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Abstract

This paper analyses the computational complexity
and stability of an online algorithm recently proposed
for learning rotations. The proposed algorithm involves
multiplicative updates that are matrix exponentiated
skew-symmetric matrices comprising the Lie algebra of
the rotation group. The rank-deficiency of the skew-
symmetric matrices involved in the updates is exploited
to reduce the updates to a simple quadratic form. The
Lyapunov stability of the algorithm is established and
the Frobenius norm is shown to be a Lyapunov func-
tion for the updates. The application of the algorithm to
registration of point-clouds in n-dimensional Euclidean
space is discussed.

1 Introduction

Learning rotations is an important aspect of data
processing in many areas including computer vision,
robotics, graphics, physics and quantum mechanics.
The problem of learning rotations can be broadly clas-
sified into batch and online version. Whereas in the
batch version two point-clouds are given that can be
related with a change-of-basis, in the online version a
new pair of corresponding points is obtained at each
instance. The batch version is well understood as the
problem of orthogonal Procrustes [9] or least-squares
linear-fitting [11, 4]. The online version, on the other
hand, is challenging and was recently posed as an open
problem [10].

Online learning of rotations is especially of inter-
est when the rotations are changing continuously. The
complexity of online learning of rotations stems from
the fact that the set of rotation matrices is a curved
space. The curved space associated with rotation matri-
ces in n-dimensional Euclidean space is the unit sphere
Sn−1 in Rn. Consequently, changing rotations may not
be tracked using a standard Kalman filter. The gradient

of a loss function on Sn−1 gives the geodesic direction
and velocity vector on Sn−1. However, a naive steep-
est descent algorithms designed for Rn takes a step in
direction of the gradient in Rn, thereby steering off the
manifold. This leads to updates that require repeated
approximation and projection on to Sn−1.

In [2], we proposed an algorithm for online learn-
ing of rotations and discussed its application to track-
ing rotations in n-dimensional Euclidean space. The
key idea in the development of the updates in [2] was
to utilize the parallel-transport mechanism along the
geodesics on the unit sphere. This avoids the need for
repeated approximation and projection on to Sn−1. The
resulting updates are similar to steepest descent algo-
rithms on Riemannian manifolds for optimization un-
der unitary matrix constraint [1]. However, since the
updates involve expensive matrix-exponentiation, they
are quite comparable in computational complexity to
repeated projection and approximation methods [10].
One of the contributions in this paper is proving a re-
duction in computational complexity of the online al-
gorithm presented in [2]. The second main result of the
paper is proving a stability result for the updates pro-
posed in this paper. We show that the Frobenius norm
of the difference between the true rotation matrix and
the estimated rotation matrix is non-increasing.

The proposed algorithm offers another desirable fea-
ture, that of averaging over the rotation group. This
finds application in registration of noisy point-clouds in
n-dimensional Euclidean space. Note that the group of
rotation matrices does not admit the structure of a vec-
tor space. Consequently, the observation noise in the
point-clouds cannot be dealt with by averaging rotation
matrices. However, with the proposed updates, the av-
eraging actually takes place in the Lie algebra (i.e. the
tangent vector- space at the identity rotation) associated
with the group of rotation matrices. The application of
the algorithm to the registration of noisy point-clouds
is in many ways similar to iterative closest point (ICP)
method restricted to pure rotations [4]. It should be re-



marked though that ICP acts only on three dimensional
data whereas the proposed updates apply to rotations of
n-dimensional data.

Finally, a famous result by Doran [6] states that
the rotation group provides a representation for all Lie
groups. Therefore, the results presented here can be
generalized to any Lie group under a suitable confor-
mal map.

2 Online Algorithm

Let D1 = {xi}Mi=1 and D2 = {yi}Ni=1 be two point-
clouds in Rn. Without loss of generality, assume that
xi and yi are unit vectors. Let R∗ be an unknown
n× n rotation matrix (or a change-of-basis transforma-
tion) that relates the two point-clouds. Recall that a ro-
tation matrix R satisfies the properties that RTR = I,
RTR = I and det(R) = 1. At each instance, we learn
a new corresponding pair of points (xt,yt) ∈ D1×D2

in the two point-clouds. The matrix R∗ acts on xt
to give the rotated vector yt = R∗xt. Let R̂t de-
note the estimate of R∗ at instance t and ŷt = R̂t xt
represent the prediction for the rotated vector yt. Let
Lt(R̂t) = d(yt, R̂txt) denote the loss incurred due to
error in prediction of rotation of the input vector xt. The
estimate of the rotation needs to be updated based on
the loss incurred at every instance and the objective is
to develop an algorithm for learning R∗. Consider the
online updates proposed in [2],

R̂t+1 = R̂t exp

(
− η skew

(
R̂T
t ∇R̂t

Lt(R̂t)
))

,

where skew (·) is the skew-symmetrization operator on
the matrices, skew (A) = A−AT . With the squared-
error loss-function Lt(R̂t) = ||ŷt − yt||2, the resulting
updates are

R̂t+1 = R̂t exp

(
−2η skew

(
R̂T
t (ŷt−yt)xTt

))
. (1)

It is easy to check that if R̂t is a rotation matrix then
R̂t+1 given by the updates in (1) is also a rotation ma-
trix [2].

3 Computational complexity of updates

The updates presented in [2] (see eqn. (1) above)
ensure that the estimates for the rotation matrix stay
on the manifold associated with the rotation group at
each iteration. However, with the matrix exponentia-
tion at each step, the updates are computationally in-
tensive and in fact the computational complexity of the

updates is comparable to other approaches that would
require repeated approximation and projection on to the
manifold. The next result discusses a complexity reduc-
tion result to establish a simpler update by exploiting
the eigen-structure of the update matrix.

Lemma 3.1. The matrix exponentiated gradient up-
dates in eqn. (1) are equivalent to the following up-
dates,

R̂t+1 = R̂t

(
I +

sin(λ)
λ

S +
1− cos(λ)

λ2
S2

)
,(2)

where S = −2η skew
(
R̂T
t (ŷt − yt)xTt

)
is the skew-

symmetric matrix in eqn. (1) with eigenvalues ±jλ, for

λ = 2η
√

1−
(
ŷTt yt

)2
.

Proof. First observe that the matrix S can be written as

S = −2η skew
(
R̂T
t (ŷt − yt)xTt

)
,

= −2η skew
(
R̂T
t (R̂txt −R∗xt)xTt

)
,

= −2η skew
(
xtxTt − R̂T

t R∗xtxTt
)
,

= 2η
(
R̂T
t R∗xtxTt − xtxTt RT

∗ R̂t

)
,

= 2η
(
R̂T
t ytxTt − xtyTt R̂t

)
,

where yt = R∗xt. Each term in the matrix S is a rank-
one matrix. Thus S is at most rank-two. Since S is
skew-symmetric, it has (at most) two eigenvalues in a
complex conjugate pair ±jλ (and n − 2 zero eigenval-
ues) [5]. Furthermore, Butler shows in (2.1) of [5] that
the nonzero eigenvalues of the sum of two rank-one ma-
trices u1vT1 +u2vT2 can be expressed in closed form as

λ̃ =
1
2

(
vT1 u1 + vT2 u2±

√
(vT1 u1 − vT2 u2)2 + 4(vT1 u2)(vT2 u1)

)
. (3)

For matrix S, write u1 = 2ηR̂T
t yt, v1 = xt,

u2 = xt, and v2 = −2ηR̂T
t yt. Then the first term

in parentheses in eqn. (3) can be written as

vT1 u1 + vT2 u2 = 2η(xTt R̂T
t yt − yTt R̂txt)

= 2η
(
ŷTt yt − yTt ŷt

)
= 0

And the term 4(vT1 u2)(vT2 u1) in (3) can be simplified
as

4(vT1 u2)(vT2 u1) = 4(xTt xt)(−4η2yTt R̂tR̂T
t yt)

= −16η2yTt yt
= −16η2



Then the eigenvalues given by eqn. (3) are

λ̃ = ±1
2

√(
2η(xTt R̂T

t yt + yTt R̂txt)
)2

− 16η2

= ±1
2

√
4η2

(
ŷTt yt + yTt ŷt

)2 − 16η2

= ±η
√(

2 ŷTt yt
)2 − 4

= ±2η
√(

ŷTt yt
)2 − 1

= ±j 2η
√

1−
(
ŷTt yt

)2
In order to simplify the exponential of S, a gener-

alization of the Rodrigues’ formula from [7] is useful.
When S is skew-symmetric and rank 2

eS = I +
sin(λ)
λ

S +
1− cos(λ)

λ2
S2

where λ = 2η
√

1−
(
ŷTt yt

)2
.

Owing to the result above the matrix exponential re-
duces to a simple quadratic form involving an element
from the Lie algebra of the rotation group.

4 Stability of updates

Finally, we establish the Lyapunov stability of the
proposed updates and show that Frobenius norm is a
Lyapunov function. First note that the iteration (1) has
an equilibrium at R∗ since

S = 2η
(
R̂T
t ytxTt − xtyTt R̂t

)
= 2η

(
R̂T
t R∗xtxTt − xtxTt RT

∗ R̂t

)
(4)

is equal to 0n (the n × n matrix of all zeroes) when
R̂t = R∗. Since exp (0n) = I, R̂t+1 = R̂t, and the
iteration remains fixed.

A Lyapunov function [8] for a discrete iteration
(such as (1)) about its equilibrium R∗ is a function V (·)
with the properties: (a) V (R∗−R̂t) is positive definite,
(b) V (0) = 0, and (c) V (R∗ − R̂t+1) ≤ V (R∗ − R̂t)
for all t. The equilibrium is Lyapunov stable if there
exists such a V .

Theorem 4.1. The Frobenius norm V (R) = ||R||F =√∑n
i=1

∑n
j=1 |Rij |2 =

√
tr (RTR) is a Lyapunov

function for the algorithm (1) about its equilibrium R∗.

Proof. The first two properties follow immediately
from the fact that || · ||F is a norm. The third prop-
erty, that ||R∗ − R̂t+1||F ≤ ||R∗ − R̂t||F ∀t remains
to be shown. Because R∗ and R̂t are rotation matrices,

tr
(
RT
∗R∗

)
= tr

(
R̂T
t R̂t

)
= tr (I) = n, and the norm

simplifies to

||R∗ − R̂t||2F = tr
(

(R∗ − R̂t)T (R∗ − R̂t)
)

= tr
(
RT
∗R∗−RT

∗ R̂t−R̂T
t R∗+R̂T

t R̂t

)
= 2n− 2 tr

(
RT
∗ R̂t

)
.

Similarly, Lemma 1 shows that R̂t+1 is a rotation ma-
trix and so tr

(
R̂T
t+1R̂t+1

)
= n. Hence

||R∗ − R̂t+1||2F = 2n− 2tr
(
RT
∗ R̂t+1

)
.

Thus the condition that ||R∗−R̂t+1||F ≤ ||R∗−R̂t||F
reduces to the condition that

tr
(
RT
∗ R̂t+1

)
− tr

(
RT
∗ R̂t

)
≥ 0.

Using lemma 3.1 the left hand side of the inequality
above can be expressed as

tr
(
RT
∗ R̂t+1

)
− tr

(
RT
∗ R̂t

)
= tr

(
sin(λ)
λ RT

∗ R̂tS + 1−cos(λ)
λ2 RT

∗ R̂tS2
)
,

= sin(λ)
λ tr (AS) + 1−cos(λ)

λ2 tr
(
AS2

)
, (5)

where A = RT
∗ R̂t. Furthermore, define X = xxT .

Then using (4), S can be re-written as S = 2η(ATX−
XA). Treating the two terms in the right hand side sep-
arately, write

tr (AS) = 2η · tr
(
A(ATX−XA)

)
= 2η (tr (X)− tr (AXA))

= 2η (1− xTA2x). (6)

The final equality follows because the arguments of
the trace function can be circularly permuted. There-
fore, tr (AXA) = tr

(
AxxTA

)
= tr

(
xxTAA

)
=

tr
(
xTA2x

)
. Similarly, the identities X2 = X and

tr (AX) = tr
(
XAT

)
help simplify

tr
(
AS2

)
= 4η2tr

(
A(ATX−XA)(ATX−XA)

)
= 4η2tr

(
XATX−AX−XA+AXAXA

)
= 4η2tr (−AX + AXAXA)

= 4η2 · (−tr (AX) + tr (AXAXA))

= 4η2 ·
(
−xTAx + (xTAx)(xTA2x)

)
= −4η2xTAx(1− xTA2x). (7)

Substituting (7) and (6) into (5) shows that

tr
(
RT
∗ R̂t+1

)
− tr

(
RT
∗ R̂t

)
= 2η(1− xTA2x)

(
sin(λ)
λ − 2η 1−cos(λ)

λ2 xTAx
)
. (8)



Since x is a unit vector and A is the product of two
rotations, 0 ≤ xTA2x ≤ 1. Accordingly, the positiv-
ity of (8) is determined by the second term on the right
hand side. Letting z = xTAx, λ can be rewritten as
2η
√

1− z2. Making this substitution and multiplying
through by λ2 = 1 − z2, the sign of the second term is
the same as the sign of

f(z) = −z + z cos(2η
√

1− z2)
+
√

1− z2 sin(2η
√

1− z2). (9)

Consider the function g(θ) = f(sin(θ)) = − sin(θ) +
sin (θ + 2η cos(θ)) defined on the interval Θ =
[0, π/2]. First note that for η ≤ 1/2, h(θ) = θ +
2η cos(θ) is a monotonically increasing function on Θ
because h′(θ) = 1 − 2η sin(θ) ≥ 0 for all θ ∈ Θ,
given η ≤ 1/2. Therefore, θ + 2η cos(θ) ≤ π/2. Also,
cos(θ) ≥ 0 on Θ and sin(θ) is a monotonically increas-
ing function on Θ. This implies g(θ) ≥ 0 on [0, π/2]
which means that f(z) is nonnegative for 0 ≤ z ≤ 1.
Hence tr

(
RT
∗ R̂t+1

)
− tr

(
RT
∗ R̂t

)
≥ 0 and the Frobe-

nius norm of R∗ − R̂t is a Lyapunov function.

Since Theorem 4.1 holds for all initial states R0 and
all possible input (unit) vectors xt, the result is a global
Lyapunov stability. The Lyapunov stability is also ev-
ident from the simulation results for the noise-less set-
ting in [2].

5 Experimental results

This section discusses the estimation performance of
the proposed algorithm with respect to the number of
observations for various step sizes of the updates. Fig-
ure 1 shows Frobenius norm between the true rotation
matrix in SO(3) and the estimated rotation matrix us-
ing the updates in eqn. (2) for various step sizes. The
observations are from a 3D face and are corrupted by
additive white Gaussian noise with variance 0.01. The
noise corresponds to a coarse initial registration which
is typical in 3D face recognition where it is easier to
identify facial landmarks (like nose or mouth region) in
a pair of images than to establish exact registration (of
nose tips, for instance). It is evident from the plot that
for large step sizes, the noisy-observations can cause
the estimation error to level-out rather than decrease at
every step. For smaller step sizes a lower noise floor is
achieved but requires a much larger number of instances
to learn. Choosing a step-size so as to give a relatively
proportional weight to the new observation (i.e the step
size decreases as 1

n where n is the number of instances)
leads to faster convergence and lower noise floor. This
is intuitive since we are averaging over more and more
data. For more details on experiments and code please
check [3].
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Figure 1. Estimation performance for con-
stant step sizes (0.5, 0.05, 0.005) and vari-
able step size that decreases as 1

n .

6 Conclusion

This paper presented a computational complexity re-
duction result for online learning of rotations and also
proved the Lyapunov stability of the proposed updates.
The application of the algorithm to tracking rotations
and registration of point-clouds in n-dimensional Eu-
clidean space is discussed with emphasis on the choice
of step-size for the gradient updates and choice of
weights for computing true empirical mean over the ro-
tation group.
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