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¢ signal-to-reconstruction-noise ratio of the filter banK11] C. D. Creusere and S. K. Mitra, “A simple method for designing high-
10 log,o 3" x(n)* — 101log,, S {z(n) — &(n)}?, where quality prototype filters for M-band pseudo-QMF bankEEE Trans.

Al i i ; ; [P Signal Processingyol. 43, pp. 1005-1007, Apr. 1995.
#(n) is the reconstructed signal given white noise input. [12] S. C. Chan and C. W. Kwok, “Perfect reconstruction modulated filter

Our algorithm obtained the solution for design example 1 in 8, 6,  banks without cosine constraints,” ifroc. IEEE ICASSP1993, pp.
5, 4, 3, 3, 3, and 2 iterations of the inner loop procedure, and it 189-192.
obtained the solution for design example 2 in 9, 5, 5, 3, 3, 2, 2, 2,
and 2 iterations of the inner loop procedure. The frequency responses
of the two design examples are plotted in Figs. 1 and 2, respectively.
It is well known that the stopband ripple profiles of the prototype

filter will affect the overall reconstruction error of the modulated filter Analysis of Momentum Adaptive Filtering Algorithms
bank. Using our proposed algorithm, we are able to control the ripple

profiles in the prototype filter's stopband to minimize the aliasing Rajesh Sharma, William A. Sethares, and James A. Bucklew
error as well as the overall reconstruction error. From Table I, it can

be seen that both examples achieved SNR in excess of 100 dB. In

comparison with the modulated filter bank used in MPEG-1 audioAbstract—This correspondence analyzes the momentum LMS algo-
codec layers 1 and 2 (which achieves an SNR of about 86 dB usfif§m and other momentum algorithms using asymptotic techniques that

. P ide information regarding the almost sure behavior of the parameter
the same test sequence), our design example 2 performs Slgmflcagﬁsymates and their asymptotic distribution. The analysis does not make

better with an SNR of 10.8.dB and equiripple stop_band attenuat_igﬂy assumptions on the autocorrelation function of the input process.
of —124 dB while maintaining the same computational complexity

as the modulated filter bank used in MPEG-1.
|. INTRODUCTION

V. CONCLUSIONS The least mean squares (LMS) algorithm [1], [2] has become one

In this correspondence, we presented an efficient algorithm for tAkthe most popular adaptive filtering algorithms due to its inherent
design ofM -channel cosine-modulated near PR filter banks. The filt§fmPplicity and robustness. However, LMS often converges slowly. To
bank design is formulated as an unconstrained quadratic programriigtedy this, several modifications of LMS have been proposed over
problem with respect to the prototype linear-phase lowpass FIR filtéh€ years. One such modification is the momentum LMS (MLMS)
Typically, only a few iterations are needed to obtain a solution optim@fiaptive algorithm first proposed by Proakis [3]. Roy and Shynk [4]
in the weighted minimax sense. The proposed algorithm providggmonstrated that MLMS can be viewed as an approximation to the
flexible control of the ripples in the prototype filter's stopband, theonjugate gradient algorithm. The MLMS is useful in applications
overall filter bank transfer function, and the aliasing component¢here error bursting is a problem. The MLMS recursion is
Good M -channel cosine-modulated filter banks with stopband atten- s wir _wlv TV T
uation and signal-to-reconstruction-noise ratio exceeding 100 dB can Wit = Wi 4 p(Di = Wi X)X 4 (Wi = W) (1)

be easily designed using our algorithm. where W, = [wi,wi, -, wi]" € R? is the parameter estimate
at the kth iteration, D;, is a real valued desired respons€, =
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the input, and no independence assumptions betdéeand X, are {W;} approximately follow the evolution ofV,(¢) over finite time
made. In fact, in most applicationd/. and X ;. are not independent. intervals for small stepsizg. That is, for anyT > 0

Our results hold for a large class of input and desired response . ] - , _

processes. Furthermore, the theoretical approach gives almost sure ilgbogi%‘}}i/u] W™ = Walk)] = 0. ©)

havior of th rameter estim '+ } rather than mean r L . .
behavior of the parameter estimafé$’, } rather than mean squa edFurthermore, (6) implies that for small, the number of iterations

behavior or mean behavior. From a practical point of view, this is 1 irod fortVs t ¢ ball abott™* | tional
pleasing since the results hold with probability one (w.p. 1), i.e., f<?cr)f (1/) re(lqtu'lge'mOcr)rt;ntotce)nnirt:(i;lnaet azlithc? Oh (6)Isdg<re(;p9nr1“fnathat
essentially any realization of the input procds§; } and the desired p LIS 1mp ug IMmply

; . .the parameter estimates will enter a ball abid(it, it does not imply
response procedd), }. Our results confirm the observations made i ) . S ,
t %t the parameter estimates will remain in the ball abtitforever.

[4] regarding convergence rates and misadjustment and their rela . R o
with «. Furthermore, the asymptotic distributionldf, is shown to be Uﬂ“s IS a consequence of the asymptgtlc dls_trlbutlommf, which is
shown to be Gaussian later on in this section.

[ i 7* = B[Xk XTI YE[X Dy i - g
Gaussian with meai (X0 X ] [ X, D] and covariance Leth: R? — R” be defined a&(w) = (P — Rw). For smally, the

matrix (11/1 — @)X, whereX depends on the correlation of the inputb ) ; : L
. ehavior of MLMS can be determined by studying the deterministic
process and the desired response process. orlginary differential equation (ODE) y ying

The main results used in our analysis are stated and provedi
[6]. These are extensions of the results found in [5]. Although these W = Bhiw) )
results are technical, their usefulness is demonstrated in the later ,
sections where strong statements are made regarding the behd@ohich Wa (1) is the unique solution corresponding to the initial
of the parameter estimates of MLMS. In Section II, the results af@ndition W, (0) = 0. For instance, since
applied to MLMS and are extended to adaptive algorithms with dBR(W™)
multiple momentum terms in Section Ill. In Section 1V, examples and “ow —AR

simulations are presented to illustrate the applicability of the results. ) . . .
IS negative definite]V™ is locally stable [5], [7]. Furthermore, it

follows from (3) thatlim;— .. W.(¢t) = W*, and the rate at which
W.(t) converges td¥™ depends on the rate at whidh(¢) tends

For our analysis of (1), defin®,,(t) = Wy}, for t € [0,00), to zero ast — oc. Therefore,W™ is a globally stable equilibrium
where[t/ ] is the largest integer less thafy:.. The . dependence of point of the ODE (7) since given any initial condition, the solution
W,.(t) is noted by the subscript, and on occasion, it will be necessaty the ODE decays téV *.
to note thex dependence and writ# .. (). The parameter estimates Recall that (2) holds for fixedv. It follows from (2) that given
{W:} also depend om anda, that is, W}, is sometimes written as ¢ > 0 andT > 0, there exist ato possibly depending on such that
Wi or asW/' to emphasize the dependence. The Euclidean noffor all x < o
of a vectorz € R? is denoted byjx|. .

To study the convergent behavior &, fix « and assume the o<k W™ = Wa(kp)| <e. ®)
following: -

H1) {(X«,Dg)}iZ, is a zero mean stationary ergodic rando

process. Assum&[|X,|*] and E[|Dy|?] are finite.

H2) R = E[XoX{] is positive definite.

H3) Assume, for simplicity, the algorithm is initialized with, =

0.

If P = E[X;D:], then the optimum solution is given By™ =
R~ P. R will be positive definite for almost all processes encoun- &135 sup  sup
tered in applications. Lef\,,}%,—, denote the eigenvalues dt. aClmatar] =t
Since R is symmetric,R = QAQ”, whereA is ad x d diagonal Therefore, givere >0 andT > 0, there exists qo > 0 such that for

Il. MOMENTUM LMS

Typically, one is interested in the behavior of (1) for different
Mhomentum factorsy with the stepsizeu fixed (see Section V).
Applying [6, Corollary 1], it follows that;o does not depend on

« if « is restricted to lie in[—«a™, «*], wherea™ € (0,1) That is,

o™ can be chosen arbitrarily close (but not equal) to 1. The precise
statement is w.p. 1, for any’ >0

Wa(t) = Wa(t)] = 0. )

matrix containing the eigenvalues &, andQ = [¢1,---,¢q4] iSan anya € [—a™,a"] and allp < po, (8) holds. Hence, for a small
orthogonal matrix, i.e.7Q = ILixa. fixed stepsizeu, the deviation of W/ from W, (ku) over finite
Using [6, Th. 1], we obtain the following result: w.p. 1., for anytime intervals will be small for any € [—a*, «*]. Thus, for small
T >0 and for fixeda € (—1,1) u, the rate at which¥, converges to a ball abodt™ for variousa
. . depends on the rate at whiéh(¢) decays to zero. Observe that
lim sup [Wy o (t) = Wa(t)] =0 2
ot 2 . q‘,"lyp ’ (—28X1;t)
where [ba ()" = Zl <,\_§> ¢ :
-t
Walt) = ,{i/ AR P dr = W — 6,(1) (3) Hence, by increasing: > 0, it follows that é,(¢) approaches zero
0 more rapidly, whereas if < 0 is decreasedi.(t) approaches zero
and more slowly. Thereforeq can be thought of as a convergence rate
4 _pga accelerator relative to the convergence rate of LMS. Moreover, if
bu(t) = Z ¢ qlp (4) « €(0,1) isincreased, the parameter estimates of MLMS will enter
i=1 : some ball aboutV* earlier than those for LMS for small. This fact

has been well established by numerous simulations [4]. Likewise, if
1 a € (—1,0) is decreased, the parameter estimates in MLMS will
8= i ) (5) enter some ball abod¥™ later than the parameter estimates in LMS
— X
[4].
Note that (2) implies that for almost all realizations (w.p. 1.) As shown in [4], this faster convergence forc (0, 1) is offset by
of the input process and desired response, the parameter estimategicrease in the misadjustmentdf. about the optimum weight

where




1432 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 5, MAY 1998

vector W*. The misadjustment can be investigated by studying theys ; . : : .

distributional behavior of W}, }. The central limit result (see [6, Th.

2]) shows that the parameter estimates are asymptotically distributed

like a Gaussian random vector with medi* and covariance matrix

that depends on the statistics ok} and {D;.}. 07
To obtain the central limit result, we need to make an additional

assumption (H4 or H4’) regarding the procds®y, X )}.

H4) LetZy = (Dy — X/ W*)X;. Assume 05k
[t/p]—1 04
’ —— Theoretical Trajectory
\/’E Z Ze = B(t) ——-Simutated Trajectory
k=0 03 7

where B is R?-dimensional Brownian motion off), oc) 02
with mean zero and has covariance matrix

- 0.1 1
Ry = E[Z0Zy |+ Y  ElZoZy + ZuZs )- . . , . ‘
n=1 00 500 1000 1500 2000 2500 3000
H4') Dy = XICTW"'*—I-UICH, where{U; }52, is a sequence of real Fig. 1. Theoretical and simulated trajectories fo= 0.
valued i.i.d. random variables independent{df }72,.
In [8, ch. 4], it is shown that H4 holds for a large collection 09 T " T ' T

of random processes. Essentially, it is required that the sequence
{Z,} be weakly dependent¢-mixing with T, 6'/2(n) < o).

Furthermore, if{Z.} is a function of a¢-mixing process, then o7}
under certain conditions on the function, H4 will hold [8, p. 182].
Assumption H4’ is common in the analysis of LMS type algorithms %[
(see Section IV). Under assumption H4', with, = W* — W, (1)

0.5
can be rewritten as
04f
Wit = Wi — p(Wi Xi 4+ Upypr) + (Wi = Wiy).  (10)
03f ~Theoretical Trajectory 7
We can repeat the previous convergence analysis and obtain results —Simutated Trajectory |

regarding the convergent behavior of the parameter estimate errors
{W31, which can then be translated into the behavior of the parametes - 1
estimates{ W }.

Assuming either H4 or H4’, the central limit results follow. We
carry out the details, assuming H4 holds in order to stay consisteny,
with the previous analysis, where the behavior of the parameter °
estimates was studied. Note tiiat has the following decomposition: Fig. 2. Theoretical and simulated trajectories for= 0.5.
R;, = QAQ", whereQ = [71, 7o, -+ q,] is an orthogonal matrix,
andA is a diagonal matrix of eigenvaluds; }¢—; of Ry.. Applying
[6, Th. 2] and using the properties of Ornstein—Uhlenbeck processegl'
[9], it can be shown that asymptoticallj¥;, is mean zero and has The results have an obvious extension to other algorithms of the

covariance3y, where form

-y

k=11=1 m=1

0 i

1

L 1 L 1
500 1000 1500 2000 2500 3000

OTHER ADAPTIVE ALGORITHMS WITH MOMENTUM FACTORS

by Wit = aoWi + +pH (Wi, Yi, Up ) (13)

T_ _T T
> aarad Gl N3 (11)

M=

since the particular form off was not used in the previous analysis
That is, for smallp [5], it follows that Wi is asymptotically (see [6]). As an example, consider the sgn-sgn adaptive algorithm
Gaussian with mea®?* and covariance:3%. Note that ase —  (see [5, sec. llI-A]). With momentum factar, the update for the
1, the covariance ofi¥, becomes unbounded singg — oc. parameter estimate error becomes
This divergence of the asymptotic variance 16f. reinforces the . ) )
conclusion in [4] regarding the instability of MLMS when— 1. Wipr = Wi — psgn(Xx)sgri X, W + Ux)
If H4’ holds, then for small, W, is asymptotically distributed + Q(Wk — Wiet) (14)
like a Gaussian random vector with mean zero and covariance

pBE[UE)
2

where sgfu) is the signum function. Assume the parameter estimates
Lixa. (12) are initialized to zero, which implies that the parameter estimate
error W, is W*. Assume that{U } is a zero mean i.i.d symmetric
Example 1: Assume that H1-H3 and H4' hold. Letnvs be a  sequence with probability distribution functiop-) and bounded,
small stepsize, and letyrars = (1 — a)prms, wherea € (—1,1).  continuous densityf, (-) with f,(0) >0 anda € (—1,1). Assume
From (12), it follows thatW;=™s:* and W/MLMs:* will have the {X}} is a stationary ergodic sequence (with distribution functign
same covariance matrix. Furthermore, it is easy to see using (3) tmatependent of U }. Let W, o (¢) = W[,/M, and letd = (1/1—a).
their convergence rate 87" will be identical. Referring to the computations in [5], it follows using [6, Th. 1] that
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0.5-
0.4+
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Fig. 4. Theoretical and simulated trajectories foe= —0.5.
for any e >0,a" € (0,1) and7 >0
lim P( sup  sup |W,(t) = Wa(t)|>e€) =0
p=0 agl—a*,a*] t<T
where W,, is the unique solution ofi = —pgh(w) with initial
condition w(0) = W*, and
h(w) = /sgr(:z)[l —2n(—2"w)] dF ().
Observe that
ah ) - s
%(0) = =23 fu(0)E[sgn(Xo)Xo |. (15)

If the eigenvalues of[sgrn X,)Xg | have strictly positive real parts,
then the sgn-sgn adaptive algorithm with momentum updating will
locally stable for anyv € (—1,1). Next, to simplify the computations
needed to calculate the asymptotic distributionVdf, assume that
the input vectorX, = [z}, 27,---,«¢]" consists of i.i.d. symmetric

1433
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Fig. 5. Theoretical and simulated trajectories for= —0.8.
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Fig. 6. Theoretical and simulated densities for= —0.8.

components such thiﬂ[XoXUT] = 021;x4, Wwhereo? > 0. Then, as
in [5], at equilibrium,W;, is asymptotically distributed like a Gaussian
random vector with mean 0 and covariance

On

1
4fu(0)0' dxd

wheres >0, and E[Xosgn(X( )] = olixa.

IV. APPLICATION TO FIRST-ORDER LINEAR PREDICTION
Let {X}7=_., be a first-order autoregressive process

X1 =r Xk + ergi

where |r| < 1, {ex}7Z_.. is a sequence of i.i.d. random variables
with Ele,] = 0, and E[¢%] = o2, Then, note thaf X, };2_, is
stationary ergodic [10, ch. 6], and fér> 0

2..n

ar

The first-order linear prediction problem is to estimdfg; as a
scalar multiple ofX';, such that the mean squared error is minimized.

be E[XoX,] =
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35 T V. CONCLUSIONS

) _ Asymptotic results were derived for the MLMS and other mo-
e e mentum algorithms. The analysis was based on the results of [5].
The effect of the momentum factor on convergence was studied, and
expressions for the asymptotic distribution of the parameter estimates
were derived.

30
25}
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. Occam Filters for Stochastic Sources
with Application to Digital Images

Balas Natarajan, Konstantinos Konstantinides, and Cormac Herley

1 L

0 2 L L
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Fig. 8. Theoretical and simulated densities for= 0.5. ) .
9 Abstract—An Occam filter employs lossy data compression to separate

signal from noise. Previously, it was shown that Occam filters can filter
The MLMS alaorithm for solving this problem is random noise from deterministic signals. Here, we show that Occam
g 9 p filters can also separate two stochastic sources, depending on their relative
_ W - WY (T, TV compressibility. We also compare the performance of Occam filters and
Wit = Wi+ p(Xepr = Wi X)Xy + a(Wy = Wie). wavelet-based denoising on digital images.

Note thatR = E[X3] = (¢%/1 — »?), andp = (a?r/1 — +?).

Assumptions H1-H3 and H4’ are clearly satisfied. Therefore, since |. INTRODUCTION
Wi & Wa(kp), (3) and (12) imply that A practical problem in real signal processing systems is the treat-
i e~ P Ruk ment of noise-corrupted signals. A commonly used noise-removal
Wi mr— B P approach is the Wiener filter, which is a linear filter that weights

and W is distributed like a Gaussian random variable with mean the spectrum O.f the signal by an amount that depends on the noise
strength at a given frequency. Recently, there have been a number

and variancegyo*/2. of alternative nonlinear approaches to noise removal, representative
Experiment: Figs. 1-5 summarize how well the simulated trajec- v : pp ' val, rep v

tory matches the theoretical trajectory predicted by (3)fer 0.8182 of which is the soft-thresholding approach introduced b_y Cartson
and ¢ = 0.001. To determine the steady-state distribution of thgl' [3] and furthered by Donoho and others [5], [6]. In this approach,
parameter estimate erro(ﬁfk = r — W4), 1 million iterations of Manuscript received February 18, 1997; revised August 7, 1997. The
the algorithm were run, and the last 500000 were used to compé ‘I’igztigne\?vgzrgfoggﬁztmg égzt;i‘gew of this paper and approving it for
the SImuIated err(?r densmfes. The plots show k?Oth .the simulated di he authors are with Hewlett-Packard Laboratories, Palo Alto, CA 94304
theoretical densities. In Fig. 6y = —0.8, and in Fig. 7, = 0, ysA (e-mail: balas@hpl.hp.com).

wherease = 0.5 in Fig. 8. Publisher Item Identifier S 1053-587X(98)02010-8.
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