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Abstract—One of the most popular systems for performing
high resolution analog to digital conversion is the�� modulator.
Though common in applications, theoretical analysis of the��
modulator is difficult due to the presence of a discontinuous
quantizer in the modulator. This paper presents asymptotic
results regarding the statistical behavior of the�� modulator
when inside the loop dithering is utilized. In some recent papers
examining the stochastic behavior of the��; it was shown (via
simulations) that the input to the quantizer can be accurately
modeled as a stationary Gaussian process. Our analysis shows
that both the input to the quantizer and the quantization noise
are asymptotically stationary Gaussian processes, under mild
assumptions on the input and the dither process. The results of
this paper are derived by letting the quantizer stepsize approach
zero, and the analytical approach is related to the stochastic
analysis of adaptive filtering algorithms. Our analysis is valid
for a large collection of stochastic input signals, including ARMA
processes. Furthermore, previous stochastic analysis assumed that
the quantizer never overloaded, while the present analysis does
not make this assumption. It is also shown that analysis of
the Differential Pulse Code Modulator is in fact analogous to
the analysis of the�� modulator. Simulation results presented
for the first-order �� modulator and two second-order ��
modulators demonstrate the practicality of the analysis.

Index Terms—Adaptive algorithms, analog to digital convert-
ers, differential pulse code modulators, noise shaping systems,
oversampling data converters, sigma–delta (��) modulators.

I. INTRODUCTION

T HE PROCESS of amplitude quantization is fundamental
in many modern communication systems. This is a direct

consequence of the ease with which digital data can be
stored and transmitted. Various systems have been proposed to
quantize continuous amplitude signals into discrete amplitude
sequences. Oversampling techniques for analog to digital
conversion have become increasingly popular ever since the
single bit delta modulation (DM) system was proposed in [14].
The popularity of these systems is directly attributable to the
advances made in integrated circuit technology.

DM coders are examples of a more general class of predic-
tive coding systems called differential pulse code modulators
(DPCM), which are based on exploiting intersample depen-
dencies in the input [10]. In DPCM systems, a prediction

Manuscript received October 26, 1995; revised Noember 28, 1996. This
paper was recommended by Associate Editor K. K. Parhi.

R. Sharma is with the Advanced Information Systems Group, Envirnomen-
tal Research Institue of Michigan, Ann Arbor, MI 48113 USA.

J. A. Bucklew and W. A. Sethares are with the Department of Electrical and
Computer Engineering, University of Wisconsin, Madison, WI 53706 USA.

Publisher Item Identifier S 1057-7130(97)07646-5.

error (rather than the original data sequence) is quantized.
Sigma–delta modulator systems are examples of noise
shaping coders [8] and have received a great deal of attention
since they were first introduced more than 30 years ago [9]
as a means of high resolution analog to digital conversion.

modulators are well suited for VLSI implementation and
are robust to circuit imperfections. As a result systems
are finding widespread use in signal processing applications.
recent years there has been growing interest in the use of
for noise shaping in nonoversampling systems.

Exact analysis of both DPCM and is difficult for all but
the simplest cases. This is primarily due to the presence of a
nonlinearity (quantizer) in both systems and the fact that both
systems incorporate feedback. Analyzes based on modeling
the nonlinear quantizer as an uniform, signal independent,
additive white noise source are carried out in numerous
papers. For example, the reader is referred to [2] which
contains papers covering many aspects of modulator
design and analysis. Though this white noise assumption
makes the analysis of these systems tractable using linear
techniques, it has been shown to be lacking in simulations for
lower-order systems. The assumption fails in practical systems
because the quantization noise is a function of the input signal.
Another approach used in the analysis of these nonlinear
systems is the use describing functions. The strengths and
shortcomings of this approach are detailed in [7]. In [5],
analysis of the quantization noise in a first-order is
carried out under the assumption that the input sequence is
constant. Then, using ergodic theory, it is shown that the
modulator can be modeled as a linear system in a different
space. This linear model is then used to derive properties
of the quantization noise. An exact analysis of the moments
and spectrum of the quantization noise in the first-order
with constant inputs can be found in [6] and in this paper
it is shown that the quantization noise is not white. The
analysis in [6] provides extensions of the results found in [1].
Analysis of higher-order is carried out in [4] under the
akssumption that the input to the modulator is dithered. The
results of [4] apply to constant, sinusoidal and more generally
quasistationary inputs. In [3], stochastic analysis of the
was carried out under the assumption that the input to the
single bit quantizer, in the can be modeled as a stationary
Gaussian process. Simulations were presented to demonstrate
the accuracy of the Gaussian assumption.

The approach adopted in this paper is based on an asymp-
totic analysis of adaptive filtering algorithms [11]–[13]. sta-
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tistical properties of the quantization noise and the quantizer
input in the single bit modulator are derived under the
assumption that inside the loop dithering is utilized. In our
analysis, the distribution of the dither is used to smooth the
discontinuous quantization function. The results are asymptotic
in the sense that they are exact only as the quantizer stepsize
approaches zero. Furthermore, in the analysis, it is not assumed
that the quantizer is never overloaded. Both the quantization
noise process and the quantizer input process are shown to be
asymptotically stationary Gaussian processes and the results
are valid for a large class of stochastic input signals with
arbitrary distribution (not necessarily Gaussian).

In Section II, brief introductions to and DPCM modu-
lators are presented, and the evolution of both the quantization
noise and the quantizer input process are described in terms
of recursive equations. In Section III, the central limit result
of [13] is applied to the recursive equations for the
modulator. Application of the central limit result to the re-
cursive equations describing DPCM systems can be carried
out in a similar manner and is thus omitted. In Section IV,
simulation results for first-order single bit modulator and
two second-order single bit modulators are presented.
Section V presents conclusions and extensions for future work.
The Appendix contains technical proofs.

II. PRELIMINARIES AND BACKGROUND

Pulse code modulation (PCM) is the most widely used dig-
ital coding system. PCM systems are based on instantaneous
quantization of the current input sample using a memoryless
quantizer. If is the input to a memoryless quan-
tizer, then the output is where is an increasing
right continuous function which maps into a finite set

This paper assumes
where

and is some positive number, called the quantizer stepsize.
Practical PCM systems are characterized by a high ratio
of bits per input sample and are particularly inefficient if
the continuous amplitude sequence contains intersample
dependencies. quantization error or quantization noiseis
defined as Considerable research been
devoted to the calculation of the statistical properties of this
discrete time process under various assumptions (see, for
example, the list of references in [7]).

Differential Pulse Code Modulators

DPCM systems are designed to exploit the dependencies in
the continuous amplitude sequence and yield quantizers
of superior performance [10, ch. 6]. In DPCM systems, depen-
dencies are removed prior to quantization and the prediction
error is quantized rather than the original sequenceRefer to
the block diagram shown in Fig. 1. The general DPCM system
estimates based on past information using a FIR filter
with impulse response Then quantizes the
error plus the dither Let

Fig. 1. DPCM coder.

This section shows that the evolution of and can
be described in terms of a recursive equation of the form

(1)

Equation (1) is in the form needed to apply [13, Th. 2] to
yield the results of Section III.

For the general DPCM system shown in Fig. 1, assume that
the input is premultiplied by a positive number, and
the quantization function is Thus, both the input and
the quantization function are scaled by The dither is
assumed to be a sequence of i.i.d random variables. Observe
that

Since

the quantization noise satisfies the recursive equation

Note that the above recursion can be put in the form of (1)
as follows. Let

and

...
...

...
...

...
(2)

Then

(3)
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Fig. 2. Block diagram of the sigma–delta modulator.

where

with and
Similarly, it can be shown that the process

satisfies the recursive equation

With

and we get

(4)

with defined in a similar manner as before.

Modulator

Fig. 2 shows the error feedback topology of a
modulator. Referring to Fig. 2, has impulse response

and is called the noise transfer function,
since it filters the quantization noise. denotes a FIR
filter with impulse response and is
called the order of the A typical example of a low pass

has transfer function modulators
belong to the family of noise shaping coders. This is apparent
by noting that the output can be expressed as

Thus, the output is simply the sum of the input and the
quantization noise filtered by

Next, the quantization noise process in the and the
quantizer input process are expressed in terms
of a recursive equation where is the output of the FIR filter.
Suppose that the input in Fig. 2 is premultiplied by and
a single bit quantizer is used. Then

So

Define

...
...

...
...

...
(5)

and

Then

(6)

Similarly

which can be put in a form of (4) with as in (5),
,

and defined in an obvious way.
In the next section the asymptotic behavior of the quantiza-

tion noise process and the quantizer input process
in the is analyzed using the weak convergence results
of [13]. Results for the DPCM systems are similar and thus
omitted.

III. A NALYSIS

In [13], asymptotic results for (4) were presented. These
results can be extended to recursions of the type (1) (see
the Appendix). Application of these results to the recursive
equations for the quantization noise process and the
quantization input process of the modulator show
that both processes are asymptotically stationary Gaussian
random processes. Asymptotically, both and are zero
mean Gaussian random variables with mean zero and variance

The expression for depends on the filter coefficients
the autocorrelation of the input process the

dither process and the quantizer stepsize In [3], it
was verified via simulations that can be modeled as
a stationary Gaussian process. Our theoretical analysis yields
that this approximation is certainly valid asymptotically under
mild condition on the input and the dither process

We next list the technical conditions under which our results
hold.

A1) is a zero mean, ergodic sequence of real valued
random variables, and is a sequence of sym-
metric, zero mean i.i.d random variables independent
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of Furthermore, the density of is bounded
and continuous (or continuous everywhere except at a
finite number of points not including the origin) and
both and are finite.

A2) Let Assume that
the roots of lie inside the unit circle in the complex
plane with a single root at

A3) Assume

and as where is
standard Brownian motion with variance (see [16]
for the definition of and Brownian motion).

A4) Assume and
for some constants

and

The ergodic assumption in A1 is general enough to include
a large collection of stochastic signals. For example, suppose

is a sequence of zero mean square integrable i.i.d random
variables independent of and suppose is a real
valued square summable impulse response of a LTI system.
Let Then is an ergodic sequence
and is independent of Assumption A2 is not satisfied
by higher-order modulators for which has multiple zeros
at 1. For example, the second-order lowpass modulator
with 2 and 1 gives which does
not satisfy A2. Nevertheless, A2 holds for many modulators
including the very popular first-order modulator, for which

Assumption A3 is rather technical but holds
under a wide variety of conditions on the input process
For example, in [16, ch. 4] it is shown that A3 will hold for
various ARMA processes. For examples see Section IV.

Let Thus

where is the cumulative distribution function of
Let where

Theorem 1: Assume A1–A4 hold and both and are
strictly positive. For small and are asymptotically

large) zero mean Gaussian random variables with vari-
ance Furthermore, for small both and are
asymptotically large) stationary Gaussian processes with
autocorrelation function

Proof: See the Appendix.

IV. A PPLICATIONS

In this section, simulation results for first and second-order
modulators are presented. The simulation results obtained

are compared with the theoretical results of the previous
section.

First-Order Modulator

From (6) it follows that the recursion for the quantization
noise in the first-order with a single bit quantizer satisfies

and the recursion for the quantizer input process satisfies

Assume that:

E1) all initial conditions of the modulator are set to zero;
E2) the dither process is a sequence of i.i.d random

variables distributed uniformly on [0.5, 0.5];
E3) is a first-order AR process given by

where is a sequence of random variables dis-
tributed uniformly on [ 0.2, 0.2] and independent of

Next, it is shown assumptions A1–A4 of Theorem 1 hold.
It follows from [15, ch. 6] that is a sequence of
ergodic -valued random variables. Note that the density of

is discontinuous at only two points,0.5 and 0.5. Hence,
A1 holds. Since A2 holds. Note

and as shown in [16, ch. 4], A3 holds. Since all the initial
conditions are set to zero, A4 holds. It follows that

and
In the simulations, 100 000 samples of and were

computed. Histograms of bin width

and

were used to compute the densities of the quantization noise
and the quantizer input process, respectively. These simulated
densities where then plotted along with the theoretical densities
derived in Section III. Fig. 3 shows simulated and theoretical
densities for for quantizer stepsizes and 0.5.
Fig. 4 shows simulated and theoretical densities forfor
quantizer stepsizes and 0.5. In both Fig. 3 and
Fig. 4, the agreement between theoretical and experimental
results is better for 0.5. This agreement is further
improved as the quantizer stepsize is made even smaller. Note
that in the case of 0.5 the dither spans the entire
interval
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Fig. 3. Theoretical (solid line) and simulated (dashed line) densities ofdk
in the first-order�� modulator with� = 1.0 and� = 0.5.

Second-Order Modulators

From (6) it follows that the recursion for the quantization
noise in the second-order satisfies

and the recursion for the quantizer input process satisfies

Assume E1–E3 hold. First consider the modulator for which
1.5 and 0.5. In which case

It can be verified that A1–A4
continue to hold and thus Theorem 1 applies. Fig. 5 shows
simulated and theoretical densities for for stepsizes 1
and 0.5. Fig. 6 shows simulated and theoretical densities
of for quantizer stepsizes 1 and 0.5. Again note
in Figs. 5 and 6 the agreement between the theoretical and
simulated densities is better for 0.5.

Next, consider the second-order modulator with 0.5
and 0.5. Fig. 7 shows simulated and theoretical

Fig. 4. Theoretical (solid line) and simulated (dashed line) densities ofqk
in the first-order�� modulator for� = 1.0 and� = 0.5.

densities of for quantizer stepsizes 1 and 0.5.
Fig. 8 shows simulated and theoretical densities of for
quantizer stepsizes 1 and 0.5.

To verify that the results do indeed improve asdecreases
to zero, the second-order modulator with 0.25 and

0.5 and 0.5 was simulated. Fig. 9 shows the
simulated and theoretical densities forand Note in this
case the dither spans the interval [ ].

V. SUMMARY AND CONCLUSION

In this paper asymptotic results were presented regarding the
statistical properties of the quantization noise process and
quantizer input process in modulators. The analysis
technique is related to the asymptotic analysis of adaptive
filtering algorithms. Simulation results were presented for first
and second-order modulators. The results for the first-
order and second-order modulators were fairly accurate
even for quantizer stepsizesas large as one. The simulations
verified the conclusion that both the quantization noise and
quantizer input are asymptotically Gaussian. The analysis and
simulations were carried out under the assumption that in loop
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Fig. 5. Theoretical (solid line) and simulated (dashed line) densities ofqk
in the second-order�� modulator for� = 1 and� = 0.5.

dithering is utilized, and the theoretical results hold for a large
collection of stochastic input signals. Similar results can easily
be obtained for DPCM systems.

One topic for future work is to generalize the theoretical
results to systems in which dithering is not employed or the
distribution of the dither is dependent. The present analysis
used the fixed distribution of the dither to smooth the
function. Since agreement between theoretical results and
experimental results improves as it is desirable from
a practical viewpoint to have the dither amplitude approach
zero as or not to use dithering at all.

Our results hold under the assumption that does not
have multiple zeros at However, this assumption is
not satisfied by certain higher-order low pass noise transfer
functions. For example, the second-order low pass noise
transfer function yields
which violates A2. The behavior of this modulators can be
approximated by a modulator which places a single zero at one
and the other very close to one, say 0.9. Our theoretical results
apply to this modulator since for this modulator

However, with the dither process of Section IV,

Fig. 6. Theoretical (solid line) and simulated (dashed line) densities ofdk
in the second-order�� modulator with� = 1 and� = 0.5.

the agreement between theoretical and experimental results is
for much smaller than 0.5. Therefore, it is of interest to
generalize the present results to modulators in which dithering
is not used and which have multiple zeros at one.

APPENDIX

Proof of Theorem 1:We carry out the details for the quanti-
zation noise process under the assumption that the density
of is bounded and continuous. The results for the quantizer
input process are obtained is a similar manner. The results for
discontinuous densities follow in a similar manner with more
technical details. Recall,

...
...

...
...

...
(7)



804 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 10, OCTOBER 1997

Fig. 7. Theoretical (solid line) and simulated (dashed line) densities ofqk
in the second-order�� modulator for� = 1 and� = 0.5.

and

Then

(8)

As mentioned in Section III, [13, Th. 2] is not directly ap-
plicable to (8). This is because of the dependence of
However, [13, Th. 2] can be generalized, so that it applies to
(8). This can be accomplished in a manner similar to how [11,
Th. 1] was extended in [12] to handle-dependent We
state without proof this modified version of [13, Th. 2] along
with the technical assumptions.

Let (the smallest sigma algebra
with respect to which are measurable) and
define

Fig. 8. Theoretical (solid line) and simulated (dashed line) densities ofdk
in the second-order�� modulator for� = 1 and� = 0.5.

C1) is the Jordan Decomposition of
has eigenvalues such that or

Furthermore, assume that the Jordan blocks
corresponding to the eigenvalue have size one.

C2) is a sequence of stationary ergodic random
variables with distribution

C3) lies in the range space of
C4) uniformly for

where is
a continuous function and and are compact
sets.

C5) Define
is differentiable with respect to for all and

is square integrable with respect to
for each pair

C6) Let
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Fig. 9. Theoretical (solid line) and simulated (dashed line) densities ofqk
anddk in the second-order�� modulator with� = 0.25.

and assume uniformly
for each where is
a continuous function on and and and
compact sets.

C7) uniformly for each
as

C8)

and

Now define

and

where in probability as with
being the unique function satisfying and

C9) There are a variety of different conditions that imply
converges weakly to a Brownian motion. We

simply assume this convergence.

Theorem 2: Suppose C1–C9 hold. Then where
is a mean zero Brownian motion independent ofwith

where and where
satisfies

To apply Theorem 2 we need to verify that A1–A4 imply
C1–C9. It is easy to verify that C1–C8 are satisfied if A1-
A4 hold. To see that C9 also holds, recall that

where

We need the following result to compute the limit of
Lemma 1: Let be -valued stationary random

variables and assume satisfies for
all Then

where the above limit is in
Proof: Omitted.

Hence, using Lemma 1 and H4 it follows (see [16, ch. 4])
that where is Brownian motion
with variance and

Hence C9 holds and thus Theorem 2 applies.
The following are easy computations:

where

(9)
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...
...

...
...

...
(12)

and

...
...

...
...

...

(10)

...
...

...
...

...

(11)

(see (12) at the top of the page). Let and
then it follows

and

where

and where is Brownian motion with variance and

If then is an asymptotically stationary
Gaussian random process with mean zero, variance

and autocorrelation function

(13)

Then the conclusions of Theorem 1 follow.
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