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Previous work has demonstrated the existence of keyboard layouts capable of maintaining consistent fingerings across a parameterised family of tunings
This paper describes the general principles underlying layouts that are invariant in both transposition and tuning. Straightforward computational methods for
determining appropriate bases for a regular temperament are given in terms of a row-reduced matrix for the temperament-mapping. A concrete description o
the range over which consistent fingering can be maintained is described by the valid tuning range. Measures of the resulting keyboard layouts allow direct
comparison of the ease with which various chordal and scalic patterns can be fingered as a function of the keyboard geometry. A number of concrete example
illustrate the generality of the methods and their applicability to a wide variety of commas and temperaments, tuning continua, and keyboard layouts.
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1 Introduction

Some alternative keyboard designs have the property that any given interval is fingered the same in all keys. Recer
work [1, 2] has shown by example that it is possible to have consistent fingering not only across all keys in a single
tuning, but also across a range of tunings. For example, a 12-edo (equal divisions of the octave) major chord, &
19-edo major chord, and a Pythagorean major chord might all be fingered in the same way. This paper explores the
scope of this idea by parameterising tunings usatgilar temperamentahich simplify Just Intonations (J1) into
systems that can be easily controlled and played.

As shown in Fig. 1, an underlying JI system is mapped to a set of generators of a reduced rank tuning system.
Sect. 2 describes this mapping in terms of the null space of a collection of commas. The resulting generators of the
reduced rank system are variable, and control the tuning of all notes at any given time. A privileged set of intervals
(such as the primary consonances) is used in Sect. 3 to calculate the range over which the generator may vary ar
still retain consistent fingering. Sect. 4 describes a basis for the button-lattice which is chosen to spatially arrange
the intervals of the temperament for easy playability. Issues contributing to the playability of an instrument include
transpositional variance/invariance, the geometry of the swathe (discussed in Sect. 4), the presence of a monoton
pitch axis (detailed in Sect. 6), and readily fingerable harmonic and melodic intervals (Sect. 7). A series of examples
in Sect. 5 shows how the ideas can be applied to a variety of tuning continua and a variety of keyboard geometries

2 Tempering by commas

A p-dimensional tuning system can be tempered witbommas, providing a way to parameterise a family of
tunings in terms of a smaller number (typically one or two) of basis elements. Suppose aS8ystganerated by

*Corresponding author. Email: andymilne@tonalcentre.org
Journal of Mathematics and Music
ISSN 1745-9737 print / ISSN 1745-9745 onli@e2007 Taylor & Francis Ltd.
http://www.tandf.co.uk/journals
DOI: 10.1080/174597 30XXXXXXXXX



October 4, 2007 8:34 Journal of Mathematics and Music TuningContinua-RevisedVersion

2 Milne, Sethares, Plamondon
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Figure 1. From JI to regular temperament to layout.

p positive real generatorg, g2, . . . , gp, SO that any element € S can be expressed uniquely as integer powers
of the g;, that is,s = gilggz -+~ gy fori; € Z. The value ofs can be interpreted as the frequency height of the
p-dimensional lattice element = (iq,i2,...4,) € ZP. It is often easier to study such a system by taking the
logarithm; this turns powers into products, products into sums, and frequency heigbitéhtbeight(or cents). In
this notation, theuning vectorg = (log(g1),log(g2), - - ,log(gp)) € R? maps each elemente Z” to

i11og(g1) +i2log(g2) + ... +iplog(gy) = (z,9) € R.

The value(z, g) is the pitch height ot corresponding to the tuning vectdiemperingmeans to vary the precise
values of the tuning vector, replacingwith nearby valuesy = (log(G1),log(Gs),...,log(G,)) € RP. The
orthogonal complement

Gt = {z e RP|(G, z) = 0}

is thep — 1 dimensionalsotone hyperplanef pitch height zero. Aommas an element € Z? with (¢, G) = 0 and
soG+ (N ZP is called thecomma latticeA tuning continuunis a continuous family of tuning vecto€s, € R? with
the property that there is a commeardimensional subspadg C G# of the isotone hyperplanes for all members
of the family. (Particular members of the continuum may have morestl@mmas.) A tuning continuum is called
aregular temperamenthen its tuning gives intervals that can be correctly recognised as approximations of small
integer (Just Intonation) ratios. A simple way to concretely characterise a tuning continuum is in terms of a basis
for C, that is, in terms oh linearly independent commas. The commas can be viewed as a set of constraints that
reduce the system fromto p — n dimensions.

Letcy,co,. .., c, € ZP ben linearly independent commas gathered into a madrig R"*? whosejth row isc;.
Since(c;, G) = 0 for all 7, this represents a linear system of equations

C (log(G1),log(Gy), ..., log(G,))* =0

(wherezT is the transpose aof) and the mapping can be characterised by the null spa@@). The correspond-
ing range space mappir : Z” — Z" (defined by the transpose of some basis\@fC)) maps any element

gilg?---gff eSto
R (i1, 09, - - -, ip)" .

Such characterisations of temperaments in terms of the null space of commas were first discussed on the Alternat
Tunings Mailing List [3] and a variety of special cases are considered in [4] and [5]. A basis for the temperament
mapping can often be found by reducilyto row echelon formR which displays the same range space with
leading ‘1's. Any such basis can be used to specify the tuning continuum.

ExampLE 2.1 (5-limit with the Syntonic Comma and Major Diesi§ponsider the 5-limit primes defined by the
generator2, 3, 5, which are tempered t® — G1, 3 — G4, and5 — G3 by thesyntonic comma{}f‘lG%Ggl =1
and themajor diesisG3G3G5* = 1. ThenC = (3'1Z1) has null spaceV(C) = (12,19,28). ThusR =
(12,19,28), and a typical elemer® 3¢5 is tempered tof}ZfGZ;G? and then mapped through the comma to
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12i1 + 193y + 28i3. All three temperings can be written in terms of a single variables G; = o'?, Gy = o'?,
andG3 = o8, If the choice is made to tempéf; to 2 (to leave the octave unchanged)= %/2 and the result

is 12-edo. IfG; is tempered to @seudo-octave., o = ¥/p. defines the tuning with 12 equal divisions of the
pseudo-octave [6, 7]. Any givendefines a member (i.e. a particular tuning) within this 12-equal divisions of the
pseudo-octave tuning continuum.

ExAMPLE 2.2 (5-limit with the Syntonic Commagonsider thes-limit primes defined by the generatdss, 5,
which are tempered t@ — G, 3 — G2, and5 — Gj3 by the syntonic comm@f‘*G%G;l = 1. ThenC =
(—4,4,—1) has null space spanned by the rowsbt= (1, § %) , and this may be row reduced to

R (311) »

A typical elemen(il,ig,ig) is mapped to(zl — 413,19 + 413) In this basis, the tempered generators can be
written in terms of two basis elementisand 3 by inspection of the columns & as G; = &, Go = (3, and
Gs = 6434 Tempering#; to 2 (= &, leaving the octave unchanged) and Iettﬂhgary gives a tuning continuum
that contalns a variety of well known tunmg@ = 2% ~ 2.9719 gives 7- edoﬂ = 21 ~ 2.9966 gives 12-edo,

B = 217 ~ 3.0062 gives 17-edoj = 25 ~ 3.0314 gives5-edo, and othep give a variety of (nonequal) tunings
such as— comma ancﬁ comma meantone. (¥, is tempered to a pseudo-octage = &, the various values of
correspond to 7-equal division of the pseudo-octave, 12-equal divisions of the pseudo-octave, etc.

ExAmMPLE 2.3 (5-limit with the Syntonic Commalonsider the 5-limit primes defined by the generamré,
2, which are tempered t@ — Hy, 3 — H», and 2 — Hj by the syntonic commal; >H3H; ' = 1. Then
C = (—2,4,1) has null space spanned by the rows of

5 (102
R:<01 4) @

which is given in row reduced form. A typical elemént iz, i3)* is mapped tc(z'l — 2i3, iy + 4i3) " . In this basis,

the tempered generators can be written in terms of two basis elerentd 3 by inspection of the columns Bf
asH, = &, H, = 3, andHs = a—23*. Tempering3; to 2, 3 covers the same gamut of tunings as in Example 2.2.
For instance, ag increases, the continuum in Example 2.2 moves from 7, to 12, to 17, to 5-edo.

EXAMPLE 2.4 (5-limit with Two Commas)Consider thes-limit primes defined by the generat@s3, 5, tempered
to2 — G1, 3 — G4, and5 — G35 by any two of the following commas:

Name Comma Vector Reggentation
the syntonic comm&; *G3G; ' =1 (—4, 4, —1)
the parakleisma G$GMG;8 =1 (8, 14, —13)
the kleisma GG°aG8 =1 (=6, —5, 6)
the small diesis  G;'°G,'G3 =1  (-10, -1, 5)

ThenC is a 2x3 matrix composed of any two of the vectors above. All pairs have the same nul\sg@ge=
(19, 30, 44)T which is mapped through the commalt; + 30iy + 44i3. The temperings can be written in terms
of a single variablex asG; = a'?, G5 = o®°, andG3 = o*4. If the choice is made to tempé; to 2 (to leave the
octave unchanged) then= /2 and the result is 19-edo. Similarly, temperi6g to a pseudo-octave, defines
the tuning continuum with 19-equal divisions of the pseudo-octave.

ExaMPLE 2.5(11-limit) Consider thel1-limit primes defined by the generat@s3, 5, 7, 11, which are tempered
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to2— G1,3— Ga,5+— G3, 7+ Gy, and1l — Gs. Using the three commas

G{'G;'GiGIGE =1
G1G3G;°Gy =1
G{*G3GE =1

. . . -7-1111
reduces this to a rank 2 regular tuning system. The mafix= ( 14 31 _13(1)8> has null spaceN(C) =
(1324447 0T The row reduced form @ isR = (¢ 5 75 24), which implies the basi€’ = &, G2 = 3,

Gs = a3, Gy = 613319 andGs = 424513

Examples 2.2, 2.3, and 2.5 define two-parameter mappings ealleduceds-chains which are generated by
stacking integer powers gf and therreducing(dividing or multiplying by«a) so that every term lies between 1 and
. For anyi € Z, this is 8'a~l*1°8. ()] where| z | represents the largest integer less than or equal éereduced
(B-chains define scales that repeat at intervals; @f = 2, representing repetition at the octave, is the most common
value. For a chain to repeat at the octade— o for somer € Z. Similarly, for a chain to repeat at another interval

of equivalence, (such as a ‘stretched octaye’ = 2.01, the ‘tritave’p, = 3, or the ‘pentavep, = 5), p¢ — a. If
a™ = " for some coprime integers andn, the chain has distinct notes iff1, o). If o andg are not rationally
related, there are an infinite number of notes denge,im). Any arbitrary segment of an-reduceds-chain can
be used to form a scale, and the number of notes it contains is callearaimality. For a given tuning ot and
0, certain cardinalities arf®lOS scaleswhich have a number of musically advantageous properties (wherg,
MOS scales are conceptually equivalentvall-formedscales) [8—10].

3 Valid tuning range for consistent fingering

A p-dimensional tuning system temperedrbgommas parameteriseg a n dimensional family of tunings. When
such a tuning system is laid out onto a keyboard, two desirable propertiémmaspositional invariancéwhere
intervals are fingered the same in all keys) &ntng invariancgwhere intervals are fingered the same throughout
all members of a tuning continuum). As shown in [1], these together require the keyboard to have dimension
This section generalises these ideas by formally definiggistent fingering of a set of intervaiser thevalid
tuning rangewhere the fingering of intervals on the keyboard remains the same.

Any interval s € S can be written in terms of the generators as = g%’ g% --- g wherei; € Z, or more
concisely as the vectar = (i1, 2, - -4,). As in Sect. 2, a set of commas defines the temperament mapging
Consider grivilegedset of intervals

1=150<s81<s2<...<85Q, 3)

which can also be represented as the vedaigrs, ..., sg. Given any set of generatots , g, . . ., oy, for the

reduced rank tuning system, each inteals tempered t®R.s; = o' ad? . .. afg’fg wherej,, € Z. Without loss of
generality, they;, may be assumed greater than or equal to unity (since a candidate geagratdrwith exponent

Jji 1S equivalent to the generata;j1 > 1 with exponent-j;). Thea-generators define the specific tempered tuning
and the coefficientg, specify the exact ratios of the privileged intervals within the temperament. The set of all
generatorsy; for which

1=Rsp <Rs; <Rsy <...<Rsg (4)

holds is called thevalid tuning range(VTR). If the musical system contains an interval of equivalepgethe
privileged intervals need only be consideregirreducedform.

Given any layout mappind. (as discussed in Sect. 4), thig correspond directly to the buttons that must be
pressed in order to sound those intervals. Accordingly, (4) guarantees that the fingering of privileged intervals
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remains fixed for all possible perturbations of the basis within the VTR and the privileged intervals are said to be
consistently fingeredver the VTR. Note that the VTR does not guarantee that the privileged intervals sound ‘in
tune’ or remain recognisable in a harmonic sense (i.e. as equivalent to specific small-integer ratios), but it does
guarantee that the scalic order of all privileged intervals is invariant. For example, a scale (e.g. the chromatic)
might consist of privileged intervals (e.g. the harmonic consonances of common practice) and the intervals that car
connect these privileged intervals by all possible types of contrapuntal motion (i.e. similar and contrary and oblique)
(e.g. the tones and semitones of common practice). These connective intervals may serve as the raw material fc
melodies and for voice-leading between harmonies, and so support a system of counterpoint. In such a scale, th
melody will have the same contour (i.e., the same pattern of up and down notes) for all tunings in the continuum
within the VTR. Outside the VTR, the contour, and hence the melodies, will change. Thus the VTR defines the
limit over which the system of counterpoint remains invariant (of course, the adventurous composer or performer
may choose to explore the exotic melodic terrain beyond the VTR).

For non-contrapuntal systems it may be more useful to choose privileged intervals that are not harmonic con-
sonances but are instead important melodic entities, such as the two differently sized steps of an MOS scale (se
Example 3.5, for a concrete example). In this way, the VTR of any given MOS scale (characterised according to its
cardinality) is equivalent to the tuning range over which that scale can actually exist. In such a system, the melodic
contour (and, therefore fingering) of all within-scale playing is invariant throughout the VTR.

There is an interesting relationship between the VTRs of some regular temperaments (using harmonic conso
nances as the privileged intervals) and the VTR of an associated MOS scale (using that scale’s steps as privilege
intervals). When the VTR of the MOS scale includes the VTR of the regular temperament, it implies that all of
that MOS’s melodic intervals can also voice-lead between all of that temperament’s consonant harmonies. Suct
systems might be considered to have desirable musical properties because their melodic and harmonic structure
are so tightly bound together. Example 3.5 gives a concrete example: the seven note diatonic MOS scale used t
embody the syntonic temperament (of which meantone tunings are the most familiar) is a system in which every
melodic interval is also a voice-leading interval. An exploration of other such harmonic/melodic synergies, and the
relationships between VTRs and coherence [11], may provide interesting topics for future investigations.

ExamMpPLE 3.1 (The Primary ConsonanceBgrhaps the most common example of a privileged set of intervals in
5-limit JI (recall Examples 2.1-2.3) is the set of eight common practice consonant inténéals, 3,3, 5,2 2,

which are familiar to musicians as the unison, just major and minor thirds, just perfect fifth, octave, and their
octave inversions.

ExampLE 3.2 (Higher-Limit Primary Consonance3he major prime chordf a p-limit just intonation is built
from an octave-reduced version of the prin2es3 : 5 : ... : p. Theminor prime chords analogously built from
octave-reduced versions of the inverted prijess : £ : ... : 1. The intervals that make up these chords form
natural candidates for the privileged set when working with higher order just intonations.

Given a tuning syster§, a set of commas and a set of privileged intervals, it is important to be able to find the
VTR. After tempering, each of the privileged intervd®ss; may be represented as an elemene ZP~". The
requirement thaRs; 11 > Rs; in (4) is identical to the requirement that

s1 log(a1) 80 log(a1)

82 log(as S1 log(a

. S I B () ©
Sp—n 10g(04p—n) Sp—n—1 log(ap—n)

where the inequality signifies an element-by-element operation. Let

s1 — Sp log(a)

89— 8 log(a
S — 2 andz— | 52 | (6)

Sp—n — Sp—n—1 log(ap—n)
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Then (5) becomeSz > 0, which is the intersection gi—n half-planes with boundaries that pass through the origin.
Since the elements af are positive (which follows because > 1), only the first quadrant need be considered.

The monotonicity assumption (4) guarantees that the intersection is a nonempty cone radiating from the origin; this
cone defines the VTR.

EXAMPLE 3.3 (5-Limit Syntonic Continuum)Consider the5-limit JI system in Example 2.2 in which the syntonic
comma is used to give the temperament mapRng (1). The primary consonances of Example 3.1 are mapped

throughR to (J % ¢ 2 7' %, 5* &) which can be read in terms of two generatarand 3 (renamed fromy,
andas above) as a requirement that the inequalities

1=a%8" <o’ <a 8 <’ <a'f <ot <o <ol

hold for all « and 3 in the VTR. Rewriting this as in (5)-(6) gives

This region is the cone bounded belowdy= —xl and bounded above hy, = xl Sincex; = log(a) and

= log(p), these can be solved by exponentiation to show diat < 6 < as. For a = 2, this covers the

range between 7-edo and 5-edo. Outside this range, one or more of the privileged intervals changes fingering. At
the boundaries, the difference between two of the privileged intervals collapses to a unison. This VTR range is
identical to Blackwood's range of recognisable diatonic tunings [12], to the 12-note MOS scale generated by fifths,
and to the range of the syntonic tuning continuum in [1, 2]. The syntonic tuning continuum contains the familiar
meantone tunings used in common practice, though the term meantone typically refers to the narrower range of
syntonic tunings that have an established historical usage (a range of approximately 19-edo to 12-edo). An MOS
scale containing only the primary consonances and the voice-leading intervals that connect them is the 12-note
chromatic, and hence the contour of any chromatic melody (or diatonic, because it is a subset of the chromatic) is
preserved over all members of the syntonic continuum.

EXAMPLE 3.4 (5-Limit Syntonic Continuum I1)The5-limit JI system in Example 2.3 is defined by the generators
2, 3 5 ' uses the syntonic comma, and has temperamentfmmp(Z) The primary consonances of Example 3.1

are mapped througR to (3 % 2 % 9 3, ! (1)) , which can be rewritten using (5)-(6) as

2-4 3-1 3-4 2\ (m _ (0
-3 7-5 2-5 T7-3 T2 0/
This region is the cone bounded belowdy = 7x1 and bounded above by, = 5x1 This corresponds to the

region aF < 8 < o which is again identical to Blackwood’s range of recognisable diatonic tunings and to the
12-note MOS scale generated by fifths.

The above examples show how the VTR changes when the temperament is expressed in different bases. Differer
privileged intervals imply different VTRs. For example, if some of the intervals are removed from consideration
in Examples 3.3 and 3.4, the VTR may expand. If more intervals are included in the privileged set, the VTR may
contract.

ExaMPLE 3.5 (The Seven-Note MOS Scale Generated by “FifthB&rhaps the most familiar example of a

privileged set of melodic intervals are the tones and semitones that make up the diatonic scale. When, 2
3/2 = G, the diatonic steps aré ' 3 1) Rewriting this as in (5)-(6) glve(s A ‘2)T (52) > (9). This
region is the cone bounded below byac ;xl and bounded above by = 7951, corresponding to the region

a: < B < a7, which includes the above syntonic VTR.

ExXAmMPLE 3.6 (7-Limit Bohlen-Pierce)A 7-limit Bohlen-Pierce system has odd generat&rs, and7 which are
tempered t8 — G1, 5 — G, and7 — Gj by the commaGfGSGgl =1.C = (-7,6,—1) has null space
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1
Table 1. A selection of temperaments with— « and1l < 8 < 22. With the exception of ‘syntonic’, the common names are taken from the Tonalsoft Encyclopedia of
Microtonal Music Theory [13]. VTR values are rounded to the nearest cent and the comma vectors presBme tat, 3 — G2, 5 — Gs.

Common name Negri Porcupine Tetracot Hanson Magic Urdshmidt  Semisixths  Schismatic  Syntonic
Comma (71473y4) (1775y3) (5779y4) (7677576) (71077175) (1771778) (279777) (7157871) (747 4771)
VTR (cents) 120-150 150-171 171-185 300-327 360—400 375-400 436450 494-514 480-514

spanned by the rows & = ({9 "), which is presented in row-reduced form. The privileged intervals (the

analog of the primary consonances in the BP system)lafe I, 2,2 12 7 3 which are mapped througR to

(6% 14576 (1))T . Rewriting this as in (5)-(6) giveg % 11° % % ¢ 7° 36)T (z+) > () - This region
is the cone bounded below by = %xl and bounded above by, = %a:l, which corresponds to the region
ail < 8 < o> and the tuning range of the 13-note MOS scale generated4y3 and§ ~ 5.

ExAMPLE 3.7 (Reflected ScalesFonsider a basis expressed in the fonm= A, 3 = A*B wherea, 3 > 1.

For any k € Z, all such bases produce identicatreduceds-chains and identical VTRs (after-reduction). The
reflected basis = A, § = A*B~! produces arx-reduceds-chain that is reflected about the zeroth note and a
VTR that is reflected about: . For instance a chain of six perfect fifth meantone generators produces the Lydian
mode, which has step intervals of M2, M2, M2, m2, M2, M2, m2, and a VBR6e#20 cents. A chain of six
perfect fourth meantone generators produces the Phrygian mode, which has the same step intervals as Lydiar
but in reverse order (m2, M2, M2, m2, M2, M2, M2), and a VTR&#-514 cents. Using thé-limit primary
consonances as the privileged intervals and fixingt 2, Table 1 shows thg-tunings that are within the VTRs of

a selection of temperaments (the tuning rangg o limited to1-2z, i.e.0—600 cents).

When assigning the values afand 3 to controllable parameters, it is necessary to choose sensible ranges over

which the parameters may vary: one strategy is to fix one componenbz(%)pé/r, thereby ensuring that the
interval of equivalence is always purely tuned) and assign the other to a one-axis controller such as a slider. The
performer moves the controller to change the tuning of the instrument, allowing exploration of the tunings within a
given VTR and enabling easy transitions between different VTRs. Because all bases of the=forn3 = A*B

are interchangeable (see Example 3.7), the tuning rangeneéd be no wider tham.

4 Layout mappings and the geometry of the swathe

A buttonis any device capable of triggering a specific pitch; it could be a physical object such as a key or lever,
or it might be a ‘virtual’ object such as a position on a touch-sensitive display screen or in a holographic projec-
tion. A layoutis the embodiment of a temperament in the button-lattice of a musical instrument. In the same way
that a regular temperament has a finite number of generatorso(@ugd 3) that generate its intervals, a lattice

can be represented with a finite number of basis vectors that span its surface. The logical means to map from :
temperament to a button-lattice is to map the generating intervals of the temperament to a basis of the lattice. The
lattice generated by a full-rank matrkx is A(L) = {Lk|k € Z™} . If a copy of the fundamental parallelepiped

P(L) = {Lz|z € R",0 < z; < 1} is placed at every point of the latticB is tiled by the parallelepipeds, each

with volume|det(L)|. The determinant ok is inversely proportional to the density of the lattice, that is, the num-

ber of lattice points inside a sphe@approaehe% asO grows [14]. All layout mappings in this paper are
assumed to have a determinait, which ensures that their button densities are equivalent and so comparisons
between them are fair. Since transpositional invariance requires a linear and invertible layout mapping [1], a rank-2
temperament must be embodied on a 2-dimensional lattice. Thus most examples are drawn in two dimensions
whereL : Z2 — R? maps from the exponentsindj of the generatora’ and3? through the layout mapping

L= () )

Yy wy

to the button-lattice. Physicallyy andw form a basis of the button-lattice, which ensures that all natgé are
mapped to some button and that each button location corresponds to some note.
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Table 2. Matrix representations of a selection of button-lattBefayoutsL, and transformation¥ (rotation, reflection, scale, and shear). The values are given to two decimal places; the actual v:
for the layout matrices are multiples of tiex vectors.

HexagonalBuex = 2%3_%()% 1.07 2;?;;:()%?) SquareBsqy = (é (1)) ThummerBrh, = (1‘55 82(2)) Wilson: By = <8g§ (1);1;)
- (R woi = (5 0H)  no(RA) coesia (320
CBA-C: Legac = (_3;?9 _25856) Fokker Lok — (?:gg g:gg) BosanquetLgos — (4'30 g:gg) Wilson: Ly — (5'(?6 g:i’g)
1
Tra) = (520 7 205) Toa0) = (230 S020)) Teulh) = (’“02 k‘g) Tandho, ) = (1250 b2

Table 2 shows the matrix representations of the reduced bases of a selection of unimodular lattices. The hexagon:
button-latticeBnex allows for the densest possible packing of buttons [15]. For this reason many existing button-
lattice instruments are approximately hexagonal in form: Thumtronics’ Thummer [16], Starr Labs’ Vath 648 [17],
C-Thru Music’s Axis [18], H-Pi’s Tonal Plexus [19], the Fokker organ [20], and the generic chromatic button ac-
cordion. Table 2 also shows typical matrix representations for several common layouts [20—23]. As generic names
these may also refer to any reasonably similar layout. All values are given with respect to a hexagonal lattice, ex-
cept forLges andLyyi, which use the lattice forms in [23]. The syntonic tuning continuum of Example 2.3 is shown
graphically in [1] as laid out with a Wicki mapping.

Left-multiplying a layoutLL by a unimodular real matrix may be interpreted as a transformation of the underlying
lattice geometry and a selection of easy to visualise transformations is shown in Table 2. For eXagaple346) *

Lwic gives the Wicki layout mapping as applied to a Thummer lattice. Right-multiplying a l&ybwuta unimodular
integer matrix may be interpreted as a new layout mapping to a different basis of the same underlying lattice. For
example Lwic * ( 7% ') = Lcea-s.

As successive notes in arreduceds-chain are laid onto a button-lattice they cusweatheacross it. When
is the interval of equivalencg,, it is musically meaningful to divide the intervals of a regular temperament into
those that lie within a swathe (i.e. altreduced intervals larger than unison but smaller thjpand the repetitions
of those intervals that lie outside that swathe (i.e. all intervals largerdharhe size of the swathe determines the
microtonal and modulatory capabilities of the instrument; the numberrepetitions determines the overall pitch
range of the instrument. The number of physical buttons on any given keyboard lattice limits the total number of
intervals; the choice of layodt determines the trade-off.

The vector position,, of thenth noten = ..., —2,—-1,0,1,2, ... with respect to the zeroth note in a swathe can
be expressed as a function®fg, v, andw as

v, = nw — |nz|yY wherez = log, (/) (8)

andn € Z. The slope and thickness (measured orthogonally to the slope) of the swathe are given by

L wy — Yz _ 1
" =z S T b o =0y ©)

The swathe is affected not just by the choice of generating veafoem@w) but also by the size of the generating
intervalsa and § via the variablez of (8). Clearly, the different VTRs of different regular temperaments have
swathes with different thicknesses and slopes. Fig. 2 shows the swathes produced for generators withzdifferent
values ¢ =~ % suitable for the meantone temperamenty % for the Magic temperament; ~ ;11 for the Hanson
temperament), when using the Wicki and Fokker layouts. The swathe thickngis®s a measure of the extent
to which that swathe favours the numbercefeduced intervals compared to the numbenagpetitions of those
intervals. Wher{l" is large, the swathe is wide and so uses up more button-lattice spacedduced intervals and
implies fewer repetitions. Wheh is small, the swathe is narrow and so leaves more lattice spaaerfpetitions.

Given a specific button-lattice and tuning, the sizeélofas determined by the layout) determines the highest
cardinality a-reduceds-chain, and therefore MOS scale, that can be hosted. If all given button lattice shapes are
approximated by a circular button-lattice, the maximum cardinality chain is proportiorial When using the

button-lattice illustrated in Fig. 2 with = 2 and as-tuning of approximately00 cents ¢ = }1) the Fokker layout
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Figure 2. Swathes produced by the Wicki layout (left) and the Fokker layout (right).’saorll2 (first row), z = % (second row)z = i (third row).

gives a maximum cardinality chain of only five notes, while Wicki manages a much more useful unbroken chain
of 16 notes (buttons-9 to +6). On the other hand, at @tuning of approximatelyr00 cents ¢ = %), Fokker
manages a remarkabl®-note unbroken chain length (buttord8 to +30), while Wicki achieved 9 notes, so at
this tuning Fokker can provide greater microtonal/modulatory resources, though over a smaller octave range.

For a given layout mappingy, theT-curve (9) represents the change of swathe thickifegith respect te:. Thus
T-curves indicate the range of tunings (and therefore temperaments) over which a given layout mapping provides
usable swathed’-curves for the Fokker and Wicki mappings are illustrated in Fig 3. Taking the derivative of (9)

with respect to: and solving forjli—f = 0 shows that the maximum swathe thickness occurs at

o= VYowz + Pywy
Y2+ 12

Substituting this intd” (and usingdet (L)| = 1) shows that the maximum width of the swathe is

02+ 3 = [ap]] With Slopemax = -

Ve
oy
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Figure 3. T-curves for the Wicki and Fokker layout mappings.

ThusTh,.x is equal to the length of the basis vectbiand the slope of the swathe at its widest poinhigax.
The second derivative @f with respect ta: shows the curvature of tf#-curve at the point of maximal thickness.
A low value indicates a wide gentle peak, a large value indicates a spiky peak:

T (v2 +9}) :
Teurvature= I == (Ypwy — ¢wa)3 - i(l/}f; + 1/}13)2 = :l:TI?laX' (11)

This shows that the higher the valu€lgf., the greatefl”s curvature, and so the more specific the layout mapping
is to a smaller tuning range of generator intervals. A layout mapping can, therefore, only produce a wide swathe
over a narrow tuning range; this is clearly illustrated by Figs. 3 and 4.

5 Examples of layouts and corresponding swathes

Fig. 4 shows thé’-curves for all mappings that fit onto a hexagonal lattice With no larger than eight. The
highlightedT'-curves show a selection of mappings, in order of heifjltWicki, Lo, Chromatic Button Accordion
(CBA-B and CBA-C have the sanig-curve), and Fokker. The majority of layout mappings have a limited tuning
range over which the swathe has a reasonable thickness. The Fokker layout mapping, for example, has a reasonat
swathe width within a tuning range of approximat&f0—860 cents; outside of this range the width drops below 1.
Assuming2 — «, this makes Fokker unsuitable for temperaments such as Hanson that require a small (gt large)
Specialised layouts such as Fokker, which have high valu&g,gf, are only usable over a limited tuning range,

but they are useful if there is a requirement for MOS scales of high cardinality (which provide a greater resource of
octave-reduced intervals, at the expense of a restricted octave range) at specific tunings. Fokker is notable because
swathe thickness peaks within the meant®re « VTR, and so is particularly suitable for exploring microtonality
within this tuning region. Using Fig. 4, it is straightforward to choose a layout mapping that is suitable for any given
VTR or MOS scale.

A reasonable swathe thickness over a wide range of tunings is attained by members of a small class of mappings
This is exemplified by the Wicki layout, which h&$,.x at 600 cents and a swathe thickness that drops below
one only in the first and la$i0 cents of the tuning range. Tla mapping is also usable over a wide tuning range,
though its swathe width may be considered a little narrow within the important meantone VTR. With a good balance
between octave-reduced intervals and overall pitch over the widest possible tuning range, Wicki is a particularly
useful layout when a wide tuning range is required.

Another notable layout if.», which has a good swathe thickness over the entire upper half of the tuning range.
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Figure 4. Ther-curves of all possible mappings to a hexagonal lattice that igvg < 8. A selection of mappings from Table 2 are highlighted.

Right-multiplying this layout by( § 1, ) reflects its:* value about = 3, and so this has a good thickness over the
lower half of the tuning range.

The relationship between MOS scales, temperaments, and layouts is illustrated in Fig. 5, which shows the maxi-
mum cardinalityn-reduceds3-chains for a selection of layouts hosted on an approximately hexagonal button-lattice,
with a reduced basis @f} °° ), and a diameter of ten buttons. The angular position around the circle corresponds to
the 5-tuning in cents is fixed at 1200 cents). The grey radial lines showgkeinings that give:-edos and their
cardinalityn is indicated by the ring at which each line starts. The arcs between-&uos represent the tuning
ranges of all MOS scales, with cardinality indicated by the ring on which they are drawn. The bold radial lines
indicate optimal tunings for variouslimit regular temperaments, and the ring from which each line starts shows
the lowest cardinality scale within which every scale note is a member of a full major or minor triad.

6 Isotones and pitch axes

Pitch axes are directions on a button field in which the pitch behaves in a simple wesgatameis an axis in
which the pitch remains fixed, thethogonal pitch axisneasures the shortest distance from a button to the isotone,
and thesteepest pitch axigoints in the direction where the pitch increases (or decreases) most rapidly. Such axes
can provide useful landmarks when playing in unfamiliar scales or tunings; they allow the fingering of different
scales to be estimated (even without full knowledge of the layout being used) and allow easy visualisation of the
pitch-density of chords and melodies. Pitch axes make a keyboard layout easier to learn and play because the pitc
of every button can be estimated by sight and touch as well as hearing.

This section focuses on the— n = 2 dimensional case, where a 2-D regular temperament can be characterized
by two generatora andg3. Letg = (log(c), log(/3)) be the tuning vector and lgt- be the orthogonal complement
(in Sect. 2 this was called the isotone hyperplane). Mapping the isotone via the keyboard nlappies

o= (55) () = (2 Ts)

which points in the directiorizjz igggg%iig }gigg; = ﬁfﬁyi wherez is defined in (8). Observe that this is equal
to m of (9) and so the slope of the isotone is the same as the slope of the swathe. The isotone is a straight line
across the button-lattice where the pitch remains unchanged. It may pass through the centres of some buttons: fc
example, when the tuning iR2-edo an isotone passes through the enharmonically equivalentBsb, D, Cif,

Bifif. Such cases represent particular values anhdg within the tuning continuum that have an additional comma.

The shortest distance from a button to an isotone is monotonically related to its pitch, so a line drawn at right angles




October 4, 2007 8:34 Journal of Mathematics and Music TuningContinua-RevisedVersion

12 Milne, Sethares, Plamondon

Figure 5. The maximum cardinality-reduced3-chains for a selection of layouts on an approximately hexagonal button-lattice with a 10-button diameter.

to an isotone is the orthogonal pitch axis. Finally, the tuning vector is mapged, which points in the direction
of the most rapid increase (or decrease, if negative) of the pitch.

It is convenient if the pitch axes are easily discernable. The most straightforward approach is to have (at least
one) axis angled haorizontally or vertically allowing the pitch of a button to be quickly determined according to its
horizontal (or vertical) position on the button-lattice. For example, the Wilson layout ensures that when the
tuning is 12-edo (i.e. at = %). Because the angle of the isotones and pitch axes are dependent@®tutiieg,
they can only be approximately horizontal or vertical over a limited range of tunings. Since the Wilson layout (like
the Fokker and Bosanquet) is a specialised mapping that is usable over only a limited range of tunings, this doe:s
not present too much of an issue.

When a more generalist layout mapping is used, the broad range of tunings over which it can function inevitably
means that the angle of the pitch axes vary substantially. For example, Fig. 6 shows the isotones for a selection o
different 5-values ¢ is fixed at1200 cents) that run through the reference button D of a Thummer-style button-
lattice using its default Wicki mapping (withwic given in Table 2).

Observe how the isotone rotates clockwise about the reference button as the valmereiases. For example
whens = 600 cents, the isotone is horizontal so the pitches of the buttons marke#8bGBb, C, D, E, K, Gf,
and A are identical; wherd is increased t685 cents, the isotone rotates clockwise and the pitches of the buttons
marked D, D, and D become identical. Both these examples show how the conventional note names that are used
in this figure become invalid outside the tuning range of diatonic recognisalﬁﬁty((ﬁ < 2%).

Somewhat paradoxically, the importance of obvious pitch axes is greater for generalist layout mappings than for
specialist layout mappings. This is because the pitch order of the buttons changes as the tuning changes and, in tt
foreign landscape of an unfamiliar tuning, pitch axes provides a useful compass.

The following figures show how isotones may help to elucidate the intervallic structure of MOS scales, and the
tunings at which the MOS scale passes between its different tuning phases. This is explained in detail for Fig. 7(a),
which shows the six-note MOS scale generated witer: 3 < s (in the following examples is fixed at1200
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Figure 7. (a) Six-note MOS scale with tuning rarige: 8 < 240 cents. (b) Seven-note MOS scale with tuning raBge < 8 < 400. (c) Nine-note MOS
scale with tuning rangé00 < 3 < 685. (d) Eight-note MOS scale with tuning rang20 < 8 < 800.
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cents, so thé-tuning range i9-240 cents). This tuning range is shaded and three isotones are shown: the boundary
isotones at 0 cents and 240 cents, and the 6-edo isotone at 200 cents. This MOS scale has two types ot scale step
andty, as indicated on the layout by their differing shapgss defined by(0.5, 1) and is found between buttofis

1,2, 3,4, 5; ty is defined by(—2.5, —3) and is found between buttofisind6. The position of the isotones indicate

the five different tuning phases of the MOS scale.

(i) When g is 0 cents,t; = 0 cents which appears in the figure as buttdéns all lie on the0 cent isotone. This
tuning has only octaves. It marks the non-inclusive boundary of the six-note MOS scale.

(i) Asthegvalueincreases, the isotone rotates clockwise so that the size on the monotonic pitch,arisrefises
and the size of, decreases. This gives a six-note MOS scale containing five smallistapd one large step
to.

(i) When 8 = 200 cents, the isotone rotates so that the sizes on the monotonic pitch axiamdi, are equal.
This defines a scale with six equally sized steps, i.e.Gtéslo.

(iv) For200 < 8 < 240 cents, the isotone continues to rotate and the size on the monotonic pitch @xieeobmes
larger thart,. This gives a six-note MOS scale with five large stepand one small stefy. This is the inverse
of the scalic structure found in phase 2.

(v) Wheng = 240 cents, button$ and6, which maket,, occupy the same position on the monotonic pitch axis
(they are parallel to the isotone) andhas shrunk td cents. This scale, therefore, contains just five equally
sized intervalg4, i.e. it is 5-edo. This is the non-inclusive boundary of the six-note MOS scale.

The same procedure (but with different numbers and positions afidz, intervals) occurs for any MOS scale
and Fig. 7 provides several examples.

7 Harmonic and melodic considerations

Consider enharmonic-melodic gamudf intervals, the notes of which are typically played simultaneously (harmonic
intervals) or consecutively (melodic intervals). Such intervals need to be spatially arranged on the keyboard so
that they are close enough to be easily fingerable. Intervals outside of this gamut need not be spatially close. On
way to specify the gamut is via the lowest cardinality MOS scale that contains a set of privileged intervals (3)
augmented by the voice-leading intervals that connect them. For example, common practice suggests the use ¢
the primary consonances of Example 3.1. Augmenting these intervals with the connecting intervals, the lowest
cardinality MOS scale (generated by= 2 and/ within a syntonic VTR) that contains all these intervals h2s

notes. Similarly, Magic temperament’s harmonic-melodic gamut is contained within an MOS scale of 13 notes and
Hanson temperament’s by an MOS of 15 notes.

It is also necessary to consider an overall pitch range that needs to be easy to finger. In common practice, har
monic and melodic octaves occur frequently and this is reflected in the piano keyboard design where the octave i
(approximately) the largest interval that a single hand can play. Generally it would seem reasonable for the range tc
be at least one interval of equivalenge

Given a harmonic-melodic gamut defined by @mneduceds-chain ofrn intervals (i.e.n + 1 notes), an overall

pitch range ofmm intervals of equivalence, and a temperament basis \Aglfié?% «, the smallest parallelogram

that contains these notes is bounded by the veet¢us — z1») and mrv. The magnitude of the diagonal of

this parallelogram igjmryp + n(w — z))||, which is a measure of the maximum possible finger-span required

to play any interval within the gamut. Ideally the layout should be configured so that this finger-span is reasonably
comfortable to play. The physical length of this diagonal is minimised wheth andn(w — z)) are orthogonal

and whenmnr ||¢]| = ||n(w — z)||. Together, these imply

(mr)2 + n?22

T .

]l =
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8 Conclusions

A higher-dimensional tuning system such as a Jl can be mapped to a lower-dimensional tuning system by tempering
its intervals. The resulting temperament can be characterised by those intervals (commas) that are tempered t
unison; the temperament’s basis, and mappings to it, can be obtained from the null space of those commas. An
specific value of the basis elements represents a point on a tuning continuum of all possible values; the VTR
represents the range of values for which all privileged intervals maintain their scalic ordering.

A linear and invertible mapping from a temperament basis to a button-lattice gives: a layout with invariant fin-
gering for all intervals across all keys, invariant fingering for all privileged intervals across the VTR, and pitch axes
enabling easy visualisation of the relative pitches of buttons. A swathe and a harmonic-melodic gamut are math-
ematically defined measures of musically important features, and enable concrete comparisons between differer
button geometries. A number of different equal and non-equal, octave and non-octave based temperaments demo
strate the generality of the tuning-theoretic ideas; a number of different layouts (such as those defined in Table 2)
demonstrate that these results can be applied directly to any two-dimensional button-lattice.
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