
The least-squares invertible constant-Q spectrogram and its
application to phase vocoding

A. N. Inglea) and W. A. Sethares
Department of Electrical and Computer Engineering, University of Wisconsin-Madison,
1415 Engineering Drive, Madison, Wisconsin 53706

(Received 30 December 2011; revised 7 June 2012; accepted 12 June 2012)

This paper discusses the development of a constant-Q spectrogram representation that is invertible

in a least-squares sense. A good quality inverse is possible because this modified transform method,

unlike the usual sliding window constant-Q spectrogram, does not discard data samples when

performing the variable length discrete Fourier transforms on the signal. The development of a

phase vocoder application using this modified technique is also discussed. It is shown that a phase

vocoder constructed using the least-squares invertible constant-Q spectrogram (LSICQS) is not a

trivial extension of the regular FFT-based phase vocoder algorithm and some of the mathematical

subtleties related to phase reassignment are addressed. VC 2012 Acoustical Society of America.
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I. INTRODUCTION

A. Least-squares invertible constant-Q spectrogram
(LSICQS)

Conventional methods for analyzing signals in the

frequency domain often use the Fourier transform (FT) or

the discrete Fourier transform (DFT), which can require con-

siderable care when dealing with audio signals that vary sig-

nificantly over time. Information is localized by extracting a

section of the time signal via windowing; this leads to a

fundamental tradeoff between good time resolution and fre-

quency resolution. There are three ways to bypass this prob-

lem: the use of variable windows, the wavelet transform, and

the reassigned spectrogram,1 which subsumes a variety time-

frequency analysis techniques and is especially suited to

speech signals. This paper uses a variable window DFT that

provides direct interpretability of phase values and allows

tractable implementation of a phase vocoder.

Variable length windows are fundamental to the

constant-Q transform of Brown.2 Each window is “tuned” to

a particular frequency characterized by the Q factor, which

can be understood as a ratio of the center frequency to the

frequency resolution. A disadvantage of this method is that it

is not invertible due to the temporal and frequency decima-

tions. The present work extends the variable length window-

ing method to achieve least-squares invertibility of the

spectrogram. In a sequel, Brown also discusses an efficient

algorithm for calculation of the constant-Q transform3 using

the fast Fourier transform (FFT) algorithm. The LSICQS

introduced here is formulated as a linear transform operator

that produces a vectorized spectrogram directly from the

time domain signal.

One way applying a nonlinear mapping to the frequency

axis is through the use of the warped FT or the warped

DFT,4 which applies an all-pass filter in the time domain to

achieve a (typically trigonometric) nonlinear stretching of

the frequency axis. The nonlinearities are tightly constrained

and may not always be suited to audio signals. In music sig-

nals, most of the sound energy is localized around frequency

bands that are geometrically spaced in powers of 2 as this

octave structure forms the basis of the musical scale in West-

ern music and closely approximates the octave structure

found in other music cultures too. Furthermore, psycho-

acoustic experiments have revealed that the response of the

human ear to sound is, to a first approximation, constant-Q.5

Hence what appear to be equispaced pitches are really equi-

spaced on a log-frequency axis. Mimicking this perception

on a spectrogram is more difficult than merely stretching

linear-frequency DFT data so they fit on a log scale.

As a modification to Brown’s formulation, Bradford

et al.6 suggest aligning the variable length constant-Q win-

dows with the center sample of the signal allowing the vari-

able length windows to analyze the “same part of the

signal.” This alignment is also used when setting up the

LSICQS while bypassing the temporal decimation issue to

allow invertibility.

Inspired by a problem in geophysics, Stockwell7 sug-

gested using Gaussian windows of widths inversely propor-

tional to the frequency when calculating the continuous-time

STFT. An analogous strategy that is not limited to any spe-

cific window type is used in the LSICQS, allowing applica-

tions where geometric spacing between frequencies is

important. This plays a crucial role in the phase adjustment

strategy in the LSICQS phase vocoder.

Gambardella8 observes similarities between the

constant-Q transform and the Mellin transform. However,

his work only focuses on the long-time constant-Q transform

and makes no comments on the invertibility of the short-

time transform that is of interest when localizing information

in both frequency and time.

FitzGerald et al.9 adopt an optimization approach for

inverting the constant-Q transform by first mapping the
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constant-Q transform to the DFT domain and then inverting

to the time domain. In certain nice cases, the DFT represen-

tation is sparse and can be obtained by ‘0 or ‘1 norm minimi-

zation. In the present work, it is shown that with a modified

approach for calculation of the spectrogram, the standard

least squares technique can be used for inverting directly to

time domain.

In a recent paper, Schorkhuber and Klapuri10 propose an

efficient constant-Q computational toolbox and develop a

better quality reconstruction technique. They avoid the use

of wide windows at low frequencies by processing each

octave and then downsampling by a factor of 2. The octave-

based transform is formulated as a matrix operation using a

spectral kernel and inversion is done by reversing these

steps, first using the inverse spectral kernel followed by

upsampling. The LSICQS also exploits the idea of using a

matrix operator, but with a formulation that enables analysis

of all time samples by every window.

B. Phase vocoders

Many audio editing and effect-insertion techniques op-

erate by modification of the sound spectrogram; the edited

spectrogram is then inverted back to the time domain. Spec-

trogram magnitudes are easily interpreted, while phase val-

ues are harder to control and alter. The phase vocoder builds

phase values back into the edited spectrogram so that the

magnitude peaks in adjacent spectral frames connect

smoothly. It maintains frequencies by adjusting the phases

over time proportional to the particular frequency and main-

tains continuity between audio segments by smoothening out

abrupt variations in phase that may otherwise lead to clicks

or discontinuities.

The term “phase vocoder” originated in the late 1930s

as a method of encoding and decoding voice,11 although

today it is used for any technique that is capable of operating

on the magnitude and phase values in a time-frequency rep-

resentation and reconstructing a meaningful audio signal

from the modified spectrogram. Flanagan and Golden12

describe a continuous-time version of a phase vocoder that

analyzes speech signals using short time phase and magni-

tude spectra.

Dolson’s tutorial13 presents two mathematically equiva-

lent interpretations of phase vocoding as a filter bank and as

a FT. Laroche and Dolson14,15 study the behavior of various

phase assignment techniques based on the observation that

phase values must be adjusted to be consistent with the cor-

responding frequency and the time difference between adja-

cent windows. Adapting these ideas in the LSICQS phase

vocoder is complicated by the fact that the frequencies are

spaced geometrically instead of the usual linear scale in a

DFT.

Puckette16 suggests a “phase locking” technique by

assuming that the phase values at various DFT bins are

locked in a definite way to the phase at the magnitude-peak

bin. This can be explained based on the phase profiles of FTs

of commonly used window functions. This idea forms the

core of the phase assignment strategy presented in this paper,

and it will be seen that some mathematical insight is needed

to characterize the phase locking behavior in the constant-Q

case.

Traditionally phase vocoders have been designed to op-

erate on FFT-based spectrograms with a linear frequency

axis. The key idea in the LSICQS phase vocoder is a spectro-

gram editing technique capable of operating on the constant-

Q spectrogram. It is not far-fetched to expect that editing on

a log-frequency spectrogram may produce results that are

more attuned to the perceptual mechanism than those

obtained when using linear frequency spacing. For example,

in an audio morphing application, it would be suitable to

morph between frequencies that are “nearby” on a log-

frequency scale rather than linear spacing.

As it will become clear in Sec. III, the LSICQS phase

vocoder is not a trivial extension of the FFT-based phase vo-

coder because there are some mathematical and algorithmic

subtleties involved in its implementation.

A previous attempt by Garas17 at implementing the

constant-Q phase vocoder was controversial. The present

work overcomes its shortcomings by implementing the phase

vocoder on the LSICQS instead of a regular constant-Q

spectrogram. The results discussed in this paper were

obtained from a computer implementation of the LSICQS

phase vocoder that draws ideas from previous implementa-

tions of the regular phase vocoder by Moller-Nielson18 and

Sethares.19

II. LEAST-SQUARES INVERTIBLE CONSTANT-Q
SPECTROGRAM

A. The constant-Q transform

The constant-Q transform performs calculations directly

on a log-frequency scale. For musical signals, the natural

choice of frequencies is those in an equitempered scale.

A fixed-length DFT gives constant resolution at all fre-

quencies. For instance, a window that is 1024 samples long

and is sampled at fs ¼ 44:1 kHz gives a frequency resolution

of about 43:1 Hz that is too large to detect the difference

between low notes on a piano, yet this resolution is wasteful

at high frequencies.2

A more parsimonious approach is to maintain a constant

ratio of center frequency to frequency resolution by choosing

different window lengths at different frequencies. This ratio

is the “Q” of the transform given by

Q ¼ 1

21=k � 1
(1)

where k is the number of bins per octave. For example, when

k ¼ 48 bins/octave, Q � 67. Any frequency fk associated

with a resolution dfk requires a window length of

Nk ¼ fs=dfk ¼ Q fs=fk. The kth coefficient in an Nk-length

DFT is2,3

Xk ¼
1

Nk

XNk�1

n¼0

wðk; nÞxðnÞe�j2pQn=Nk (2)

where xð�Þ is the sampled sequence and wð�; �Þ is a window

function.
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Observe that Eq. (2) does not analyze all data samples at

high frequencies where the window length is small (time

decimation), causing the non-invertibility of the constant-Q

transform. A constant-Q spectrogram is obtained by stacking

columns of constant-Q transforms from adjacent time seg-

ments, analogous to the way the STFT spectrogram is

formed by stacking columns of DFTs. To localize frequency

information at a particular time, the constant-Q spectrogram

extracts a small piece (called a “time slice”) from the signal

and calculates the constant-Q transform of this slice. For this

to work, there must be at least as many samples in the time

slice as the longest window that is used when calculating the

constant-Q transform. It may also be desirable to use a cer-

tain fraction of overlap between adjacent pieces as is com-

mon with the STFT spectrogram.

Exact interpretation of the adjacent window overlap

factor is complicated in the constant-Q spectrogram

because there are two kinds of windowing operations

occurring in the evaluation of the spectrogram. The first

operation is that of extracting a time slice, whereas the

second windowing operation occurs when the constant-Q

transform of this time slice of the signal is calculated

using variable length windows. Hence, in reality, there is

a variable amount of overlap between the actual analysis

windows. The longer windows will have a larger overlap,

whereas the smaller windows may not overlap at all. This

issue is resolved in the LSICQS as described in the next

section.

B. The LSICQS in matrix form

The LSICQS is obtained from a time-domain signal by

the use of frequency-dependent variable length windows as

in the constant-Q transform. However, every window is

forced to analyze all data samples, thereby overcoming the

temporal decimation issue.

To handle the data structure generated by the LSICQS

transformation process, it is convenient from a computa-

tional point of view to vectorize the transform.

To arrive at a matrix representation of the transform

process, consider how a particular coefficient in the LSICQS

is generated. Let xðnÞ be the time domain signal. For given

analysis frequency fk with an associated constant-Q window

length Nk, the first element in the kth row of the LSICQS is

generated using the inner product

Xfk
0 ¼
XL�1

n¼0

w0ðnÞxðnÞ (3)

where L is the length of the data sequence and w0ðnÞ is the

zero padded windowed complex exponential given by

w0ðnÞ ¼
vðnÞe�j2pQn=Nk ; if 0 � n � Nk � 1

0; if Nk � n � L� 1:

(

Here vðnÞ is any appropriate window function.20

The subsequent entries in this row of the spectrogram

can be obtained by repeating the inner product of Eq. (3)

using circularly rotated versions of the w0ðnÞ vector while

maintaining the required overlap. If wiðnÞ is the vector

obtained after i circular shifts of w0ðnÞ, the ith element of

this LSICQS row can be calculated as

Xfk
i ¼
XL�1

n¼0

wiðnÞxðnÞ: (4)

The circularly shifted versions of the w0ðnÞ vectors corre-

sponding to the analysis frequency fk can be stored in the

rows of a matrix Ak. Hence the kth row of the LSICQS of

the time domain data vector x can be obtained through the

linear transformation

Akx ¼ bk

where bk is the vectorized form of the kth row of the

LSICQS. The fact that many entries in the Ak matrix are

zero can be used to speed up this matrix multiplication (for

instance, by storing it as a sparse matrix). Note that the num-

ber of rows rk in Ak depends on the length of the original sig-

nal L, the size of the window Nk, and the overlap fraction p,

via the relation

rk ¼
�
ðL� NkÞ
Nkð1� pÞ

�
(5)

where dze is the smallest integer greater than or equal to z.

Next, all the Ak matrices can be stacked to form another

matrix, A ¼ ½AT
0 jAT

1 j � � � jAT
k j � � ��

T : This matrix, when oper-

ated on the time domain signal x, produces a vectorized

form of the entire spectrogram. It is important to choose the

transform parameters so that the total number of rows in A

exceeds the length of x, otherwise the inverse problem is ill-

posed. The complete operation can now be compactly

represented as a matrix multiplication, Ax ¼ b where

b¼ ½bT
0 jbT

1 j � � � jbT
k j � � ��

T
is the vectorized form of the

LSICQS. In summary, the transform matrix is constructed

by stacking up submatrices, each constructed from a collec-

tion windowed complex exponentials tuned to a particular

analysis frequency. The structure of one such submatrix is

represented in Fig. 1.

C. Consequences of the peculiar structure of the
LSICQS and invertibility

The LSICQS uses a sliding window with a preset per-

centage overlap between adjacent windows to obtain the

spectrogram directly from a data sequence. For every fre-

quency of interest, there is an associated window length as

dictated by the constant-Q. Because higher frequencies

have smaller windows and lower frequencies use longer

windows, the sliding windows produce fewer coefficients

at lower frequencies than higher frequencies, unlike the

usual STFTs, where an equal number of spectrogram

points are obtained for each frequency. This allows the

use of constant percentage overlap irrespective of window

size.
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When viewed in the time-frequency plane, instead of

generating a uniformly spaced rectangular grid of numbers,

the LSICQS produces non-uniformly spaced points, where

time points are linear but non-uniform and frequencies are

log-spaced as shown in Fig. 2.

An immediate consequence of this non-rectangular

LSICQS structure is that it cannot be directly displayed as an

image. The LSICQS data can be interpolated to obtain a uni-

form grid in the time-frequency plane as shown in an exam-

ple in Fig. 3(a). Figure 3(b) shows the STFT of the signal for

comparison.

The inverse problem for the matrix formulation can be

posed as the unconstrained least squares optimization

min
x2RL
kAx�bk2

where A 2 C
M�L

, b 2 C
M

, L is the length of the data vector,

and M is the number of rows in A. Although there is no

guarantee that A is full rank, a least-squares minimum norm

solution can always be calculated. In some sense, this inverse

merely returns a signal that is close to the original signal in ‘2

sense and is composed of a weighted sum of frequencies

spaced in powers of 2, at user specified log-resolution. In

practice, this gives satisfactory results when the audio signal

consists largely of pitched musical instruments.

At first sight the inverse problem may appear to be a

constrained least squares optimization problem because A

and b are complex valued, whereas the data vector x must be

real valued. However, this constraint can be removed by

decomposing into real and imaginary parts.

Let A ¼ AR þ jAI and b ¼ bR þ jbI where the

subscripts R and I denote the real and imaginary parts,

respectively. The goal is to solve for x 2 RL, which satisfies

ARx ¼ bR and AIx ¼ bI in a least squares sense.

Forming a new augmented kernel matrix K ¼ ½AT
RjAT

I �
T

and an augmented vector b ¼ ½bT
RjbT

I �
T
, which gives the real

valued optimization problem

min
x2RL
kKx� bk2; K 2 R2M�L and b 2 R2M:

This can be solved using any standard numerical techniques

for unconstrained least-squares problems.

For an example, the top panel in Fig. 4 shows the origi-

nal audio signal consisting of a violin playing 12 chromatic

notes in an octave. The reconstructed audio signal obtained

with the inversion technique is shown in the center panel and

the absolute difference is shown in the bottom panel. The

reconstruction error is on the order of 10�15, which is numer-

ical roundoff error.

This matrix formulation also raises the question of

where exactly in time each LSICQS value localizes infor-

mation. For the sake of convenience, it is assumed that the

magnitude and phase information in each LSICQS value

corresponds to the center of the window that was used to

generate it. The magnitude interpretation seems quite

FIG. 1. Structure of a submatrix that is used for analyzing a particular fre-

quency. The full transform matrix is constructed by stacking such submatri-

ces, one for each frequency of interest.

FIG. 2. An exaggerated view of the centers of the windows used for gener-

ating an LSICQS. The process of generating pseudo-time-slices by adjusting

the phases of the nearest LSICQS bins is also shown (see Sec. III B 1). The

arrows indicate the direction of phase adjustment.

FIG. 3. (a) LSICQS of a violin scale. Successive tones that are equally

spaced in a perceptual sense are equally spaced visually. (b) STFT of the

same violin scale. Successive tones that are equally spaced in a perceptual

sense are compressed visually in the lower frequencies and expanded visu-

ally in the higher frequencies.
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natural; however, it may seem odd that the phase is also

referenced to the center of the window (instead of the

beginning of the window as it would in a FFT-based

spectrogram).

III. IMPLEMENTATION OF A PHASE VOCODER USING
THE LSICQS

A. Review of present phase vocoding techniques

The phase vocoder is an analysis-synthesis technique

that operates on the spectrogram of the signal and modifies

the amplitude and phase values by extracting consecutive

time slices from the audio signal. Suppose there is a peak at

a particular bin of two consecutive FFT vectors. The phase

vocoder estimates the frequency at that peak as

fn ¼
h2 � h1 þ 2pn

2pðt2 � t1Þ
(6)

where t1 and t2 are the reference times at the two adjacent

time windows, h1 and h2 are the phases at the peak-

magnitude bins in these adjacent spectral frames. The value

of n is chosen so that the estimate fn is closest to the FFT bin

frequency. The estimate obtained in Eq. (6) is better than

just picking the frequency at the peak because the energy in

FFT bins usually spreads out over multiple neighbors due to

spectral leakage.21

The modification step assigns new magnitude and

phase values to the FFT bins (the exact assignment depends

on the audio editing operation). Various schemes of phase

assignment have been suggested14,18,19 to maintain phase

coherence during this editing operation. Most of these

methods are heuristic and are based on visual analysis of

phase profiles in spectrograms of real world signals or by

studying the behavior of phase when certain types of

tapering-end windows are used. One commonly used phase

assignment strategy is the phase-locked vocoder16 that

exploits the property of windowed FFTs that the phase val-

ues of bins under the peak are related and “locked” in some

way to the phase at the magnitude peak. It is observed that

for most commonly used window functions such as Ham-

ming, Hann, and Gaussian, the phases at the bins neighbor-

ing the peak are either 0 or p radians offset from the phase

at the peak. This zero-p pattern can be observed in the

phase pattern of the FTs of these windows. The exact offset

depends on the distance from the peak bin. If the phase at

the peak bin k is hk, a good phase assignment strategy is to

use the relation

hk6n ¼ ððhk þmodðn; 2ÞpÞÞð�p=2;p=2Þ (7)

to assign the phase at a bin that is n indexes away from the

peak.19 Here modðn; 2Þ is the remainder after dividing n by

2 and ðð�ÞÞð�p=2;p=2Þ indicates the operation of wrapping the

phase to the interval ð�p=2; p=2Þ.
Finally, the additive-synthesis section of the phase vo-

coder inverts these FFTs back to the time domain and then

overlap-adds the time bursts to generate the modified sound

signal.

B. LSICQS phase vocoder

The constant-Q phase vocoder operates on the LSICQS

instead of FFTs. The frequency estimation and phase

assignment strategies must be modified to account for the

log-frequency spacing. Depending on the type of audio

editing, the value of Q must be chosen carefully. For

instance, it may be desirable to choose a higher Q value if

the editing operation involves moving partials from higher

octaves into lower octaves so that the frequency detail is

still captured.

1. Analysis

The LSICQS phase vocoder algorithm operates on time

slices extracted from the LSICQS. However, because the

points in the LSICQS are not evenly spaced, a literal time

slice does not exist. A “pseudo-time slice” can be con-

structed by the following correction method. The points that

are nearest to the time instant of interest are chosen, and

their phases are corrected to reference this instant. This

phase correction is proportional to the frequency and the

time delta. The magnitudes are set equal to the magnitudes

at these nearest points chosen. The analysis section locates

the spectral peaks in this pseudo-time slice and estimates the

frequency at the peak using the same procedure as a regular

phase vocoder in Eq. (6). The construction of a pseudo-time

slice is shown in Fig. 2.

In the modification step, new phase values and ampli-

tudes are assigned to the corresponding bins in the new

LSICQS. For time scale modification, the analysis chooses

an input hop size and an output hop size. The output hop

size is taken to be a multiple of the input hop size, where the

multiplication factor is equal to the time stretch desired. To

achieve time stretching, the magnitudes are unchanged and

new phase values are assigned at each peak bin using the

relation

hðtÞk ¼ hðt�dtoutÞ
k þ 2pf dtout

FIG. 4. Example audio signal of a violin playing 12 notes in an octave. Top

panel: Original signal. Center panel: Reconstructed signal from the LSICQS.

Bottom panel: Time domain reconstruction error showing absolute differ-

ence between the original and reconstructed audio signals.
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where the subscript k denotes the kth peak, the superscript

denotes the time at the pseudo-time slice, f denotes the fre-

quency corresponding to this peak as estimated in the analy-

sis step and dtout is the output time hop. Thus a new phase

value is assigned so that the frequency appears to unravel the

phase through a different time hop to achieve the desired

time stretch.

As with the FFT-based phase vocoder, the phase in the

region around the spectral peak must be locked to the

movement of the phase at the peak. However, unlike

the zero-p phase locking strategy used in a regular FFT-

based phase vocoder, the LSICQS phase vocoder uses a

phase assignment relation that is a consequence of the fol-

lowing theorem.

Theorem 1. Let k be the bins per octave used for gener-

ating a LSICQS with Gaussian windowing and Q be as

defined in Eq. (1). Let x be the frequency at the peak bin

and x1 be the frequency at a neighboring bin. Then, the first

order error term in the difference between phase values of

the peak bin and its immediate neighbor is bounded above

by 2ða=pÞ21=Q3 where a is the parameter used for control-

ling the standard deviation width of the Gaussian window.

See the Appendix for a proof of this theorem. An analo-

gous result for the Hann window (Theorem 3) can also be

found in the Appendix.

To put this result in perspective, consider a typical value

of Q ¼ 34 (corresponding to k ¼ 24 bins/octave) as might

be used in practice. Assume a ¼ 5. Then the first order error

term when using Gaussian windowing is bounded by

1:3 � 10�4. For the same values, with a Hann window, the

bound is 2:5 � 10�5.

The phase values in the peak region of an LSICQS time

slice can be made arbitrarily close to the phase at the peak

by choice of the Q factor provided that a suitable window

function is used. As a practical consequence of the foregoing

theorem, phase assignment under the peak can be done using

the simple relation

hk6n ¼ hk: (8)

This strategy does result in incorrect phases assigned to bins

distant from the peak, but because their magnitudes are

small, the phase assigned to those points is unimportant.

Observe that this error exists in regular FFT-based phase

vocoders also because Eq. (7) holds only for the peak region

(and not the complete FFT vector).

The reason for assigning constant phase under the

peak can also be understood intuitively. Suppose the signal

being analyzed is a single sinusoid of frequency fk and a

constant-Q window of length Nk is tuned to analyze this fre-

quency. The constant-Q window lengths for the adjacent fre-

quency bins fk�1 and fkþ1 are Nk�1 ¼ Nk � 21=k and

Nkþ1 ¼ Nk � 2�1=k, respectively. For typical values of k that

are around 24 or 48 bins per octave, Nk�1 and Nkþ1 are very

close to Nk. The procedure of finding a particular LSICQS

coefficient is basically a correlation of a windowed section

of the signal with a complex exponential at some frequency.

Correlating with the correct window Nk results in a coeffi-

cient of largest magnitude and a certain phase value. When

the correlation is done with a window for a slightly different

frequency, say using Nk�1 or Nkþ1, the magnitude of the

coefficient drops. However, because the enveloped sinusoid

frequency differs only slightly from the actual frequency, the

phase offset that gives the best correlation is still close to the

phase obtained when the correlation is done with the actual

frequency fk.

This result holds only for “nice” windows such as the

Hamming, Hann, Gaussian, and Blackman windows that roll

off to negligibly small values near the end. Otherwise the

end terms may introduce larger errors in the phase. The anal-

ysis of the rectangular window presented in the Appendix

quantifies the error incurred.

2. Resynthesis

In the resynthesis step, the edited LSICQS is inverted

using the least-squares technique described in Sec. II C.

When the duration of the output signal is not the same

as the input signal (as in the time scaling application), it is

necessary to use a new matrix A
0

with a different overlap

factor that achieves the necessary time scaling (and still

generates the same LSICQS structure as the original trans-

form matrix). This is akin to stretching the original

LSICQS like a rubber membrane to obtain a new time

scaled LSICQS that must then be inverted. The new overlap

factor can be calculated from the ratio of output to input

time hop size, the old overlap factor and Eq. (5). Suppose

the signal is to be scaled by a factor s. The goal is to find a

new overlap factor p
0
that gives the same number of rows rk

for this stretched signal of length sL. From Eq. (5), it suffi-

ces to have

L� Nk

ð1� pÞNk
¼ sL� Nk

ð1� p0 ÞNk

or

p0 ¼ 1� ðsL� NkÞð1� pÞ
ðL� NkÞ

: (9)

Thus the new overlap factor depends on the frequency index

k, indicating that a different overlap factor is needed for

each window length Nk. However, assuming that L� Nk,

this dependence on k can be removed to obtain an approxi-

mate overlap fraction

p0 ¼ 1� sð1� pÞ: (10)

This gives rise to “end-effect” errors for a few window

lengths at the very end of the analysis duration. This is due

to the small differences in the number of rows in the sub-

matrices A
0

k and Ak, causing A
0

and A to have different

number of rows. In actual implementation, this can be fixed

by changing the size of the edited LSICQS either by

appending dummy values or truncating so that the LSICQS

row lengths become compatible with the structure of the

inversion matrix A
0
. The final step is to invert the edited

LSICQS using the least-squares method with the modified

transform matrix.
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Implementation of the analysis-resynthesis sections of

the phase vocoder suffers from memory limitations. For very

long audio signals, the size of the transform matrix A may

become unwieldy and solving the least squares problem dif-

ficult. One way of bypassing this is by phase vocoding

smaller pieces or frames of the full audio signal and then

stitching all the edited frames together. However, additional

processing is required to remove discontinuities that may

occur at the points where the pieces are stitched. To maintain

continuity between adjacent frames and remove clicks, some

amount of overlap and windowing needs to be used between

adjacent frames. Windows used to specify the frames are

henceforth referred to as overlying windows and the smaller

windows that form a part of the constant-Q transform matrix

are called underlying windows.

Intuitively, one would expect that the effect of the over-

lying window will be small if it is sufficiently wider than the

longest underlying window. The following theorem mathe-

matically quantifies the effect of this double windowing for

the case where both the overlying and underlying windows

are Gaussian.

Theorem 2. Let k be the ratio of the width of the overly-

ing to the underlying Gaussian time domain windows, Fð�Þ
be the frequency response of the double window and Gð�Þ be

the frequency response of the underlying window. Then

ignoring any scaling factors, jFð�Þj ! jGð�Þj pointwise, as

k !1.

IV. CONCLUSION

This paper presented a novel transform method for

obtaining a LSICQS, which can be visualized on a uniform

time-frequency grid with an extra interpolation step. The

applicability of this spectrogram structure to phase vocoders

was discussed, and it was shown that the practical phase

assignment strategy follows naturally from a mathematical

result that governs the phase values in the LSICQS.

APPENDIX A: DETAILED DERIVATION OF PHASE
UNDER THE PEAK

This appendix analyzes phase values of LSICQS coeffi-

cients under the peak for various window functions. These

mathematical results demonstrate why the constant phase

assignment strategy in Eq. (8) works in the case of common

tapering-end window functions but not in case of the rectan-

gular window.

A. Proof of Theorem 1 for the Gaussian window

The continuous-time Gaussian window centered at the

origin and tuned to the frequency x1 with a constant Q is

given by

wðtÞ ¼
(

e�ða
2�x2

1
t2=p2QÞ2 ; if � pQ=x1 � t � pQ=x1

0; otherwise:

Here a is a parameter that is used for controlling the standard

deviation, and hence the width of the window in time

domain. A smaller value of a gives a larger standard devia-

tion width.

The FT of a Gaussian constant-Q windowed sinusoid,

evaluated at a frequency x1 is given by

FTðx1Þ¼
ð1
�1

cosðxtþ/Þ e�ða
2�x2

1
t2=p2QÞ2 e�jx1t dt

¼p3=2Q

2ax1

e�p2Q2ðxþx1Þ2=4a2x2
1
�j/ð1þep2Q2x=a2x1þj2/Þ

¼ e�p2Q2ðxþx1Þ2=4a2x2
1

2ax1

p3=2Q

 !
e�j/

þ e�p2Q2ðx�x1Þ2=4a2x2
1

2ax1

p3=2Q

 !
ej/

¼: FTRðx1Þþ jFTIðx1Þ

where the real and imaginary parts FTR and FTI can be eas-

ily expressed in terms of the other quantities using Euler’s

formula.

In terms of the real and imaginary parts of the FT,

the phase of the transform at the frequency x1 can be written

as

ffFTðx1Þ ¼ tan�1 FTIðx1Þ
FTRðx1Þ

� �
: (A1)

Consider the behavior of ffFTðx1Þ when x1 varies around x
by substituting x1 ¼ xþ Dx. Dx can be taken as the spac-

ing between the bins under the peak. Defining

� :¼ Dx
x
;

and after some algebraic simplification, the phase function in

Eq. (A1) becomes

ffFTðx1Þ ¼ tan�1 tanð/Þtan h
p2Q2

2a2ð1þ �Þ

� �� �
: (A2)

Treating this as a function of � and writing the first order

Taylor series expansion about � ¼ 0 yield

ffFTð�Þ ¼ tan�1 tanð/Þtan h
p2Q2

2a2

� �� �

� p2Q2sinð/Þcosð/Þ

a2 cos h
p2Q2

a2

� �
þ cosð2/Þ

� � �þ oð�2Þ:

Observe that for large Q, the first term is simply

tan�1ðtanð/ÞÞ: Let g denote the absolute value of the first

order error term, that is,

g :¼ p2Q2cos/sin/

a2 cos 2/þ cosh
p2Q2

a2

� �� � �
��������

��������
:

Then, an upper bound can be obtained as follows.
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g � p2Q2jDxj
xa2 �1þ 1þ p4Q4

2a4

� � (A3)

� 2
a
p

� �2 1

Q3
ð21=k � 1Þ (A4)

� 2
a
p

� �2 1

Q3
(A5)

where Eq. (A3) follows from the inequalities cos 2/ 
 �1

and cos h c 
 1þ c2=2; Eq. (A4) follows by considering a

bin that is an immediate neighbor of the peak bin and using

Eq. (1) and finally Eq. (A5) follows from the fact that

0 < ð21=k � 1Þ < 1. h

B. Hann window

The phase analysis for the Hann window is quite similar

to the Gaussian window case. Moreover, the Hann window

result is significant because it can be easily extended to the

class of all raised-cosine windows such as Hamming and

Blackman window.

The continuous time Hann window centered at the ori-

gin and tuned to the frequency x1 with a constant Q is given

by

wðtÞ ¼
(

1þ cosðx1t=QÞ
2

; if � pQ=x1 � t � pQ=x1

0; otherwise:

Theorem 3. Consider a LSICQS using a Hann window

with all the parameters in Theorem 1. The first order

error term in the difference between phase values of the

peak bin and its immediate neighbor is upper bounded by

1=Q3

Proof. The FT evaluated at a frequency x1 using the

constant-Q tuned window is given by

FTðx1Þ ¼
ðpQ=x1

�pQ=x1

cosðxtþ /Þ 1þ cosðx1t=QÞ
2

e�jx1tdt

¼:
cos /

2
FTRðx1Þ þ j

sin /
2

FTIðx1Þ:

where

FTRðx1Þ :¼
ðpQ=x1

�pQ=x1

cosðxtÞð1þcosðx1t=QÞÞcosðx1tÞdt

and

FTIðx1Þ :¼
ðpQ=x1

�pQ=x1

sinðxtÞð1þ cosðx1t=QÞÞsinðx1tÞdt:

Define

A ¼
sin

pQðxþx1Þ
x1

� �
xþ x1

; B ¼
sin

pQðx�x1Þ
x1

� �
x� x1

;

C ¼
sin

pQ xþx1þx1
Qð Þ

x1

� �

2 xþ x1 þ x1

Q

� � ; D ¼
sin

pQ x�x1þx1
Qð Þ

x1

� �

2 x� x1 þ x1

Q

� � ;

E ¼
sin

pQ x1�xþx1
Qð Þ

x1

� �

2 x1 � xþ x1

Q

� � ; F ¼
sin

pQ xþx1�x1
Qð Þ

x1

� �

2 xþ x1 � x1

Q

� � :

Then FTRðx1Þ ¼ Aþ BþCþDþ Eþ F and FTIðx1Þ
¼ �Aþ B� CþDþ E� F and in terms of these quantities,

jFTðx1Þj ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFTRðx1ÞÞ2 cos2 /þ ðFTIðx1ÞÞ2 sin2 /

q

ffFTðx1Þ ¼ tan�1 FTIðx1Þ
FTRðx1Þ

tan /

� �
:

(A6)

Mimicking the Gaussian window proof in the previous

section, consider the behavior of ffFTðx1Þ when x1

varies around x by substituting x1 ¼ xþ Dx. Defining

� :¼ Dx=x as before, the phase function in Eq. (A6) can

be expressed as a function of �. Notice that 0 < � < 1 when-

ever the neighboring frequency bin is close to x. Taking the

Taylor series expansion of ffFTð�Þ about � ¼ 0 yields

ffFTð�Þ¼ tan�1ðtanð/ÞÞ� sinð/Þcosð/Þ
4Q2�1

�þoð�2Þ (A7)

where oð�2Þ denotes all the terms containing the second and

higher powers of �. It is clear from Eq. (A7) that for small �,
the first and higher order terms are negligible, especially

when Q is large. Also note that in the LSICQS formulation,

the quantities Dx and Q are coupled via the number of bins

per octave (k) parameter. Choosing a larger value of k not

only makes Q larger but also makes Dx and � smaller. An

explicit bound on the first order error term is����� sin / cos /
4Q2 � 1

�

���� � jDxj
xð4Q2 � 1Þ (A8)

¼ xð21=k � 1Þ

x 4 1

21=k�1

� �2

� 1

� �

¼ ð21=k � 1Þ3

4� ð21=k � 1Þ2
(A9)

� ð2
1=k � 1Þ3

3
(A10)

<
1

Q3
(A11)

where Eq. (A8) follows from the definition of � and the fact

that jsin / cos /j � 1; Eq. (A9) follows by considering the

bin that is an immediate neighbor of the peak bin and using

Eq. (1) to substitute for Q and finally Eq. (A10) follows from

the fact that 0 < ð21=k � 1Þ < 1: h
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C. Rectangular window

Having shown that the constant phase strategy works for

most windows with tapering ends, the behavior with a rec-

tangular window is now analyzed.

FTðx1Þ ¼
ðpQ=x1

�pQ=x1

cosðxtþ /Þe�jx1tdt

¼
ðpQ=x1

�pQ=x1

cosðxtþ /Þ cosðx1tÞdt

� j

ðpQ=x1

�pQ=x1

cosðxtþ /Þ sinðx1tÞdt

¼: FTRðx1Þ þ jFTIðx1Þ

where

FTRðx1Þ ¼
ðpQ=x1

�pQ=x1

cosðxtþ /Þ cosðx1tÞdt;

FTIðx1Þ ¼ �
ðpQ=x1

�pQ=x1

cosðxtþ /Þ sinðx1tÞdt:

In terms of these newly defined quantities,

ffFTðx1Þ ¼ tan�1 FTIðx1Þ
FTRðx1Þ

� �
: (A12)

Following the routine, substitute for FTI and FTR in Eq.

(17), let x1 ¼ xþ Dx, express ffFTðx1Þ as a function of

Dx=x ¼: � and finally take the Taylor series expansion

about � ¼ 0 to get

ffFTð�Þ¼tan�1ðtanð/ÞÞþ1

2
sinð2/Þ�þoð�2Þ: (A13)

Observe that the first order error term in Eq. (A13) in case of

the rectangular window differs from that in Eq. (A7) for the

Hann window by a factor of ð4Q2 � 1Þ. Typically, Q is at

least 34 which indicates a 4000 times magnification in the

first order error term when the rectangular window is used.

This result explains why the constant phase assignment strat-

egy does not work for such windows.

APPENDIX B: PROOF OF THEOREM 2

Let k � 1 be the ratio of the widths of the overlying to

the underlying Gaussian window. The FT of the underlying

window has the form

GðxÞ ¼ 1ffiffiffi
p
p e�x2

and the overlying window has a sharper response of the form

HðxÞ ¼ kffiffiffi
p
p e�k2x2

:

where the scaling factors are chosen so that the frequency

response functions have unit area.

In the time domain, the overlying window is multiplied

pointwise with the underlying window. Moreover, the under-

lying window need not be aligned to the center of the overly-

ing window. To replicate this, a translation term a is

introduced. Using basic properties of the FT, the frequency

response of a time shifted version of the underlying window

is given by

GtranslatedðxÞ ¼ GðxÞe�jxa ¼ e�x2�jxa:

Next, using the fact that multiplication in time domain results

in convolution in frequency domain the frequency response

FðxÞ of the double window can be quantified as follows.

FðxÞ¼GtranslatedðxÞ�HðxÞ

¼
ð1
�1

1ffiffiffi
p
p e�k2�jka kffiffiffi

p
p e�k2ðx�kÞ2 dk

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pðk2þ1Þ

s
e�a2=ð4k2þ4Þ�4k2x2=ð4k2þ4Þ e�jak2x=ðk2þ1Þ:

Consider the magnitude of this frequency response function

jFðxÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pðk2 þ 1Þ

s
e�ða

2þ4k2x2Þ=ð4k2þ4Þ: (B1)

Clearly, as k!1, jFðxÞj ! ð1=
ffiffiffi
p
p
Þe�x2

, which is the fre-

quency response of the underlying window. h

Using the Gaussian window makes the algebra in the

preceding proof quite tractable. Other window combinations

will have qualitatively similar results and the exact proper-

ties can be readily analyzed numerically.
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