive equation whejf is the output of the FIR filter. that this approximation is certainly valid asymptotically under
Suppose that the input, in Fig. 2 is premultiplied by: and  mild condition on the inpu{z; } and the dither proces®; }.

In [13], asymptotic results for (4) were presented. These
results can be extended to recursions of the type (1) (see
the Appendix). Application of these results to the recursive

a single bit quantizepsgn(-) is used. Then We next list the technical conditions under which our results
hold.
uk = o sgn(di + Dy) Al) {z:} is a zero mean, ergodic sequence of real valued
Qe = up — dy, random variables, andD;} is a sequence of sym-

dy = pxy + hiqe—1 + haqr—2 + -+ + hprqr—ns. metric, zero mean i.i.d random variables independent
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of {z}. Furthermore, the density aP, is bounded

801

IV. APPLICATIONS

and continuous (or continuous everywhere except at &, this section, simulation results for first and second-order

finite number of points not including the origin) an
both E[z%] and E[D?] are finite.

Let A(A) =AM + A AM=1 ... 4 hy,. Assume that
the roots ofA lie inside the unit circle in the complex
plane with a single root ak = 1.

Assume

A2)

A3)

02 = Elzoxo] +2 Z Elrozi] < oo
k=1

and \/ﬁEEfQé}_l zx = B asu — 0, where B is
standard Brownian motion with varianeé@ (see [16]
for the definition of=- and Brownian motion).

Ad) Assumeqo = q-1 = -+ = q_(m—1) = ki and
20 = z_1=--= 2_(m-1) = ko for some constants
k1 and ko.

d5; A modulators are presented. The simulation results obtained

are compared with the theoretical results of the previous
section.

First-Order XA Modulator

From (6) it follows that the recursion for the gquantization
noise in the first-ordeEA with a single bit quantizer satisfies

er1 = @ + plsgn(Digr + pZrp1 — Gr) — Trp]
and the recursion for the quantizer input procgss} satisfies
di+1 = dy, — plsgn(dy + D) — 2a41]-

Assume that:
E1) all initial conditions of the modulator are set to zero;
E2) the dither proces§D, } is a sequence of i.i.d random
variables distributed uniformly on{0.5, 0.5];

The ergodic assumption in Al is general enough to incIudeE3) {21} is a first-order AR process given by
a large collection of stochastic signals. For example, suppose

{vr} is a sequence of zero mean square integrable i.i.d random

variables independent ofD;} and suppose€c} is a real

valued square summable impulse response of a LTI system.
cui—;. Then{z;} is an ergodic sequence

Let x, = E;Z_OO
and is independent ofD, }. Assumption A2 is not satisfied
by higher-order modulators for whic(A) has multiple zeros

Tp41 = 0.8z) + vg

where {v,} is a sequence of random variables dis-
tributed uniformly on 0.2, 0.2] and independent of
{Di}.

Next, it is shown assumptions A1-A4 of Theorem 1 hold.

at A\ = 1. For example, the second-order lowpass modulattrfollows from [15, ch. 6] that{z;, D} is a sequence of

with 21 = —2 andhy = 1 givesA()\) = (A —1)2, which does

ergodicR2-valued random variables. Note that the density of

not satisfy A2. Nevertheless, A2 holds for many modulato@x is discontinuous at only two points;0.5 and 0.5. Hence,
including the very popular first-order modulator, for whickf\l holds. SinceA(A) = A — 1, A2 holds. Note

A(M\) = A — 1. Assumption A3 is rather technical but holds

under a wide variety of conditions on the input procésg}.

For example, in [16, ch. 4] it is shown that A3 will hold for

02 = l?[lkﬁfo]-% 2 EE: l;[akﬁtk] = %
k=1

various ARMA {; } processes. For examples see Section g a5 shown in [16, ch. 4], A3 holds. Since all the initial

Let f(z) = E[sgn(z + D;)]. Thus
f(x) =1-2Fp(-x),

where Fp(z) is the cumulative distribution function aby.
Let o = pB(1 + 02)/2f'(0), where

1
M-1

M+ ) (M = j)hy

p=

Theorem 1: Assume Al1-A4 hold and botfy(0) and 3 are
strictly positive. For smallu, ¢;, and d;, are asymptotically
(k large) zero mean Gaussian random variables with v
ancea?. Furthermore, for small:, both {¢;} and {d;} are
asymptotically (k large) stationary Gaussian processes wi
autocorrelation function

R(k) = a2e B (Oku

Proof: See the Appendix.

conditions are set to zero, A4 holds. It follows th&{0) =
2,8 =1anda? = pu(l +1/3)/4.

In the simulations, 100 000 samples{af,. } and{d;} were
computed. Histograms of bin width

100000
k=0

100000

— min{g }325

100

max{qx}

and

100000

max{d } 1000 — min{dj } 255

100

were used to compute the densities of the quantization noise
and the quantizer input process, respectively. These simulated
densities where then plotted along with the theoretical densities
derived in Section lll. Fig. 3 shows simulated and theoretical

ensities ford;, for quantizer stepsizes = 1 and i, = 0.5.
F
th

ig. 4 shows simulated and theoretical densities ¢prfor
gquantizer stepsizes = 1 and ;. = 0.5. In both Fig. 3 and
Fig. 4, the agreement between theoretical and experimental
results is better forp, = 0.5. This agreement is further
improved as the quantizer stepsize is made even smaller. Note
that in the case of. = 0.5 the ditherD; spans the entire
interval [—p, 1]
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Fig. 3. Theoretical (solid line) and simulated (dashed line) densitie#, of Fig. 4. Theoretical (solid line) and simulated (dashed line) densitieg, of
in the first-order=A modulator withy = 1.0 andp = 0.5. in the first-order=A modulator fory = 1.0 andy = 0.5.
Second-Orde®A Modulators densities ofg, for quantizer stepsizes = 1 andy = 0.5.
From (6) it follows that the recursion for the quantizatiorfrig. 8 shows simulated and theoretical densitiesdpffor
noise {¢x } in the second-ordeEA satisfies guantizer stepsizes = 1 andu = 0.5.
— b + ufsen(Dyss + To verify that the results do indeed improve jaslecreases
Qo1 = =Gk = D2Gk—1 T PESIE AL T HTR+1 to zero, the second-order modulator with = 0.25 and
+higr + haqu—1) — Trqa] hy = —0.5 andh, = —0.5 was simulated. Fig. 9 shows the

and the recursion for the quantizer input procgds} satisfies simulated gnd theoretical d.ensities farandd;. Note in this
case the dither spans the interval2fu, 2u].
Zi41 = —hidp — hazg—1 + plhy sgn(di + Dy)
+ ha sgn(zx—1 + Di—1) + z41]- V. SUMMARY AND CONCLUSION

Assume E1-E3 hold. First consider the modulator for which In this paper asymptotic results were presented regarding the
hy = —=1.5 andh, = 0.5. In which caseA()\) = A2 — 1.5 statistical properties of the quantization noise prodgs$ and
A+ 05 = (A—-1)(A—0.35). It can be verified that A1-A4 quantizer input procesidy } in £A modulators. The analysis
continue to hold and thus Theorem 1 applies. Fig. 5 showechnique is related to the asymptotic analysis of adaptive
simulated and theoretical densities fgr for stepsizes: = 1 filtering algorithms. Simulation results were presented for first
and . = 0.5. Fig. 6 shows simulated and theoretical densitiesd second-ordeEEA modulators. The results for the first-
of dj, for quantizer stepsizeg = 1 andy. = 0.5. Again note order and second-ordéfA modulators were fairly accurate
in Figs. 5 and 6 the agreement between the theoretical angen for quantizer stepsizgsas large as one. The simulations
simulated densities is better for = 0.5. verified the conclusion that both the quantization noise and
Next, consider the second-order modulator with= —0.5 quantizer input are asymptotically Gaussian. The analysis and
and h, = -0.5. Fig. 7 shows simulated and theoreticaimulations were carried out under the assumption that in loop
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Fig. 5. Theoretical (solid line) and simulated (dashed line) densities. of Fig. 6. Theoretical (solid line) and simulated (dashed line) densities, of
in the second-ordeEA modulator fory = 1 andy = 0.5. in the second-ordeEA modulator withy = 1 andy = 0.5.

dithering is utilized, and the theoretical results hold for a largfie agreement between theoretical and experimental results is

collection of stochastic input signals. Similar results can easiiyr ;, much smaller than 0.5. Therefore, it is of interest to

be obtained for DPCM systems. generalize the present results to modulators in which dithering
One topic for future work is to generalize the theoreticag not used and which have multiple zeros at one.

results to systems in which dithering is not employed or the

distribution of the dither i3, dependent. The present analysis

used the fixed distribution of the dither to smooth tHaa(-)

function. Since agreement between theoretical results and APPENDIX

experimental results improves gs— 0, it is desirable from  Proof of Theorem 1:We carry out the details for the quanti-

a practical viewpoint to have the dither amplitude approacfation noise processy } under the assumption that the density

zero asy, — 0 or not to use dithering at all. of U}, is bounded and continuous. The results for the quantizer
Our results hold under the assumption tiet\) does not input process are obtained is a similar manner. The results for

have multiple zeros ah = 1. However, this assumption is discontinuous densities follow in a similar manner with more

not satisfied by certain higher-order low pass noise transtechnical details. Recallyy, = [qx, qr—1, > @r—nr+1]% s

functions. For example, the second-order low pass noise

transfer functiond (z) = (1 — 2=1)? yields A(A\) = (A — 1)?,

which violates A2. The behavior of this modulators can be —hi —hy —hg - —hy
approximated by a modulator which places a single zero at one (1) (1) 8 o 8

and the other very close to one, say 0.9. Our theoretical results A= i B . . i : (7)
apply to this modulator since for this modulatagA) = (A — : : I :
1)(A — 0.9). However, with the dither process of Section 1V, 0 o - 1 0
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Fig. 7. Theoretical (solid line) and simulated (dashed line) densities, of Fig. 8. Theoretical (solid line) and simulated (dashed line) densities, of
in the second-ordeEA modulator forgy = 1 andu = 0.5. in the second-ordeEA modulator fory = 1 andp = 0.5.

Y. = $k+1,Uk = Dy and
Cl) A = PJP~!is the Jordan Decomposition of. A

G(w,y,U, ) = [sgn(py + U + hywi + hows has eigenvalue$\;, Ay, - -+, \¢} such that ;| <1 or
+ o hppwyy) = 0,4+, 07, A; = 1. Furthermore, assume that the Jordan blocks
corresponding to the; = 1 eigenvalue have size one.
Then C2) {Yi}r>o is a sequence of stationary ergodic random
variables with distribution.y .
Wit1 = AWy + uG(Wi, Ya, Uka1, ). ® C3) W, lies in the range space &finy, .., A*.
C4) lim,—oG(w,y,pn) = G(w,y,0") uniformly for
As mentioned in Section Ill, [13, Th. 2] is not directly ap- (w,y) € Ki x K2 C R? x R where G(-,-,0%) is
plicable to (8). This is because of the dependence of7. a continuous function and; and K, are compact
However, [13, Th. 2] can be generalized, so that it applies to sets. )
(8). This can be accomplished in a manner similar to how [11,C5) DefineP(Uy11 € C|Fy) = n(Wi, Yi, C).G(w, y, 1)
Th. 1] was extended in [12] to handje-dependenti. We is differentiable with respect tev for all >0 and
state without proof this modified version of [13, Th. 2] along pp = 0%. G is square integrable with respect to
with the technical assumptions. n(w,y,-) for each pair(w,y) € R* x R.

Let Fi = o((W;, Y3, Up)k,) (the smallest sigma algebra C6) Let
with respect to which(W;,Y;, U;)¥_, are measurable) and

defi R
elne H(wvyvu) :E[[G(w7y7 Uk-l—lvu) - (wvyvu)]
G(Wy, Ya, 1) = E[G(Wi, Ya, Uy, )| Fil. (G, Urss ) = Glw,y )]
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and
[t/p-1 o
Lut) = > (GW(kp), Yi, p) = GW (kp))v/in
k=0

whereW,, = W in probability as;. — 0 with W (¢)
being the unique function satisfyirig’ (0) = W, and
W(t) = AG(W(¢)).

There are a variety of different conditions that imply
L, converges weakly to a Brownian motion. We
simply assume this convergende, = L.

_Theorem 2: Suppose C1-C9 hold. Thel,, = M where
M is a mean zero Brownian motion independentLofvith

C9)

B[N (1M (1)) = / H(W(s)) ds

where H(w) = [z H(w,y,0)uy(dy), andV,, = V where
V' satisfies

V(t)=AM(t)+ AL(t)+ A /0 t DuG(W(s))V(s) ds.

To apply Theorem 2 we need to verify that A1-A4 imply
C1-C9. It is easy to verify that C1-C8 are satisfied if Al-
A4 hold. To see that C9 also holds, recall thaj(t) =
[1.(t),0,---,0]" where

[t/p]-1 [t/n]-1

L) = Y fu)ve—- Y Y/
k=0 k=0

We need the following result to compute the limit f
Lemma 1:Let {Y;}72, be R-valued stationary random

Fig. 9. Theoretical (solid line) and simulated (dashed line) densitieg, of variables and assumg& R — R satisfies|f(z)| < K|z| for
andd;, in the second-ordeEA modulator withy = 0.25.

C7)

C8)

and assumeH (w,y, 1) — H(w,y,0") uniformly
for each(w,y) € K; x K> where H(w,y,07) is
a continuous function oR% x R and K; and K, and
compact sets.

AwG(w,y, 1) — duG(w,y,0+) uniformly for each
(w,y) € K1 x K asp — 0.

E[ sup |G(w, Y, qlw,Ys, V), 1)]?] < o0,

1>0,weRd

E[ sup |G(w,Yi, )] <o,

p#>0,weRd

E[ sup |H(w, Yy, p|]<o0

1>0,weRd
and
E|

sup |9, G(w, Y, )] < <.

n>0,weR?

Now define

Mu(t) =

[t/p]-1

> (GWi, Ya, Uregr, 1) — G(Wo, Y, i)/t
k=0

all z € R. Then

[t/p]-1

lim > f(uYi)y/i =0
#=0 k=0

where the above limit is inl!.
Proof: Omitted. O
Hence, using Lemma 1 and H4 it follows (see [16, ch. 4])
that L(¢) = [I(¢),0,---,0]" wherel(t) is Brownian motion
with variances? and

o? = EN§1+ Y _ EYoYal.
k=1

Hence C9 holds and thus Theorem 2 applies.

The following are easy computationsi = [a;, axa,
-+, ap ] where
k—1
1+Zhj
ar = = 9)

M—1
M+ Y (M= jhy
j=1
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f(Rtw)hy  f'(Ww)he  f/(Rtw)he -+ f/(R'w)hpm
0 0 0 e 0
0y G(w) = 0 0 0 " 0 : (12)
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and wherem +1 is Brownian motion with variancé+ 2 and
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o? = EN§l+ Y EYoXi].

k= Rajesh Sharma(S'92-M'95) was born in Srinagar,
India, on September 20, 1970. He received the
B.S. degree (with distinction) and the M.S. and
Ph.D. degrees all in electrical engineering from the
University of Wisconsin, Madison, in 1991, 1992,
and 1995, respectively.

Since 1995, he has been with the Advanced
Information Systems Group of the Environmental
Research Institute of Michigan, Ann Arbor. His
research interest include adaptive signal processing,
SAR image formation and segmentation, computer

vision and applied probability.
Then the conclusions of Theorem 1 follow. Dr. Sharma is a member of Eta Kappa Nu.

If a1f(0)>0, then v(¢t) is an asymptotically stationary
Gaussian random process with mean zero, varian¢e +
a2)/2f'(0) and autocorrelation function

ro(T) = Eu(t)v(t +7)] = %e—alf(o)‘r, (13)




SHARMA et al. STOCHASTIC ANALYSIS OF THEZA MODULATOR

James A. Bucklew (S'75-M'79-SM'96) received the Ph.D. degree from.r-r

Purdue University, West Lafayette, IN, in 1979.

He is currently a Professor with the Department of Electrical and Comput &
Engineering and the Department of Mathematics, University of Wisconsi
Madison. His research interests are in the application of probability to sigr
processing and communication problems.

Dr. Bucklew is the recipient of a Presidential Young Investigator Awar:
(1984). He has served as the Associate Editor at Large (1989-1992)
the Associate Editor for Detection (1992) for the IEERANSACTIONS ON
INFORMATION THEORY.

807

William A. Sethares (S'84-M'86) received the
B.A. degree in mathematics from Brandeis Univer-
sity, Waltham, MA, and the M.S. and Ph.D. degrees
in electrical engineering from Cornell University,
Ithaca, NY.

He has been with the Raytheon Company as a
Systems Engineer and is currently on the faculty
of the Department of Electrical and Computer En-
gineering, University of Wisconsin, Madison. His
research interests include adaptive systems in signal
processing, communications and electronic music.



