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1. Introduction

An n-note tuning or scale may be written as a set ofn intervals that define an element inRn.
For instance, the 7-note major scale, a subset of the standard 12-equal divisions of the octave
(12-edo) can be represented

major12 = {0, 200, 400, 500, 700, 900, 1100} ∈ R7

where the intervals are expressed in cents and reduced to a single octave (i.e., the values are
expressed mod 1200). Similarly, 12-edo can be written

12edo = {0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100} ∈ R12,

while 10-edo is

10edo = {0, 120, 240, 360, 480, 600, 720, 840, 960, 1080} ∈ R10.

The syntonic Just major scale [1] is

syntonicJI = {0, 204, 386, 498, 702, 884, 1088} ∈ R7.

From a musical perspective, it is clear that some such scales can be thought of as closer than
others. For instance, a piece written insyntonicJI can be played in a subset of12edo (such as
major12) without undue strain, yet may not be particularly easy to perform when the pitches
are translated to a subset of10edo. Thus it is desirable to have a metric that allows a statement
such assyntonicJI is closer to12edo than to10edo.

It is intuitively plausible that tunings may be “close together” or “far apart” based on similar-
ities and differences in the set of intervals that define the tunings. When two tunings have the
same number of notes (and hence the same number of intervals), any reasonable metric can be
used to describe the distance between them. For example, Chalmers [2] measures the distances
between tetrachords using a variety of metrics such as the Euclidean`2, the taxicab metric̀1,
and the max-valuè∞ distance. Similarly, the distance betweenmajor12 and syntonicJI
can be calculated by writing the two tunings as elements ofR7 and then calculating any of the
standard metrics.

However, when two tunings have different cardinalities, there is no obvious way to define a
metric since this would require a direct comparison of elements inRn with elements inRm

for n 6= m. A common strategy is to identify subsets of the elements of the tuning and then
try to calculate a distance in this reduced space. For instance, one might attempt to calculate
the distance betweensyntonicJI and12edo by first identifying the seven nearest elements of
the 12-edo scale, and then calculating the distance inR7. Besides the obvious problems with
identifying corresponding intervals in ambiguous situations, the triangle inequality will fail in
such schemes. For example, let tuningA be 12-edo, tuningB be any seven note subset drawn
from 12-edo (such as the major scale), and tuningC be a different seven note subset of 12-edo.
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The identification of intervals is clear sinceB andC are subsets ofA. The distancesd(A,B)
andd(A,C) are zero under any reasonable metric sinceB ⊂ A andC ⊂ A, yet d(B,C) is
nonzero because the intervals in the two scales are not the same. Hence the triangle inequality
d(B,C) ≤ d(B,A) + d(A,C) is violated. Analogous counter-examples can be constructed
whenevern 6= m.

Another strategy used in musical set theory and neo-Reimannian approaches, effectively
counts the number of intervals in12edo that is contained in each tuning or chord [3]. These
interval vectors can then be treated fruitfully as elements ofR6 (R6 can be used in place ofR12

due to the symmetry of intervals about the octave) and forms a true metric. This allows rigorous
statements (such as those describing the distance between two chords) but it is inherently limited
to subsets of equal temperaments.

This paper shows how metrics for tunings can be constructed by embedding the elements of
Rn andRm in a single larger spaceRL. Any metric onRL can be used, and the “distance”
between the tunings is inherited from the corresponding distance inRL. The metrics will be
stated for periodic (mostly octave-based) tunings and some important special cases are shown.

2. An embedding

A octave-based tuningx is an elementx = {x1, x2, ..., xn} ∈ Rn where eachxi ∈ [0, L) defines
an interval in cents [4] (L = 1200 would be the most common value.) The elementx is mapped
to a functionx(t) on t ∈ [0, L) by

x(t) =
n∑

i=1

δ(t− xi) ∗ g(t) (1)

whereδ(t) is the Kronecker delta function,g(t) is a smoothing kernel, and∗ is convolution. It
is reasonable to interpretx(t) as a single period of a periodic functionxp(t) defined on the real
line. Figure 1 showsx(t) for thesyntonicJI and12edo tunings.

Example 2.1 Euclidean metric.Perhaps the most straightforward way to compare two octave
based tunings elementsx andy is via the corresponding functionsx(t) andy(t) defined by (1)
on [0, L). The EuclideanL2 distance is

dL2(x,y) =

√∫ L

0
(x(t)− y(t))2. (2)

While the Euclidean distance function (and others such as theL1 absolute value, and the
L∞ metric) may be useful for comparing chords or pitch class sets within a single scale (see
Example 5.1), they do not mimic many of the features usually desired in a distance function
between musical scales or tunings. For instance, the periodicity ofx(t) (with periodL = 1200)
parallels the octave repetition of the tuning. Under the Euclidean metric,dL2(x,y) > 0 whenx
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Figure 1. Elements ofRn are mapped toRL (L = 1200 is used for illustrative purposes) where they
may be sensibly compared. Each component in the space is mapped to aδ function which is smoothed
by a kernelg(t) (a finite-length approximation to a Gaussian shape is shown). (a) showsx(t) for the
syntonicJI tuning and (b) showsx(t) for 12edo.

andy are related by a circular shift, i.e., wheny(t−T ) = x(t). The remaining distance functions
are constructed so that tunings which are rotations of each other are considered the same.

Example 2.2 Fourier transform metric.Let p define any of the usual norms|| ∙ ||p on the set of
bounded functions with support ont ∈ [0, L). Given tuningsx andy, define the corresponding
x(t) andy(t) as in (1), and normalize so thatxn(t) = x(t)/||x(t)||p andyn(t) = y(t)/||y(t)||p.
Let |Xn(f)| and |Yn(f)| be the magnitudes of the Fourier Transforms. Then the distance be-
tweenx andy can be defined as

dFT (x,y) = || |Xn(f)| − |Yn(f)| ||p. (3)

This metric is insensitive to rotations (circular shifts) because it depends only on the magnitude
(and not the phase) of the Fourier Transforms.

Circular shifts in the vectorx correspond to circular shifts inx(t) and represent the “same”
tuning element. Formally, letyp(t) = xp(t − T ) for some shiftT , wherexp(t) is the periodic
extension ofx(t), and lety(t) be the single period ofyp(t) with support in[0, L). Thenx(t) and
y(t) are members of the same equivalence class, writtenx(t) ∼ y(t). This can also be expressed
directly in terms of the tunings asx ∼ y. Under the Fourier Transform metric,dFT (x,y) = 0.

Example 2.3The equivalence class of thesyntonicJI tuning contains all circular shifts of the
underlying intervals. For example,

x1 = {0, 204, 386, 498, 702, 884, 1088}, x2 = {10, 214, 396, 508, 712, 894, 1006}
x3 = {0, 112, 316, 498, 702, 814, 1018}, x4 = {0, 204, 386, 590, 702, 906, 1088}

all represent the same tuning with different (shifted) starting points, that is,x1 ∼ x2 ∼ x3 ∼
x4. These elements are all considered the same by the Fourier transform metric of Example 2.2
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sincedFT (x1,x2) = dFT (x2,x3) = dFT (x3,x4) = 0.

An alternative measure is based on the autocorrelation function. Like the Fourier Transform
distance, this also respects the equivalence of circular shifts so thatd(x,y) = 0wheneverx ∼ y.

Example 2.4 The autocorrelation metric.Let p define any of the usual norms|| ∙ ||p on the set of
bounded functions with support ont ∈ [0, L). Given tuningsx andy, define the corresponding
x(t) andy(t) as in (1), and normalize so thatxn(t) = x(t)/||x(t)||p andyn(t) = y(t)/||y(t)||p.
Let Ax be the circular autocorrelation ofxn(t) and letAy be the circular autocorrelation of
yn(t). Then the distance betweenx andy can be defined as

dA(x,y) = ||Ax −Ay||p. (4)

This metric essentially counts the number of intervals between peaks of thexn(t) andyn(t).

For more rapid implementation, observe that the autocorrelation can be written in terms of the
Fourier Transform asAx = Re{IFT{|Xn(f)| |Xn(f)|∗}}, whereIFT represents the inverse
Fourier Transform,∗ is the complex conjugate, and Re{} takes the real part of its argument.
Again, because the metric depends only on the magnitudes (and not the phases) of the Fourier
Transforms, it is insensitive to rotations (circular shifts).

The final metric for tunings is used when it is desired to have no explicit peak at the period.

Example 2.5 The centered autocorrelation metric.Definep, || ∙ ||p, x ∈ Rn, y ∈ Rm, x(t), y(t),
xn(t), yn(t), Ax, andAy as in Example 2.4. Letqx ∈ Rn andqy ∈ Rm be the vectors with a
“1” in the leading position followed byn − 1 (orm − 1) zeros, and define the corresponding
qx(t) andqy(t) as in (1). Normalize so that̄qx(t) =

qx(t)√
n||qx(t)||p

and q̄y(t) =
qy(t)√
m||qy(t)||p

, and
letAq̄x be the circular autocorrelation of̄qx(t) andAq̄y be the circular autocorrelation of̄qy(t).
Then the distance betweenx andy can be defined as

dcA(x,y) = ||(Ax −Aq̄x)− (Ay −Aq̄y)||p. (5)

This metric essentially counts the number of intervals between peaks of thexn(t) andyn(t),
removing the “extra” peak at the period of repetitionL of the tuning by centering about the unit
vectorsqx andqy.

Applications of these metrics, and examples of their use, are given in Sections 4 and 5. MAT-
LAB functions to calculate all the above metrics, and a number of the routines used to calculate
the examples, can be downloaded from eceserv0.ece.wisc.edu/∼sethares/tuningmetrics.html.
The next section examines some interval properties of the metrics.

3. Interval invariances in the tuning metrics

Let t ∈ Rn be ann-element tuning vector. Letm be a(n2 − n) by n matrix where each row
contains a unique permutation of the numbers+1,−1, andn− 2 zeroes. The set of all intervals
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contained in then-element tuning vectort ∈ Rn is

It = mt (modL) ∈ Rn
2−n

andIt is called theinterval setor interval vectorof the tuningt since it contains all possible
differences (intervals) between elements of the tuning. The first result shows that the set of
intervals inIt remains unchanged if the tuning is transposed by adding a constant value to each
element.

THEOREM 3.1 Let1n be then-vector with all elements equal to1. The interval vectorIt+c1n
corresponding to the transposed tuningt+ c1n is equal toIt.

Proof :

It+c1n = m(t+ c1n) (modL)

= mt+ cm1n (modL)

= mt (modL) = It

wherem1n = 0 becausem contains exactly one+1 and one−1 in each row. �

The second result shows that permutations of a tuning vectort leave the intervals in the vector
It unchanged, except that they may be reordered. A permutation matrixp is a square matrix
where all elements are zero except for one1 in each column and one1 in each row.

THEOREM 3.2 Let s be any permutation oft, i.e., suppose there is a permutation matrixp ∈
Rn×n with s = pt. Then there is a permutation matrixP ∈ R(n

2−n)×(n2−n) such thatIs = PIt.

Proof : By definition

Is = ms (modL) = mpt (modL).

The productmp is a permutation of the columns ofm. Since each row inm contains exactly two
nonzero elements, each row ofmp contains the same two nonzero elements (though they may
be reordered). Hence, the rows ofm and the rows ofmp are the same only in a different order.
Consequently, there is a permutationP such thatmp = Pm. Substituting this into the above
yields

Is = Pmt (modL) = PIt.

�

In particular, Theorem 3.2 shows that any circular shift (rotation) of a tuning has the same
interval vector. The third result relates the interval vectors of a tuning to the distance under the
various metrics of Section 2.



December 19, 2008 0:52 Journal of Mathematics and Music TuningMetric5

Journal of Mathematics and Music 7

THEOREM 3.3 If two tuningss andt have the same interval vectors (i.e., if there is a permuta-

tion matrixP with Is = PIt), thendFT (s, t) = dA(s, t) = dcA(s, t) = 0.

Proof : We begin by showing the result whens = (s1, s2, s3) and t = (t1, t2, t3) are three
dimensional, and we show it for the discrete case (using the DFT). By construction,t[k] is a
vector that is zero everywhere except atk = t1, t2, andt3 where it is1. The DFT is defined as

W [n] =
N−1∑

k=0

t[k]e
−j2πnk
N .

Since there are only three nonzero terms in the sum,

W [n] = e
−j2πnt1

N + e
−j2πnt2

N + e
−j2πnt3

N .

Multiply both sides bye
+j2πnt1

N shows that

e
+j2πnt1

N W [n] = 1 + e
−j2πn(t2−t1)

N + e
−j2πn(t3−t1)

N ,Wt1 [n].

Clearly, the magnitudes are equal:

|W [n]| = |e
+j2πnt1

N ||W [n]| = |Wt1 [n]|.

This shows that the magnitude of the transform values are only a function of the differences
(intervals)t2 − t1 andt3 − t1 and not of the particular values of theti themselves. Similarly,
|W [n]| = |Wt1 [n]| = |Wt2 [n]| = |Wt3 [n]|, and so the magnitude is a function of all of the
intervals

t2 − t1, t3 − t1, t1 − t2, t3 − t2, t1 − t3, t2 − t3.

These are precisely the terms in the interval vectorIt. Now suppose there is another tuning vector
s which has the same set of intervals inIs (i.e., for which there is a permutation matrixP with
Is = PIt). Then there is a reordering of the interval setsi − sj for which |Wsi [n]| = |Wtj [n]|.
Hence the magnitudes of the DFTs are the same, and the difference between the magnitudes is
zero.

Observe that the same argument (but with more terms) can be used for any size tuning vector.
Observe also that this holds not only for the Fourier distance function (3), but for the autocor-
relation distance (4) and the centered autocorrelation (5), since they also can be computed from
the magnitude of the transform. �

There are several ways that two tunings might have the same interval set. Theorem 3.1 shows
that (circular) shifts of a tuningt + c1n have the same interval vector as the (unshifted) tuning
while Theorem 3.3 shows that these are in the same equivalence class with respect to the three
transform-based metrics. Theorem 3.2 shows that tunings that are related by a permutation ma-
trix s = pt also have the same interval matrix (and hence are in the same equivalence class).
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In fact, these two classes of equivalence do not exhaust all the possibilities. The next example
shows a pair of tunings which are not shifts and not permutations of each other, yet which have
the same interval set (and hence are at zero distance).

Example 3.4Let s = [0, 100, 400, 600] andt = [0, 100, 300, 700] with L = 1200. The interval
vector for bothIs andIt is [100, 200, 300, 400, 500, 600, 600, 700, 800, 900, 1000, 1100] yets is
not a permutation nor shift oft. Direct calculation showsdFT (s, t) = dA(s, t) = dcA(s, t) = 0,
in agreement with Theorem 3.3.

4. Lower-dimensional temperaments of higher-dimensional tunings

The dimensionalityof a tuning is equivalent to the minimum number of unique intervals (ex-
pressed inlog(f)) that are required to generate, by linear combination, all of that tuning’s inter-
vals. One- and two-dimensional tunings have a number of musical advantages:

(1) They are melodically important because they produce, with no wastage, relatively sim-
ple and comprehensible scales [5]. One-dimensional tunings can produce equally-tuned
scales such as the 12-edo scale used in contemporary Western music, the 7-edo scale used
in traditional Thai music [6], and the 5-edo scale used in Indonesian Slendro [7]. Two di-
mensional tunings can producewell-formedscales, such as the familiar pentatonic and
diatonic [8].

(2) They can be isomorphically mapped to a two-dimensional lattice controller, such as the
Thummer[9] or Hex[10]. This ensures that the geometrical shape of all intervals is invari-
ant over different transpositions, and that the pitch height order of anyprivilegedset of
shapes/intervals (such as the harmonic consonances of Western music) is invariant over a
continuum of tunings [1]. It is speculated that these invariances can significantly enhance
the playability and flexibility of the instrument [1, 11].

(3) Only two control interfaces (such as sliders or rotary knobs) are required to change the
tuning of all notes in an ordered way. This enables easily controllable tuning bends that
can simulate the variable intonation used by string and aerophone players [12], as well as
more extravagant tuning bends used as a novel compositional technique [11, 13].

(4) The many-to-one mapping implied by dimensionality-reduction enables the use of musi-
cal “puns”, whereby different higher-dimensional intervals can be expressed by the same
lower-dimensional interval. Such puns can enable enharmonic modulation, and ensure
that the familiar I-vi-ii-V-I cadence ends at the same pitch it started (by tempering out
the syntonic comma). Each unique choice of intervals (commas) that are tempered out,
determines a unique set of voice-leadings in the resulting temperament.

However, there are reasons why a higher-dimensional system might serve as a starting point
for a given tuning. For example, we may wish to define a set of linearly independent privileged
intervals that need to occur, in abundance, within a scale of a given cardinality. The most familiar
example is the set of harmonic consonances found in just intonation—when using traditional
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Western instruments, the harmonic consonances are generally considered to be those of low-
numbered ratios (e.g., 2/1, 3/2, 4/3, 5/3, 5/4, etc.) [4], though with non-harmonic spectra quite
different intervals may form a useful set of consonances [14]. If the set of privileged intervals
has a dimensionality of three (as in the example just given) or more, finding a one- or two-
dimensional tempering that does not do too much “damage” to the tunings may be a general
method to combine the advantages of both higher and lower-dimensional systems—that is, lots
of privileged intervals embedded in a well-formed scale that can be mapped to a button lattice
controller, whose tuning can be easily controlled, and which embodies unique voice-leadings.

A familiar example of a well-formed scale rich in consonances is the diatonic when tuned to
meantone, which contains numerous intervals that closely approximate 3/2, 5/4, 5/3, and their
inversions. A less familiar example is the well-formed scale of ten notes that is generated by an
octave and an interval of approximately 380 cents, which also contains many good approxima-
tions of 3/2, 5/4, and 5/3, and so forth.

Another reason for dimensionality-reduction is to find an effective spatial mapping from the
notes of an arbitrary scale to a button lattice controller. Mapping a two-dimensional scale to a
two-dimensional button lattice is straightforward [1] so, given an arbitrary scale, it is useful to
find similar two-dimensional scales to guide the positioning of the arbitrary notes. The tunings
of the notes are not changed, but their spatial layout ensures that intervals with similar size have
the same geometric shape, and that the overall shape of the scale is the same as similar scales.

Scales whose spatial mappings can benefit from this process include those with three or more
dimensions, or those with an unspecified generator—examples include: five- or higher-limit
Fokker periodicity blocks[15] andpairwise well-formedscales [5] such as the just intonation
diatonic scale 1/1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8 [4];circulating (irregular) temperaments that are
commonly used to accommodate a meantone-like tuning on a twelve-note instrument such as the
piano [16]; scales whose tunings have been derived from ethnographic research; scales designed
for a specific aesthetic/compositional purpose; regular scales whose generator is unspecified.

Using the metrics defined in Section 2, it is relatively straightforward to find one- and two-
dimensional tunings that can approximate any arbitrary set of privileged intervals or scale tun-
ings. A number of examples are given in the following sections.

4.1. Equal (one-dimensional) temperaments

Given a set of privileged intervals, we can test its distance from a series ofn-edos (up to any
given value ofn). The Fourier and autocorrelation metrics are both suitable choices for this task.

Example 4.1 1-D approximations to 4:5:6 (JI major triad).The just intonation major triad
contains all and only the common practice harmonic consonances (i.e., the perfect fifth and
fourth, and the major and minor thirds and sixths). It is, therefore, useful to find tunings that
produce simple scales containing many of these intervals. The just intonation major triad with
tuning ratios of4 : 5 : 6 is approximated by{0, 386, 700} cents. Figure 2 shows the distances
between this chord andn-edos with3 ≤ n ≤ 55 using the autocorrelation metric and a window



December 19, 2008 0:52 Journal of Mathematics and Music TuningMetric5

10 A. J. Milne and W. A. Sethares

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
n-edo

D
is

ta
nc

e

Figure 2. The distance (using the autocorrelation metric with a window of 20 cents) between a just
intonation major triad{0, 386, 702} and alln-edos fromn = 3 to n = 55.

width of 10 cents.
It is interesting to note that the metric automatically trades the number of notes in the tuning

with the accuracy of the tuning. So ann-edo with a largen needs to be more accurate than one
with a low n to be rated as similarly close; this would seem to correspond to any naı̈ve, but
sensible, notion of distance because most of the intervals in the highern-edo are superfluous to
the task of matching the set of privileged intervals.

4.2. Two-dimensional temperaments

A two-dimensional tuning has two generating intervals with pitch heights, inlog (f), denoted
α andβ. All intervals in the tuning can be generated byα andβ. A β-chain is generated by
stacking integer multiples ofβ for all integers in a finite range of values, so a 19-noteβ-chain
might consist of the notesjα− 9β, jα− 8β, ..., jα + 8β, jα+ 9β.

Given an arbitrary set of privileged intervals with a period of repetitionp (typically 1200
cents), how do we find similar two-dimensional tunings? It is logical to make the tuning of
α = p/n, for n ∈ N. This means that, given a choice ofα, we can generate aβ-chain (of a
given cardinality), and then iterate the size ofβ so that it covers a range from 0 toα/2 (any
β-tuning outside this range simple duplicates tunings within this range). For each iteration we
measure the distance to our set of privileged intervals using the centered autocorrelation metric.
The reason we require this metric is becauseα is already approximating the period, so it is not
the function ofβ to do the same—the centered autocorrelation metric removes the period peak
from the autocorrelation of the privileged interval set, so the period plays no part in the distance
measure.

Example 4.2 2-D approximations to 4:5:6 (JI major triad).Using the centered autocorrelation
metric with a window width of 20 cents gives a number of candidate tunings for a 19-note
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Figure 3. The distance (using the centered autocorrelation metric with a window of 10 cents) between
a just intonation major triad{0, 386, 702} and a 19-noteβ-chain whoseβ-tuning ranges from 0 to 600
cents.

β-chain, as shown in Figure 3.
For example, the minimum at 504 cents corresponds to the familiar meantone temperament;

the minimum at 498 cents to theschismatictemperament; the minimum at 443 cents to the
sensipenttemperament; the minimum at 388 cents to thewürschmidttemperament; the minimum
at 380 cents to themagic temperament; the minimum at 317 to thehansontemperament; the
minimum at 272 cents to theorson temperament; the minimum at 176 cents to thetetracot

temperament (the names for each of these temperaments has been taken from Erlich [17]).

Example 4.3 2-D approximations to 4:5:6:7 (7-limit JI major tetrad).

If we wish to approximate higher-limit just intonation consonances, the 7-limit chord tuned to
{0, 386, 702, 969} is an obvious template. Using the same window width andβ-chain cardinality
as in Example 4.2, gives the distance curve shown in Figure 4.

The local minimum at 503 cents corresponds to7-limit meantone, the minimum at 317 cents to
keemun, the minimum at 310 cents tomyna, the minimum at 271 cents toorwell, the minimum at
232 cents tocynder, the minimum at 117 cents tomiracle, the minimum at 88 cents tonautilus

(the designations have been taken from Erlich [17]). There are also a number of additional
(previously unidentified) 7-limit temperaments, notably those at 498 and 194 cents.

Example 4.4 2-D approximations to 4:5:6:7 with a period of 600 cents.This example assumes
a scale with a 600 cent period, soα is set to 600 cents. Figure 5 shows the distance between
a 19-noteβ-chain and a tetrad tuned to{0, 386, 102, 369}, which is anα-reduced version of
4 : 5 : 6 : 7. The closest tuning with a 10 cent window is atβ = 217 cents.

Example 4.5 2-D approximations to 3:5:7 (7-limit Bohlen-Pierce triad).The Bohlen-Pierce
scale is intended for spectra with just odd harmonics. It has a period of3/1 (the “tritave”), which
is approximated by 1902 cents, and the 3:5:7 triad, which is approximated by{0, 884, 1467}
cents, is treated as a consonance. Figure 6 shows the distance of aβ-chain of 20 notes with
0 < β < 951 cents with a 20 cent window. The closest tuning is found at 439 cents, which
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Figure 4. The distance (using the centered autocorrelation metric with a window of 10 cents) between a
7-limit just intonation major tetrad{0, 386, 702, 969} and a 19-noteβ-chain whoseβ-tuning ranges from
0 to 600 cents.
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Figure 5. The distance (using the centered autocorrelation metric with a window of 10 cents) between
a 7-limit just intonation major tetrad{0, 386, 702, 969} with a 600 cent period, and a 19-noteβ-chain
whoseβ-tuning ranges from 0 to 600 cents.

corresponds to the 13-equal divisions of the tritave tuning suggested by Bohlen and Pierce.

Example 4.6 2-D approximations to an ethnic scale.This task is closely related to the above
except the arbitrary scale may have a much higher dimensionality than is typically the case
when considering only consonant intervals. It also safe to assume that if we are given a scale,
the period will be explicit (and typically 1200 cents).

The principal purpose of finding the closest two-dimensional tuning to an ethnic scale is to
determine an effective spatial mapping to a button lattice controller. We can then map the arbi-
trary scale as if it were equivalent to its two-dimensional neighbour. As long as the underlying
layout mapping is consistent (on theThummerandHex, the default layout is Wicki [1, 18]), this
ensures that similar intervals in the arbitrary scale have the same shape on the button lattice,
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Figure 6. The distance (using the centered autocorrelation metric with a window of 20 cents) between a
just intonation Bohlen-Pierce “major” triad{0, 884, 1467} and a 20-noteβ-chain whoseβ-tuning ranges
from 0 to 600 cents.
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Figure 7. The distance (using the centered autocorrelation metric with a window of 10 cents) between a
bagpipe scale{0, 197, 341, 495, 703, 853, 1009} and a 19-noteβ-chain whoseβ-tuning ranges from 0 to
600 cents. The global minimum is found at 512 cents.

and that the arbitrary scale’s overall note layout is the same as other similar scales (such as its
two-dimensional neighbour).

The most useful metric for this purpose is the centered autocorrelation because we already
know the period (typically 1200), and this is assigned toα. For this example we will use the
scale tunings given for a “highland bagpipe made by MacDonald of Edinburgh” as quoted by
Ellis [4], which is {0, 197, 341, 495, 703, 853, 1009} with a period of 1200 cents. Using a 19-
noteβ-chain with a window of 10 cents, the closest match is found atβ = 512 cents (see Figure
7).

Example 4.7 2-D approximations to a regular scale with unknown generator.We may
be given an arbitrary scale that is regular but we are not given any information about
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Figure 8. The distance (using the centered autocorrelation metric with a window of 10 cents) between
{0, 77, 132, 209, 286, 341, 418, 495, 551, 572, 628, 705, 782, 837, 914, 991, 1046, 1068, 1123} and a 19-
noteβ-chain whoseβ-tuning ranges from 0 to 600 cents. The generator has been correctly identified
as 495 cents.

the size of its generator. Figure 8 shows the distance between a 19-noteβ-chain, with
the values ofβ ranging from 0 to 600, and an arbitrary scale with the following notes
{0, 77, 132, 209, 286, 341, 418, 495, 551, 572, 628, 705, 782, 837, 914, 991, 1046, 1068, 1123}.
The generator is correctly identified as 495 cents.

5. Distances between different scales and different tunings

In addition to finding optimal approximations to arbitrary intervals, the metrics can also be used
to measure the distance between different tunings, different scales, and different set classes.

For example we can use the metrics to determine how close onen-edo is to another, to give a
measure of the potential “strain” produced by switching from one such tuning to another.

There is a rich heritage of measures used to determine the distance between set classes in
musical set theory [19]. However, all these measures are predicated on the use of an equal tem-
perament (with a low number of steps per octave). Our proposed tuning metrics can measure
the distance between any set of pitch classes from any tuning—equal, regular, or irregular. The
Fourier, and autocorrelation metrics defined in this paper are of theTnI type—that is, they mea-
sure the distance between sets that are related by transposition or inversion as0, they also treat
the members of Z-related sets as equivalencies.

However, the use of gaussian smoothing makes the simple Euclidean metric, which is not
transposition or inversion invariant, particularly interesting. We can use it to measure the distance
between any two pitch class sets, chords, or scales, in any tuning, such as meantone, or even
just intonation, as well as being applied to non-Western musical practices. Indeed, to expand
on Rahn’s original aims in “Towards a Theory of Chord Progression” [20], such a metric in
combination with a theory of “instances (of chords)” hints at a theory of chord progressions, even
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Figure 9. The distance (using the Euclidean metric with a window of 100 cents) between all possible
“example” triads and a “reference” major triad tuned to 12-edo. The distance between each example triad
and the reference triad is shown as a function of the pitch difference (in cents) between the notes of the
example triad and the notes of the reference triad: they-axis is the cents difference between the thirds
of the two triads, thex-axis is the cents difference between the root and fifth of both triads, thez-axis
shows the distance as measured by the Euclidean metric. If the reference triad is C major, the positions of
a selection of triads are labeled. Observe how triads with common tones (e.g., C and a) lie at local distance
minima.

tonality, that could be generalized beyond the lown-edo (i.e., 12-edo) milieu of contemporary
Western music.

Example 5.1 Distances between triad-pairings.Using the Euclidean metric, it is possible to
measure the distance between any two chords as a function of the pitch differences between
their notes. This is illustrated in Figure 9. It is interesting to observe how there are distance
minima at those pairings with common tones, with the deepest minima at pairings with two
common tones (i.e., between chords related by the Riemannian transformations P, L, and R).

6. Discussion and conclusion

In this paper, we have introduced a number of related metrics and provided a number of exam-
ples to demonstrate some of their uses. We believe these metrics to be novel in three principal
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respects:

(1) Although it is an established method to embed interval classes into a 6-vector (and some
theorists have explored higher cardinality vectors to represent higher cardinalityn-edos),
we believe this is the first description of using a vector with a high enough cardinality to
represent tunings rather than scale degrees.

(2) The use of gaussian smoothing to model the inaccuracies of human pitch perception (e.g.,
the way that an interval of 300 cents may be heard as identical or very similar to another
interval of say 301 or 310 cents) is a novel method to make the final distance measure a
more accurate model of perceived similarity.

(3) The use of such high cardinality vectors benefits from an efficient means to represent
these scales in a rotation invariant manner. The use of discrete Fourier transforms to
achieve this—a technique that is usually the reserve of audio signal processing—is a
novel application of this well understood function.

A future line of research would be to correlate the metrics and their variables (such as window
shape and width) to empirical ratings of similarity. Furthermore, new window shapes could be
derived from collecting ratings of the similarity of tone pairs with different pitch distances, or
derived from even more basic psychoacoustic data such as auditory filter shapes. It may also be
found that the width of the window may correlate with different musical contexts—for example,
melodic similarity may be better modeled with a wider window than would be used for harmonic
similarity.
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