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• signal-to-reconstruction-noise ratio of the filter bank
10 log10 x(n)2 � 10 log10 fx(n) � x̂(n)g2, where
x̂(n) is the reconstructed signal given white noise input.

Our algorithm obtained the solution for design example 1 in 8, 6,
5, 4, 3, 3, 3, and 2 iterations of the inner loop procedure, and it
obtained the solution for design example 2 in 9, 5, 5, 3, 3, 2, 2, 2,
and 2 iterations of the inner loop procedure. The frequency responses
of the two design examples are plotted in Figs. 1 and 2, respectively.

It is well known that the stopband ripple profiles of the prototype
filter will affect the overall reconstruction error of the modulated filter
bank. Using our proposed algorithm, we are able to control the ripple
profiles in the prototype filter’s stopband to minimize the aliasing
error as well as the overall reconstruction error. From Table I, it can
be seen that both examples achieved SNR in excess of 100 dB. In
comparison with the modulated filter bank used in MPEG-1 audio
codec layers 1 and 2 (which achieves an SNR of about 86 dB using
the same test sequence), our design example 2 performs significantly
better with an SNR of 108 dB and equiripple stopband attenuation
of �124 dB while maintaining the same computational complexity
as the modulated filter bank used in MPEG-1.

V. CONCLUSIONS

In this correspondence, we presented an efficient algorithm for the
design ofM -channel cosine-modulated near PR filter banks. The filter
bank design is formulated as an unconstrained quadratic programming
problem with respect to the prototype linear-phase lowpass FIR filter.
Typically, only a few iterations are needed to obtain a solution optimal
in the weighted minimax sense. The proposed algorithm provides
flexible control of the ripples in the prototype filter’s stopband, the
overall filter bank transfer function, and the aliasing components.
GoodM -channel cosine-modulated filter banks with stopband atten-
uation and signal-to-reconstruction-noise ratio exceeding 100 dB can
be easily designed using our algorithm.
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Analysis of Momentum Adaptive Filtering Algorithms

Rajesh Sharma, William A. Sethares, and James A. Bucklew

Abstract—This correspondence analyzes the momentum LMS algo-
rithm and other momentum algorithms using asymptotic techniques that
provide information regarding the almost sure behavior of the parameter
estimates and their asymptotic distribution. The analysis does not make
any assumptions on the autocorrelation function of the input process.

I. INTRODUCTION

The least mean squares (LMS) algorithm [1], [2] has become one
of the most popular adaptive filtering algorithms due to its inherent
simplicity and robustness. However, LMS often converges slowly. To
remedy this, several modifications of LMS have been proposed over
the years. One such modification is the momentum LMS (MLMS)
adaptive algorithm first proposed by Proakis [3]. Roy and Shynk [4]
demonstrated that MLMS can be viewed as an approximation to the
conjugate gradient algorithm. The MLMS is useful in applications
where error bursting is a problem. The MLMS recursion is

Wk+1 =Wk + �(Dk �W
T

k Xk)Xk + �(Wk �Wk�1) (1)

whereWk = [w1
k; w

2
k; � � � ; w

d

k]
T
2

d is the parameter estimate
at the kth iteration,Dk is a real valued desired response,Xk =

[x1k; x
2
k; � � � ; x

d

k]
T
2

d is the input process,� 2 (�1; 1) is the
momentum factor, and�> 0 is the step size.

An analysis of MLMS is carried out in [4], in which convergence
of E[Wk] andE[WkW

T

k ] are studied under assumptions thatfXkg

is a stationary Gaussian process, andWk is independent ofXk: The
theoretical analysis is valid for small�, i.e., j�j � 1: It is shown
via theoretical analysis and simulations that for�> 0, MLMS offers
an improvement in convergence rate relative to LMS. However, this
increase is offset by a corresponding increase in the misadjustment.
Interestingly, when�< 0, MLMS has a slower convergence rate and
lower misadjustment than LMS. It is shown that MLMS becomes
unstable whenj�j ! 1: In addition, the misadjustment is quantified
in terms of� and the statistics of the inputs.

The current correspondence extends these results based on the
theoretical framework of [5]. The analysis is valid for all� 2 (�1; 1),
and we show that these values of� result in stable MLMS algorithms.
Although the analysis in [4] was for Gaussian processes, our analysis
does not make any assumptions on the distribution or correlation of
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the input, and no independence assumptions betweenWk andXk are
made. In fact, in most applications,Wk andXk are not independent.
Our results hold for a large class of input and desired response
processes. Furthermore, the theoretical approach gives almost sure
behavior of the parameter estimatesfWkg rather than mean squared
behavior or mean behavior. From a practical point of view, this is
pleasing since the results hold with probability one (w.p. 1), i.e., for
essentially any realization of the input processfXkg and the desired
response processfDkg: Our results confirm the observations made in
[4] regarding convergence rates and misadjustment and their relation
with �: Furthermore, the asymptotic distribution ofWk is shown to be
Gaussian with meanW �

= E[XkX
T
k ]
�1E[XkDk] and covariance

matrix (�=1��)�, where� depends on the correlation of the input
process and the desired response process.

The main results used in our analysis are stated and proved in
[6]. These are extensions of the results found in [5]. Although these
results are technical, their usefulness is demonstrated in the later
sections where strong statements are made regarding the behavior
of the parameter estimates of MLMS. In Section II, the results are
applied to MLMS and are extended to adaptive algorithms with
multiple momentum terms in Section III. In Section IV, examples and
simulations are presented to illustrate the applicability of the results.

II. M OMENTUM LMS

For our analysis of (1), defineW�(t) = W[t=�] for t 2 [0;1),
where[t=�] is the largest integer less thant=�: The� dependence of
W�(t) is noted by the subscript, and on occasion, it will be necessary
to note the� dependence and writeW�;�(t): The parameter estimates
fWkg also depend on� and�, that is,Wk is sometimes written as
W

�;�
k or asW�

k to emphasize the dependence. The Euclidean norm
of a vectorx 2 d is denoted byjxj:

To study the convergent behavior ofWk, fix � and assume the
following:

H1) f(Xk;Dk)g
1
k=0 is a zero mean stationary ergodic random

process. AssumeE[jX0j
2
] andE[jD0j

2
] are finite.

H2) R = E[X0X
T
0 ] is positive definite.

H3) Assume, for simplicity, the algorithm is initialized withW0 =

0:

If P = E[XkDk], then the optimum solution is given byW �
=

R�1P: R will be positive definite for almost all processes encoun-
tered in applications. Letf�mgdm=1 denote the eigenvalues ofR:
SinceR is symmetric,R = Q�QT , where� is a d � d diagonal
matrix containing the eigenvalues ofR, andQ = [q1; � � � ; qd] is an
orthogonal matrix, i.e.,QTQ = Id�d:

Using [6, Th. 1], we obtain the following result: w.p. 1., for any
T > 0 and for fixed� 2 (�1; 1)

lim
�!0

sup
t�T

jW�;�(t)�W�(t)j = 0 (2)

where

W�(t) = �
t

0

e
��R(t��)

P d� = W
�
� ��(t) (3)

and

��(t) =

d

i=1

e��� t

�i
qiq

T
i p (4)

where

� =
1

1� �
: (5)

Note that (2) implies that for almost all realizations (w.p. 1.)
of the input process and desired response, the parameter estimates

fWkg approximately follow the evolution ofW�(t) over finite time
intervals for small stepsize�: That is, for anyT > 0

lim
�!0

max
0�k�[T=�]

jW
�;�
k �W�(k�)j = 0: (6)

Furthermore, (6) implies that for small�, the number of iterations
of (1) required forWk to enter some ball aboutW � is proportional
to 1=�: It is important to note that although (6) does imply that
the parameter estimates will enter a ball aboutW �, it does not imply
that the parameter estimates will remain in the ball aboutW � forever.
This is a consequence of the asymptotic distribution ofWk, which is
shown to be Gaussian later on in this section.

Let h: d ! d be defined ash(w) = (P�Rw): For small�, the
behavior of MLMS can be determined by studying the deterministic
ordinary differential equation (ODE)

_w = �h(w) (7)

for which W�(t) is the unique solution corresponding to the initial
conditionW�(0) = 0: For instance, since

@�h(W �
)

@w
= ��R

is negative definite,W � is locally stable [5], [7]. Furthermore, it
follows from (3) thatlimt!1W�(t) = W �, and the rate at which
W�(t) converges toW � depends on the rate at which��(t) tends
to zero ast ! 1: Therefore,W � is a globally stable equilibrium
point of the ODE (7) since given any initial condition, the solution
to the ODE decays toW �:

Recall that (2) holds for fixed�: It follows from (2) that given
� > 0 andT > 0, there exist a�0 possibly depending on� such that
for all � � �0

max
0�k�[T=�]

jW
�;�
k �W�(k�)j<�: (8)

Typically, one is interested in the behavior of (1) for different
momentum factors� with the stepsize� fixed (see Section IV).
Applying [6, Corollary 1], it follows that�0 does not depend on
� if � is restricted to lie in[���; ��], where�� 2 (0; 1) That is,
�� can be chosen arbitrarily close (but not equal) to 1. The precise
statement is w.p. 1, for anyT > 0

lim
�!0

sup

�2[�� ;� ]

sup
t�T

jW�;�(t)�W�(t)j = 0: (9)

Therefore, given�> 0 andT > 0, there exists a�0> 0 such that for
any � 2 [���; ��] and all � � �0, (8) holds. Hence, for a small
fixed stepsize�, the deviation ofW�;�

k from W�(k�) over finite
time intervals will be small for any� 2 [���; ��]: Thus, for small
�, the rate at whichWk converges to a ball aboutW � for various�
depends on the rate at which��(t) decays to zero. Observe that

j��(t)j
2
=

d

i=1

qTi p

�2i

2

e
(�2�� t)

:

Hence, by increasing�> 0, it follows that ��(t) approaches zero
more rapidly, whereas if�< 0 is decreased,��(t) approaches zero
more slowly. Therefore,� can be thought of as a convergence rate
accelerator relative to the convergence rate of LMS. Moreover, if
� 2 (0; 1) is increased, the parameter estimates of MLMS will enter
some ball aboutW � earlier than those for LMS for small�: This fact
has been well established by numerous simulations [4]. Likewise, if
� 2 (�1; 0) is decreased, the parameter estimates in MLMS will
enter some ball aboutW � later than the parameter estimates in LMS
[4].

As shown in [4], this faster convergence for� 2 (0; 1) is offset by
an increase in the misadjustment ofWk about the optimum weight
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vectorW �: The misadjustment can be investigated by studying the
distributional behavior offWkg: The central limit result (see [6, Th.
2]) shows that the parameter estimates are asymptotically distributed
like a Gaussian random vector with meanW � and covariance matrix
that depends on the statistics offXkg andfDkg:

To obtain the central limit result, we need to make an additional
assumption (H4 or H4’) regarding the processf(Dk; Xk)g:

H4) Let Zk = (Dk � XT
k W

�)Xk: Assume

p
�

[t=�]�1

k=0

Zk ) B(t)

whereB is d-dimensional Brownian motion on[0;1)
with mean zero and has covariance matrix

RL = E[Z0Z
T
0 ] +

1

n=1

E[Z0Z
T
n + ZnZ

T
0 ]:

H4’) Dk = XT
k W

�+Uk+1, wherefUkg1k=1 is a sequence of real
valued i.i.d. random variables independent offXkg1k=0:

In [8, ch. 4], it is shown that H4 holds for a large collection
of random processes. Essentially, it is required that the sequence
fZkg be weakly dependent(�-mixing with �n �1=2(n)<1):
Furthermore, iffZkg is a function of a�-mixing process, then
under certain conditions on the function, H4 will hold [8, p. 182].
Assumption H4’ is common in the analysis of LMS type algorithms
(see Section IV). Under assumption H4’, witĥWk =W � �Wk, (1)
can be rewritten as

Ŵk+1 = Ŵk � �(Ŵ T
k Xk + Uk+1) + �(Ŵk � Ŵk�1): (10)

We can repeat the previous convergence analysis and obtain results
regarding the convergent behavior of the parameter estimate errors
fŴkg, which can then be translated into the behavior of the parameter
estimatesfWkg:

Assuming either H4 or H4’, the central limit results follow. We
carry out the details, assuming H4 holds in order to stay consistent
with the previous analysis, where the behavior of the parameter
estimates was studied. Note thatRL has the following decomposition:
RL = Q�Q

T
, whereQ = [q1; q2; � � � ; qd] is an orthogonal matrix,

and� is a diagonal matrix of eigenvaluesf�igdi=1 of RL: Applying
[6, Th. 2] and using the properties of Ornstein–Uhlenbeck processes
[9], it can be shown that asymptotically,Wk is mean zero and has
covariance��, where

� =

d

k=1

d

l=1

d

m=1

qkq
T
k qlq

T
l qmq

T
m

�l

�k + �m
: (11)

That is, for small � [5], it follows that Wk is asymptotically
Gaussian with meanW � and covariance���: Note that as� !
1, the covariance ofWk becomes unbounded since� ! 1:

This divergence of the asymptotic variance ofWk reinforces the
conclusion in [4] regarding the instability of MLMS when�! 1:

If H4’ holds, then for small�; Wk is asymptotically distributed
like a Gaussian random vector with mean zero and covariance

��E[U 2
1 ]

2
Id�d: (12)

Example 1: Assume that H1–H3 and H4’ hold. Let�LMS be a
small stepsize, and let�MLMS = (1��)�LMS, where� 2 (�1; 1):
From (12), it follows thatW� ;0

k andW� ;�
k will have the

same covariance matrix. Furthermore, it is easy to see using (3) that
their convergence rate toW � will be identical.

Fig. 1. Theoretical and simulated trajectories for� = 0:

Fig. 2. Theoretical and simulated trajectories for� = 0:5:

III. OTHER ADAPTIVE ALGORITHMS WITH MOMENTUM FACTORS

The results have an obvious extension to other algorithms of the
form

Wk+1 = �0Wk ++�H(Wk; Yk; Uk+1) (13)

since the particular form ofH was not used in the previous analysis
(see [6]). As an example, consider the sgn-sgn adaptive algorithm
(see [5, sec. III-A]). With momentum factor�, the update for the
parameter estimate error becomes

Ŵk+1 = Ŵk � �sgn(Xk)sgn(XT
k Ŵk + Uk)

+ �(Ŵk � Ŵk�1) (14)

where sgn(a) is the signum function. Assume the parameter estimates
are initialized to zero, which implies that the parameter estimate
error Ŵ0 is W �: Assume thatfUkg is a zero mean i.i.d symmetric
sequence with probability distribution function�(�) and bounded,
continuous densityfu(�) with fu(0)> 0 and� 2 (�1; 1): Assume
fXkg is a stationary ergodic sequence (with distribution functionF )
independent offUkg: LetW�;�(t) = Ŵ[t=�], and let� = (1=1��):
Referring to the computations in [5], it follows using [6, Th. 1] that
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Fig. 3. Theoretical and simulated trajectories for� = 0:8:

Fig. 4. Theoretical and simulated trajectories for� = �0:5:

for any �> 0; �� 2 (0; 1) and T > 0

lim
�!0

P( sup
�2[�� ;� ]

sup
t�T

jW�(t)�W�(t)j>�) = 0

where W� is the unique solution of _w = ��ĥ(w) with initial
conditionw(0) = W �, and

ĥ(w) = sgn(x)[1� 2�(�x
T
w)] dF (x):

Observe that

@ĥ

@w
(0) = �2�fu(0)E[sgn(X0)X

T
0 ]: (15)

If the eigenvalues ofE[sgn(X0)X
T
0 ] have strictly positive real parts,

then the sgn-sgn adaptive algorithm with momentum updating will be
locally stable for any� 2 (�1; 1): Next, to simplify the computations
needed to calculate the asymptotic distribution ofWk, assume that
the input vectorXk = [x1k; x

2

k; � � � ; x
d
k]
T consists of i.i.d. symmetric

Fig. 5. Theoretical and simulated trajectories for� = �0:8:

Fig. 6. Theoretical and simulated densities for� = �0:8:

components such thatE[X0X
T
0 ] = �2xId�d, where�2x> 0: Then, as

in [5], at equilibrium,Ŵk is asymptotically distributed like a Gaussian
random vector with mean 0 and covariance

��

4fu(0)�
Id�d

where�> 0, andE[X0sgn(XT
0 )] = �Id�d:

IV. A PPLICATION TO FIRST-ORDER LINEAR PREDICTION

Let fXkg
1

k=�1 be a first-order autoregressive process

Xk+1 = rXk + ek+1

where jrj< 1, fekg1k=�1 is a sequence of i.i.d. random variables
with E[en] = 0, andE[e2n] = �2: Then, note thatfXkg

1

k=�1 is
stationary ergodic [10, ch. 6], and fork � 0

E[X0Xn] =
�2rn

(1� r2)
:

The first-order linear prediction problem is to estimateXk+1 as a
scalar multiple ofXk such that the mean squared error is minimized.
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Fig. 7. Theoretical and simulated densities for� = 0:

Fig. 8. Theoretical and simulated densities for� = 0:5:

The MLMS algorithm for solving this problem is

Wk+1 = Wk + �(Xk+1 �WkXk)Xk + �(Wk �Wk�1):

Note thatR = E[X2
0 ] = (�2=1 � r2), and p = (�2r=1 � r2):

Assumptions H1–H3 and H4’ are clearly satisfied. Therefore, since
Wk � W�(k�), (3) and (12) imply that

Wk � r �
e��R�k

R
p

andWk is distributed like a Gaussian random variable with meanr

and variance���2=2:
Experiment: Figs. 1–5 summarize how well the simulated trajec-

tory matches the theoretical trajectory predicted by (3) forr = 0:8182

and � = 0:001: To determine the steady-state distribution of the
parameter estimate errors(Ŵk = r �Wk), 1 million iterations of
the algorithm were run, and the last 500 000 were used to compute
the simulated error densities. The plots show both the simulated and
theoretical densities. In Fig. 6,� = �0:8, and in Fig. 7,� = 0,
whereas� = 0:5 in Fig. 8.

V. CONCLUSIONS

Asymptotic results were derived for the MLMS and other mo-
mentum algorithms. The analysis was based on the results of [5].
The effect of the momentum factor on convergence was studied, and
expressions for the asymptotic distribution of the parameter estimates
were derived.
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Occam Filters for Stochastic Sources
with Application to Digital Images

Balas Natarajan, Konstantinos Konstantinides, and Cormac Herley

Abstract—An Occam filter employs lossy data compression to separate
signal from noise. Previously, it was shown that Occam filters can filter
random noise from deterministic signals. Here, we show that Occam
filters can also separate two stochastic sources, depending on their relative
compressibility. We also compare the performance of Occam filters and
wavelet-based denoising on digital images.

I. INTRODUCTION

A practical problem in real signal processing systems is the treat-
ment of noise-corrupted signals. A commonly used noise-removal
approach is the Wiener filter, which is a linear filter that weights
the spectrum of the signal by an amount that depends on the noise
strength at a given frequency. Recently, there have been a number
of alternative nonlinear approaches to noise removal, representative
of which is the soft-thresholding approach introduced by Carlsonet
al. [3] and furthered by Donoho and others [5], [6]. In this approach,
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