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Abstract. This paper examines the performance of simple reinforcement learning
algorithms in a stationary environment and in a repeated game where the envi-
ronment evolves endogenously based on the actions of other agents. Some types of
reinforcement learning rules can be extremely sensitive to small changes in the initial
conditions, consequently, events early in a simulation can affect the performance
of the rule over a relatively long time horizon. However, when multiple adaptive
agents interact, algorithms that performed poorly in a stationary environment often
converge rapidly to a stable aggregate behaviors despite the slow and erratic behavior
of individual learners. Algorithms that are robust in stationary environments can
exhibit slow convergence in an evolving environment.
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1. Introduction

Reinforcement learning (RL) is a powerful machine learning technique
that focuses on how agents learn from interacting with their envi-
ronment. Agents associate rewards with actions on the basis of past
experience and then translate those rewards into the probabilities of
taking those actions in the future. Recently economists have explored
reinforcement learning as a foundation for existing equilibrium con-
cepts in game theory and as an equilibrium selection technique in the
presence of multiple equilibria (Fudenberg and Levine, 1998). Rein-
forcement learning models have also been used to explain experimental
data from subjects learning to play repeated games (Roth and Er’ev,
1995), (Er’ev and Roth, 1998), (Er’ev and Rapoport, 1997), (Rapoport,
Seale, and Winter, 1998).

One prominent feature of agent-based learning in the context of
games and complex adaptive systems is the endogeneity generated by
interactions with other learning agents. This paper explores the effects
of endogeneity in an adaptive system where agents use simple rein-
forcement learning rules. The performance of a standard RL algorithm
from the computer science literature is contrasted with that of two
simpler reinforcement learning algorithms utilized by Roth and Er’ev
(1995, 1998). The first part of the analysis examines a single learning
agent facing a stationary stochastic environment where all other agents
choose their actions based on independent draws from a fixed proba-
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bility distribution. In a stationary environment details of the problem
specification which do not affect the Nash equilibria of the underly-
ing game, such as the initial conditions of the adaptive agents’ states
and the scaling of rewards, can dramatically affect the performance of
the learning rules. The analysis then proceeds to the changes in the
dynamic and equilibrium behavior of the system as the proportion of
adaptive learning agents increases, creating an endogenously evolving,
non-stationary environment. In many cases, the adaptive system as
whole rapidly converges to a fixed average or aggregate behavior despite
the often slow and erratic convergence of the individual learning rules.
But again, the details of the algorithm specification can lead to very
different global individual outcomes, especially in the short and medium
term. The simulation based results suggest that the specification of
the learning algorithm can greatly influence the both the outcomes for
individual agents and the dynamics of the entire system.

2. Reinforcement Learning

In reinforcement learning agents formulate policies, or mappings from
states to actions, on the basis of the rewards associated with those
state-action pairs in the past. In contrast, other approaches to learning
focus on forming explicit models of the environment or on searching the
action space through evolution and selection (Sutton and Barto, 1998).
Best response dynamics implicitly rely on an underlying model of the
environment. For example, in fictitious play agents deterministically
choose the best response to their beliefs about other agents’ actions.
Other models of learning in games include mutations or evolutionary
search techniques.

The key element of reinforcement learning is specifying a technique
for mapping rewards into future probabilities of taking actions. One
standard formulation of reinforcement learning (Sutton and Barto, 1998)
maps past rewards into future actions through a Gibbs, or Boltzmann,
distribution. At time ¢ each learning agent is specified by a vector of
weights for the two actions: w; = {wl;, w2;}, and a vector which records
the number of times that each action has been taken: by = {bly, b2,}.
In a basic reinforcement learning algorithm for reward maximization
agent chooses each action with probabilities:
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where T} is a “temperature” parameter that declines slowly over time,
making it more likely that the action with the higher weight is chosen.



The function determining T is:

Tipy = Max[p Ty, T) (2)

where T is a parameter indicating the minimum temperature and p, 0 <
i < 1,is a multiplicative stepsize. The initial value of Ty is a parameter
that indicates the amount of randomness in agents’ choices early in the
simulation. As Ty approaches 0 the agent becomes more and more likely
to choose the action with the higher weight—the agent’s choice of action
approaches a deterministic best response to the estimated rewards of
different actions.

The weights for an action are updated according to the following
rules:

le_l = wlt + Ilt ﬁlt (—wlt + T‘lt)
w2t_|_1 = w2t + 1275 ﬁQt (—U)Qt + 7‘275) (3)

where I1; and I2; are indicator variables that equal one when the action
is taken and zero when it is not, and r1; and r2; are the rewards at
time ¢ for taking actions 1 (deterministic payoff) and 2 (random or
state dependent payoff) respectively. The parameters g1, = bth and
02y = bITt for updating the weights correspond to averaging the payoff
for that action over all observations. Consequently, the weights change
more slowly over time. Note that the rewards may be negative: the
probabilities in (1) above are defined for negative and positive weights.
We refer to the algorithm determined by (1), (2) and (3) and the g
vector as the CS algorithm.

The key free parameters are Ty, ¢ and T. The final temperature T
determines how much experimentation the agents engage in in the long
run but does not influence the algorithm before that point. The initial
temperature and the stepsize play a crucial role in determining the
speed of convergence: a low initial temperature or one that decreases
too quickly can lead to slow convergence because the agents are unlikely
to take actions that are less preferred and fail to learn the correct value
of those actions; a high initial temperature or one that decreases too
slowly can lead agents to choose actions without much regard to the
average payoffs of those actions in the short run. The initial weights
{wlp, w2} are also free parameters, but for reasonable initial values of
Ty they have little effect on the behavior of the system: the differences
in weights are relatively unimportant when T is high, and the initial
weights are replaced with the reward received after the first time an
action is chosen.

Roth and Er’ev 1995 and Er’ev and Roth 1998 consider reinforce-
ment learning rules based on the work of psychologists Bush and Mosteller
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1955. They also use a vector of weights for each action but the weights
are translated into probabilities by:

wly wly
-t P2 = —t
wlt —|—th wLﬁ‘I’th

ple = (4)
They consider several different ways to update the the weights, two of
which are considered here. In the first case the rewards are added to

the weights for each action:

le_l = wlt + Ilt T‘lt
w2t_|_1 = w2t + 1275 7‘275 (5)

The weights are the total sum of rewards for each action. We refer to
(4) and (5) along with the initial conditions of the parameters as the
RE1 learning rule!. The free parameters are the two initial weights
{wlp, w2}, which determine the initial probability and the scaling of
the stepsize or the extent to which the rewards received change the
probability over time. The magnitude of the rewards also affects the
rate of change of the probabilities: the algorithm is not independent
of the units of measurement. Note that every time an action is taken
it is more likely to be taken in the future: high rewards received early
in the simulation can have a large affect on the future trajectory of
the system. Roth and Er’ev address this by including a “forgetting”
parameter in the updating of the weights:

le_l = (1 — Ilt (b)wlt + Ilt T‘lt
w2t_|_1 = (1 — 1275 Qb)th + 1275 7‘275 (6)

where ¢ prevents the weights from growing without bound over time
and puts a lower bound on the change in the probability of taking an
action for non-zero rewards. We refer to (6) and (4) and the initial
parameters {wlg, w2} and ¢ as the RE2 rule?.

3. Description of the Game

Agents repeatedly play a simple congestion game whose pure strategy
Nash equilibria require tacit coordination in the absence of commu-
nication. There are two actions, one of which returns a deterministic

! This is referred to as “the basic reinforcement model” in (Er’ev and Roth, 1998),
p. 860. Because the minimum payoff is zero, hence the term they refer to as xmin
disappears.

% This rule is stated on p. 863 in (Er’ev and Roth, 1998) and on p. 175 in (Roth
and Er’ev, 1995).
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payoff and the other whose payoff depends on the number of players
who chose that action.

The game resembles the market entry game where agents choose
between entering a market (the payoff depends on the number of en-
trants) and not entering a market (a fixed payoff). The market entry
game has been studied theoretically by Selten and Guth 1982 and Gary-
Bobo 1990 and experimentally by Sundali, Rapoport and Seale 1995,
Rapoport, Seale and Winter 1998, and Er’ev and Rapoport 1997.

The El Farol or Santa Fe bar problem proposed by Arthur 1994 has a
similar structure: agents receive a fixed payoff for staying home but the
payofl to attending the bar depends on the number of other patrons.
The El Farol problem has received little attention in the economics
literature but has generated a number of papers in computer science.
Sethares and Bell (Sethares and Bell, 1998) and Bell, Sethares and
Bucklew (Bell, Sethares and Bucklew, 1999) consider the dynamic and
equilibrium behavior of simple learning rules in that context. Kephart,
Hogg and Huberman 1999 and Fogel, Chellapilla and Angeline 1999
provide more general approaches to analyzing the Fl Farol problem as
a complex adaptive system.

Let the deterministic payoff for action 1 be zero. Let M be the total
number of agents and A" be a capacity parameter that determines the
payofl for action 2. Agents receive a good payoff, g, if the number of
agent choosing action 2 falls below the capacity parameter and a bad
payoff, b, if the number of agents choosing action 2 exceeds AN. The
game is then G = [M, {S;}, wi(s;, s—;)] where S; consists of two strate-
gies with payoffs determined by w;(1,s_;) = 0 for all s_;, u;(2,5_;) =g
when 37, <N —1, and u;(2,s_;) = b when >7 >N —1.

In a deterministic setting where agents utilize only pure strategies a
Nash equilibrium occurs when exactly A/ agents choose to attend. There
are (%) such equilibria. Each agents’ mixed-strategy profile consists of a
single parameter p; which indicates the probability that agent ¢ attends.
Let M be the total number of agents, N be the total number of agents
who chose action 2, N~% be the total of agents who chose action 2
exclusive of agent i and A be the maximum capacity parameter.

A mixed-strategy equilibria must satisfy the condition:

gPr(NT<N-1)4+bPr (N >N-1)=0

or Pr(N_igN—l):% (7)

which states that the expected return to action 1 equals that of action
2. This must hold for all agents simultaneously. Also note that the
indifference condition that determines a mixed strategy equilibrium
depends on the distribution of the number of agents choosing action
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2 which in general depends on the probabilities of taking action 2 for
individual agents, not just on the mean of the entire distribution.

For a symmetric mixed strategy equilibria the probability that A"—1
or fewer agents choose action 2 is :

-y | |
> (") (- p). 8

N—=0

There are no asymmetric mixed strategy equilibria. Consider two
agents with differing probabilities of action 2 and, without loss of gener-
ality, label them agents 1 and 2 with p; < ps. The indifference condition
(7) must hold for every agent, which implies that Pr (N_l <N - 1)
equal Pr (N_2 <N - 1). The density function for N=! can be ex-
pressed in terms of the density function exclusive of agents 1 and
2:

Pr(N'=0)=Pr(N 572 = 0)(1 — po)

PriNT'=2)=Pr(N"' 2 =2)1—p) + Pr(N"V"2 =2 — 1) py.

By expanding and combining sums the cumulative distribution that
agent 1 faces can be expressed as:

r=X-1
Pr(N"'<X)= Y Pr(N"V?=a)+ Pr(N"VTP=X)(1 - py).

=0

The cumulative distribution function that agent 2 faces differs only
by the term (1 — py) which is replaced by (1 — py). Consequently, the
indifference condition cannot hold simultaneously for two agents with
different probabilities of taking action 2.

4. Simulation Results

In the simplest case there is a single learning agent who faces a sta-
tionary stochastic environment: all of the other agents choose action
1 with a fixed probability. The behavior of the system is exogenously
determined and independent of the agent’s actions. The game reduces
to a two-armed bandit problem in which the first arm (action 1) returns
a fixed payoff and the other arm (action 2) returns a payoff determined
by the realization of a multinomial random variable corresponding to
the actions of the other agents. This simple scenario provides a baseline
measurement of an agent’s ability to learn the correct action with the
various learning rules.
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The situation becomes more complex when two agents are learning
at the same time: the environment is still largely exogenous and sta-
tionary but the possibility that one agent’s actions will influence the
future actions of the other agent is introduced. As a larger fraction of
the agents simultaneously attempt to learn the value of the two possible
actions the environment becomes less stationary, at least initially, and
the future behavior of individual agents and the entire system depends
on the dynamic interaction of the learning rules. Varying the number
of learning agents demonstrates the performance of the learning rules
in nonstationary, endogenously evolving environments.

4.1. A SINGLE LEARNER IN A STATIONARY ENVIRONMENT

The initial simulations explore the behavior of the different algorithm
specifications when an individual learner faces a stationary environ-
ment. The deterministic payoff for action 1 is 1.02, the payoff for action
2 when capacity is not exceeded is approximately 2.02 and 0 when
capacity is exceeded. There are 30 agents, the capacity parameter A
is 18. There is one learning agent, the other 29 agents base their ac-
tions on independent realizations of a Bernoulli random variable with
probability of choosing action 2 of .61. The expected payoff to action 2
is approximately 0.94. Consequently, the best response of the learning
agent is to always choose action 1.

The initial parameters for the algorithms determine the probability
of action 2 in the first period, this is .60 for all three algorithm specifi-
cations. For the CS algorithm the initial weights are wo = {1.02,1.32}
which leads to a 60% chance of action 2 when combined with the initial
temperature Ty = .75. The multiplicative factor used to lower the
temperature over time is g = .9975 until the minimum temperature
of T = .025 is reached. For the RE1 and RE2 algorithms the initials
weights are wg = {.8, 1.2} and the forgetting parameter is ¢ = .001.

Figure 1 shows the probability of action 2 for the learning agent
for 50000 iterations of all three algorithms. The same random num-
bers were used to determine the action taken and the actions of other
agents in all three cases®. This suggests the long run behavior of the

# The pseudo-random number generator chooses a real number between zero and
one. If that number is below the probability of action 2 then the outcome of the
Bernoulli random variable is one (action 2), zero (action 1) otherwise. Consequently,
when the probabilities are similar the same action is likely to be returned. The
pseudo-random number generator acts as an external signal: the differences in the
behavior of the algorithms arises from different responses to the same signal. Also,
the realizations of the multi-nomial random variable determining the action of the
non-adaptive agents is the same across simulations. This provides a more accurate
basis for comparison of the performance of the algorithms.



8

algorithms. The top line in the figure is the RE1 algorithm, the middle
line is RE2 and the bottom line is CS. The CS algorithm rapidly trends
down to and then fluctuates around the probability associated with
the correct estimate of the value of the two actions and the minimum
temperature of .025. The RE2 algorithm continues to decline over time.
The RET algorithm, although apparently stuck at a high probability of
action 2, also declines over time: the expected change in the probability
of action 2 is negative at every time step but declines rapidly over time
as wl and w2 increase.

Figure 2 is a close up of Figure 1 which shows the probability of
action 2 for 5000 iterations. In this time frame the probability for
the RE2 algorithm is slightly higher than the RE1 algorithm; the
CS algorithm is still the lower line. The RE algorithms both move
in the wrong direction, increasing from the initial probability of .60
to a maximum value of approximately .80. Figure 2 demonstrates the
behavior of algorithms in the “intermediate term” that Roth and Er’ev
loosely define as the time it takes for the learning curve to become
very flat. Comparing the two figures shows the difficulties that arise in
identifying the intermediate term. The apparent stability of the RE2
algorithm disappears after the first 5000 iterations even though the
stepsize (magnitude of the change in probability) continues to decline
over time.

One of the key ingredients in these (and all) adaptive algorithm is the
“stepsize” or the amount the probability of choosing action 2 changes
at each time step, which is influenced by several parameters in these
algorithms. Figures 3, 4 and 5 show the change in the probability of
action 2 over time for the three algorithms. Early in the simulations the
magnitude of the changes in the probabilities are roughly equal in all
three cases?. The sum of the absolute values of the change in probability
over the first 25 iterations for the CS algorithm is approximately .036,
for the RE algorithms, approximately .037. After 500 iterations it is
approximately .005 for CS algorithm and approximately .004 for the
RE algorithms. (Much later in the simulation the stepsize for the RE2
algorithm becomes larger than that of the RE1 algorithm.) The differ-
ences in their behavior are not explained by differing stepsizes, instead,
it results from the way the algorithms incorporate the rewards: the CS
algorithm decreases the likelihood of action 2 after a bad experience
(the zero payoff is averaged into the weight for action 2) but does
not increase the likelihood of taking action 1 (the average of the fixed
reward doesn’t change after the first few times the action is taken); in

* The first observation of approximately .3 for the CS algorithm is not shown on
the graph in order to keep the scale the same in the figures for all three algorithms.
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contrast, the RE algorithms do not change the likelihood of action 2
after a bad experience (adding a zero leaves the weight for that action
unchanged) but decreases the likelihood of action 2 after taking action
1 (the positive payoff is added into the weight for 1). The tendency to
(weakly) increase the probability of any action that has been taken can
lead the RE algorithms away from the optimal action in the short and
medium term.

The performance of the RE1 algorithm in a stationary environment
is more problematic than the previous figures suggest: slight changes
in the initial conditions can dramatically alter the observed behavior.
Figure 6 shows two simulations of the RE1 algorithm with different
initial conditions but the same underlying sequence of random numbers
as in figure 1. In the first case (upper solid line) the initial weights are
{.8,1.0411} with an initial probability of action 2 of approximately
0.565477; the behavior is similar to that observed previously. In the
second case (lower dashed line) the initial weights are {.8,1.04105} with
an initial probability of = 0.565465; here the RE1 algorithm rapidly
tends towards the optimal action,1. The difference in the initial prob-
abilities of action 2 between the two cases is approximately 0.0000118;
the difference in the probability at time 10000 is approximately 0.72.

Figure 7 shows the first 50 iterations of figure 1. The divergence
of the two simulations occurs in the first iterations when the random
number determining the choice of initial actions falls on either side of
the of the initial probabilities. These initial choices continue to influence
the adaptive agents behavior over the entire course of the simulation.
Roth and Er’ev (Roth and Er’ev, 1995) do not consider the initial
probability to be one of the free parameters of their model: they set
it to 50% in all cases. This assumption can play a crucial role in the
behavior of the learning rule.

The free parameter Roth and Er’ev consider is the scaling or mag-
nitude of the initial weights. Increasing the magnitude of the initial
weight makes the changes in probability smaller, especially in the first
few time steps. Changing the size of the initial weights in this example
changes where the divergence in behavior occurs but does not quali-
tatively change the result: figure 8 shows two simulations with initial
weights of {8,9} (upper solid line) and {8,8.75} (dashed lower line).
The larger initial weights slowed the movement of both adaptive learn-
ers: the difference in the probability at time 10000 is approximately
0.25. A similar situation arises with the RE2 algorithm: figure 9 shows
the trajectory of the probability of action 2 starting from initial weights
{.8,1.05} (upper solid line) and {.8,1.04} (lower dashed line). Although
the RE2 algorithm eventually declines over time, the effects of the initial
conditions are apparent after tens of thousands of iterations.



10

The previous discussion and figures refer to representative simula-
tions. How often do the RE algorithms tend away from the optimal
action? The initial probability of .60 in the previous example favors
action 2, but the difficulties arise even when 2 is the optimal action.
In Figure 10 the dotted lines show the data for one learner using
the CS algorithm, the dashed grey lines show the data for the RIE1
algorithm and the solid black lines for the RE2 algorithm. The solid
line at .60 show the starting point for all the simulations. In all cases
the probability of action 2 for the other non-adaptive agents is below
.60, so the optimal action for the learning agent is always action 2.
Figure 10 shows the data for different fixed probabilities of action 2 for
other agents. The lowest dotted line gives the probability of action 2
at iteration 5000 for 100 different runs of the CS algorithm, with the
outcomes ordered from lowest to highest. There are twenty-nine other
agents with probabilities of .59. The next dotted line gives the same
data when the probabilities for the other agents are fixed at .58, and so
on though .55. The two highest lines, although not readily distinguished
for the CS algorithm, show the data for .45 and .35. The lowest dashed
grey line gives the results for the RE1 algorithm and the solid black
line gives the results for the RE2 algorithm. When the probability of
action 2 is below .60 the process of learning led the agent to favor the
action with the lower reward in the first 5000 iterations. For example,
despite an initial condition that favored action 2 the RE1 algorithm
moved away from the optimal action in about 35% of the simulations.
The RE2 algorithm with “forgetting” performs better than the RE1
algorithm, but is still much less likely to take the correct action by
time 5000 compared to the CS algorithm. For all three algorithms the
lower the probability of action 2 for the other agents, the higher the
average reward for action 2 and the easier it is to discern the correct
action.

4.2. COMPLEX ADAPTIVE SYSTEMS WITH MULTIPLE LEARNERS

When the number of adaptive agents increases, the external environ-
ment is not stationary and the actions of the adaptive agents interact
over time. Again, the behavior of individual agents and of the system
as a whole can differ dramatically depending on the initial conditions of
the simulation. In some cases, the most notable feature of the majority
of simulations is the rapid convergence of average choice of action 2 to a
stable percent, despite the relatively slow convergence of the individual
adaptive agents. However, there are also cases where the interaction
of the adaptive agents can lead to poor individual and system-wide
performance.
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Figures 11, 13 and 15 show 25000 iterations of the three algorithms
with 15 learning agents and 15 agents who base their actions on inde-
pendent realizations of a Bernoulli random variable with probability of
action 2 of .75. (Figures 12, 14 and 16 are close-ups of figures 11, 13 and
15, respectively.) All of the other initial conditions are the same as the
first example. The grey lines are the trajectories of the probability of
action 2 for the adaptive agents; the black line is the average probability
of action 2 for all agents including those with a fixed probabilities. The
behavior of the individual algorithms is qualitatively similar to the case
of a single adaptive agent, with the CS and RE2 algorithms converging
towards a pure strategy and the RE1 algorithm rapidly approaching
a relatively fixed probability. The initial aggregate probability is .675.
The mean number of agents choosing action 2 approaches 60% within
10 iterations for all algorithms and the variance declines over time,
at least for the CS and RE2 algorithms. The greater variability of
the CS algorithm leads to a greater variation in the average choice of
action. The endogeneity of the environment also tends to slow down
the convergence of the individual learners.

Table 1 summarizes the relationships between the average prob-
ability of action 2 and the algorithm specifications when all agents
are adaptive. Assuming approximately equal stepsizes or changes in
probability across agents and across algorithms the largest change in
the average probability is likely to occur when the capacity is exceeded
and when CS agents choose action 2 and capacity is not exceeded. For
the RE algorithms both actions are reinforced simultaneously when
capacity is not exceeded.

Table 1 also suggests that there may be asymmetries between sim-
ulations which start with average tendency to choose action 2 above
and below .60%. The RE algorithms tend to be somewhat slower to
converge (100-150 iterations) to an average probability of .60% when
the initial probabilities of action 2 are lower, but otherwise exhibit the
same smooth aggregate behavior. The CS algorithm, on the other hand,
performs relatively poorly in an endogenous environment.

Figure 17 shows 5000 iterations of the CS algorithm with 15 learning
agents and 15 agents who base their actions on independent realizations
of a Bernoulli random variable with probability .45. The CS learners
rapidly increase their probabilities until all 15 agents choose action 2
every period, and capacity is exceeded 96% of the time. Nonetheless
it takes hundreds of iterations for the individual learners to begin to
respond to the new environment. The scheme for averaging the rewards
into weights is well adapted to a stationary environment but is slow to
respond to new external conditions.
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Table I. Change in Average Probability of Action 2

learning rule | capacity not met

| capacity exceeded

(O N < WN agents increase | N > N agents decrease
probability of action 2 probability of action 2
M — N > N agents leave | M — N < N leave probabil-
probability of action 2 un- | ity of action 2 unchanged,
changed, if action 1 has | if action 1 has been taken
been taken several times several times
| net effect | increases decreases
RE1 N < WN agents increase | N > N agents leave proba-
probability of action 2 bility of action 2 unchanged
M—N > N agents decrease | M — N < N decrease prob-
probability of action 2 ability of action 2
| net effect | indeterminate decreases
RE2 N < WN agents increase | N < N agents decrease
probability of action 2 probability of action 2
M—N > N agents decrease | M — N < N decrease prob-
probability of action 2 ability of action 2
| net effect | indeterminate decreases

When all agents are adaptive the generic behavior of the RE algo-
rithms is relatively rapid convergence of the aggregate probability of
action 2 despite the slow movement of individual agents’ probabilities.
The CS algorithm often rapidly overshoots the capacity of .60%, for
initial conditions above and below .60

5. Conclusion

First we consider a single adaptive agent facing a stationary environ-
ment. We demonstrate that the simple learning rules proposed by Roth
and Er’ev 1995 and Er’ev and Roth 1998 can be extremely sensitive
to small changes in the initial conditions and that events early in
a simulation can affect the performance of the rule over a relatively
long time horizon. In contrast, a reinforcement learning rule based on
standard practice in the computer science literature converges rapidly
and robustly. The situation is reversed when multiple adaptive agents
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interact: the RE algorithms often converge rapidly to a stable average
aggregate behavior despite the slow and erratic behavior of individual
learners, while the CS based learners frequently over-attend in the early
and intermediate terms. The symmetric mixed strategy equilibria is
unstable: all three learning rules ultimately tend towards pure strate-
gies or stabilize in the medium term at non-equilibrium probabilities
of taking action 2. The varied performance of the algorithms in dif-
ferent contexts emphasize the importance of thorough and thoughtful
examination of the dynamics and performance of learning algorithms.
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Figure 1. Probability of action 2 for one adaptive agent using the CS (bottom line),
REL1 (top line) and RE2 (middle line) algorithms. The fixed probability of action 2
for non-adaptive agents is .61. The optimal action is to choose 1 every period.
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Figure 2. Probability of action 2 for one adaptive agent using the CS, RE1 and RE2
algorithms. First 5000 iterations of figure 1.
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Figure 3. Change in probability of action 2 for the CS algorithm. First 1000
iterations of figure 1.
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Figure 4. Change in probability of action 2 for the RE1 algorithm. First 1000

iterations of figure 1.
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Figure 5. Change in probability of action 2 for the RE2 algorithm. First 1000
iterations of figure 1.
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Figure 6. Probability of action 2 for an adaptive agent using the RE1 algorithm with
initial weights of {.8,1.0411} (upper solid line) and initial weights of {.8,1.04105}
(lower dashed line). The fixed probability of action 2 for non-adaptive agents is .61.
The optimal action is to choose 1 every period.
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Figure 7. Probability of action 2 for an adaptive agent using the RE1 algorithm with

initial weights of {.8,1.0411} (upper solid line) and initial weights of {.8,1.04105}
(lower dashed line). First 50 iterations of figure 6.
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Figure 8. Probability of action 2 for an adaptive agent using the RE1 algorithm
dashed line).

. time
1000

with initial weights of {8, 9} (upper solid line) and initial weights of {8,8.75} (lower
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Figure 9. Probability of action 2 for an adaptive agent using the RE2 algorithm
with initial weights of {.8,1.05} (upper solid line) and initial weights of {.8,1.04}
(lower dashed line). The fixed probability of action 2 for non-adaptive agents is .61.
The optimal action is to choose 1 every period.
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Figure 10. Probability of action 2 for one adaptive agent using the CS (dotted line),
RE1(dashed line) and RE2 (solid line) algorithms with 29 non-adaptive agents. Each
line represents 100 simulations with differing fixed probabilities of action 2 for the
non-adaptive agents, ranging from .59 to .35.



25

o,
o,
o,
o,
25000

Figure 11. Probability of action 2 for 15 adaptive agents (grey lines) using the CS
algorithm with 15 non-adaptive agents with probability of action 2 of .75. Average
probability of action 2 for all agents is shown by the solid black line.
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Figure 12. Probability of action 2 for 15 adaptive agents (grey lines) using the CS
algorithm with 15 non-adaptive agents with probability of action 2 of .75. First 5000
iterations of figure 11.
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Figure 13. Probability of action 2 for 15 adaptive agents (grey lines) using the RE1
algorithm with 15 non-adaptive agents with probability of action 2 of .75. Average
probability of action 2 for all agents is shown by the solid black line.
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Figure 14. Probability of action 2 for 15 adaptive agents (grey lines) using the RE1
algorithm with 15 non-adaptive agents with probability of action 2 of .75. First 5000
iterations of figure 13.
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Figure 15. Probability of action 2 for 15 adaptive agents (grey lines) using the RE2
algorithm with 15 non-adaptive agents with probability of action 2 of .75. Average
probability of action 2 for all agents is shown by the solid black line.
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Figure 16. Probability of action 2 for 15 adaptive agents (grey lines) using the RE1
algorithm with 15 non-adaptive agents with probability of action 2 of .75. First 5000
iterations of figure 15.
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Figure 17. Probability of action 2 for 15 adaptive agents (grey lines) using the CS
algorithm with 15 non-adaptive agents with probability of action 2 of .45. Average
probability of action 2 for all agents is shown by the solid black line.
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Figure 18. Probability of action 2 for 30 adaptive agents (grey lines) using the CS
algorithm with initial probability of action 2 of .60. Average probability of action 2
for all agents is shown by the solid black line.
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Figure 19. Probability of action 2 for 30 adaptive agents (grey lines) using the CS
algorithm with initial probability of action 2 of .60. First 1000 iterations of figure
18.
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Figure 20. Probability of action 2 for 30 adaptive agents (small dots) using the CS

algorithm. Average probability of action 2 for all agents is shown by the large dots.

Each vertical column of dots presents the data from one simulation.
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Figure 21. Probability of action 2 for 30 adaptive agents (small dots) using the RE1
algorithm. Average probability of action 2 for all agents is shown by the large dots.

Each vertical column of dots presents the data from one simulation.
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Figure 22. Probability of action 2 for 30 adaptive agents (small dots) using the RE2
algorithm. Average probability of action 2 for all agents is shown by the large dots.

Each vertical column of dots presents the data from one simulation.



