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Abstract 

With large increases in tourism, it is difficult to maintain parks and preserves in 

their natural state due to random littering. The purpose of this research project is to 

develop an automated robot that is capable of maneuvering in a dynamic and 

unstructured wilderness environment to collect data about the form and distribution of 

litter. The robot is intended to provide critical information about the commonly 

contaminated areas and to help tourist sites develop a more efficient method of 

collecting trash. The distribution patterns will allow for cleaning crews to quickly find 

trash in common areas, thus reducing labor costs and helping preserve the natural 

beauty of the park. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Table of Contents 

Environmentally Friendly Robot: Protecting Natural Reserves against Random Littering .......... 1 

Acknowledgements ........................................................................................................................... 2 

Presentations .................................................................................................................................... 3 

Abstract ............................................................................................................................................. 4 

Chapter1. Introduction ...................................................................................................................... 6 

Chapter2. Simultaneous Localization and Mapping .......................................................................... 8 

2.1 Background: Representing the world using Occupancy Grid Maps ................................ 8 

2.2 Goal of Study ................................................................................................................. 11 

2.3 2D SLAM ........................................................................................................................ 12 

2.3.1 The Iterative Closest Point Process ........................................................................ 12 

2.3.2 Matching, Alignment and Accumulation of Errors ................................................. 13 

2.3.3 Proposed Solution: Two Layers of Mapping ........................................................... 15 

2.4 RGB-D SLAM .................................................................................................................. 17 

2.4.1 Proposed RGB-D SLAM algorithm .......................................................................... 17 

2.4.2 Rejection ................................................................................................................. 18 

2.5 Hybrid 2D-RGBD SLAM .................................................................................................. 27 

2.5.1 Proposed Algorithm ................................................................................................ 28 

Chapter3. Image Segmentation and Object Classification .............................................................. 32 

3.1 Segmentation with Texture Learning and energy minimization ................................... 32 

3.1.1 Literature reviews on the most relevant: a.Clustering with Connected Components 

Labeling ........................................................................................................................... 32 

3.1.2 Literature reviews on the most relevant: b.Energy Optimization .......................... 33 

3.1.3 Literature reviews on the most relevant: c.Texture ............................................... 34 

3.1.4 Proposed RGBD Segmentation with One-Shot Texture Learning and Refinement 35 

3.2Object Classification (In progress) .................................................................................. 38 

3.2.1 Studies on Texture classification ............................................................................ 38 

3.3 Proposed Training and Classification method (In progress).......................................... 43 

Future Works: On the way to self-learning and knowledge transmission across generations

 ............................................................................................................................................. 44 

References ....................................................................................................................................... 45 

Appendix ......................................................................................................................................... 49 

 



6 
 

Chapter1. Introduction 

Since my childhood, I have witnessed the increasing random littering and pollution in nature 

reserves, along with the acceleration of tourism in my home country of China. However, the 

currently adopted solution for this problem, which entails cleaners going around the nature 

reserves for the purpose of searching and collecting garage, however the purpose of searching 

and collecting garage is highly inefficient. Moreover, travelling in different developing and 

developed countries as I grew up, I found that the random litter disposal is a common issue 

related to education, human resource management, economy, and welfare. In order to achieve 

effective waste management strategies, understanding the litter distribution pattern and 

interpreting visitor‘s littering behavior is essential. Artificial Intelligence (AI), which employs 

machine learning and probabilistic reasoning theories, can be used to learn the distribution of 

litters in nature reserves and generalize the pattern, thereby shedding light on this problem. 

Driven by this dream, I chose AI and Robotics as my research areas when I started 

undergraduate education in UW-Madison in 2012. Since January 2014, under the supervision 

of Professor William A. Sethares, I have been working on my four-semester independent 

autonomous robot research project, ―Environmentally Friendly Robot: Protecting Natural 

Reserves against Random Littering‖. 

This thesis contains two major chapters that detail my study and major accomplishments in 

the following aspects: Simultaneous Localization and Mapping (SLAM), Image Segmentation 

and Object classification. The final proposed Hybrid 2D-RGBD SLAM, which combines both 

2D and RGBD measures and uses each when it works best, aims to facilitate robots path 

planning and autonomous navigation in more dynamic, unstructured unknown environment. 

The Image Segmentation with One-Shot Texture Learning and Refinement Process, computes 

the geometric and color features, performs texture analysis and energy minimization for 

optimal solution. It also allows robot to learn about the texture of new environment in order to 

achieve a more intelligent, efficient segmentation system. In terms of efficiency, in general 

cases according to testing, it only requires one iteration of learning and refinement. While the 

study in object classification is still in progress, the current learning patterns sheds light on 

the classification of garbage among the natural environment—it turns out that it may not just 

be a problem of distinguishing ―garbage vs. non-garbage‖, but also ―natural vs. non-natural‖. 
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The robot Dali (or Caramel), with laser scanner (top), Kinect RGBD sensor (front), and Intel 

Core i5-4250U Processor 

Considering the robot‘s learning potential in mapping, image segmentation and classification 

as well as handling uncertainties in unknown environment, in the future, I wish to transform 

the current project into others that may contribute to education, water scarcity and many 

more…I also wish that the developments in robot, can be introduced as new factors to many 

sustainability aspects such as the long term environmental equilibrium. When thinking about 

the future, I always wonder: Can robots awaken people‘s mind to better protect the earth and 

ourselves? I am looking forward to see the answer through the rest of my life. 
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Chapter2. Simultaneous Localization and 

Mapping 

2.1 Background: Representing the world using 

Occupancy Grid Maps 

Recovering spatial representations of the surroundings is essential for autonomous robot‘s 

path planning and decision making. Best-known map representations include occupancy grid 

map [1], point cloud [2] and landmarks [3]. Since a robot can only understand its environment 

indirectly from sensors data, recovering the spatial representation of the surroundings must 

deal with the uncertainty and noises exists in the sensor data. 

The occupancy grid map partition the space into cells, while each cell stores a probabilistic 

estimate of whether the cell is occupied or not. Among the three major map representations, 

the occupancy grid map has the following advantages: 

1. Best estimate of the surroundings. The occupancy grid map can be incrementally updated 

by fusing multiple sensory data, eg. Laser range scans, given the pose estimates of the 

sensor corresponding to each sensory data. The fusion between the current observation 

and previous observation can be done via Bayesian approach. By iteratively accumulating 

the sensor data samples and updating the occupancy cell, the occupancy cells give more 

accurate probabilistic estimate of cell occupancy 

2. Reduction of the small variance exists in sensory data. By correctly setting the resolution 

of the grid map for a given application, spatially close enough data that refer to a same 

target can be fused into a single cell instead of being treated as two obstacles. 

3. The occupancy grid map, essentially can be treated as a binary map and directly used for 

path planning methods such as A* search. 

For clarification, below is a review of how Occupancy Grid Map works. 

Definitions:  

P (Oxy):  the probably of a cell being occupied for a cell with index (x,y). 

rt : observation (distances to obstacles) at time t 

xt : the pose of the sensor/robot at time t 

It: the information at time t, rt ^ xt 

Jt: all information until time t 

P (Oxy| It): the likelihood of the cell (x, y) being occupied, given the sensor pose xt and 
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distance to obstacle rt. 

Initially, without any sensory information, we donate P (Oxy) =P (¬Oxy) =0.5 

According to Bayes‘s theorem [1],  

P (Oxy|It⋀Jt-1) = 
P(It|Oxy ⋀ Jt−1) ∗ P(Oxy|Jt−1)

P(It|Oxy⋀Jt−1)∗ P(Oxy|Jt−1)+P(¬It|Oxy ⋀ Jt−1) ∗ P(¬Oxy|Jt−1)
 (2.1) 

That is, given the new information and old information, the likelihood of cell (x,y) being 

occupied. This is the incremental update step of the cell occupancy by incorporating the 

current knowledge and previous observations. 

According to [4], if we make a strong assumption between It and It-1, then the odd of the 

above will be 
P(Oxy|It ⋀Jt−1)

P(¬Oxy|It ⋀Jt−1)
= 

P(Oxy|It)

P(¬Oxy|It)
* 

P(Oxy|Jt−1)

P(¬Oxy|Jt−1)
* 

P(¬Oxy)

P(Oxy
 (2.2) 

Alternatively, it can be written as Odds (Oxy|It⋀Jt-1) =
Odds(Oxy|It )∗ Odds(Oxy|Jt−1)

 Odds(Oxy)
 (2.3) 

Note the range of the odds is from 0 to infinity, if we take the log of equation (2.1), then the 

range will be from negative infinity to infinity: 

Log (Oxy|It⋀Jt-1) =Log(Oxy|It )+Log(Oxy|Jt − 1)-Log (Oxy) (2.4) 

 

Figure 2.1.1 Log-odds vs. Cell Occupancy. 

Source:http://www.mrpt.org/tutorials/programming/maps-for-localization-slam-map-building/

occupancy_grids/ 
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In common cases, for a given pose and laser range data, we can assume the probability 

density curve of P (Oxy| rt) will look like: [5] 

 

Figure 2.1 P (Oxy) given the range to an obstacle is 0.5m [5]. 

This means, given the range to an obstacle, if the distance between a cell and the robot is very 

close to the measured distance, the cell is probably occupied; if a cell is further away from the 

observed point, we keep the default value 0.5 for the cell occupancy, as it is still unseen. 

The above summaries the process of incrementally updating and estimating cells occupancies. 

By accumulating samples, we will estimate the density of P(Oxy|Jt − 1) and the average cell 

density P (Oxy); for a given pose, P (Oxy| It) can be assumed as shown in Figure 2.1. For a 

given cell occupancy, if new observation confirms with the previous estimate, the occupancy 

likelihood will increase and vice versa. Therefore, this is model can be regarded as a simple 

learning model; over time , it takes samples and gives a better estimation of cells occupancies 

as well as the spatial representation of the global. Its applications in this study and potential 

issues will be discussed in the following sections. 
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2.2 Goal of Study 

Simultaneous Localization and Mapping (SLAM), is a technique that allows robots to update 

a map of its surrounding and localize it while navigating in unknown environment. For path 

planning, action planning and probabilistic reasoning, it provides one fundamental basis. The 

key idea of mapping is to constantly match and align the current sensory data to the previous 

observations; by aligning the new sensory data to the existing map, the robot will also be able 

to determine its current pose. 

The ultimate goal of this research project is to create an autonomous robot exploring in 

unstructured, dynamic nature reserves. The following cases are mostly common while the 

robot navigates in dynamic environments (suppose the sensory data comes from laser 

rangefinder): 

Situation A.  A sudden change in robot‘s pose (tilt or roll) causes the sudden change in the 

laser scan pattern. In this case, the matching ratio between the new laser scan and existing 

map may potentially be low. 

Situation B.  A sudden change in the structure of the local environment. Once the robot 

enters the critical zone, a change in surroundings may also bring about a bad correlation 

between the current and previous observations; however, if this change can be detected, the 

robot can start building a new map while long term path planning can be based on a multiple 

local maps. 

Situation C. No sudden change in the environment structure or the robot‘s pose ever happened; 

however, the changes in pose and the structure of the environment accumulate over time. 

In terms of the situations above, two key questions must be answered: How to determine the 

pose and possibly register new sensory data into existing map when there is a low matching 

ratio between the current and previous observations due to the sudden pose change or 

environment change?  How to represent the spatial characteristics of the surroundings for 

long term and short term path planning ( eg. Should we should 2D or 3D models or both)? 

The proposed solution in this chapter is a feedback system incorporates both 3D and 2D 

matching methods and take advantages of both measures. The proposed method also fuses all 

sensory information into 2D global map for long term planning; local sensory data will be for 

more accurate, short term path planning. Before introducing the proposed hybrid system, 

studies and developments in 2D and 3D SLAM will be first discussed separately in detail. 
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2.3 2D SLAM 

2.3.1 The Iterative Closest Point Process 

Iterative Closest Point (ICP) is one widely-used method that can be used to find the best 

alignment between two point clouds. For this study in 2D SLAM, it plays a key role in 

matching and aligning new sensory data with previous observations. The key concepts 

include: for each point in the source point cloud, find its corresponding point in the target 

cloud; based on the corresponding pairs, estimate the transformation matrix between two 

point clouds; iteratively repeat the previous steps until the algorithm converge. 

For clarification, below is the algorithm [6]: 

Definitions:  

Source Point cloud: A= {a1, a2…an}, Target Point cloud: B= {b1, b2….bn} 

Estimated Transformation Matrix: T 

Initial guess in transformation: T0 

Weight of pair i: wi 

Max Euclidean distance between the corresponding pairs: dist_threshold 

Algorithm 2.3.1: 

Let T= T0 

while not converged 

 for i: 1 to n 

  mi = FindClosestPointInB (T*ai) 

  if ||mi-T*ai||>dist_threshold 

   wi=0; 

  else 

   wi=1; 

 end 

According to all corresponding pairs with wi=1, estimate the overall transformation Ti 

using a mean squared error cost function; 

 T=Ti; 

 if converge or no improvement 

 break; 

end 

Note that the ICP will converge to local minimum, that is, as long as no further improvement 

can be made, it will stop, even though the alignment is incorrect. Therefore, initial estimate of 

the transformation matrix is critical for the success of ICP. 
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Also choosing dist_threshold brings about a tradeoff between convergence and accuracy 

[6]---if dist_threshold is too low, the algorithm will stop between it actually converge; if 

dist_threshold is too high, incorrect correspondences will also contribute to the estimation of 

transformation matrix.  

In terms of computation efficiency, a KD-tree can be used for the search of nearest neighbors 

between two point clouds [7].  

2.3.2 Matching, Alignment and Accumulation of Errors 

So far, we have talked about the concepts of occupancy grid map and ICP for point clouds 

alignment. This section examines the possibility of using incorporating both methods for 2D 

SLAM, and potential issues. 

 

Figure 2.3.1 An illustration of the ICP based registration process; the sensor is static; however, 

after registration of multiple frames of laser range scan, the system diverge and end up with a 

wrong map building. 

Figure 2.3.1 demonstrates a ICP based registration process: the laser rangefinder is static and 

repeatedly scans the surroundings in a room setting; new laser scan is aligned with the built 

map using ICP approach (the existing map is resampled as points cloud) and then registered 

into the global grid map. Registration error accumulates; over time new sensory data faces 

multiple possible alignments, while ICP causes random local convergences, leading to the 

system to eventually diverge.  

Suppose both the sensory data and the alignment are perfect, then the situation described in 
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Figure 2.3.1 may not occur. However, in reality, due to uncertainty, noises in sensory data, 

there is almost no perfect alignment between new and previous laser scan. In other words, the 

transformation between subsequent scans may not be perfectly linear or rigid.  

 

Figure 2.3.2, a zoomed in version of the second map in Figure 2.3.1 

Figure 2.3.2 is a zoomed in version of the second map in Figure 2.3.1. Most data from new 

laser scan agree with previous scans; however, due to noises or early convergence of ICP, 

there is no perfect overlap between the new and old observations. For next frame of data, it 

faces multiple possible alignments. Accumulation of errors explains why the system will 

diverge. 

In 2.1, we mentioned that the occupancy grid map, by learning from more samples, can gives 

a better estimation of the surroundings. Unfortunately, in this case, the growth of errors is 

dominating the errors rejection. The occupancy grid map is not best used in this approach. 

Next section will be the discussion of the proposed solution as well as the examination of its 

effectiveness. 
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2.3.3 Proposed Solution: Two Layers of Mapping 

Admittedly, in many mobile robot applications, people can avoid the problems mentioned in 

the previous section by only registering key frames. In other words, only register new sensory 

data when the change in robot‘s pose indicates a new environment is probably detected. Issues 

with this approach is that noises or moving objects won‘t be flushed out or correctly updated 

in the global map, while the occupancy map is not learning from more samples in order to 

give a better representation of the world. 

We wonder if we can achieve a system that is able to: 

1. Constantly learn from samples in real time and give a best estimate of the surroundings; 

2. Reduce or eliminate the accumulation of errors while registering more samples. 

Below is the diagram showing the proposed solution: 

 

All new sensory data will be matched against the top map; depending on whether it can be 

considered as a new key frame, it will be transformed and registered in the bottom map or 

both. Over time, the bottom map will be an averaged version of the surroundings, temporal 

changes in the surroundings such as noises or moving objects will be reflected in this map but 

flushed out over time. Indeed, for the building of the top map which is essentially a map of 
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key frames, the proposed model makes a strong assumption on the correctness of 

transformation estimation between a new key frame and the top map. Admittedly, errors may 

still occur along with the building of the top map, but this problem won‘t lead system to 

diverge, and can be solved by methods such as loop closure algorithm [5] [8][9][10].  

Tests 

 

Figure 2.3.3.1 A learning process from multiple observations. While the obstacle is moving, 

previously blocked area (yellow boxes) has been updated, and the movement of obstacle (red 

arrow) is constantly updated on the map. 
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2.4 RGB-D SLAM 

Introduction 

In contrast to ICP-based 2D registration as discussed in 2.2, alignment of RGB-D images 

(point clouds) is typically done by first finding the matched image features and estimating the 

rigid transformation. Without initial guesses, running ICP algorithm for finding the nearest 

neighbors among the two dataset and repeatedly aligning two clouds can be extremely 

expensive, and may converge to incorrect local minimum. We use SURF (Speeded Up Robust 

Features) for detecting matched features between consecutive images [12]. As RGB-D images 

don‘t provide full 3D data but depth per pixels, other widely accepted 3D descriptors 

[13][14][15][16] are studied but not used in this case. Indeed, SURF will give false matches. 

After SURF matching, we reject bad correspondences using a proposed rejection method. 

Based on the current knowledge, SVD (Singular Value Decomposition) will then be used to 

give the best estimate of the rigid transformation. Due to sensory data noises, image distortion 

or motion blur, rigid transformation between two clouds is not guaranteed. Again, according 

to the estimated transformation matrix, we run ICP on all matched SURF points, performing 

non-linear optimization, seeking for the best alignment. We run ICP on all matched SURF 

points because: 1. Increasing the sampling size to a reasonable amount: the proposed rejection 

method is a very rigorous step which may not only discard bad correspondences but also 

exclude correct matches; 2. all points are already associated while ICP will automatically 

reject those that are not spatially close enough. Admittedly, in case when there is not enough 

SURF matches, failure may occur. However, in terms of consecutive images, this case rarely 

occurs and can be handled by sampling new images.  

As summarized in [17], three main topics of SLAM include frame alignment, loop closure 

detection and global optimization. Due to the scope of this thesis, other two topics won‘t be 

discussed here while the proposed RGB-D Alignment algorithm will directly contribute to the 

Hybrid-SLAM in 2.5. 

2.4.1 Proposed RGB-D SLAM algorithm 

Algorithm 2.4.1 RGB-D Alignment: 

For the given RGB-D images Img1,Img2 and their point clouds PtCloud1, PtCloud2, convert 

to gray scale images G1,G2;   

{P,Q}FindCorrespondingPointsWithSimilarSURFFeatures(G1,G2, PtCloud1, PtCloud2) 

For i=1 to length (P) 

 If pi or qi has undefined xyz features, remove pi and qi from P and Q 

End 

Create two empty point clouds, PP and QQ 

{PP,QQ}RejectBadCorrespondences(P,Q) (Algorithm 2.4.2) 
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Estimated Transformation Matrix TTransfromationEstimationWithSVD(PP,QQ) (2.4.3) 

QT*Q 

TT*TransformationEstimationWithICP(P,Q) (Algorithm 2.3.1) 

PtCloud2T* PtCloud2 

2.4.2 Rejection 

2.4.2.1 Proposed Bad Correspondences Rejection Method 

Here the proposed rejection method is a special case for matching consecutive RGB-D images, 

with an assumption that the rotation between neighboring frames won‘t be significant. It 

resembles a rigorous voting process and has a linear computation complexity. Other 

best-known algorithms such as RANSAC may be adopted for more general purposes. 

However, according to experiments, this proposed method shows its robustness and efficiency! 

Mathematical proof can be found  

Algorithm 2.3.2 Proposed Bad Correspondences Rejection Method 

Given matched points P= {pi}, Q= {qi} 

Create a circular histogram H= {hi} with M bins 

Create a vector V of integer vectors with size of M 

Let d-angle=360/M or 2Pi/M 

For i=1 to length [Q] 

T-angle= ArcTan[
−piy+qiy

𝑐−pix+qix
] 

 Index I = 
−

d−angle

2
+T−angle

d−angle
 

 H [I] ++; 

 V [I].pushback (i) 

End 

Select max hi with index m 

PP= {pi}, QQ= {qi} where i belongs to V[m] 

Return PP, QQ 
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Figure 2.4.2.1 RGB-D images with SURF matches 

 

Figure 2.4.2.2 SURF correspondences shown between two point clouds 
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2.4.2.2 Visualization of the Histograms and the corresponding 

Transformation Matrices 

 

Figure 2.4.2.2.1 Bin Histogram (15 bins), Quantization of angles upon significant tilt 

2.4.2.3 Mathematical Proof for the Proposed Rejection Algorithm 

A strong assumption made here is that the correctly associated 2D points correspond to the 3D 

points pi and qi that can be perfectly matched. Since changing the angle of view or moving 

the camera may distort/blur the 2D perspective, this relationship may not be perfectly true.  

In theory, the proposed rejection method is invariant to pitch change, insensitive to yaw 

change, less insensitive to roll change. Below is the mathematical reasoning and tables: 

Define f= ArcTan[
−piy+qiy

𝑐−pix+qix
] 

For any point pi, the matrix representation: 
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Assume qi be the associated point with pi, let T be the transformation matrix from pi to qi, 

ideally qi==T*pi.  

Let x, y, z be the translation in x-axis (width), y-axis (height), z-axis (depth),  

Let pitch, roll, yaw be the rotation around y-axis, x-axis, z-axis 

For the following cases, let c=3, -1.5<=x<=1.5 (width), -1<=y<=1 (height), 0.8<z<6 (depth) 

(normal ranges for Kinect Camera) 

The overall 6D transformation matrix will be: 

 

Since there are too many variables to consider, for the following we examine the 

individual effect of x, y, z, yaw, pitch, and roll individually. 

Case1. Effect of pitch change 

The transformation Matrix T: 

 

Then Matrix Representation of qi=T*pi= 

 

𝑓 = −𝐴𝑟𝑐𝑇𝑎𝑛[(𝑝𝑡𝑦 − 𝑝𝑡𝑦) (𝑐 + 𝑝𝑡𝑥 ∗ 𝐶𝑜𝑠[𝑝𝑖𝑡𝑐] + 𝑝𝑡𝑧 ∗ 𝑆𝑖𝑛[𝑝𝑖𝑡𝑐] − 𝑝𝑡𝑥⁄ ] = 0 

 

In this case, f is invariant to pitch change. 

 

Case2. Effect of roll change 

 

The transformation matrix: 
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Matrix representation of qi: 

 

𝑓

= −𝐴𝑟𝑐𝑇𝑎𝑛[(𝑝𝑡𝑦 ∗ 𝐶𝑜𝑠[𝑟𝑜𝑙𝑙] − 𝑝𝑡𝑦 + 𝑝𝑡𝑥 ∗ 𝑆𝑖𝑛[𝑟𝑜𝑙𝑙]) (𝐶 + 𝑝𝑡𝑥 − 𝑝𝑡𝑥 ∗ 𝐶𝑜𝑠[𝑟𝑜𝑙𝑙] + 𝑝𝑡𝑦 ∗ 𝑆𝑖𝑛[𝑟𝑜𝑙𝑙])⁄ ] 

 

Roll=0.5 radians, fmax - fmin ~ 0.4 radians 

 

Roll=0.25 radians, fmax - fmin ~ 0.25 radians 



23 
 

 

Roll=0.2 radians , fmax - fmin ~ 0.2 radians 

 

Case3. Effect of yaw change 

 

The transformation matrix: 

 

The matrix representation of qi: 
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f=−𝐴𝑟𝑐𝑇𝑎𝑛[(𝑝𝑡𝑦 ∗ 𝐶𝑜𝑠[𝑦𝑎𝑤] − 𝑝𝑡𝑧 ∗ 𝑆𝑖𝑛[𝑦𝑎𝑤] − 𝑝𝑡𝑦) (𝑐 + 𝑝𝑡𝑥 − 𝑝𝑡𝑥)⁄ ] 

 

Yaw=0.5 radians, ptz=1 , fmax - fmin ~ 0.08 radians 

 

Yaw=0.5 radians, ptz=3 , fmax - fmin ~ 0.07 radians 

 

Yaw=0.5 radians, ptz=6 , fmax - fmin ~ 0.05 radians 



25 
 

 

Yaw=0.25 radians, ptz=1 , fmax - fmin <0.03radians 

 

 

Yaw=0.25 radians, ptz=3 , fmax - fmin <0.02radians 
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Yaw=0.25 radians, ptz=6 , fmax - fmin <0.015radians 

 

Case 4,5,6. Effect of translation 

Translation along z-axis (depth) will not have effect in f; translation along x or y axis will 

bring about same effect on all (pi, qi) pairs. 

 

Tests: 

 

Figure 2.4.2.3.1 Multiple RGBD Images Registration, Result visualized from different angles 
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2.5 Hybrid 2D-RGBD SLAM 

Introduction 

Both 2D and RGBD matching methods have their unique advantages and disadvantages. The 

proposed Hybrid 2D-RGBD SLAM links the two measures and has the following key 

principles: 

 It combines both measures and use each when it works best 

 It gives best estimate of the surroundings by learning from multiple observation for long 

term and short term planning 

 It balances and maintains the consistency of observations from the two sensors 

Discussion 

According to tests, the 2D SLAM method shown in 2.3 demonstrates its advantages in terms 

of speed and in general can give more reliable matching and poses estimation. Its major 

foundation, the probabilistic Bayesian estimation, after an intense research during the last 

decade [5], turns out to be most successful and can manage well noisy sensory data or 

uncertainties in robot poses. One the other hand, upon tilt or roll or when robot entering into 

an unfamiliar environment, the 2D alignment method may fail due to insufficient feature 

matches. 

In comparison, the RGB-D SLAM introduced in 2.4 requires more processing time. Unlike 

the probabilistic multiple frames fusion discussed in 2.3, the current RGB-D SLAM can only 

achieve frame-to-frame alignment barely in real time without hardware accelerations such as 

FPGA or GPU[19] [20] ; thus, due to the limited amount of sensory samples, it may 

potentially produce less accurate mapping or poses estimation. However, the RGB-D method 

has unique advantages in perceiving and matching the images features. In terms of associating 

features among consecutive frames, this measurement is in general more robust and much 

more insensitive to tilt, roll or changing surroundings observed by the robot.  

In terms of modeling the environment for path planning or action planning, most popular 

approaches include occupancy grid map, points cloud, landmarks or OctoMap--a 3D 

probabilistic grid map [21][22] or parameterized functions. Although in outdoor dynamic 

applications estimating the terrain or world is critical, due to the incomplete 3D data from the 

RGB-D sensor, accurate reconstruction of 3D models can be extremely difficult and 

expensive [23].  

In terms of the proposed Hybrid system, we have the following considerations: 
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1. Both alignment subroutines, when called together, should agree and converge to a certain 

point. 

2. Even though one alignment method temporally fails, handled by other routines, the 

system will continue to function and eventually recover to its most reliable main routine. 

3. Each routine should be called when it works best. 

2.5.1 Proposed Algorithm 

Definitions: 

KeyFrameRGBD: a list of RGBD key frames 

KeyFrame2D: a list of 2D laser key frames 

KeyFramePoses: a list of robot pose estimations that corresponds to the key frames 

DeltaPoseEst: the estimated location and orientation change between two observations 

NewPoseEst: the estimated pose with respect to the global map based on the matching 

between two observations, given the pose that corresponds to the previous observation 

CurPoseEst: estimated current pose, 2D with x,y and phi 

CurPose3DEst: estimated current pose, 3D with x, y, z, yaw, pitch roll 

GKMap: global map fused with all 2D key frames (the top map from 2.3.3) 

GMap;global map fused with all 2D observations(the bottom map from 2.3.3) 

Algorithm 2.5.1.1 Hybrid matching 

Input: current RGBD frame Ki and laser scan Li 

Step1:  

[2D Matching ratio, NewPoseEst]Perform 2D matching of (Li, GKMap, CurPoseEst)  

(as in 2.3.1) 

If matching ratio < matching ratio threshold 

Go to step 2 

Else  

Update CurPoseEst= NewPoseEst, CurPose3DEst= NewPoseEst 

 If necessary*, update KeyFrameRGBD, KeyFrame2D, KeyFramePoses by adding Ki, Li 

and CurPoseEst 

 

Step2:  

Find the nearest key frame NKj from KeyFrame2D, and the estimated pose KeyPosej that 

corresponds to this observation 

[2D Matching ratio, NewPoseEst]Perform 2D matching of (Li, NKi, KeyPosej) 

If matching ratio < matching ratio threshold 

Go to step 3 

Else  

Update CurPoseEst= NewPoseEst, CurPose3DEst= NewPoseEst 

If necessary*, update KeyFrameRGBD, KeyFrame2D, KeyFramePoses by adding Ki, 
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Li and CurPoseEst 

Step3:  

Find the nearest key frame RGBDNKj from KeyFrameRGBD, and the estimated pose 

KeyFramePosesj that corresponds to this observation 

[Matching confidence after Bad Correspondence Rejection*, DeltaPoseEst]Perform 

RGBD matching of (Ki, RGBDNKj) (as 2.4.1) 

If matching confidence < matching confidence threshold 

Stop or resample new frames of data until next successful matching or start a new map 

building 

Else  

TempPoseEst= DeltaPoseEst + KeyPosei  

[2D Matching ratio, NewPoseEst]Perform 2D matching of (Li, GKMap, TempPoseEst)  

(as in 2.3.1) 

If matching ratio > (matching ratio threshold – alpha) or NewPoseEst nearly agrees with 

previous pose 

Done 

If necessary*, update KeyFrameRGBD, KeyFrame2D, KeyFramePoses by adding Ki, 

Li and CurPoseEst 

Else  

Stop or resample new frames of data until next successful matching or start a new map 

building 

 

*The insertion of new key frames is determined if the translation or rotation between the pose 

associated with the previous key frame and the currently estimated pose is larger than user 

defined thresholds.  

*In terms of the proposed RGBD alignment, the Matching Confidence is based on the last 

step-ICP matching ratio as well as number of correspondences after the Bad Correspondence 

Rejection. 

Discussion 

First of all, the proposed algorithm is fusing all observations into a 2D global map, based on 

the estimated pose according to 2D or RGBD matching routine. The 2D global map, need not 

to exactly describe the environment of the dynamic, unstructured environment. It only gives 

the robot a rough estimation of its position and relationship to its target. The path planning 

should be a feedback system between the global map and current observation, for long term 

and short term path planning. The robot should constantly keep track of its current position 

with respect to its target, perform pose correction and eventually reach to its target. 

As discussed in 2.3.3, the mapping is learning from multiple observations in real time, instead 

of just registering key frames. Changes in the surroundings can be reflected in the global map. 
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The 2D alignment and pose estimation, in general cases in faster, consistent and more reliable. 

Therefore, the 2D matching serves as the main routine.  

On the other hand, when the 2D matching ratio is low, two possible situations can occur: 1. 

sudden changes in the environment; 2. sudden changes in the laser scan pattern due to tilt or 

roll.  

The usage of buffering key frames and System Convergence 

In terms of case 1, this may happen when, for example, the robot is passing a door. Since the 

global map (the bottom map as defined in 2.3.3) is learned from the past experience, earlier 

observations weight more than the new observation. When a new pattern that is significantly 

different from the learnt model is perceived, the 2D global matching may fail. Therefore, we 

introduce key frame buffers--- the robot keeps on buffering new observations as key frames 

whenever a small pose change has been made. Note, the updating criterion of adding key 

frames is different than the top map (as defined in 2.3.3). In general, the update of key frames 

is more frequent. If the matching ratio between the current observation and global map is low, 

the robot can perform matching with the buffered frames. Since key frames of observations 

are continuous, the matching between the current frame and previous key frame is less 

sensitive to changes in environment. However, this estimation can only be used as a temporal 

solution, since frequent frame-to-frame alignment can accumulate errors and may cause the 

system to eventually diverge. If the matching with buffers is successful, new observation must 

be fused into the global map. Over the next several iterations, new patterns of the surrounding 

will be learned and weight more in the global map, recovering the 2D global matching 

routine. 

Linking RGBD and 2D matching routine—about Efficiency and Convergence 

Upon significant tilt or roll, even the buffering technique may fail, due to the global changes 

in sensory data instead of partial changes. In step 3, we first perform RGBD matching against 

previous RGBD key frame. However, the estimated pose cannot be directly used, since errors 

may occur in this non-linear matching step due to \ the image perspective distortion, motion 

blur or sensory data noises. Based on the estimated pose change, we rerun the 2D matching 

routine to verify and perform adjustment. If matching is successful, new frames will be added 

to the global map as well as key frame buffers. In general, for the next matching, the buffering 

technique will be called instead and the system will learn new observations for a few 

iterations and finally converge to its main routine. 
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Example: A calling sequence of the three sub-routines upon a significant tilt at frame 11 

 

Figure 2.5.2.1 Upon significant tilt at frame 11, the global and buffer matching routines are 

first being called, but it is handled by the RGBD matching; after this, the system encounter 

temporal failures of 2D global matching, and the buffer matching has been called until the 

system eventually converge at the sixth iteration. 

Tests 

 

Figure 2.5.2.2 The mapping process, all information fused into a 2D global map 

  

Figure 2.5.2.3 Upon significant tilt and roll, RGBD based matching routine is called, robot 

pose(green) estimation keeps consistent as before 
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Chapter3. Image Segmentation and Object 

Classification 

In order to understand litters' distributions and forming patterns among reserves, the robot 

must extract interesting objects from the unknown scenes, and distinguish garbage among 

other natural objects.  

 

3.1 Segmentation with Texture Learning and energy 

minimization 

Assuming most garbage is sitting on the ground, extracting and subtracting the ground 

component will be helpful for clustering and extracting other interesting objects. The 

proposed segmentation methods involve computation on color and geometric features, 

generalization and analysis of texture, energy minimization for optimal solution. It learns 

about the texture of new environment for the purpose of refinement and more intelligent 

segmentation among subsequent RGBD images.  

Sections 3.1.1 to section 3.1.3 are literature reviews on the most relevant studies to the 

development of the proposed method in the following aspects: clustering, energy 

minimization and texture. The reviews are designed to be short but those literatures form the 

fundamentals of the proposed algorithm. 

 

3.1.1 Literature reviews on the most relevant: a.Clustering 

with Connected Components Labeling 

Connected-Component labeling is used in image processing to detect connected regions. In 

terms of binary image, it detects connected components with same pixel values, and place 

unique identical labels on those connected pixels. In terms of RGB or RGBD images, by 

redefining the ‗connectivity‘, this algorithm can be used for clustering pixels with similar 

features. Trevor et al. [24] proposed an application of connected component in the 

segmentation of RGBD images.  

In general, the connected component labeling has two passes. On the first pass, we iterate 

through each pixel by column, then by row. For each pixel, we examine its neighbors (the 

connectivity check is usually with the West and North neighbors). If the current pixel has 

neighbors, assign the current pixel with the smallest label from its neighbors and store the 

equivalence between the two labels using data structures such as union-find [25]. If no 
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neighbor is found, put a unique label on the current element. On the second pass, scan the 

image again and update the elements with the lowest equivalent label. 

As discussed in [24], unlike traditional point clouds, the organized data structure of RGBD 

images allows a very efficient searching of nearest neighbors. The connectivity between 

neighboring points is determined by the point normal distance as well as the Euclidean 

distance.  

According to [24], the connectivity C (p1, p2) = (dist-normal < thresh-normal)  

We can also combine color features: 

C (p1, p2) = (dist-normal < thresh-normal) || ( dist-normal < thresh-normal+alpha|| color-dist < 

thresh-color) 

 

 

Figure 3.1.1.1 Segmentation using connected component labeling according to similarities of 

point normal (left); Segmentation by considering the point normal distance, Euclidean 

distance and color distance. 

3.1.2 Literature reviews on the most relevant: b.Energy 

Optimization 

The study in energy optimization was initially inspired by the study in stereo image 

segmentation by [26], which transforms the image segmentation into finding the equilibrium 

states of the energy of the ferromagnetic Potts model in the super-paramagnetic 

phase[27][28][29]. According to [26], each pixel was considered as spin (granular 

ferromagnet) while the Potts model represents a system of interacting spins. Each pixel has q 

possible states; the total system energy is the sum of the interaction strength (characterized by 

color difference) between the neighbors that are only under the same state (described as 

aligned).  

The algorithm [26] aims to iteratively change the state assignment of each spin until it reaches 

to a configuration with lowest total energy. According to [27], when multiple regions of 

aligned spins coexist with minimum possible total energy, the system reaches to its 

equilibrium state, and the regions of aligned spins correspond to the desired image 

segmentation.  
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The method proposed by [26] was achieved with GPU based parallel computing. On the other 

hand, such algorithm may require significant amount of iterations to coverage and may not be 

feasible for nowadays CPU.  

However, the concepts of equilibrium, system energy minimization and its relation to the 

interaction strength between pixels play a crucial role for the later development. 

3.1.3 Literature reviews on the most relevant: c.Texture 

What is texture? For this research, texture is considered as one generalized global feature that 

allows us to distinguish one object from the natural scene from human‘s perspective. Texture 

is commonly characterized by repeating pattern with randomness. As proposed in [30], the 

representation of texture involves the modeling of structure and color regularities. 

Considering common objects from natural scenes, structure regularities may not be a common 

feature; therefore, this study mainly focuses on the generalization of the color patterns. 

Assuming the color texture of natural objects as sets of pixels following natural distributions, 

the Gaussian Mixture Model is one best fit model. GMM has the following major advantages: 

1. It does not require strong independence between features [30]; 2. No prior knowledge or 

assumption is required for initializing the GMMs [31]; 3. The GMM has many degrees of 

freedom to update its modeling parameters such as via E-M [32] or K-Means; 4. The training 

is computationally inexpensive.  

The probability density of the GMM is defined as [32] [33]: 

(3.1.3.1) [32] [33] 

where aj is the weight of the jth component 

and  

(3.1.3.2) [32] [33] 

Since p(x) is a probability density function, it not only characterized the mixture distribution 

of the Gaussian components but can also be used to estimate the fitness of a feature vector 

input to this mode for the purpose of energy estimation or classification. 
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3.1.4 Proposed RGBD Segmentation with One-Shot Texture 

Learning and Refinement 

The segmentation method proposed here, is assuming interesting objects—the garbage are 

usually sitting on the ground surface and only need to be extracted from the ground 

component. The proposed method, however, does not require even ground surface and can be 

used for more general cases in natural environment. It contains three passes, firstly it 

estimates the point normal and by clustering techniques gives an approximation of the ground 

component with high certainty; given the data representing the estimated ground surface, it 

learns about the texture of the ground component and refine by energy minimization; finally 

after excluding the refined ground component, it extracts the object clusters nearby the 

ground and again perform texture learning and refinement for each of them. Based on 

experiments, only one iteration of refinement is needed; more iterations may potentially cause 

over-fit problem. 

Algorithm 3.1.4.1 Ground Component Segmentation with 

Texture Learning  

Step1: Estimate surface normals using Integral Images [34] based on covariance matrices. 

Step2: Use connected component labeling, estimate and extract the ground component P= 

{pi}. 

Step3: Estimate the bounding region of the ground component, get ymin, ymax, xmin, xmax. 

Find all non-ground points Q = {qi} within the bounding box. 

Step3: Apply K-Means to find K major color components C= {c1, c2…ck} of Q, D= {d1, 

d2…dk} of P. 

Step4: Create two GMMs, one for the ground component (GGMM), another for non-ground 

(NGGMM). Initialize the GMMs with Gaussian Components C and D. 

Step6. Use P to train the GGMM. Use Q to train the NGGMM. At the same time, compute 

covariance and inverse covariance matrices and means. 

Step7: Iterate through all pi and qi again, for each of them, find the most likely mixture 

component that maximizes Eq. 3.1.3.2. Retrain GGMM and NGGMM according to the new 

assignments.  

Step8: Construct a graph with two terminal nodes representing the ground and non-ground 

components; add all points from Q as non-terminal nodes. Use Max-flow Min-cut Algorithm 

to find the minimal energy of graph which represents the whole system, and find the optimal 

classifications of qi according to [35] [36]. 

Note that step 2 is a rigorous selection of the ground component points. Those points must be 

determined as part of the ground component with high certainty and won‘t be considered for 

the refinement; the points that cannot be determined from the first pass can be classified by 

the refinement process. The refinement process cannot consider all points as candidates; 
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otherwise, the result may be unexpected or require unnecessary extra iterations. In step 8, the 

energy function refers to the Gibbs Energy [35][36], which is characterized by the total 

interaction strength between the terminal nodes and non-terminal nodes, and within the 

non-terminal nodes. 

Results 

 

Figure 3.1.4.1.2 Ground component refinement, before & after 
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Cluster Refinement 

In terms of the refinement process of object clusters, due to the limited amount of pixels from 

the cluster, we run through a more rigorous selection on the refinement candidates. 

1. Determine those points that belong to the object with strong confidence. 

2. Also determine those points that do not belong to the object (within a bounding box that is 

larger and enclose the entire object). (Such points can be found by examining the geometric 

relationship between the object cluster and its surroundings) 

3. Train and get GMMs of the object and its background. 

4. Extract the points that nearby the boundary of the cluster. 

5. Get those points that are not seen by the 3D sensor (i.e. the xyz are undefined) 

6. Points from 4) and 5) will be classified based on the two GMMs. 

Not all points nearby the object can be classified based on the two GMMs; for example, in 

some cases the texture of the background and the texture of the object can be very similar; 

thus, must determine the points that don‘t belong to the object based on the geometric features 

and exclude them. 

 

Figure 3.1.4.1.2 After subtracting the ground component, Plate, Milk box, Can were extracted 

and refined by texture analysis 



38 
 

3.2Object Classification (In progress) 

This study focuses on the identifying garbage from natural scenes. What is garbage? What is 

non-garbage? In the context of natural reserves, we consider garbage as a class of various 

kinds of objects such as cans, plates, plastic bags that are disposed in the environment. Is 

there any common features among garbage that can be useful for robot to distinguish garbage 

among the other objects in the reserves? From a human‘s perspective, detecting garbage from 

a natural environment is often easy—intuitively we can say ―the garbage looks odd‖.   

This research investigates in  

 generalized texture patterns 

 shape descriptors 

 energy minimization 

 probabilistic and learning models 

 

3.2.1 Studies on Texture classification 

Studies in texture classification have been conducted in three main aspects: the Naïve Bayes 

Model, the Gaussian Mixture Model and the Earth Mover‘s distance. 

 

Figure 3.2.1 Object Clusters (please zoom in to see the yellow boundaries) extracted using 

3.1.4.1, used for classification tests  
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3.2.1.1 Classification using Naïve Bayes Classifier 

The Naïve Bayes Classifier has strong assumptions on the independence between features. In 

terms of texture classification, in most real world cases, this assumption may not be correct. 

Examples of using Naïve Bayes models for image retrieval and object recognition can be 

found at [37][38]. 

An advantage of the Bayes Classifier is that it does not require extensive amount of training. 

And rather than indicating how likely a given object belongs to class Ck, it computes the 

conditional probability according to the feature values among different classes and decide 

which class is most probable. Considering this, the purpose of using Naïve Bayes Classifier in 

this study is not to measure the distance between a given object and generalized models, but 

to compare an object to all class models and determine whether it is most likely to be garbage. 

Since the Naïve Bayes Network assumes independence between features, in terms of the 

feature vector of color textures, we made a strong assumption that the color schemes of 

artificial products (garbage) are generally chosen around the following major colors: red, 

orange, yellow, green, cyan, blue, magenta, black and white. Therefore the feature vector 

contains 9 bins, corresponding to the 9 major colors described above.  

Before the color mapping, we transform the pixel value from RGB to HSV. For major colors 

except black and white, they are quantized based on Figure 3.2.1.1. Pixels with low V (<20%) 

are considered as black; pixels with low S (<10%) and high V (>90%) are considered as white. 

Below is the division of the H values: 

 

 

 

Figure 3.2.1.1 Division of the Hue Values, Red: 335-10; Orange: 11-48; Yellow: 49-67; Green: 

68-150; Cyan: 151-206; Blue: 207-259; Magenta: 260-334. 

 

Given an extracted object cluster, we iterative through all pixels, perform quantization 

according to the mapping shown above, and increment the counts of the corresponding bin. 

Once the iteration is done, we will end up with a feature vector V= {v1, v2…v9}.  

The training is essentially the same, for any sample that belongs to class Ck, we can generate 

a new feature vector V‘= {v1‘, v2‘…v9‘}, and add each feature value to the corresponding vk 

at the feature vector Vk of Ck. 

The ‗distance‘ between a given feature vector V and Vk is denoted as 

Dk=∑ (𝑣𝑖 ∗ 𝐿𝑜𝑔[9
1 𝑣𝑘𝑖/𝑆]), where is S=∑ (𝑣𝑘𝑖9

1 ) (3.2.1.1) 

Our goal is to find the class that can give the largest Dk. 
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Below are the tests, surprisingly this simplified model works well in many cases: 

3.2.1.2 Texture Classification Using Gaussian Mixture Model 

Another way to think about the texture distance is measure the ‗energy‘ of a given object 

within a Gaussian Mixture Model representing class Ck. Less energy indicates higher 

stability.  

For all pixels P= {p1, p2…pn} from a given object C, and a Gaussian Mixture Model with k 

components, the energy in this study is denoted as negative log sums of equation 3.1.3.1: 

∑ −𝐿𝑜𝑔[∑ 𝑝(𝑝𝑖|𝑗)𝑘
𝑗=1

𝑛
𝑖=1 ] (3.2.1.2) 

where p(pi|j) is given by equation 3.1.3.2. 

 

Upon testing, this method works well in many cases as well. Please note that this 

measurement does not compute the real texture distance, it is rather used for classification as 

described in the previous section.  

3.2.2.3 Another Example: Using Earth Mover’s Distance for 

Texture Distance Measurement 

The Earth Mover‘s Distance [39], computes the efforts of transforming one feature histogram 

to another. In this case, features are not required to be independent. Unlike the two methods 

proposed in the previous sections, it is a measure of distance. Therefore, it can be directly 

used to form a clustering pattern of samples.  

Below is an example showing the texture clustering pattern. 

  

Figure 3.2.2.3.1 Texture Clustering Pattern Example Using EMD, Natural vs. Garbage 
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Tests 

 

Figure 3.2.1 Texture Classification Results, Naïve Bayes vs. GMM Energy vs. EMD 
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3.2.2.4 Studies on Invariant Shape Descriptors 

Besides texture analysis, this study also involves research in generalized shape descriptors. In 

many cases, the shapes of natural objects that may be seen by the robot such as plants, flowers 

or trees may be flexible, while garbage such as cans, bottles, boxes or plates in general can 

have more regularized shapes and may be approximated with cylinder, cube or other general 

models. Considering changes in view angles, distortion on shapes or imperfect segmentation, 

we seek to find non-linear solutions.  

Although 3D data can be matched against standardized shape models using RANSAC [41], 

this approach is not directly used considering the incomplete data and noises provided by the 

Kinect RGBD sensor while RANSAC requires sufficiently enough data.  

In terms of 2D, two best known methods are the shape context [42] and Hu‘s Moments [40]. 

The 2D matching method must deal with the shape distortion due to changes in view angles. 

In terms of this, the shape context may be a great choice. The Hu‘s moments are translation, 

rotation and scale invariant. While training, by taking sample of objects at different view 

angles, the distortion problem may be reduced as well. On the other hand, in many cases, we 

are not performing accurate recognition of the same object, but aims to focus on the matching 

between a given shape and generalized models. 

For the current progress of the research, considering computation efficiency and the reasons 

described above, we choose Hu‘s seven Moments. However, as proposed by [43][44], the 

third Hu‘s Moment is not independent and not used.  

The distance measurement between moments is as follows: 

∑ |
1

𝑚𝐴𝑖
−

1

𝑚𝐵𝑖
|6

𝑖=1  (3.2.2.4) 

Tests
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3.3 Proposed Training and Classification method (In 

progress) 

In the previous sections, the tests show the potential and discriminative power of the texture 

and shape classification methods proposed or utilized in this study. In order to classify 

garbage among the others, we first must define what garbage is, what non-garbage is.  

In the context of natural reserves, we consider garbage as a class of various kinds of objects 

such as cans, plates, plastic bags that are disposed in the environment. While training is 

currently in progress, the texture clustering pattern (3.2.1.3) sheds lights on the classification 

and shows it may not just be a problem of ―garbage vs. non-garbage‖, but also ―natural vs. 

non-natural‖. Also, it indicates that the texture of natural objects may potentially form into 

several major clusters. Moreover, the shape classification tests from the previous section help 

to illustrate that since garbage such as cans, plates, boxes and bottles may have regularized 

shapes while natural objects such as plants, trees, flowers in many cases do not, the shape 

classifier may be useful to give us more confidence about whether a given object that does not 

have close enough texture features to natural objects is even closer to the major shape models 

of garbage. 

The proposed training and classification method involves two three steps: first, extract the 

feature histograms of natural and garbage samples and divide the pattern into K major clusters 

[45]; second, for a given object, compute its minimum texture and shape distances to the 

cluster centroids from the two main classes, natural and garbage. Finally, pass the minimum 

distances to another classifier such as neuron network, SVM or decision trees which can give 

us an estimate of the most probable classification according to the global measures.  

The training and the verification of the proposed method is currently in progress. 
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Future Works: On the way to Self-learning and 

Knowledge Transmission across Generations 

Considering the robot's potential in learning and handling uncertainties in unknown 

environment, will it be possible to allow a robot to explore and learn by itself?-- The 

self-learning discussed here, is a learning process that can be achieved without any user 

defined feature space--the feature space is rather defined and refined by the robot based on 

its goal and experience.  

The purpose of studying self-learning is in the search of learning and passing knowledge 

across generations. Unlike many other creatures, a robot may be able to explore and transfer 

the knowledge across generations of other life beings. What information can a robot derive 

from the literature of our history? What can a robot learn from its own exploration and 

observation over the next few generations? Can robot sheds lights on our puzzles or help us to 

better understand ourselves and the universe? 

Yet, despite the intelligence and potential of the robot that will be shown in the future 

development, there is no match between a robot and a real life. Each individual life is such a 

precious, unique entity that can reason, sense and express its feelings; it comes from the 

nature, and will eventually return to the nature; once life is over, there will be no repeat.  

Creating robots, not only involves the techniques in making machines, but our soulfulness, 

and the respect for the life in all beings. 
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Appendix 

Video Demos 

 

Video Demos can be found at 

https://homepages.cae.wisc.edu/~xdeng/simple/xiang.html. This research will be 

continued and new videos will be posted on this site in the future. 

 

Demos include: 

Image Segmentaiton with One-shot Learning and Refinement 
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RGBD Registration 
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Hybrid SLAM 

 

 


