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ABSTRACT

Tandem and latent repeats in genome sequences provide
insight into its various structural and functional roles. Such
regions in genome sequences are modeled as nonstation-
ary processes generated from a collection of information
sources in a cyclic manner, thus exhibiting cyclostation-
arity. The maximum likelihood (ML) estimates can be
easily generated for the cyclostationary profiles and for
the statistical period of such subsequences. However, in
the presence of insertions and deletions, the ML estima-
tors suffer greatly in their ability to accurately identifythe
periods. This paper extends the cyclic model to a pro-
file hidden Markov model (PHMM) to account for inser-
tions and deletions. An iterative algorithm is developed to
learn parameters of the PHMM and Viterbi algorithm is
employed to learn the most likely path through the state
space. This reconstructs likely insertions and deletions
in the sequence and results in better estimates of the sta-
tistical period and cyclostationary profiles. Experimental
results are provided with simulated sequences as well as
with chromosome 1 sequence from human genome.

1. INTRODUCTION

The sequential structure of a genome has biological impli-
cations. Several regularities and base dependencies have
been observed in DNA and protein sequences and are as-
sociated with various molecular functions. This paper fo-
cuses on repetitions and short-range recurring-statistical-
dependencies in the symbolic sequences.

Genome sequences are symbolic sequences compris-
ing of strings of symbols (representing nucleotides or amino
acids) drawn from a finite set (or alphabet), typically with
no algebraic structure. These sequences exhibit various
kinds of repetitions and regularities, and finding such fea-
tures is fundamental to understanding the structure of the
sequences. Latent periodicities in DNA sequences have
been shown to be correlated with several structural and
functional roles [1, 2, 3].

Most current approaches to detecting periodicities trans-
form the symbolic sequences into numerical sequences
and compute Fourier transform [4, 5, 6]. Though this
is computationally convenient, it imposes a mathematical
structure that is not present in the data. In contrast, the

formulation in [7] implies no mathematical structure on
the alphabet and presents a generalmapping-invariant ap-
proach to the detection of periodicities. Each symbol of
the sequence is assumed to be generated by an informa-
tion source with some underlying probability mass func-
tion (pmf) on the alphabet. The sequence is generated by
drawing symbols from a collection of such sources in a
cyclic manner. This is a simple first-order Markov process
with a trivial transition matrix. The number of sources is
equal to the latent period in the sequence.

This paper extends the cyclic model to a Profile Hid-
den Markov model [8] to allow for insertions and dele-
tions. An iterative (EM) algorithm is developed to learn
latent periods and Viterbi algorithm is employed to learn
the most likely path through the state space. The algo-
rithm reconstructs the likely insertions and deletions in the
ancestral cyclostationary sequence. Results are provided
with the simulated data as well as real DNA sequences.

2. MODELING PERIODICITIES WITH A
MARKOV CHAIN

Let A = {a1, . . . , aL} be a finite alphabet of sizeL. An
n symbol longcyclostationary symbolic sequences with
periodK is generated byK information sources (or ran-
dom variables) denoted asX1, . . . ,XK , in a cyclic fash-
ion. Consequently, the likelihood of observing a sequence
s can be expressed solely in terms of the emission prob-
abilities of the states. The emission probabilities ofXi

are described by a probability mass functionPi. Col-
lecting the|A| × 1 dimensional vectorsPi into a matrix
Q(k) = [P1, . . . , Pk] gives a compact description of the
k-periodic cyclostationary sourceP (n).

Thedominant period of a K-periodic cyclostationary
sequence is defined to be the substring of consensus bases
in a period. It is described by the symbolic sequence
s∗ = s∗1 . . . s∗K of lengthK such that theith symbol in
every period is more likely to bes∗i than any other sym-
bol from the alphabet. Mathematically,s∗i = Ai∗ where
i∗ = arg max1≤j≤|A|Pi(j).

Let K denote the true period andk be the hypothe-
sized period. The number of complete statistical periods
in anN -symbol longk-periodic cyclostationary sequence
s areM = ⌊N/k⌋, where⌊x⌋ denotes the largest inte-



ger less than or equal tox. Define⌊i⌋k = 1 + ((i − 1)
mod k), where(x mod y) denotes the remainder after
division of x by y. Then for1 ≤ i ≤ N , the symbol
si is generated by the random variableX⌊i⌋k

. The search
space fork is the setK = {1, . . . , N0}, for someN0 < N
and for corresponding probabilistic sourceQ(k) the search
space is the subsetQ(k) ⊆ [0, 1]|A|×k of column stochas-
tic matrices.

2.1. The Maximum Likelihood Estimate

The maximum likelihood estimate of the cyclostationary
source is the column-stochastic matrix given by the opti-
mization problem

Q
(k)
ML = arg max

Q∈Q(k)

N
∏

i=1

P (X⌊i⌋k
= si|k,Q). (1)

For fixedk, the(j, ⌊i⌋k)th element of the matrixQ(k)
ML , for

j = 1, . . . , |A|, is given as [7],

[

Q
(k)
ML

]

j,⌊i⌋k

=
1

M

M
∑

m=1

1{s(m−1)k+⌊i⌋k
= Aj} (2)

where1{·} is the indicator function.

2.2. Regularized maximum likelihood estimator

MDL principle avoids overfitting automatically by trading
off complexity with the goodness of fit: Given the data
and a collection of hypothesisQ, it picks the model that
compresses the data most with respect to the description
method. The best estimate of the cyclostationary period
of sequences is thek ∈ K that minimizes the description
length

L(s; k) = L(Q(k)) + L(s|Q
(k)
ML ) (3)

whereL(Q(k)) is the description length (in bits) of the hy-
pothesisQ(k) andL(s|Q

(k)
ML ) is the length (in bits) of the

description of the data when encoded by the best ML hy-
pothesisQ(k)

ML ∈ Q(k). The termL(Q(k)) is theparamet-

ric complexity of the model andL(s|Q
(k)
ML ) is thestochas-

tic complexity of the sequence given the model. The MDL
estimator is given as [7],

KMDL =argmin
k∈K

2⌈log k⌉+k|A| log⌈
N

k
⌉−log P (s|Q

(k)
ML )

(4)

3. EXTENSION TO A PHMM FOR LATENT
PERIODS WITH INDELS

The penalized ML estimator given by the MDL principle
performs well even with severe mutation rates [7]. But in
face of insertions and deletions the performance of esti-
mator degrades severely. Consider the sequence

ACT GCT CT ACT ACGAT ACT ACT ACT (5)

which evolved from the tandem repeats of ACT through
several insertions, deletions and substitutions. The ML

Figure 1. Weblogo depicting mutual information between
repeats of3-periodic DNA sequence (a) ACTGCTCTAC-
TACGATACTACTACT (b) gapped sequence ACTGCT-
CTACTACGA-TACTACTACT.

stochastic matrixQ(k)
ML , described by equation (2), is given

by the following simple algorithm:

Algorithm: defQ = cyclo(s,k)
for j = 1 to k:

sj = s(j : k : end)
for a ∈ A

Q(a, j) = #(a ∈ sj)/length(sj)
end

end
return Q

The ML probabilistic source with period3 obtained
from the algorithm above is

Q
(3)
ML =









1/9 3/8 3/8
1/9 2/8 0
3/9 2/8 3/8
4/9 2/8 2/8









. (6)

The correspondence between different periods is depicted
by plotting the weblogo [9] which captures the mutual
information at each location of the period. Figure 1(a)
shows the weblogo for the sequence above. We develop a
method which optimally gaps the DNA sequence to mark
the possible insertions and deletions. The desired output
is the optimally gapped sequence

ACT GCT -CT ACT ACG A-T ACT ACT ACT. (7)

Figure 1(b) shows the Weblogo [9] for the gapped se-
quence. The dominant period of the gapped sequence is
ACT.

3.1. The revised model

In order to account for insertions and deletions when look-
ing for statistical periodicities a profile hidden Markov
model (PHMM) is proposed as shown in Figure 2 for a
3-periodic cyclostationary source.

Besides the cyclic transition between the states (X1,
X2 ,X3, . . .) of the probabilistic source, each state can
transition to aninsert state (which models the symbols
that are unlikely to be generated from the sources) or a
delete state (which accounts for possibly skipped states in



a cycle). The insert states have a feedback loop to model
variable length block-inserts and a delete state can transi-
tion to the next delete state to account for multiple skips.
The PHMM is parametrized by transition probabilities:

1. τ = P (X⌊i⌋k
→ X⌊i+1⌋k

),

2. ǫ = P (X⌊i⌋k
→ I⌊i⌋k

),

3. δ = P (X⌊i⌋k
→ D⌊i+1⌋k

)

and the emission probabilitieseI(·) of the insert state and
the probabilistic sourceQ(k).

The gapped sequence in Figure 1(b) is reconstructed
based on the apriori information that the ancestral sequence
had tandem repeats of ACT. In the absence of this prior
knowledge, a likely pattern (tandem repeat or a latent pe-
riod) has to be learnt from the given sequence.

The next subsection briefly describes the Viterbi algo-
rithm to learn the optimal path of states given the knowl-
edge of the probabilistic source, emission probabilities and
transition probabilities. A Gibbs sampling based method
is outlined in Section 3.3 to learn the probabilistic source
Q(k).

3.2. Learning the optimal path

Let π denote a path through the state space of the PHMM
described in the previous section. LetV C

j (i) be the log-
likelihood of the best pathπ∗ generating the subsequence
s1...i with the symbolsi being emitted by thejth infor-
mation source in the cycleX1, . . . ,XK . Similarly, V I

j (i)
denotes the log-likelihood of the best path withsi be-
ing emitted by the insert stateIj andV D

j (i) is the log-
likelihood of the best path ending in the delete stateDj .
Then

V X
j (i) = log P (X⌊j⌋k

= xi)

+ max







V X
j−1(i − 1) + log tXj−1Xj

V I
j−1(i − 1) + log tIj−1Xj

V D
j−1(i − 1) + log tDj−1Xj

V I
j (i) = log eI(xi) + max







V X
j (i − 1) + log tXjIj

V I
j (i − 1) + log tIjIj

V D
j (i − 1) + log tDjIj

V D
j (i) = max







V X
j−1(i) + log tXj−1Dj

V I
j−1(i) + log tIj−1Dj

V D
j−1(i) + log tDj−1Dj

(8)

wheretαβ denotes the transition probability from stateα
to stateβ and can be expressed in term of the parameters
τ, ǫ andδ. At each update a pointer is created for each
state to the previous state that maximized the likelihood
of transitioning to the current state:

γi(Xj) = arg max
β

[

V β
j−1(i − 1) + log tβj−1Xj

]

γi(Ij) = arg max
β

[

V β
j (i − 1) + log tβjIj

]

γi(Dj) = arg max
β

[

V β
j−1(i) + log tβj−1Dj

]

(9)

Figure 2. Profile HMM for cyclostationary probabilistic
source with period3.

whereβ can be any of the insert (I), delete (D) or cyclic
states (X).

The most probable state pathπ∗ ends in the stateπ∗
L =

arg maxj{V
X
j (N), V I

j (N), V D
j (N)} and is given by sim-

ply tracing back the pointers:

π∗
i−1 = γI(π

∗
i ), for i = L, . . . , 2. (10)

3.3. Learning the probabilistic source

The knowledge of the underlying probabilistic source is
crucial to finding the optimal state path that generated
a given sequence. Often, the probabilistic source itself
needs to be learnt from the sequence and as discussed in
Figure 1, with insertions and deletions,Q

(k)
ML is a rather

poor estimate. An adaptive approach that iteratively pre-
dicts the insertions and deletions may result in better esti-
mates of the cyclostationary source. The goal is to intro-
duce gaps in the given sequence at locations that possibly
correspond to deletions in the sequence. Since the actual
locations where deletions took place are hidden, Gibbs
sampling is proposed to recover those positions.

The algorithm is described below, with input being the
symbolic sequences = s1, . . . , sN and periodk. The out-
put is the probabilistic source for optimally gapped sym-
bolic sequence.

Algorithm: def perGAP(s, k)
Do

Q
(k)
ML = cyclo(s, k)

Compute likelihoodL1 of observings givenQ
(k)
ML

For each positioni in s:
For j from 1 to k − 1:

Insertj gaps ins at positioni to generates2

Q
(k)
ML = cyclo(s2, k)

Find likelihoodL2 of observings2 givenQ
(k)
ML

Calculate the likelihoodaji = L2/L1

Normalize the weightsa to get a distribution.
Sample (js, is) from the distribution
Updates by introducingjs gaps at locationis

Until convergence or max iterations.
Return cyclo(s, k).



Figure 3. (a) Tandem repeats of AGTCCGT with random
insertions and deletions, (b) gapped sequence with ’-’ de-
noting likely deletion, (c) sequence reconstructed by esti-
mating the optimal state path using Viterbi algorithm. It is
clear from the WebLogos corresponding to sequences in
(c) that the tandem repeat pattern was successfully recov-
ered. Going from sequence (b) to (c), the boxed residues
in (b) were likely insertions.

The routine perGAP(s,k) estimates the cyclostation-
ary sourceQ(k)

ML,GAP for the gapped sequence. The like-
lihood of the gapped sequence is computed in the same
manner as for the ungapped sequence but with gaps re-
placed by symbols that maximize the overall likelihood of
the sequence. This also minimizes the sum-total entropy
of the probabilistic source. The gapped sequence in figure
1 was obtained using the routine perGAP.

4. EXPERIMENTAL RESULTS

4.1. Simulated data

This section discusses experimental results with simulated
DNA sequences. Symbolic sequences with tandem re-
peats were simulated and at each position in the sequence
the residue was deleted with probabilityδ0 = 0.1 or a
new residue was inserted with probabilityǫ0 = 0.1. The
emission probability of the insert state was chosen equal
for each symbol (eI(a) = 0.25 for a ∈ A). The maxi-
mum likelihood estimate for the probabilistic source was
obtained by constructing the gapped sequence using the
Gibbs sampling based method and Viterbi’s algorithm was
employed to ascertain the optimal state path. Figure 3
shows results with the ancestral sequence comprising of
tandem repeats AGTCCGT.

The performance of the proposed algorithm at identifi-
cation of latent periods is studied for severe insertion and
deletion rates. Figure 4 plots the average entropy of the
estimated cyclostationary source versus the hypothesized
periods. The original cyclostationary source in the simula-
tions corresponds to the tandem repeats of ATGACT. The
period of the cyclostationary source that best fits the se-
quence, after reconstruction of likely insertions and dele-
tions, matches the true period. The average insertion and
deletion rate in simulations was chosen to be1 in every10
bases.
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Figure 4. The entropy-per-base is minimized when hy-
pothesized period equals the true period.

4.2. Genomic sequences

The proposed method was applied on chromosome 1 of
human genome in a sliding window size of 300 base pairs
with an overlap of 150 base pairs. Various new periods
were discovered and are tabulated in the files uploaded at
[10]. Latent and tandem repeats were also observed in
protein sequences. Some of these sequences are uploaded
in FASTA format at [10].
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