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Thermal Parameter Estimation Using Recursive
Identification

Gary L. Skibinski and William A. Sethares, Member, IEEE -

Abstract—A novel method that converts a semiconductor transient
thermal impedance curve (TTIC) into an equivalent thermal RC net-
work model is presented. Thermal resistance (R ) and thermal capac-
itance (C) parameters of the model are identified using manufacturer’s
data and off line recursive least square (RLS) techniques. Relevant
estimation theory concepts and the formulation of an appropriate model
for the identification process are given. Model synthesis is illustrated
using an isolated base power transistor module. The application of time
decoupled theory for high order thermal models is outlined. Simula-
tion of junction temperature responses using model and manufacturer
TTIC’s are compared. Estimated parameter validity is further con-
firmed by parameter calculation obtained from module physical di-
"mensions.

I. INTRODUCTION

OWER converter manufacturers typically utilize the rela-

tively low but significant thermal heat capacity of power
semiconductors to obtain short duration overload ratings well
in excess of continuous ratings. The methods for determining
the peak allowable junction temperature { T;(max ) } under tran-
sient and intermittent loading are well established and have re-
mained essentially unchanged since 1959 [1]. The standard
approach uses the TTIC supplied by device manufacturers (Fig.
1(a)). Junction temperature response to device power pulses are
estimated from this curve and the principle of superposition for
conditions such as single pulse overload, repetitive pulse over-
load, overloads following continuous duty and irregularly
shaped power versus time profiles. Indeed, power transistor safe
operating area (SOA) limits are usually based upon this ap-
proach [2]-[5]. However, transient junction temperature esti-
mation using the TTIC approach has several shortcomings.

1) a-posteriori Calculations: Circuit simulation programs
containing sophisticated device models exist that can calculate
instantaneous power versus time profiles [6]-[7]. However, in-
stantaneous junction temperature vs. time profiles cannot be
solved with the TTIC concept until the entire overload simula-
tion process is complete, stored in memory and broken down
into equivalent pulse amplitude and durations. This inefficiency
suggests the use of a device thermal model (Fig. 1(b) and (c))
for maximizing simulation capability by solving both the elec-
trical and thermal network models simultaneously.

2) Graphical Analysis: The standard TTIC approach re-
quires cumbersome graphical analysis to transform the irregu-
larly shaped power profiles, such as the switching and
conduction loss profiles in SOA calculations, into equivalent
energy [W-s] square power pulses upon which this curve is

- based.
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Fig. 1. (a) Semiconductor transient Thermal Impedance curve (junction-

case). (b) Estimated Black Box Model of Fig. 1(a). (¢) Thermal Model
Structure of Fig. 1(a) and (b).

3) Repeat Calculations: Each application of a new overload
sequence requires 7j to be recalculated.

4) Desired Accuracy: The accuracy of estimated junction
temperatures decreases for increasingly complex overload
waveforms such as pulse width modulation (PWM) acceleration
of a motor. When using the standard approach, gross simpli-
fying assumptions are necessary to keep graphical analysis and
hand computations tractable.
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The shortcomings of the standard approach suggest the need
to develop an accurate thermal model to make better estimates
of 7;. Use of a device thermal model for indirect measurement
of the junction to case temperature rise {ATjc} may result in
improved converter fault diagnostics. Indirectly calculating
ATjc in real time may be done with the discrete transfer func-
tion model of Fig. 1(b) and a Digital Signal Processor (DSP)/
microprocessor or an analog operational amplifier model of Fig.
I(c). In addition, potential advantages in substantially in-
creased converter overload ratings exist when using the A Tjc
observer based model in real time adaptive control [8].

In this paper, a new approach to the problem of determining
device thermal characteristics is presented from the system
identification point of view [9]. Sections II and III outline the
basic identification procedure used and the governing laws for
device thermal model building. Sections IV and V review and
apply estimation theory principles to determine the RC param-
eter values given the manufacturer’s TTIC curve. Section VI
presents identification results for an isolated base transistor
model example and discusses parameter accuracy of the iden-
tified RC values.

II. IDENTIFICATION PROCEDURE

The success or failure of any application of system identifi-
cation rests on finding an algorithm that can intelligently utilize
a priori information. The thermal estimation problem has three
main features which can be exploited. First, the structure of
Fig. 1(c) is known from physical grounds to closely model the
thermal behavior of the system, even though the exact values
of the R’s and C’s are unknown. This suggests that one of the
parametric identification methods should be applicable. The
second feature is the TTIC curve, which can be used to con-
struct simulated input/output pairs to sufficiently excite the
identification procedure. The third feature is that the thermal
time constants have a wide time scale separation. In many iden-
tification setups, this would be a serious problem because it is
difficult to excite all modes of the system without an inordi-
nately large number of time steps. Since this time scale sepa-
ration is known to exist a priori, however, we are able to exploit
it by identifying the slow and fast modes separately via a time
decoupling approach. Fig. 2 defines the four basic steps used
[10].

1) Model Formulation: The type and order of the thermal
model structure are defined from a priori knowledge about the
semiconductor. Some numerical constants of the model can also
be obtained a priori by applying Newton’s Law of Cooling.
Discrete state space equations are derived based upon the phys-
ical model.

2) Design of Experiment: The input signal, sampling inter-
val and experiment length are chosen so that approprate modes
of the thermal model are sufficiently excited for identification.

3) Parameter Estimation: This step determines the numeri-
cal values of the model structure. The choice of algorithm is
the off-line direct method of recursive least squares (RLS). The
method shown in Fig. 3 is based upon the fact that the collected
output responses are linearly dependent on the unknown param-
eters where

k Discrete sampling time

u(k) Input power pulse sequence into the device.

y(k) Calculated junction-case temperature
Tjc (k)

¥(k) Estimated junction-case temperature response; Tjc (k)

response,
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Fig. 3. Parameter estimation technique.

¥(k) Output error equation between true Tjc(k) and esti-
mated Tjc (k) responses.

The basic scheme is to use a well planned input power sequence
which has a sampling interval shorter than the fastest time con-
stant and an experiment length that is longer than the slowest
estimated time constant of the thermal model. True junction
temperature response, Tjc(k), to u(k) is calculated using the
manufacturers TTIC. The same input test signal is also applied,
restarting at 7 = 0, to the Qjc model and $(k) is calculated for
each time instant k. The RLS algorithm attempts to drive the
¥ (k) error to zero at each k by adapting the unknown parameters
©jc. The estimated numerator and denominator coefficients of
Ojc converge to steady state values for a properly designed in-
put test signal. The actual resistance and capacitance values may
then be determined from these coeflicients using the initial
model equations formulated.

4) Model Verification: This step relates the identification
(ID) results to well known physical results. Comparison of
Tjc (k) versus ch(k) and manufacturer’s TTIC versus an es-
timated TTIC curve are made. Additionally, identified R and C
model parameters are compared to calculated RC values ob-
tained from measurements of an actual semiconductor. These
four steps are now examined in more detail.

III. MoDEL FORMULATION
Transient Thermal Impedance Curve

The semiconductor thermal model structure is implicitly con-
tained in the TTIC as a complex sum of RC exponentials. It is
therefore desirable to review the definition, derivation, assump-
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tions and application of this curve. The concept of thermal re-
sistance is based upon an analogy between electrical and thermal
systems with temperature [°C], heat flow due to power dissi-
pation [watts] and thermal resistance [ °C /W ] being analogous
to voltage, current and electrical resistance [11]. The TTIC in
Fig. 1(a) is obtained by applying a single square power pulse
P1 to the device until the junction temperature reaches steady
state at time 7ss. Junction temperature rise {ATjc} is deter-
mined by fixing the case constant at ambient temperature { Tc
= Ta} and measuring device temperature with infrared meth-
ods or electrical temperature sensitive parameters {TSP} such
as forward voltage drop {Vf} or base emitter voltage {Vbe}
[12]. The actual A Tjc rise is found by correlating the measured
change in Vbe (= 2 mv/°C/junction) versus time to a pre-
vious calibrated Vbe versus temperature test for constant 7a and
base current. The transient thermal impedance is defined at any
time f as

Tj(1) = Te(t) _ ATje(t)

Oje(r) = Pi Pl

(1)
The thermal system is assumed to be linear, and hence super-
position can be applied to the TTIC. The TTIC is a step re-
sponse curve with zero initial conditions, relating device step
input power to ATjc at the output. The power profile in Fig.
4(a) can be separated into equivalent heating and cooling pulse
durations of ¢x and ¢y as shown in Fig. 4(b). The junction tem-
perature rise can be determined by adding individual Tjc pulse
responses [1]:

ATje(1)) = P1 * Qjc(t,) (2)
ATjc(t,) = P1 * Qjc(r;) — P1 * Qjc(t; — 1)
+ P2 % Qjc(t, — 1) (3)

The published TTIC is usually higher than the tested value to
account for manufacturing variations and the increase in ther-
mal resistance over time.

a-priori Knowledge

Knowledge of the physical properties of the semiconductor
can be used to fix the model structure and order, and to deter-
mine some numerical values of the Black Box shown in Fig.
1(c). The use of all available a priori knowledge prior to ap-
plication of the identification algorithm is important since mis-
leading results due to an assumed wrong structure are difficult
to detect from data alone. Also, a priori knowledge can en-
hance model validity and model accuracy. An appropriate model
can be formulated using 1) physical knowledge, 2) 1/0 mea-
surements, or both.

1) Physical Knowledge: The model order is dependent on
the type of semiconductor package used as shown in Fig. 5.
The exact order can be determined by visual inspection of the
package cross sectional view and replacing significant heat ca-
pacity materials (Cu, Si, Mo) with thermal capacitances. The
number of capacitors determines the model order. One dimen-
sional heat flow from junction to case results in the typical RC
network structure shown in Fig. 1(c). Numerical values for RS
and C4 of the copper base can be obtained without package dis-
assembly by applying the governing thermal laws defined in
Appendix I to a 4th order 50-A isolated base transistor:

Ri=L/(K*de) [°C/W] (4)

C=pxCp*V  [W-§/°C] (5)

P2 A
(a) Device
Power PI
Of=— + = time
\ t1 t2
3
o —fa—ty »|
(b) Equivalent
Device
P1 | HEATING
Power . 7// // o time
N
=-p1 4 N\\\ COOLING

Fig. 4. (a) Device power profile versus time. (b) Equivalent heating and
cooling pulses.

[ SILICON |

Fig. 5. Model order dependent on semiconductor package. (a) Direct
bonded copper process [2nd order]. (b) TO3/T0220/stud type {3rd order].
(c) Compression bonded thyristor [4th order]. (d) Isolated base transistor
module [4th order].

Thermal resistance and capacitance calculations can be ex-
tended to R1-R4 and C1-C3 by disassembling the package and
physically measuring each material thickness and cross section
area perpendicular to heat flow. This calculated parameter ap-
proach is documented in Appendix I with the results shown in
Table I. An analog simulation of this RC structure is plotted in
Fig. 6 versus the actual TTIC. This procedure alone may pro-
duce sufficient ©jc(r) accuracy for the intended use of the
model.

2) I/0 Measurement: The asymptotic behavior at the origin
and steady state time tss of the manufacturer’s TTIC in Fig. 6
can provide numerical values for parameters R1, C1 and for the
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Fig. 6. Transient thermal impedance curves.

TABLE 1
CALCULATED AND ESTIMATED RC PARAMETERS
R1 R2 R3 R4 RS Cl c2 Cc3 C4

Calculated 0.006 0.111 0.122 0.166 0.011 0.033 0.148 1.180 9.500

Estimated 0.008 0.022 0.078 0.291 0.011 0.360 0.488 0.665 0.900
sum of R1 through RS in Fig. 1(c). The horizontal asymtote at ;= [57,] = 5[(Rl + R2)]C2 (8g)
the origin reflects the silicon thermal resistance R1. The initial i
slope near the origin of Fig. 6 can = silicon thermal capacity n = [5Sn] = 5[(RL * C1)] (8h)
by the analogy to i = C/(dv/dt): 7= [RL*Cl] = [toa/5"]. (8i)

Power = C1 AT, [°C]/A Time [s] [W] (6)
C,=Px*(t —1)/P* (9(11) - e(fo)) [W-S/°C]
(7)

The sum of RI-RS5 is the dc gain of the mathematical transfer
function model and is the value 6jc(z,) read from the TTIC.

b Parameter Initialization Procedure

As an alternative to the physical RC calculation procedure
above, the following procedure may be used to find initial es-
timates for the RLS identification algorithm using only TTIC
information. Although this method involves crude approxima-
tions, it is helpful in estimating the model tirhe constants for
selecting a suitable RLS sampling time and providing parame-
ters sufficiently close to the actual so that the RLS routine con-
verges rapidly.

The following known data in (8a-d) can be obtained from the
manufacturer’s data specification sheet, the TTIC of Fig. 6 or

from external physical dimensions:
Ry = (R1 + R2 + R3 + R4) + R5 (8a)

RS is calculable from baseplate case thickness dimensions

(8b)

R1 is from the TTIC as in the previous section (8¢)

74 is from the TTIC since 1,,, is known and is 5¢,. (8d)
Crude approximations for a n = 4th order system are

fwa = [574] = 5[(RL + R2 + R3 + R4)]C4  (8e)

74 = [57;] = 5[(Rl + R2 + R3)]C3 (8f)

Thermal capacitance is assumed to be increasing by a constant
factor MF; from one stage to the next:

C2 = MF, * Cl (8§)
C3 = MF, * C2 (8k)
C4 = MF; = C3 (81)
C4/Cl = MF, * MF, * MF, (8m)
ME, = (ca/c1)'. (8n)

Parameter C4 is found using (8a), (8b), (8d), and (8e). Capac-
itor C1 is found using (8c) and (8i). Capacitors C2 and C3 are
extracted from (8j), (8k);, and (8n). Resistor R4 is found by
solving for the {R1 + R2 + R3} sum of (8f) and substituting
into (8e). Resistor R3 is found by solving for the sum {R1 +
R2} of (8g) and substituting into (8f). Resistor R2 is calculated
directly from (8g). Table I summarizes the Estimated RC pa-
rameter results for the known data shown below.

twa=18s R, =041[°C/W]
Rl = 0.008 [°C/W] R5 = 0.0106 [°C/W]
Assumptions

The thermal model for Fig. 1 and Fig. 5 is assumed to be a
linear, nth order lumped parameter, time invariant, determin-
istic, single input single output (SISO) system. Nonlinear ra-
diation effects which are proportional to the 4th power of
temperature are not significant since one dimensional heat flow
is mostly by conduction. However, silicon conductivity is non-
linear with temperature varying 2:1 over the 25-150°C oper-
ating range and may effect the estimates of the Rl and R2
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thermal resistances. Also, some insulators such as BeO will vary
by 20% over the same range. The present procedure ignores
these nonlinearities, though their incorporation into the design
procedure is an important area for further investigation. Lastly,
measurement noises are assumed negligable.

Equations

A thermal model can be formulated using either an internal
state space or I/O transfer function model approach. The first
method is the most desirable since it is directly related to the
physical structure of Fig. 1(c). However, the need to measure
the internal states (x;, x, X3, x4) to find model coefficients pre-
cludes its use. The transfer function approach must be used since
only I/0 data from the TTIC is available. The disadvantage of
this approach is that the ©jc model coefficients obtained from
I/O data have no direct physical meaning. The RC parameters
of the structure are hidden in the numerator and denominator
coefficients and must be further extracted. The transfer function
model is developed in the continuous time domain and must be
further discretized for use in the identification algorithm.

Continuous State Space Model

The system equations for the 4th order structure in Fig. 1(c)
can be obtained using the capacitor voltages (temperatures) as
the state variables (x,, x,, x3, x4). The output equation variable
(Y) represents the silicon absolute junction temperature T, The
input variable (u) represents the device power in watts. The
transfer function ©jc reflects the temperature rise for a given
power input. It is derived by applying the Laplace transform
operator {s} to (9a), solving for X and substituting into (10a):

X = AX + Bu [°C/At] (9a)
Y = CX + Du [°C] (10a)
Y/u=C(sI-A)'B+D [°C/W] (lla)

where B = (1/C1,0,0,0)",C=(1,0,0,0)", D = R,, and

-1 1

R2C1 R2C1
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the above equation can be split into two cascaded 2nd order
systems which match the dc gain and overall dynamics of the
original system. Thus, only simpler 2nd order equations need
be developed using x, x,, R1, R2, R3, C1 and C2:

-1 1 .
R2C1 R2C1 X 1
N e
-1 -1 _ 1 X 0
R2C2 R2C2 R3C2

(12)
(13)

This is the time scale decoupling, and is possible whenever the
unknown system has widely separated modes. In essence, the
identification of the slow modes is conducted separately from
the identification of the fast modes.

Y=1[1 0}x" + [RI]P.

Discrete Transfer Function Model

In order to utilize an appropriate identification algorithm, the
continuous system (12) and (13) must be discretized for com-
puter implementation. There are several possible methods such
as Eulers methods, Tustins approximation, step invariance, etc.
An infinite series approximation was chosen because it leads to
relatively simple equations relating the RC parameters to the
filter coefficients. The discrete system equations are defined
using the time shift operator, {q}.

X(k + 1) = gX(k) = ®X(k) + Tu(k)

[cC/at]  (14)

Y(k) = CX(k) + Du(k) [°C] (15)
The pulse transfer function is derived by solving (14) for x(k)
and substituting into (15) [13]:

-1 { -1 1
R2C2 (chz - R3C2>

Bjc(k) = Y(k)/u(k) = C(qgl — ®) T + D [°C/W]
(16)
-
0 0
! 0
R3C2

1
0 R3C3 <

0 0

The symbolic transfer function corresponding to (11) contains
four numerator and four denominator coefficients in the s° to s*
powers. Determination of the RC parameter values requires
simultaneously solving the eight coefficient equations. Four of
the eight coefficients each contain 21 nonlinear sum and product
terms of the form 1/(R,C,), which makes solution a formid-
able task. Using the a priori knowledge that the values of the
capacitors are widely separated in this 4th order thermal model,

-1 1 1
R3C3 R4C3> R4C3

—1

-1 1
<R4C4 - R5C4>_

R4C4
where

h = sample interval

$ = state transition matrix

& = e¢™ = I + Ah {first order approximation }
h

r= S e di B. (17)
0
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Performing the matrix operations and applying the backward
shift operator (¢~ ") yields the standard digital filter format with
the coefficieiits defined in Appendix II:

A ~ N ~ by + big™" + byg?
bjc(q, 0) = A(q, 9) = < ) asy
1l +aq " +agq

where
b = [a,, a, by, by, bZ]T
n = order of the numerator = 2
m = order of the denominator = 2.
The linear difference equation for the system is
y(k) = ayy(k = 1) + ay(k — 2) + bou(k)

+ bu(k — 1) + bu(k — 2). (19)

Discretization Error

Substitution of g = 1 into (18) provides an estimate for the
discretization error due to a first order approximation for the
state transition matrix:

0jc(1,8) = H(1,8) = |R, + R, + Ry|| — {0.5n/C1}.
(20)

The first term is the correct dc gain of the 2nd order system
while the second term is due to the O (4%) error defined in Ap-
pendix II. This term is negligable for small sample times used
in identifying the fast time constants but can lead to large dc
gain errors (= 30%) in y(k) for large sample time {4 }. This
is further detailed in Section VI.

Parameter Error Estimation

A worst case steady state error bound estimate for parameter
R, due to (20) can be derived using the standard rule of thumb
that the system is sampled 10 X faster than the fastest time con-
stant to be identified.

{h 0 S/C } (Tfas(esl> <05> <R1CI> 5% ”R I
* 0. = = = +5% .
' 10 /\ct 20C, !

(21)

RC Parameter Extraction from Filter Coefficients

The five RC parameters may be found by simultaneously
solving the five coefficient equations in Appendix II. A conver-
gent solution is obtained if the O (4*) error term in the b, equa-
tion is eliminated before solving. The parameter solution
equations [22]-[26] must be solved in the sequential order as
shown. These equations were solved by hand using the variable
substitution method and verified using the symbolic equation
solver Mathematica [14].

R, = b, (22)

G

ha/{b[(ay = @) + (b, = b)/b]}  (23)

Ry = (=0.5)1/{boCi[(b)/bo) — a\] = Ch} (24)

G = h/{Rz{[a, +2.0 - (h/R,C))]
(@ + @ + 1L0)(R,C /1) }}
Ry = ®*/{C\CRy(a, + a; + 1.0)}.

(25)
(26)

IV. DESIGN OF THE EXPERIMENT
Standard Identification Procedure

In the semiconductor thermal model structure of Fig. 1(c),
the time constants (7,) cover a 1500: 1 range from psec to sec-
onds. Identifying these major time constants by standard iden-
tification methodology requires multiple trial & error ID
applications, since coefficient accuracy tends to degenerate for
systems with 7’s having more than two decades of time sepa-
ration. Such experiments to identify the 7’s require engineering
tradeoffs regarding sampling time [7s], experiment record
length, and input signal amplitude. Proper identification of the
fast time constant requires a high sampling rate, identification
of the slow time constant requires a long record of input/output
data. Together, these imply a cumbersome and poorly condi-
tioned identification setup. One approach is to collect a number
of experiments and to average them to obtain an averaged trans-
fer function model that drives the y (k) — (k) error to zero for
a specific time region of interest. Further, ambiguous sets of
RC parameters may result if the RC extraction procedure of Sec-
tion III is applied to such averaged models.

Proposed Time Decoupled Theory (TDT)

The disadvantages of widely separated time constants can be
circumvented since we know a priori that such a separation ex-
ists. The basic strategy of time decoupled identification is to
run two separate identification procedures, one for the slow
modes and one for the fast modes. Besides the advantages of
tailoring the sampling rates and record lengths to the expected
order of magnitude of the time constant, this decoupling allows
a simpler RC parameter extraction procedure. Fig. 7 conveys
the TDT procedure as applied to the 4th order semiconductor
module example. The 4th order model is decoupled into two
independent 2nd order systems. The split model is reasonable
given the analogous electrical model where a high frequency
device power sequence of short experiment length will charge
C1 and C2 while leaving C3 and C4 virtually unchanged. Sim-
ilarly, the fast modes will be virtually invisible to a step inputs
with a slow sampling rate. The basic TDT concept involves
using multiple identification runs to estimate the four major time
constants in succession from the fastest to the slowest.

The fastest time constant [ 7, } of Fig. 7a is identified by suit-
able selection of 1) a sampling rate that is fast enough for the
estimated [ 7, ] to be identified, 2) a persistently exciting device
power sequence, 3) an experiment record Iength long enough to
allow for parameter convergence and 4) using all available a
priori knowledge for R1, R2, R3, C1 and C2 initial estimates.
True junction temperature y{k) is calculated using the TTIC.
The identified a; and b, coefficients will typically converge in
less than k = 15 samples. The 8, parameters are then passed to
the RC extraction procedure. The newly updated values for R1
and C1 will be very close to the actual values while R2, R3,
and C2 values will be relatively inaccurate.

The ID procedure is next repeated using the RC parameters
from the previous run as initial a priori estimates. The sampling
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Fig. 7. Time decoupled theory procedure (TDT). (a) Identifying the fast
7's. (b) Identifying the slow 7’s. (c) Connecting the split models.

rate is now chosen to be greater than T, but still fast enough
to identify the second guess-timated time constant 7,. Appli-
cation of the ID algorithm and parameter extraction procedures
will modify R2, R3 and C2 to the correct actual values while
the faster R1-C1 parameters will remain unchanged.

To identify the slower time constants [7, and 7,], the split
model of Fig. 7(b) is used with the same second order equations
as was used in Fig. 7(a). A key parameter change is the substi-
tution of {R1 + R2 + R3} = R1 to maintain the TTIC overall
dc gain and slower system dynamics. The sampling rate is se-
lectively increased and the ID and RC extraction procedures are
similarly repeated to find R4, R5, C3, and C4 in about two or
three ID runs. Some systems may require repeating this fast/
slow identification procedure to more accurately identify the in-
terconnecting R3 element in Fig. 7(c). Considerations for
choosing a suitable sampling rate, experiment length and input
signal amplitude are now discussed in more detail.

Input Signal

The amplitude of the device input power signal should be as
high as allowable to improve accuracy. The form of the input
signal should: 1) consist of square pulses so that the TTIC curve
for y(k) calculation may be directly used, 2) have a random
amplitude versus time profile to allow ID convergence to a
unique set of parameter values, 3) never have a non-realistic
negative power pulse, 4) ideally result in rated T, for rated power
{Prated} with steady state thermal resistance at 7. = 25 C.
These constraints are met by taking a pseudo random sequence
consisting of the first positive 50 digits of pi (0-9). For long
sequences, the average random digit value approaches 5. The

u (k) amplitude euqation used is
u(k) = 2.0 * Prated * {Random digit } /10. (27)

To help identify longer term dynamics, six similar amplitude
pulses {e.g., u(1) to u(6)} were grouped together before the
next allowable amplitude change.

Sampling Time

The Nyquist theorem determines the minimum sampling rate
to use for each ID run. A commonly used practical rule of thumb

is to sample 10X faster than the fastest time constant to be iden-
tified:

h = Tsmul{exr/ 10 (28)

Experiment Length

Parameter accuracy is dependent on the record length so that
a sufficient amount of data points is available to give long term
dynamics. The RLS parameters theoretically converge in = (n
+ m) steps for a white noise input [15]. For the random step
input sequence, four to 15 sample intervals were typically ob-
served for §-parameters to converge.

{k} length = (4 to 15) * h. (29)

Test Case

To verify the accuracy of the collected ID parameters, an
analog ACSL [16] simulation of the RC parameters for a single
step input power pulse is done to compare the final estimated
and actual TTIC.

A test case utilizing the calculated transistor thermal param-
eters of Tables III and IV was used to verify the TDT proce-
dure. As a first step, the linear difference equation (19) was
used to calculate the true y (k) rather than the actual TTIC. The
final results are found in Section VI.

V. PARAMETER ESTIMATION
Method

The goal of the identifier block in Fig. 3 is to determine un-
known g, and b, filter coefficients of the parameter vector 8 in
6jc(q, 8). Deriving a control law for parameter estimation from
the parameter vector error [6, — 8,] is not possible since 8, pa-
rameters are not directly measurable. However, a prediction es-
timate y(k) for every measurable/calculable y(k) can be
formulated. If a linear model is assumed, then the resulting pre-
diction error estimate [ y(k) — $(k)] is a function of 6 as shown
in (19):

error (k, 8) = y(k) — (k).

Various methods that minimize the sum of the squares of this
prediction error are maximum likelihood, least mean squares,
extended least squares and recursive least squares. The RLS
method was chosen since it is computationally fast, requires no
matrix inversions, and tends to converge rapidly. Observed
convergence rates for the 2nd order model varied from four to
eight amplitude step changes, depending on the closeness of the
f, initial guesses. Thus, only a small number of y(k) calcula-
tions using the TTIC are required. A disadvantage of RLS is
the b, biasing toward wrong values as k — oo when the process
output y (k) is measured in the presence of noise. However, in
this application, y(k) is virtually noiseless since the primary
source of noise appears to be interpolation errors when reading
the TTIC curve.

(30)

Solution

A recursive identifier is one in which both input u (k) from
{k =0to N — 1} and output y(k) measurements from {k =
1to N } are made and inputed to the estimator to determine the
parameter vector §. The symbol N is the total number of sam-
pling intervals over which the data is collected. The minimi-
zation process requires N > n + m to effectively average out
error residuals.




SKIBINSKI AND SETHARES: THERMAL PARAMETER ESTIMATION USING RECURSIVE IDENTIFICATION 235

Defining the data regression vector as (31), then the error at
any given time k = 7 as a function of § is given by (32):

[ y(k)
_ yk+1—n) )
x(k +1) = u(k) (31)
l;(k +1-m)
error (1, 8) = y(1) — x"(n)8 (32)

The error vector equation and the error vector, output vector
and regression vectors collected from time » to N is thus:

e(N,B) = Y(N) — ¥ (N)§ (33)
where
e(n, B) y(n)
(N, 8) = e.(n +1.9) Y(Ny=| -
: y(n +1)
e(N, 8) ¥(N)
E(RN*nwLI e(R(N—v,+l)>((n><m+l)
x"(n)
¥(N) = X (n+1)
x"(N)

e @IN-1+DX(nxm+1)

The optimal 8 is the one that minimizes (33) error in a least
square sense. This requires a performance index J (N, 9) taking
the gradient 3J /38, and setting it equal to zero. This results in
the well known least square solution of (35), [15]:

N

J(n, N, B) = E e(k, 0) e(k, 8) (34)

BIN] = [¥(N) ¥(N)]'¥7(N) ¥(N) = P[N] Y[N]
(35)

B[N + 1] = P[N + 1] Y[N]. (36)
The optimal coefficients & will exist if the pseudoinverse P[N |
is nonsingular. This condition is satisfied assuming persistent
excitation, which is guaranteed by selecting the amplitude of
u (k) randomly for times up to k = N by using a pseudo random
sequence. As new data arrives {#(N), y(N + 1)}, the objec-
tive of RLS is to update §[N]to [N + 11 in terms of the old
data and 9[N] vector and similarly update P[N } to P[N + 1].
The P{N + 1] matrix in (36) can be related to P[N ] without
inversion via the matrix inversion lemma [17]. Thus 8[N + 1]
can be related to é[N] without inversion by

Ok + 1) =8(k) + L(k + D)[y(k + 1) = x"(k + 1) §(k)],
(37)

new estimate = old estimate + correction term, where
L(k + 1) = Gain matrix
y(k + 1) = New data measured
xT(k + 1) 8(k) = Prediction of y(k + 1)

correction term = Gain * (y output error equation ).

Starting Conditions

A first estimate for [ N ] without inversion may be obtained
using the a priori knowledge of Section III parameter initiali-
zation procedure. Alternatively, Soderstrom’s suggested start-
ing conditions for O[N1and P[N] can be utilized. Two initial
conditions for y (k) must be calculated for the 2nd order model,
thus starting the process at k = 2:

B[N =0 PIN]=a*l a=(10/n) X yi(k).
(38)

Algorithm

The identification scheme [18] used for the computer pro-
gram is

(0) Initialize O[N] and P(N); setk = 2

(1) Form x** 1 data vector = (n + m + 1) * 1 ma-
trix for SISO system
) Update Lk + 1) = [1/y]P(k) x(k + 1) {l/a +
Ix "tk + D/yIPK) x(k + D}
where L% =1
a =1 :
{17! = simple inverse of a scalar valu
Lk +1) =@+ m+ 1) X 1 matrix
P(k) =n+m+ 1) XMn+m+1)

matrix
xtk+1) =@ +m+ 1) x| vector
x'k +1)=1X (n +m+ 1) vector

(3) Measure y(k + 1), u(lf + 1)

(4) Update 8k + 1) = (k) + L(k + DIytk + 1) —
x'(k + 1) 6]
(5) Update PGk + 1) = [14){I — Ltk + ) x"tk +

D} P(k)
(6) Replace kbyk + 1 and go to (1).

VI. RESULTS
y (k) Calculation

Calculation of the true junction-case temperature, ATjc =
y(k), in the RLS routine must be done using the TTIC and a
persistently excited device input power sequence, u (k). The
calculated parameter TTIC shown in Fig. 6 was specifically
chosen as a test case example since the RC parameters gener-
ating this curve are exactly known and can be compared to
‘‘Identified’” RC parameters. A computer program was written
to calculate y(k) utilizing input data points (10 pts/decade)
from the test case TTIC curve. The program calculates A Tjc
for a continuous u (k) input sequence using the superposition of
equivalent heating and cooling pulses.

Fig. 8 shows a typical u (k) input power sequence and output
ATjc response for a 4th order ACSL analog simulation model
using the RC Calculated Parameters in Table 1. The basic u(k)
pulse pattern from ¢ = 0 to ¢ = 2.5 ms was repeated starting at
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Fig. 8. Simulated analog A Tjc response to u (k) power sequence.
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Fig. 9. TTIC calculated and analog A Tjc responses to u (k).

t = 2.5 ms. Of particular interest is the instantaneous temper-
ature jump at each new u (k) pulse due to the P * Rl component
of Fig. 1(c).

Fig. 9 shows the program TTIC Calculated A Tjc discrete
step response as well as the analog A T)jc response of Fig. 8.
The TTIC inherently incorporates the heating/cooling integra-
tion step while providing ‘‘sampled’’ results at the end of each
pulse. The discrete TTIC and analog Simulated A Tjc responses
are virtually identical at the end of each pulse from ¢t = 0 to ¢
= 2.5 ms. Attime ¢ = 2.5 ms, the TTIC program was restarted,
retaining the A Tjc (2.5 ms) value as a new starting point, and
assuming the next pulse from ¢ = 2.5 to 3.5 ms is of 1 ms
duration. The resulting error that follows between the two A Tjc
responses illustrates a typical misapplication of the TTIC con-
cept that violates the single pulse-zero initial condition assump-
tions upon which the curve is based. This is further clarified by
calculating both analog and TTIC program A Tjc responses at
=2.5msandt = 3.5 ms.

The TTIC A T jc response is calculated for a single equivalent
heating pulse of 2.5 ms duration and an amplitude (165 W)
corresponding to the average value of u(k) from¢ = Qtor =
2.5 ms. The resulting temperature using the calculated param-
eter curve of Fig. 6 is 10.6°C and is in agreement with the
actual 11.1°C value obtained with both the TTIC program and
analog simulation.

The calculated TTIC A Tjjc response at 3.5 ms cannot be done

by restarting at 1 = 2.5 ms as described above. The correct

method must assume the device power profile of Fig. 4(a) with
Pl =165W, P2 = 360 W, 1 = 2.5 ms, and 12 = 3.5 ms.
Using the TTIC of Fig. 6 and (3) results in less than 0.5°C error
from the true temperature.

True RLS y(k) calculation for the test case example with
known RC parameters was done using (19) discrete difference
equation since it was easier to use and provided discrete tem-
perature information identical to the TTIC computer program.

Test Case Results

Table II results show that only four basic identification runs
were needed to identify the nine unknown RC parameters. Cor-
rectly identified parameters in Table II are enclosed in a solid
box. The four basic time constants listed in the 7., column are
a direct result of the § parameter initialization procedure using
(8e)-(8i) and the actual TTIC of Fig. 6. A suitable sampling
rate for each ID run was derived from the 7, column by ap-
plying (28).

The R1, R2, R3, C1 and C2 values were identified in 2 ID
runs using the Fast 2nd order Ojc model. Run la used the Sod-
erstrom starting conditions assuming no a priori parameter in-
formation. As seen from Table II, R1 and Cl are properly
identified, as expected, for A = 10 us. Run 1b shows that ad-
ditionally R2 can be correctly identified by using all the a priori
initial parameter estimates from Table I. Following the TDT
procedure, the output identified parameters from run 1b were
used as initial parameter estimates for run 2 using 2 = 1.0 ms.
Run 2a results show that the final R3 and C2 values enclosed
by the dashed box in Table II are within 20% of the actual val-
ues. This error is due to the method of calculating true y(k)
using the linear difference equation rather than the TTIC ap-
proach. This is caused by the dc gain discretization error intro-
duced by the O(h*) term in the b, filter coefficient of Appendix
II. Run 2b removed this error term resulting in final identified
parameters within 0.1% accuracy. Fig. 10 shows a graphical
comparison of ID runs la, 1b, 2a, and 2b by reconstructing the
TTIC from corresponding identified RC parameters.

Components R3, R4, R5, C3 and C4 were identified using
the slow Bjc model in runs 3 and 4. The initial parameter esti-
mate for R3 in run 3 was determined by adding the R1, R2, and
R3 values identified from run 2b. The remaining initial param-
eters were obtained from the @ Initialization procedure and Ta-
ble I. The results from run 3 show that, similar to run 1b, the
R3-C3 parameters associated with the faster time constant are
correctly identified. Run 4 used these two component values
along with estimates for R4, R5 and C4 from Table I as input
parameters. The final identified parameters were within 0.2%
of the actual values. Figs. 11 and 12 show typical identification
waveforms for run 4 with &~ = 100 ms.

Fig. 11 illustrates the output error equation, (k) = y(k) —
y(k), being driven to zero in k = 7 samples. After time k = 7,
the y(k) and $(k) temperature response waveforms to the u (k)
sequence are identical. The u(k) power sequence consists of
six similar amplitude pulses before changing at k = 7. Fig. 12
depicts the same u (k) power sequence applied as in Fig. 11. In
addition, a typical RLS convergence pattern for two # parameter
values is shown. The digital filter coefficients, §, = a, and 93
= by, are shown dynamically adapting to new values to satisfy
the y(k) error equation and also reach steady state at k = 7
samples. The steady state values of the five identified 8§, were
used to further extract the model RC parameters.

VIII. CONCLUSION

This paper has identified a need for a device thermal model
to maximize simulation capability by solving both the electrical
and thermal network models simultaneously. A new approach
to the problem of determining device thermal model character-
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TABLE 11
SUMMARY OF RLS IDENTIFICATION RUNS
. . Initial P Identified P:
):_(ms) W{ms ) RI CI R2 C2 R} C3 R4 C4 RS| RI CI R2 C2 RI C3 R4 C4 B
1a 001 032 | 00000 00000 0.0000 00000 00000~ —oe o | 00064 00324 00179 00005 00762 — — —— ——
1b 001 032 [00080 0.3600 00000 00220 00780 -—— - - ——N0.0064 00329 0.109§ 00727 0015 —— —— —— ——
210 16| 00064 00329 0195 00727 0015 -~— —— -— — [[0.0064 00329 0.108% 0.1697 01095} ~— -~ o
B 10 16| 00064 00329 01095 00727 0015 —— —— —— ——1f 0.0064 00330 01109 0.479 01219] — — - ——
310 80| —— - —— —— 02197 0650 02910 09000 001§ ~—— -— -— — | 02397 12063] 00003 0117 0.1804
4100 400| —— — - o 02397 12263 02910 0.9000 001§ —— — -—— — [ 0239 L1799 11659 94842 0.011]
True Value§ —— oo e semme e e e ——f 00064 00330 0.110 0.1480 01220 1.1800 0.1650 9.4842 0.0110
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Fig. 11. y(k) and y(k) response to u (k).

istics was presented using system identification concepts. Gov-
erning thermal laws, device physical packaging construction,
manufacturer’s data specification sheet and standard TTIC
graphical transfer function information were used as a priori
knowledge to determine the model order and structure. The typ-
ical semiconductor model structure inherently contains wide
time scale separation of the thermal time constants. This infor-
mation was used to advantage in formulating a new systematic
thermal RC Extraction procedure using RLS and time decou-
pled theory. Time decoupled theory used multiple RLS identi-
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Fig. 12. Filter coefficient convergence for u (k) input.

fication runs to estimate the major time constants in succession
from the fastest to the slowest. The identified RC parameters
from each run are found from the digital filter coefficients of the
estimated mathematical transfer function §jc. A test example
using a transistor module was used to verify the proposed tech-
nique. Calculated RC parameters obtained from physical di-
mensions were also performed.

The proposed parameter identification concept may also be
extended to other thermal systems with inherent overload ca-
pability such as transformers, rotating machines, etc. A TTIC
curve can be generated for a step input of equipment power
using output temperature data or possibly internal temperature
states. However, a linearized model for a range of input power
will be obtained due to nonlinear convection and radiation heat
transfer. Time decoupled theory may possibly be extended to
rotor time constant identification in ac vector control.

APPENDIX [
GOVERNING THERMAL LAws

A RC parameter model of Fig. 1(c) and Fig. 5(d) is assumed
for 50 A, 500 V, 300 W dual darlington isolated base transistor
module with base dimensions of 1.25 X 3.6 inches. The spec-
ified Qjc(1ss) = 0.41 [ °C /W] and has the TTIC curve shown
in Fig. 6. Thermal resistance is directly analogous to Ohm’s
law for electrical resistance. A 45° angle from the junction to
the case was assumed:

R, = L,/(K * Ae), (39)
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TABLE III
CALCULATED PARAMETER SPREADSHEET
t Ac Ae Lt Rind | Ri Ci |
Matertal | (mils) | (sq. inch) | (sq. inch) (C/W)| (C/ W) [ (W-s/C)
- =t/ ]0. . :
Silicon | 5 10.43x 0.43(0.43 x 0.431— ;,/4 g_g 0008 | 4033
Snpb | 3 [043x043043x043) =t 0087 | g1y \\
=t/2] 0016
24 .
Mo 0 |043x043)043x 043775 15 016 0.148
3628 | 17 [oa3xoasfossxoas| =1 [o097 | 0122 \\
63 10.6x0. =t/2 |0.0089
'Cu block x06 10.6x0.6 —i/2 10008 118
Soe | 4 |o6x06 | 06x06| =t [o012 \
Al203 20 |06x0.6 ] 06x06{ =t 0.109 0.166
SnP | 9 |06x06 |06x06 | =t |00 \
=t/2]0.010
18 | 12x12 J075x0.75 9.50
Cubase =2 0010 oom0
TABLE IV
MATERIAL PROPERTIES ASSUMED
Material K [W/(°C-in)] p[lb/cu. in.] C, [W-S/Ib-°C]
Silicon 2.134 0.083 303
280°C Solder
(Sn10-Pb90) 0914 - —
Molydemum 3.296 0.369 115
180°C Solder
(Sn75-Pb25) 0.914 — —
Ceramic 0.510 — —
Copper 9.77 0.320 175

L, = thickness [inch] of material along heat flow patB;

material thermal conductivity from Table IV;

Ae = cross section area [sq. in. ] perpendicular to heat flow
path;

o]
I

in calculating an effective heat spreader area { Ae } for succeed-
ing layers with a much greater true cross sectional area { Ac}.
Thermal resistance {R;} is calculated to the midpoint of each
major heat capacity material where the capacitance { C;} is as-
sumed a lumped parameter. However, the silicon chip is an ex-
ception where it is assumed that the top 1/2 of the thickness
{L,} is really the distributed power source { P }. The ceramic
insulator (26% ) and solder interfaces (34 % ) account for 50%
of the specified Qjc(1ss).
The thermal capacitance is calculated using true material vol-
ume:
C=p*Cp*V, (40)

p = density of the material from Table IV,
Cp = specific heat of the material from Table IV,
V = true material volume (L, * Ac) [in®].

APPENDIX II
DISCRETE TRANSFER FuNcTioN MODEL

Let the following constants be defined for a chosen sample
time A:

K, = h/RlCl
Ky» = h/R,G,

K = h/RZCI
K3y, = h/R,C,
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<(1 - Ku) K, >
d =
Ky (1 — Ky — Kz)

(1 —0.5*Ky)
F=(h/C.)*<05*K >

‘C=[1 0] D=[R]

The digital filter coeflicients used in (18) transfer function are

a = =20+ Ky, + Ky, + Ky,
a, = 1.0 — Kz] — Kzz - K32 + KZI * K32
by = R,

by =R{-2.0 + K + Ky + Ky, + Ky — 0.5 * Ky, * Ky, }
by = R{1.0 = Kiy = Ky = K5y = K + 0.5 % K,, * Ky,
+ o Ky %Ky + Ky %Ky + Koy 2Ky — O(h})}

where the O(/#*) = 2nd order error term = 0.5 * K, * Ky, *
Ky
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