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Abstract. People commonly respond to music by keeping time, tapping
to the beat or swaying to the pulse. Underlying such ordinary motions
is an act of perception that is not easily reproduced in a computer pro-
gram or automated by machine. This paper outlines the flow of ideas in
Rhythm and Transforms (Sethares 2007), which creates a device that can
“tap its foot” along with the music. Such a “beat finding machine” (illus-
trated in Fig. 1) has implication for music theory, on the design of sound
processing electronics such as musical synthesizers, on the uses of drum
machines in recording and performance, and on special effects devices.
The beat finder provides a concrete basis for a discussion of the rela-
tionship between the mind’s processing of temporal information and the
mathematical techniques used to describe and understand regularities
in data. Extensive sound examples (Sethares 2008) demonstrate beat-
based signal processing techniques, methods of musical (re)composition,
and new kinds of musicological analysis.

1 What Is Rhythm?

How can rhythm be described mathematically? How can it be detected auto-
matically? People spontaneously clap in time with a piece of music, and can
effortlessly internalize and understand rhythmic phenomena — but it is tricky
to create a computer program that can keep time to the beat. Teaching the
computer to synchronize to music requires both interesting mathematics and
unusual kinds of signal processing.

There are many different ways to think about and notate rhythmic patterns.
A variety of different notations, tablatures, conventions, and illustrations are
used throughout Rhythm and Transforms to emphasize the distinction between
symbolic notations (which accentuate high level information about a sound)
and acoustical notations (which allow the sound to be recreated). Surveying the
musics of the world shows many different ways of conceptualizing the use of
rhythmic sound: for instance, the timelines of West Africa, the clave of Latin
America (illustrated in Fig. 2), and the tala of India.
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Fig. 1. A foot-tapping machine designed to mimic people’s ability to synchronize to
complex rhythmic sound must “listen” to the sound, locate the underlying rhythmic
pulse, anticipate when the next beat timepoint will occur, and then provide an output

Fig. 2. The son clave rhythm is arranged in necklace notation; the 3-2 clave begins at
the larger arrow while the 2-3 clave begins at the smaller arrow. (a) The beats of the two
2 measures are indicated inside the circle along with the 16 timepoints that represent
the tatum (short for “temporal atom,” the fastest pulsation present in the music) (b)
repeats the basic clave in the outer circle and shows how various other rhythmic parts
complement, augment, and can substitute for the straight clave pattern. The middle
circle shows the cdscara. The inner circle shows a bell pattern with low (L) and high

(H) bells. (c) shows the guanguancd (rumba) clave.

2 Auditory Perception

The auditory system is not simple. Underlying the awareness of rhythmic sounds
are basic perceptual laws that govern the recognition of auditory boundaries,
events, and successions. Research into the mechanisms of perception sheds light
on the physical cues that inspire rhythmic patterns in the mind of the listener.
These cues help distinguish features of the sound that are properties of the
signal (such as amplitude and frequency) from those that are properties of the
perceiving mind (such as loudness and pitch). Just as pitch is a perceptual
correlate of frequency and loudness is a perceptual correlate of amplitude, the
“beat” is a perceptual correlate. A major part of Rhythm and Transforms is
the search for physically measurable correlates of the beat perception. Fig. 3
illustrates this idea.
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Fig. 3. Perception of sound is not a simple process; it begins with a physical waveform
and may end with a high level cognitive insight (for example, understanding the mean-
ing of a sound). There are constant interactions between long term memory, attention
and expectation, and the kinds of patterns formed. There are also constant interac-
tions between memory, attention, expectation, and the ways that the raw information
is selected and filtered. The time span over which the short term memory organizes
perceptions is called the perceptual present.

3 Transforms

Transforms model a signal as a collection of waveforms of a particular form: e.g.,
sinusoids for the Fourier transform, mother wavelets for the wavelet transforms,
periodic basis functions for the periodicity transforms. All of these methods are
united in their use of inner products as a basic measure of the similarity and
dissimilarity between signals, and all may be applied (with suitable care) to prob-
lems of rhythmic identification. A transform must ultimately be judged by the
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Fig. 4. Just as a prism separates light into its simple constituent elements (the colors of
the rainbow), the Fourier Transform separates sound waves into simpler sine waves in
the low (bass), middle (midrange), and high (treble) frequencies. Similarly, the auditory
system transforms a pressure wave into a spatial array that corresponds to the various
frequencies contained in the wave.
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insight it provides and not solely by the elegance of its mathematics. Transforms
and the various algorithms derived from them (for instance, the phase vocoder
and short time Fourier transform) are mathematical operations that have no
understanding of psychoacoustics or of the human perceptual apparatus. Thus a
square wave may be decomposed into its appropriate harmonics by the Fourier
transform irrespective of the time axis. It makes no difference whether the time
scale is milliseconds (in which case we would hear pitch) or on the order of
seconds (in which case we would hear rhythm). It is, therefore, necessary to ex-
plicitly embed psychoacoustical insights into the mathematics (Terhardt (1982)
and Parncutt (1994) provide two well known examples) in order to make more
practical and effective models. Mathematics is perceptually agnostic — it is only
the interpretation of the mathematics that makes a psychoacoustic model. Fig. 4
presents one such interpretation.

4 Adaptive Oscillators

One way to model biological clocks is with oscillators that can adapt their period
and phase to synchronize to external events. To be useful in the beat tracking
problem, the oscillators must be able to synchronize to a large variety of possible
input signals and they must be resilient to noises and disturbances. Clock models
can be used to help understand how people process temporal information and the
models are consistent with the importance of regular successions in perception.
One simple situation is shown in Fig. 5.
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Fig. 5. When two oscillators are coupled together, their frequencies may influence each
other. When the outputs synchronize in frequency and lock in phase, they are said to
be entrained. The musicians represent one “oscillator” and the beat finding machine
represents a second. When they synchronize, the machine has “found the beat.”

5 Statistical Models

The search for rhythmic patterns can take many forms. Models of statistical
periodicity do not presume that the signal itself is periodic; rather, they assume
that there is a periodicity in the underlying statistical distributions. In some
cases, the randomness is locked to a known periodic grid on which the statistics
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Fig. 6. The simplest useful model is a generalization of the “ball and urn” problem
where a collection of urns are mounted on a carousel. Each time a ball is removed from
one of the N urns (indicated by the arrow), the platform rotates, bringing a new urn
into position. When NV is unknown, it is necessary to infer both the percentage of balls
in each urn and the number of urns (the periodicity) from the experiments. In terms
of the periodicity-finding goals of beat tracking, inferring N is often more important
than inferring the individual percentages of black or white balls.

are defined. In other cases, the random fluctuations may be synchronized to a
grid with unknown period. In still other cases, the underlying rate or period of
the repetition may itself change over time. The statistical methods relate the
signal (for example, a musical performance) to the probability distribution of
useful parameters such as the period and phase of a repetitive phenomenon.
One simple model is shown in Fig. 6.

6 Automated Rhythm Analysis

Just as there are two kinds of notations for rhythmic phenomenon (the symbolic
and the acoustical), there are two ways to approach the detection of rhythms;
from a high level symbolic representation (such as an event list, musical score, or
standard MIDI file) or from a acoustical representation such as a direct encoding
in a .wav file. Both aspire to understand and decompose rhythmic phenomena,
and both exploit a variety of technologies such as the transforms, adaptive os-
cillators, and statistical techniques. A preliminary discussion of the rhythmic
parsing of symbolic sequences is then generalized by incorporating perceptually
motivated feature vectors to create viable beat detection algorithms for audio.
The performance of the various methods is compared in a variety of musical
passages. A visual representation is shown in Fig. 7.
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Fig. 7. A few seconds of four feature vectors of Pieces of Africa by the Kronos Quartet
are shown. The estimated beat times (which correctly locate the pulse in cases (a), (c),
and (d)) are indicated by the bumps in the curve o; that are superimposed over each
vector. The three timing parameters 7 (period), 7 (phase), and 67 (change in period,
not shown) are estimated from the feature vectors.

7 Beat-Based Signal Processing

There is an old adage in signal processing: if something is known about a signal,
use the knowledge. The ability to detect beat timepoints is information about
the naturally occurring points of division within a musical signal and it makes
sense to exploit these points when manipulating the sound. Signal processing
techniques can be applied on a beat-by-beat basis or the beat can be used
to control the parameters of a continuous process. Applications include beat-
synchronized special effects, spectral mappings with harmonic and/or inhar-
monic destinations (as illustrated in Fig. 8), and a variety of sound manipulations
that exploit the beat structure. Illustrative sound examples can be heard online
(Sethares 2008).

There are two ways to exploit beat information. First, each beat interval may
be manipulated individually and then the processed sounds may be rejoined.
To the extent that the waveform between two beat locations represents a com-
plete unit of sound, this is an ideal application for the Fourier transform since
the beat interval is analogous to a single “period” of a repetitious wave. The
processing may be any kind of filtering, modulation, or signal manipulation in
either the time or frequency domain. For example, Fig. 9 shows the waveform
of a song partitioned into beat-length segments by a series of envelopes. Each
of the segments can be processed separately and then rejoined. Using envelopes
that decay to zero at the start and end helps to smooth any discontinuities that
may be introduced.
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Fig. 8. In this schematic representation of a spectral mapping, a source spectrum with
peaks at fi, f2, f3,... is mapped into a destination spectrum with peaks specified at
g1, 92, g3, - - .. The spectrum of the original sound (the plot is taken from the G string
of a guitar with fundamental at 194 Hz) is transformed by the spectral mapping for
compatibility with the destination spectrum. The mapping changes the frequencies
of the partials while preserving the energy in each partial, leaving the magnitudes
approximately the same.

The second method uses beat locations to control a continuous process. For
example, a resonant filter might sweep from low to high over each beat interval.
The depth of a chorusing (or flanging) effect might change with each beat. The
cutoff frequency of a lowpass filter might move at each beat boundary. There are
several commercially available software plug-ins (for example, Camelspace and
SFEXMachine) that implement such tasks using the tempo specified by the audio
sequencer; the performer implicitly implements the beat tracking.

Since certain portions of the beat interval may be more perceptually salient
than others, these may be marked for special treatment. For example, time
stretching by a large factor often smears the attack transients. Since the beat
locations are known, so are the likely positions of these attacks. The stretching
can be done nonuniformly: to stretch only a small amount in the vicinity of the
start of the beat and to stretch a larger amount in the steady state portions
between beat locations.
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Fig. 9. A collection of windows separates the waveform into beat intervals, which can
be processed independently. After processing, the intervals are windowed again to help
reduce clicks and edge discontinuities. The final step (not shown) is to sum the intervals
to create a continuous output.

8 Musical Composition and Recomposition

The beats of a single piece may be rearranged and reorganized to create new
structures and rhythmic patterns including the creation of beat-based “variations

Fig. 10. This mosaic of Scot Joplin (created from many smaller pictures) presents
a visual analog of an audio collage: a piece is deconstructed into beats, and then
reconstructed by reordering the beats. A series of sound examples available on the
website (Sethares 2008) demonstrate this.
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on a theme.” For example, it is easy to remove every fourth beat. The effect is
to change a piece in 4/4 time into 3/4, as is demonstrated by transforming Scott
Joplin’s “Maple Leaf Rag” into the “Maple Leaf Waltz,” which can be heard on
the author’s website (Sethares 2008). Similarly, two pieces may be merged in a
time-synchronous manner to create hybrid rhythmic textures that inherit tonal
qualities from both. See Fig. 10.

9 Musical Analysis via Feature Scores

Traditional musical analysis often focuses on the use of note-based musical scores.
Since scores only exist for a small subset of the world’s music, it is helpful to be
able to analyze performances directly, to probe both the symbolic and the acous-
tical levels. For example, Figure 11 displays a skeletal tempo score that shows
how time evolves in several different performances of the Maple Leaf Rag. More
generally, Banuelos (2005) details several psychoacoustically motivated feature
scores that are particularly useful in an analysis of Alban Berg’s Violin Con-
certo, subtitled Dem Andenken eines Engels, that merges standard analytical
techniques with new feature scores in an elegant and insightful way. By con-
ducting analyses in a beat-synchronous manner, it is possible to track changes
in a number of psychoacoustically significant musical variables. This allows the
automatic extraction of new kinds of symbolic feature scores directly from the
performances.
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Fig.11. A tempo score is a plot of the duration of each beat vs. the beat number; it
shows how the tempo changes over time. In this plot, 29 performances of the Maple
Leaf Rag are played in a variety of tempos ranging from 7 = 0.22 to 7 = 0.4 sec per
beat. The plot shows how the tempo of each performance varies over time.

10 Conclusions

The ability to decompose a piece into its primitive beat-elements is a surpris-
ingly powerful technique for musical analysis, for musical composition (such as
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beat-synchronous sound collages) and for audio signal processing (where the
beat boundaries provide a natural partitioning of the signal). Rhythm and Trans-
forms (Sethares 2007) contrasts two ways of understanding temporal regularities
in the world around us: directly via perception and indirectly via mathemati-
cal analysis. “Rhythm” alludes to the perceptual apparatus that allows people
to effortlessly observe and understand rhythmic phenomena while “transforms”
evokes the mathematical tools used to detect regularities and to study patterns.
The book develops a variety of such applications and provides a wealth of sound
examples (Sethares 2008) that concretely demonstrate the efficacy and the lim-
itations of the techniques.
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