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ABSTRACT
This paper describes Dynamic Tonality, a system of real-
time alterations to tuning and timbre that extends the
framework of tonality to include new structural resources
such as polyphonic tuning bends, tuning progressions, and
temperament modulations. These new resources could
prepare art music for the 21st Century.
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CRISIS IN ART MUSIC
Many leading academics believe that art music is in crisis.
For example, the Call for Papers for the 2008 annual
conference of the College Music Society [4] states

“Some…suggest that what is happening in music
today is not at all dissimilar to a global warming
crisis for our field. If a certain desperation is
detected in this call, it is meant only to break
through the encrusted proprieties of academic
pretension. Ideas that may have served us well in
the past [may] now hold us back. The Program
Committee invites new, thought-provoking, even
revolutionary ideas.”

This paper suggests that this self-described crisis can be
addressed, at least in part, through the exploration of
novel musical resources—including polyphonic tuning
bends, tuning modulations, and temperament
modulations—collectively called Dynamic Tonality [14].
By expanding the framework of tonality to include these
new resources, Dynamic Tonality may help to prepare art
music for the 21st Century.

INVARIANCE AND ISOMORPHISM
Dynamic Tonality is enabled exposure of invariance (i.e.,
consistency under transformation) in musical data through
isomorphism (i.e., consistency of mapping).

Isomorphic button-fields, discussed below, expose the
musical properties tuning invariance and transpositional
invariance.

Transpositional Invariance
It is well-known that the familiar interval patterns of
music theory1—such as the diatonic scale, the major triad,
the V–I cadence, the ii–V–I chord progression, etc.—
have the property of transpositional invariance: they do
not change when transposed to a different key.

Tuning Invariance
A second invariant property of music has only recently
(2007) been recognized: tuning invariance [12].

A detailed discussion of temperaments and tuning theory
is beyond the scope of this paper (see Wikipedia and its
references).

In brief, a two-dimensional temperament is defined by
two intervals known as its period and generator—its “two
dimensions,” collectively called its generators—and a
comma sequence [16]. A temperament describes an
association between a tuning’s notes and selected ratios of
small whole number (as found in the Harmonic Series and
Just Intonation) [12]. A temperament’s tuning continuum
is bounded by the tuning points at which some of a given
scale’s steps shrink to unison [12].

One such temperament is the syntonic temperament [12].
Its period is the octave (P8) and its generator is the
tempered perfect fifth (P5). The first comma in its comma
sequence is the syntonic comma, after which the
temperament is named. All of the other familiar tonal
intervals—the minor second, the major third, the
augmented sixth, etc.—are generated by combinations of
tempered perfect fifths and octaves, as per rules
encapsulated in the temperament’s generators and comma
sequence. For example, having the syntonic comma come
first in the temperament’s comma sequence defines the

                                                            
1 Unless otherwise specified herein, “music theory” is
used to denote the theory of tonal music in Europe’s
Common Practice Era (c. 1600-1900).
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major third (M3) to be equal in width to four P5’s, minus
two P8’s (i.e., M3 = [(4 * P5) + (-2 * P8)].

Holding the octave constant at 1200 cents and varying the
width of the P5 in a smooth continuum from a low of 686
cents to a high of 720 cents produces the syntonic tuning
continuum shown in Figure 1 below [12].

In Figure 1, “N -TET” stands for “N -tone equal
temperament.” The tuning is equivalent to standard 12-
tone equal temperament tuning—12-TET—when P5 =
700 cents.

Figure 1: The syntonic tuning continuum.

The syntonic tuning continuum includes many tunings
used by Western culture (both today and in the past) and
by the indigenous music of many non-Western cultures.
Pythagorean tuning (P5 ≈ 702) and _-comma meantone
tuning (P5 ≈  696.6) have a long history in European
music [1]. Ancient Chinese bronze bells may also have
been tuned in _-comma meantone [3]. Some Arabic music
has been described as using extended Pythagorean tuning,

although notated in 24-TET [7]. 17-TET, 19-TET, and
especially 31-TET have received attention from Western
music theorists [2].

Things get even more interesting at the ends of the tuning
continuum. As the width of P5 rises towards 720 cents,
the width of the minor second shrinks to zero, leaving a 5-
TET scale that is closely related to the Indonesian slendro
scale [17]. As the width of P5 falls towards 686 cents, the
minor second increases in width to match the major
second, producing a 7-TET scale similar to that used in
the traditional music of Thailand [17] and Mandinka
Africa [9].

Unfortunately, traditional musical instruments do not
expose music’s invariant properties. To expose them, we
need a new instrument: an electronic and isomorphic
button-field.

THE ISOMORPHIC BUTTON-FIELD
Transpositional invariance is exposed by isomorphic note-
layouts [10], and so is tuning invariance [12].

A button-f ield  is a two-dimensional geometric
arrangement of note-controlling buttons. A note-layout is
a mapping of notes to a button-field. The word
isomorphic comes from the Greek roots “iso” (equal) and
“morph” (shape), and we use it to mean “same shape.”

On an isomorphic note-layout, pressing any two button-
field buttons that have a given geometric relationship to
each other sounds a given musical interval. For example,
in Figure 2 below, pressing any two buttons that are
horizontally adjacent sounds the interval of a major
second. The shape of the imaginary line connecting the
centers of those two buttons is the button-field shape of
the major second. If a given isomorphic note-layout and a
given temperament have the same generators, then the
note-layout will expose the transpositional and tuning
invariances of that temperament [12].

One such isomorphic note-layout, shown in Figure 2
below, was described by Kaspar Wicki [6] in 1896. It has
the same generators as the syntonic temperament, and
therefore exposes that temperament’s invariant properties.

Figure 2: A button-field optimized for use with the
isomorphic Wicki note-layout.
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The Wicki note-layout has been used in squeeze-box
instruments such as bandoneons, concertinas, and bayans.
The historical use of such instruments to competently
perform a wide variety of complex and challenging
chromatic music shows that the Wicki note-layout is a
practical music-control interface.

Figure 3: Isomorphism of C Major scale (grey lines) and F
Major scale (black lines).

Examples of the button-field’s transpositional invariance
are shown in Figures 3 and 4.

Figure 3 above shows the major scale in C (grey arrows)
and F (black arrows). The scale’s button-field shape is the
same in both keys, and indeed in every key.

Figure 4: Diatonic tertian triads of C Major.

The button-field shape of each kind of triad in root
position—major (IV, I, & V), minor (ii, vi, & iii), and
diminished (vii)—directly reflects the shape of the “stack

of intervals” from which it is constructed. The button-
field shapes of these triads, and the geometric
relationships among the triads, are invariant within a key
and across all keys.

Figure 4 shows the diatonic tertian triads of C
Major—that is, the triads built by stacking diatonic thirds
on top of the root of each degree of the C Major scale.

All along the syntonic tuning continuum pitches change,
interval widths change, and even enharmonic
equivalencies change, but the geometric relationships
among tonal intervals on an isomorphic keyboard are
invariant [12]. For example, on the Wicki note-layout, the
C major pentatonic scale is played as “C D E G A” all
along the tuning continuum. Whether the current tuning
has 5 notes per octave, 12 notes per octave, or even 31
notes per octave, the shape of any given musical structure
is invariant on the Wicki note-layout.

From the performer’s perspective, the combination of
tuning invariance and transpositional invariance can be
described as fingering invariance, meaning that once a
performer has learned to play any given sequence or
combination of musical intervals in any one octave, key,
and tuning, then the performer can play them in any other
octave, key, and tuning with the same pattern of finger-
movements (button-field edge conditions aside).
Fingering invariance facilitates the exploration of
alternative and microtonal tunings, opening new creative
frontiers for art music in the 21st Century.

OTHER TEMPERAMENTS
The syntonic temperament’s tuning continuum includes
today’s standard 12-TET tuning, many previously-
common Western tunings, and many non-Western
tunings, as discussed above. Nonetheless, there are other
temperaments—e.g., hanson, porcupine, magic, etc.
[5]—that are also compatible with Dynamic Tonality, as
introduced below.

For ease of discussion, this paper assumes the use of the
syntonic temperament unless otherwise specified.

DYNAMIC TONALITY
Dynamic Tonality consists of two related ideas: Dynamic
Tuning and Dynamic Timbres.

Dynamic Tuning
Tuning invariance enables real-time changes in tuning
along its tuning continuum while retaining consistent
fingering. We call such a smooth, real-time, polyphonic
tuning change, driven by widening or narrowing the
tempered P5, a polyphonic tuning bend.

In such a bend, the notes flatter than the tonic (around a
circle of fifths) change pitch in one direction while those
sharper than the tonic change pitch in the other direction,
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with each note’s rate of change being directly
proportional to its distance from the tonic along a line of
P5’s.

Enhancing Expressiveness
Altering the width of the P5 in real time allows a
performer to emulate the dynamic tuning of string and
wind players who prefer Pythagorean (or higher) tunings
when playing expressive melodies, _-comma meantone
when playing consonant harmonies, and 12-TET when
playing with fixed pitch instruments such as the piano
[18].

Tuning Progressions
A sequence of tuning bends can form a t u n i n g
progression. One could start by playing C Major’s tonic
triad in 12-TET (P5 = 700), then sliding the width of the
P5 generator up to 5-TET (P5 ≈ 720). The pitch of C
would not change at all (because it is the tonic). However,
the pitch of G would rise by 20 cents (because it’s one P5
away from C, and all P5’s have been widened by 20
cents), and the width of E would rise by 80 cents (because
it is four P5’s away from C). This would widen the gap
between C and E from 400 cents (14 cents sharper than a
just major third) to 480 cents (18 cents flatter than a just
perfect fourth).

William Sethares’ composition C to Shining C uses this
tuning progression (http://tinyurl.com/6ksc9b).

Temperament Modulations
A temperament modulation involves a change of
temperament via a pivot tuning.

12-TET tuning falls within the tuning continua of both the
syntonic and schismatic temperaments. In 12-TET tuning,
the diminished fourth (d4) and major third (M3) have the
same width: 400 cents. This makes the schismatic and
syntonic temperaments enharmonically equivalent in 12-
TET, so 12-TET can be used as a pivot tuning between
the schismatic and syntonic temperaments.

One could start a tuning progression in 31-TET/syntonic,
using syntonic note-choice rules. For example, one would
play major triads as (root, M3, P5).

Then one could tune up to 12-TET, and indicate a change
in temperament to schismatic through a user interface
gesture. One would then also change note-choice to match
the new temperament, playing (for example) major triads
as (root, d4, P5). This change of temperament would not
be detectable in 12-TET, because the syntonic &
schismatic temperaments are enharmonic in that tuning.

Then, one could tune up to 53-TET, continuing to use
schismatic note-choice rules, playing musical patterns that
are indigenous to the schismatic temperament but not to

the syntonic, to emphasize the effect of the temperament
modulation.

One could then either tune back to 31-TET/syntonic by
using 12-TET as a pivot tuning, or modulate from 53-
TET/schismatic to some other temperament via some
other pivot tuning. Cyclical temperament modulations
that pass through a number of different temperaments
before returning to the initial temperament would enable
temperament progressions. This is virgin territory for
creative artists in the 21st Century.

The polyphonic tuning bend, tuning progression, and
temperament modulation are just three examples of the
new musical effects enabled by the Wicki note-layout’s
isomorphic exposure of the invariant properties of music.
You can explore them using your computer keyboard and
free applications available online.2

Changing tuning dynamically with consistent fingering is
a novel and useful feature, but many of the resulting
tunings are not consonant when played using harmonic
timbres. To have the option of consonance in any tuning,
tuning and timbre must be tempered together.

Dynamic Timbre
In Dynamic Tonality, a given temperament defines
(through its generators and comma sequence) an invariant
pattern which is used to electronically temper both tuning
and timbre dynamically in real time. Aligning tuning with
timbre (or vice versa) maximizes consonance [17].

The syntonic temperament associates the Harmonic
Series’

- 2nd partial with the octave (P8),

- 3rd partial with the tempered perfect fifth (P5),

- 5th partial with the tempered major third (M3), which
is defined to be four P5’s wide, minus two P8’s (i.e.,
[(4 * P5) + (-2 * P8)]).

Note that the width of the M3is defined by a combination
of P5’s and P8’s (those being the temperament’s
generators). The same is true for every interval in the
syntonic temperament.

In Dynamic Tonality, the structure of a tempered timbre is
modified away from the Harmonic Series (exactly as a
tempered tuning is modified away from Just Intonation)
by adjusting its partials to maintain their alignment with
the current tuning’s notes.

                                                            
2 Demonstration implementation of a Dynamic Tonality
synthesizer: http://tinyurl.com/6325as
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For example, in 12-TET tuning,

- the P8 is untempered at 1200 cents wide, aligning
with the timbre’s 2nd partial 1200 cents above the 1st

partial (i.e., the fundamental);

- the P5 is tempered to be 700 cents wide, and the
timbre’s 3rd partial is placed 700 cents above its 2nd

partial; and

- the M3 is tempered to be 400 cents wide (i.e.,
[(4*700) + (-2*1200)] = [(2800) + (-2400)] = 400),
and the timbre’s 5th partial is placed 400 cents above
its 4th partial.

Similarly, in _-comma meantone tuning,

- the P8 is untempered at 1200 cents in width, aligning
with the timbre’s 2nd partial 1200 cents above the 1st

partial (i.e., the fundamental);

- the P5 is tempered to be 696.6 cents wide, and the
timbre’s 3rd partial is placed 696.6 cents above its 2nd

partial, and

- the M3 is tempered to be 386.4 cents wide (i.e.,
[(4*696.6) + (-2 * 1200)] = [(2786.4) + (-2400)] =
386.4), and the timbre’s 5th partial is placed 386.4
cents above its 4th partial.

All along the syntonic tuning continuum, the width of the
tempered P5 (combined with the unchanging width of the
P8 at 1200 cents and the unchanging rules of the syntonic
temperament, such as M3 = [(4*P5) + (-2*P8)]),
determines the placement of the timbre’s partials and the
width of the tuning’s intervals. This paired tempering of
tuning and timbre maximizes the consonance of tonal
intervals all along the tuning continuum.

Dynamic Tonality, combined with the Wicki note-layout,
appears to offer a general solution to the problem of
temperament [8]—i.e., a solution that delivers both
consonance and modulatory freedom across all keys and
tunings, enabling the performer to slide smoothly among
tunings with consistent fingering and without loss of
consonance.  It is general  in that it works for every
octave, key, and syntonic tuning; however, it is specific in
that it only works for isomorphic button-fields driving
compatible electronic synthesizers (not traditional
acoustic instruments).

Timbre Effects
Dynamic Tonality enables efficient timbre manipulations
that are relevant to the structure of tonality, including
sonance and primeness [14].

Sonance
Dynamic Tonality enables one to adjust a timbre’s partials
to change their s o n a n c e — i . e ., consonance or
dissonance—on the fly, in real time.

Primeness
Consider a harmonic timbre’s 2nd, 4th, 8th, 16th, …2nth

partials. Their prime factorization contains only the
number “two,” so they can be said to embody twoness.
Likewise, the 3rd, 9th, 27th, …3nth partials are factored only
by three, and so can be said to embody threeness; while
the 5th, 25th, 125th,…5nth partials embody fiveness, and so
on. On the other hand, the 10th partial can be factored into
both 2 and 5, so it embodies both twoness and fiveness,
while the 20th partial, being factored as 2*2*5, can be said
to embody twice as much twoness as fiveness.

In Dynamic Tonality, one can manipulate a tempered
timbre to enhance its twoness, threeness, fiveness,
etc.—generally, its primeness—on the fly.

Turning twoness down will lead to an odd-partial-only
timbre like that of closed-bore cylindrical instruments
(e.g., the clarinet). Turning up the twoness would
gradually re-introduce the even-numbered partials,
creating a sound like that of open-bore cylindrical
instruments (e.g., flute or shakuhachi) or conical bore
instruments (e.g., the saxophone, bassoon, or oboe).
Adjusting the other primenesses would produce different
but highly-distinctive changes in timbre.

Likewise, one could use real-time timbre changes to
emphasize the bluesy quality of a piece, phrase, or even a
single note by turning up the sevenness (given the role of
the 7th partial in defining the width of the “blue intervals”
of the blues scale [11]).

Dynamic Tonality and Alternative Controllers
All isomorphic note-layouts share the property of
fingering invariance over a tuning continuum. However,
other mathematical properties [13] of the Wicki note-
layout make it particularly well-suited for Dynamic
Tonality. Also, the Wicki note-layout can be conveniently
mapped to a standard computer keyboard, making it
universally available to electronic musicians.

Fingering invariance is necessary for Dynamic Tonality,
but it is not sufficient. Controlling tuning requires an
“extra” degree of freedom in addition to the usual
expressive variables such as pitch bend and volume. If, in
addition, one wishes to independently control the above-
described timbre effects, then additional degrees of
freedom are required.

THE THUMMER
To the best of our knowledge, the only controller that
meets the real-time performance requirements of
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Dynamic Tonality, as described above, is the Thummer™

[15].

Figure 5: A prototype Thummer.

The Thummer places three octaves of 19 buttons per
octave within the span of a single hand’s fingers.
Combining two such button-fields—one for each
hand—produces a tiny controller, as shown in Figure 5
above. The Thummer is about the size of a thick
paperback book, partially opened.

The Thummer’s tiny size allows it to be supported by a
brace affixed to one forearm, as shown in Figure 6 below,
with the other arm remaining completely free.

Figure 6: Sketch of prototype Thummer forearm brace.

The use of such a brace frees both hands’ fingers to play
their respective button-fields, and both hands’ thumbs to
control tiny joysticks like those on a video game
controller. The instrument can also contain internal
motion sensors, like those in Nintendo’s Wii Remote and

Sony’s SixAxis controllers (which sense acceleration and
rotation around all three spatial axes).

The Thummer’s two eponymous thumb-operated
joysticks each have two axes, providing four degrees of
freedom between them. These, plus six axes of motion
sensing, provide intimate control of up to ten degrees of
freedom. Thus, ten independent continuous control axes
can be devoted to the control of any expressive parameter,
including pitch bend, vibrato speed, vibrato depth,
brightness, reverberation, etc. No other polyphonic
musical instrument of which we are aware offers the
ability to control this many degrees of freedom in real
time while playing notes with the fingers of both hands.

INTELLECTUAL PROPERTY
The Thummer is patent-pending in the USA and many
international jurisdictions. However, the patent holder,
Thumtronics, has been driven to the brink of bankruptcy
by the 2008-2009 global financial crisis, so its patents are
likely to fall into the public domain.

CONCLUSIONS
Dynamic Tonality expands the time-honored framework
of tonality to embrace previously inaccessible new
creative frontiers. By combining the Wicki note-layout’s
isomorphic exposure of transpositional and tuning
invariance, the electronic synthesizer’s flexibility of
tuning and timbre, and the Thummer’s expressive power,
Dynamic Tonality provides novel tonal resources that
prepare art music for the 21st Century.
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