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ABSTRACT

This paper presents a method that uses an autoregressive filter for deblurring noisy blurred images blindly. The approach
has several important advantages over using a finite impulse response filter. The optimum support of the adaptive
autoregressive filter is the same as the support of the blur, and so the truncation error introduced by the finite support
of the adaptive finite impulse response filter can be made arbitrarily small. Furthermore, the method can also be used
for blur identification. In addition, resulting improvement in signal-to-noise ratios are higher and convergence of the
adaptive filter coefficients is faster for a given blur. First, an autoregressive method is naively derived via a gradient
method to minimize the dispersion. This leads to a recursion within a recursion which is computationally complex. Next,
a simplification of the method is proposed. Finally, simulations demonstrate performance of the simplified method.

1. INTRODUCTION

A recorded image is usually a degraded version of the
original because physical imaging systems are not per-
fect. Blur and observation noise are the most common
degradations seen in recorded images, and often are un-
avoidable. The central problem in the field of image resto-
ration is to reconstruct an unobservable true image from
an observed degraded image.

If the blur (which is often called the Point Spread
Function (PSF) in the literature) is assumed to be a Linear
Shift Invariant (LSI) system, an observed image can be
written (ignoring observation noise) as the Two-Dimensi-
onal (2-D) convolution of the true image with the blur.
Restoration of the true image in the case of a known blur
has been studied extensively giving rise to a variety of
solutions [1] [2]. However, the blur is unknown in many
practical cases. Hence, restoration of the true image must
be performed from the degraded image alone, and this is
called blind image restoration or (deconvolution).

A modern comprehensive survey of existing blind im-
age deconvolution methods can be found in the papers by
Kundur and Hatzinakos [3] [4] according to which blind
image deconvolution methods can be divided into two
major groups: i) those which estimate the PSF a priori
independent of the true image so as to use it later with
one of the linear image restoration methods, and ii) those
which estimate the PSF and the true image simultane-
ously. Algorithms belonging to the first class tend to be
computationally simple, but they are limited to situations
in which the PSF has a special parametric form, and the
true image has certain features. Algorithms belonging to
the second class, which are usually computationally more
complex, must be used for more general situations.

A computationally simple blind image deconvolution
method that is applicable to minimum or mixed phase
blurs was presented in [5] and its convergence analysis

was performed in [6]. The method is essentially a 2-D
version of the Constant Modulus Algorithm (CMA) [7]
[8] that is commonly used in the field of communications
for blind equalization. The reader is referred to [9] and
the references therein for a detailed introduction to the
CMA and its analysis in the context of One-Dimensional
(1-D) adaptive equalization.

A 2-D adaptive Finite Impulse Response (FIR) filter
was used in [5]. The purpose of this paper is to present
an analogous method that uses an adaptive 2-D Autore-
gressive (AR) filter for deconvolution. This approach has
several important features. First, the analysis of the FIR
implementation has shown that given a step size and a
PSF, there is an optimum support for the FIR filter that
must be determined experimentally. When using an AR
deconvolution filter the optimum support is the same as
the support of the blur. Hence, the distortion introduced
by the finite support of the adaptive FIR filter can be
made arbitrarily small. Furthermore, the FIR filter pro-
vides an approximate inverse to the blur at convergence.
The AR filter converges to an approximation of the blur
itself. Hence, the method can also be used for blur identi-
fication. In addition, resulting improvement in signal-to-
noise ratios are higher and convergence of the adaptive
filter coefficients is faster compared to the FIR case.

The FIR implementation is straightforward whether
the adaptive filter has a causal support or not. The re-
cursive implementation is not trivial if the adaptive filter
does not have a causal support since 2-D AR filters hav-
ing non-causal support are not recursively implementable.
For implementation simplicity, this paper focuses on 2-D
AR filters and FIR blurs with causal supports. Because
2-D non-causal filters can be decomposed into four 2-D
causal filters [10], the results can be extended to the non-
causal case with a suitable increase in complexity.

The organization of the paper is as follows. The blind
image deconvolution problem for a spatially causal blur
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Fig. 1. Linear image degradation model.

is formulated in section 2. The algorithm for the recur-
sive case is derived in section 3, which also discusses the
Constant Modulus (CM) cost. Computer simulation re-
sults are provided in section 4. Section 5 concludes the
paper.

2. PROBLEM FORMULATION

A model that describes the relationship between the un-
observable true image and the observed degraded image
is required by all blind image deconvolution algorithms.
In general, blurs are assumed to be linear, though they
may be shift-invariant or shift-variant. Similarly, the ob-
servation noise may be modeled as multiplicative or ad-
ditive. This paper assumes a shift-invariant blur and ad-
ditive Gaussian observation noise. Hence, the observed
M ×N degraded image g(m,n) is given by

g(m,n) = f(m,n) ∗ h(m,n) + v(m,n)

=
A−1∑
k=0

B−1∑
l=0

h(k, l)f(m− k, n− l) + v(m,n)

form = 0, . . . ,M−1, n = 0, . . . , N−1, whereh(0, 0) =
1 and f(m,n), h(m,n), v(m,n) and [0, A−1]×[0, B−1]
represent the true image, the PSF of the degrading sys-
tem, additive noise that is independent of the true im-
age and the support of the PSF, respectively. The lin-
ear image degradation model is depicted in Fig. 1. In
blind image restoration, the PSF h(m,n) is unknown.
Therefore, the true image f(m,n) must be estimated di-
rectly from the degraded image g(m,n). While the val-
ues of the pixels of the true image are unknown, cer-
tain statistical properties are known; typically pixel val-
ues must be one of a small number of possibilities. As
shown in [5], ambiguities in both gain and delay are in-
herent to blind image deconvolution. Keeping these am-
biguities in mind, the blind image deconvolution problem
can be stated as follows: Obtain an estimate of the form
f̂(m,n) ≈ αf(m−m0, n−n0) for some real α �= 0 and
for some integers m0, n0 when only the observed image
g(m,n) is measurable. Both the true image f(m,n) and
the PSF h(m,n) are assumed unknown.

3. RECURSIVE IMAGE DECONVOLUTION VIA
DISPERSION MINIMIZATION

The algorithm for the recursive case will be explained
in detail in this section. Unless otherwise stated, pixel
values of the true image are assumed odd integer-valued,
i.e., pixel values may be ±1,±2, . . . ,±L − 1, where L
is the number of gray levels in the true image. Many

real images are 8-bit having 256 gray levels between 0
and 255. These images can be transformed to have odd-
integer-valued gray levels by a uniform or non-uniform
thresholding based on the probability density function of
the true image. The CM cost will be studied first to set
the stage for the recursive blind algorithm.

3.1. The CM Cost

Even though traditional uses of the CM cost have all 1-D,
the CM cost can be extended for use in 2-D. The CM cost
term was introduced for blind equalization of communi-
cation signals over dispersive channels by Godard [7] and
Treichler and Agee [8]. This section generalizes the CM
cost for use in 2-D by reformulating the cost for a real-
valued zero-mean true image f(m,n) and a real-valued
PSF h(m,n). It is assumed that each gray level of the
true image is equally likely (a suitable preprocessing of
the degraded image such as histogram equalization may
be required to satisfy this condition). The CM cost is
given by

JCM := E[(f̂2(m,n) − γ)2] (1)

where

γ :=
E[f4(m,n)]
E[f2(m,n)]

(2)

is the dispersion constant of the true image. It is evident
from Eq. (1) that the CM cost penalizes the deviations (or
dispersion) of f̂2(m,n) from constant γ, which is why
the method in [5] was called blind image deconvolution
via dispersion minimization.

Plotting the CM cost versus the adaptive filter param-
eters results in a surface called the CM cost surface. The
method of blind image deconvolution via dispersion min-
imization attempts to minimize the CM cost by starting at
some location on the surface and following the trajectory
of steepest descent.

3.2. Proposed Method

Fig. 2 illustrates the recursive blind image deconvolution
via dispersion minimization method, where the degraded
image g(m,n) is applied to an adaptive AR filter whose
purpose is to estimate the true image f(m,n). Since the
true image is unknown, a desired image (the true image
in the ideal case) must be generated artificially from the
estimated true image f̂(m,n). The function of the zero-
memory nonlinearity (the rightmost term in Fig. 2) is to
generate an “artificial” image f̂NL(m,n) so that an error
term e(m,n) that drives the recursive algorithm can be
obtained. The zero-memory nonlinearity is chosen such
that the error term e(m,n) corresponds to the negative
gradient of JCM .

Transforming the 2-D signals and filters to the corre-
sponding 1-D signals and filters using appropriate index
mappings is useful to simplify the derivation of the re-
cursive algorithm.Observe that a 2-D filter w(m,n) with
support [0, A− 1]× [0, B− 1] can be transformed to a 1-
D filter w(k) by the “lexicographic ordering” T1 : R2 →
R1 such that k = mB + n, where

R2 = {(m,n)| 0 ≤ m ≤ A− 1, 0 ≤ n ≤ B − 1} (3)
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Fig. 2. Block diagram of recursive blind image deconvo-
lution via dispersion minimization.

R1 = {k| 0 ≤ k ≤ S1S2 − 1} . (4)

Similarly, a 2-D signal f(m,n) can be transformed to a
1-D signal f(k) by the “local lexicographical ordering of
support [0, A− 1] × [0, B − 1]” T2 : P2 → P1 such that

P2 = {(r, s) |m−A ≤ r ≤ m, n−B ≤ s ≤ n} (5)

P1 = {t | k −AB + 1 ≤ t ≤ k} (6)

whereA,B are constants, 0 ≤ m ≤ M−1, 0 ≤ n ≤ N−
1, and k = T2(m,n) is a suitable function of (m,n). The
output of the AR filter at the jth iteration for the (m,n)th
pixel f̂j(m,n) is an estimate of the true image given by

f̂j(m,n) = g(m,n)−
A−1∑
r=0

B−1∑
s=0

wj(r, s)f̂j(m− r, n− s)

(7)
where (r, s) �= (0, 0). This estimate can be rewritten by
using mappings T1 and T2 as

f̂j(k) =
AB−1∑

i=1

wj(i)f̂j(k − i) (8)

where g(k), f̂j(k) and wj(i) are the 1-D representation
of the degraded image, the output of the AR filter and
the adaptive filter coefficients at the jth iteration result-
ing from applying the index mappings T1, T2 to their 2-
D counterparts (note that j is the time iteration variable,
while k is the spatial position).At the beginning, the adap-
tive filter is far from being a reliable estimate of the blur.
Hence, the estimate f̂j(k) is not reliable,though it may be
used in an adaptive scheme to obtain a better estimate for
the next pixel by minimizing the CM (dispersion) cost.
Gradient Descent (GD) methods are generally used to
solve for CM estimators because closed form expressions
do not usually exist. Since exact GD requires statistical
knowledge of the degraded image that is unavailable in
real applications, stochastic GD method are utilized. The
general form of the recursive stochastic GD algorithm for
minimizing the CM cost is

wj+1(l) = wj(l) − µ
dJCM

dwj(l)
, l = 1, . . . , AB − 1 (9)

where µ is a small positive step-size. Because it is not
possible to minimize an expected value directly, the meth-
od uses an instantaneous estimate J of JCM defined as

J :=
1
4
(f̂2

j (k) − γ)2. (10)

Therefore, for the kth pixel coefficients of the adaptive
filter are updated according to

wj+1(l) = wj(l) − µ
dJ

dwj(l)
. (11)

As shown in [11], Eq. (11) can be written as

wj+1(l) = wj(l) + µ
(
f̂2

j (k) − γ
)
f̂j(k)ϕj,l(k). (12)

where

ϕj,l(k) = f̂j(k − l) −
AB−1∑

i = 1
i �= l

wj(i)ϕj,l(k − i) (13)

is called regressor filtering. Eq. (12) can be vectorized as

wj+1 = wj + µ
(
f̂2

j (k) − γ
)
f̂j(k)ϕj(k) (14)

where wj and ϕj(k) are the lexicographically ordered
adaptive filter parameter vector at the jth iteration and
the regressor filter vector for the kth position given by

wj := [wj(1), wj(2), . . . , wj(AB − 1)]T (15)

ϕj(k) := [ϕj,1(k), ϕj,2(k), . . . , ϕj,AB−1(k)]T . (16)

Regressor filtering defined in Eq. (13) makes implemen-
tation of the recursive algorithm costly. A simplified al-
gorithm that bypasses the regressor filtering would be
preferred. An approximate gradient for the recursive case
uses the currently available data vector in place of the re-
gressor filtered version, that is,

ϕj(k) ≈ [f̂j(k − 1), . . . , f̂j(k −AB + 1)]T . (17)

Equations (14) and (17) together with (7) constitute the
recursive blind image deconvolution via dispersion mini-
mization algorithm. The output of the adaptive AR filter
f̂(k) is an estimate of the true image f(k), and the coef-
ficients w(k) provide an estimate of the PSF h(m,n) at
convergence.

4. EXPERIMENTAL RESULTS

The classical 8-bit gray-scale pepper image was chosen
as a test image. Histogram equalization was performed
on the test image which results in approximately uni-
formly distributed image. Then, its mean was subtracted
from the histogram equalized image to get a zero-mean
image. Finally, a uniform quantization was applied to the
uniformly distributed image to obtain a 4-bit true image.

Observe that the CM cost is non-convex. Hence, the
method proposed may converge to a local minimum in-
stead of the global minimum of JCM depending on how
it is initialized. If there is no a priori information about
the PSF, the adaptive filter is initialized using zero val-
ues for all coefficients. If there is a priori information
about the PSF, this information may aid in initializing the
adaptive filter in a better way.

Fig. 3 depicts the 4-bit true image (left), degraded
image (middle) and estimated true image (right), from



Fig. 3. Deconvolution result for a 4-bit image. (left) True image; (middle) Degraded image; (right) Estimated true image.

h(m,n) n: 0 1 2 3 4
m: 0 1 .7155 .3536 .1707 .0894

1 .7155 .5443 .2963 .1527 .0831
2 .3536 .2963 .1925 .1141 .0680
3 .1707 .1527 .1141 .0775 .0512
4 .0894 .0831 .0680 .0512 .0370

Table 1. The PSF used to obtain the blurred image.

w(m,n) n: 0 1 2 3 4
m: 0 1 .7278 .3611 .1733 .0554

1 .7239 .5469 .3208 .1834 .0864
2 .3916 .3251 .2096 .1428 .0754
3 .1736 .1733 .1117 .0699 .0151
4 .0287 .0716 .0351 .0013 -.0537

Table 2. The adaptive filter coefficients at convergence.

which it is clear that the method is useful in deblurring
the degraded image. Table 1 provides the PSF used. Ta-
ble 2 shows coefficients of the adaptive filter at conver-
gence. It is obvious from Table 2 that the adaptive filter
converges to the PSF well except for a few coefficients.

5. CONCLUSIONS

This paper presented a recursive method for blind image
deconvolution that uses an adaptive autoregressive filter.
As was seen, the presence of regressor filtering in a true
gradient makes the recursive implementation computa-
tionally costly. A simplified algorithm that bypasses the
regressor filtering was proposed. The simplified method
was shown to work through a computer simulation. The
simplified recursive algorithm is not a stochastic gradient
descent algorithm because of the removal of the regres-
sor filtering. Consequently, it is important to study its
behavior to find conditions on the PSF under which the
algorithm converges to a desirable solution . A sufficient
condition in the absence of observation noise for the spe-
cial case when the true image is binary is that the PSF
satisfy the “Strictly Positive Real” (SPR) condition [11].
Common PSFs frequently encountered in practice may or
may not satisfy this condition. If a PSF does not satisfy
the SPR condition, one has to implement the recursive
method without ignoring the regressor filtering so as to

guarantee its stability.
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