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Abstract— This paper discusses a dynamic decentralized algo- [13] derived upper bounds on the lifetime of sensor networks,
rithm for re-clustering the sensors of an ad hoc sensor network. while in [14] an analytical model to estimate and evaluate
Each sensor uses a random waiting timer and local criteria to the network lifetime is presented. [15] shows that a globally

determine whether to form a new cluster or to join a current timal solution to th bl f S tai twork
cluster. The clusterhead reselection process is triggered when the OPUIMal solution to the probiem of maximizing a stalic networ

energy reserves of the clusterhead falls below a threshold. The lifetime can be provided through a graph theoretic approach.
algorithm operates without a centralized controller, it operates Our previous work [6] used a decentralized algorithm for

asynchronously, and does not require that the location of the organizing an ad hoc sensor network into clusters. Each sensor
sensors be knowna priori. An analysis of cluster lifetime, the = oherates independently, monitoring communication among its
energy requirements of the algorithm, and a simplified model . .
are used to study the behaviors of the proposed algorithm. The nelghbors._ Based on the number Qf, neightbors and a ran-
performance of the algorithm is described analytically and via domized timer, each sensor either joins a nearby cluster, or
simulation. else forms a new cluster with itself as clusterhead. Since
clusterheads have more responsibilities than other sensors,
their power may drain more quickly. Accordingly, this paper
introduces a method of choosing new clusterheads for an
Unlike wireless cellular systems with a robust infrastructur@jready established cluster. In thelaptive Clustering Algo-
sensors in an ad hoc network may be required to self-organigéim via Waiting Timei(ACAWT), the clusterhead reselection
Such sensor networks are self-configuring distributed systeprecess is triggered when the energy reserves of the cluster-
and, for reliability, should also operate without centralizellead falls below a threshold. This self-configuration is energy
control. In addition, because of the limited energy sourcefficient, scalable, and extendeds the lifetime of the network.
energy-efficiency is a critical consideration. An analysis of cluster lifetime and a simplified model of the
There has been extensive research on the design afgbrithm are derived, and the results are compared to the
development of energy efficient networking techniques [1lpehavior of the algorithm in a number of settings.
[11]. In [1], the Low-Energy Adaptive Clustering Hierar-
chy (LEACH) utilizes a randomized periodical rotation of Il. THE ADAPTIVE CLUSTERINGALGORITHM VIA
clusterheads to balance the energy load among the sensors. WAITING TIMER (ACAWT)
LEACH-C (Centralized) [2] uses a centralized controller to This section describes a randomized distributed algorithm
select clusterheads. The main drawbacks of this algorithm akat forms clusters and reselects clusterheads efficiently. The
nonautomatic clusterhead selection and the requirement thetwork setup is performed in three phases: “clustering,”
the position of all sensors must be known. LEACH's stochastigeselecting a clusterhead,” and “restructuring the clusters.”
algorithm is extended in [3] with a deterministic clusterheatihe main assumptions on the network are that (a) the sensors
selection. Simulation results demonstrate that an increasea@é in fixed but unknown locations, (b) all links between
network lifetime can be achieved compared with the origingknsors are bidirectional, and (c) all sensors have the same
LEACH protocol. The Ad hoc Network Design Algorithmtransmitting range. Observe that there is no base station or
(ANDA) [4] maximizes the network lifetime by determiningcentralized control to coordinate or supervise activities among
the optimal cluster size and the optimal assignment of sensggssors.
to clusterheads but requires a priori knowledge of the number
of clusterheads, number of sensors in the network, and tRe Phase I: Forming Clusters
location of all sensors. The Weighted Clustering Algorithm
(WCA) [5] considers the number of neighbors, transmissiq
power, mobility, and battery usage in choosing clusters.
limits the number of sensors in a cluster so that clusterhe
can handle the load without degradation in performance. wr kD zﬁ-WT.(’“) 1)
These clustering methods rely on synchronous clocking for the ¢ v
exchange of information among sensors which typically limitwhere WTi(’“) is the waiting time of sensar at time step k
these algorithms to smaller networks [12]. The authors and0 < 8 < 1 is inversely proportional to the number of

I. INTRODUCTION

When sensors of a network are first deployed, they may
ply the Clustering Algorithm via Waiting Timer (CAWT)
m [6] to partition the sensors into clusters using the waiter



neighbors. If the random waiting timer expires and none &. Phase Ill: Restructure the Clusters

the neighboring sensors are in a cluster, then sendeclares  por real applications, it is possible that the clusterhead may
itself a clusterhead. It then broadcasts a message notifyingpi§ifunction before broadcasting the reselection message. One
neighbors that they are assigned to join the new cluster wiBjytion is that if a certain amount of time has passed with
ID 1. no messages from the clusterhead, then all sensors begin their
After applying the CAWT, there are three different kind$imers and apply the algorithm. As a result, restructuring the
of sensors: (1) the clusterheads (2) sensors with an assigegfter formation of the network may be required when the
cluster ID (3) sensors which become 2-hop sensors. Theggsterhead malfunctions or when none of the cluster members
sensors will join any nearby cluster afterseconds where  satisfy the energy constraint. In this case, it may necessary to

is a constant chosen to be larger than all of the waiting timgg-initialize the network into new clusters to help balance the
Thus, the topology of the ad-hoc network is now representgg@ergy burden.

by a hierarchical collection of clusters.
[1l. ANALYSIS OF THEACAWT

B. Phase II: Re-select A Clusterhead Since a cluster is a small network, the behavior of the
algorithms may be analyzed (following our results in [6]) by

This subsection presents two methods of choosing a neyhdifying the Averaged Model to investigate and describe the
clusterhead for an existing cluster, the centralized model agghclustering behavior.

the distributed model. If the enerdy; of clusterhead is less
than a threshold leve}, then sensor broadcasts a message, .
to its cluster members to start the reselection process. Oﬁy Overview of The Averaged Model o .
those sensors with energy larger thaare eligible. The CAWT can be modeled by a simplified averaging
1) The Centralized ModelThe current clusterhead, sensoProcedure. Assume that a single clusterhead and an average

i, determines a new clusterhead by aggregating energy &itnber of neighboring sensofsV)[N;] are removed during
neighbor information from its cluster members and solvin@aCh iteratiork. Assume that each sensor will be removed with

the optimization problem: probabilitypyf% = r/my, wherery, is the number of sensors
to be removed andn; is the number of sensors remaining
El(k) N at iterationk. Denote the collection of sensors at iteration
arg max (1- El,ﬁw) ' (2) by Vi. Since a clusterhead and its neighboring sensors are

removed at each iteration, the collection of sensors at the
next iteration,Vj1, is simply a new and smaller network.
subjectto: E; > n; L € C;, (3) Lindeberg Theorem [16] can be applied to approximate the
distribution of the number of clusterheads at iteratloty
whereEl(k) is the energy at time stely E;"** is the initial  A/(u, 02), wherep, = >0 pgk)' o2 =M pgk)(l—pf;k)),
energy of sensol, C; is the index set of the cluster members,,, is the number of sensors W, Pik) is the updated
of sensolii, andN; is the number of neighbors of sengoThat  propability distribution of sensor at iteration k, which is

is, the current clusterhead picks the new clusterhead, Choosﬂﬂgportional to the number of neighboring sensars Iy,
a member with large energy and many neighbors. and I is the index set of sensors at iterati&@n Once the
2) The Distributed Model and Subcluster Formatiohhe procedure terminates, the number of iterations is an estimate
distributed method operates much like the CAWT in utilizingf the number of clusterheads formed in the network.
a random timer. Once the energy in the current clusterhead
is below the threshold, it transmits a message to start tBr? Modified Averaged Model
the

reselection process. Each cluster member then checks

energy constraint. As long as the cluster member satisfies thd € operation of the ACAWT with the distributed model
constraint, it generates a random waiting time: is partitioned into rounds, where each round initializes, sub-

clusters are formed, clusterheads are reselected, and finally a
Ei(k) N *) reorganization phase may be needed. This modified Averaged
W) W, (4)  Model is given in Table I.

’ To obtain the mean and variance of the number of cluster-
which depends on the number of neighboring cluster membéeads of each iteration, the probability distribution of these
N¢ and the remaining energy level. The motivation for formingandom variables must be updated. However, it is not simple
subclusters is to provide a way to do multi-hop communicatian calculatepl(j’k) at iterationk at round] since the process of
within a cluster, which may be needed because sensors aresalecting a clusterhead at each iteration is complex. The fol-
more than 2 hops away from the initial clusterhead and senswwing simplified analysis restructures the connectivity of the
may be up to 4 hops away from the new clusterhead. Heneetwork so that each sensor has the same average neighboring
sensors in a cluster may be further classified as: (1) subclustensity at each iteration. Therefore, we have
member, (2) subclusterhead, or (3) clusterhead. Subclusters NGH) 0) . gUMIN
and subclusterheads are generated by applying the ACAWT E(jv’““)[Ni] _ Y T [ i].

to the cluster topology. m,(fll

Wk — (1 -

(®)



TABLE |
MODIFIED AVERAGED MODEL: PROCEDURE FOR ANALYZING THE
ADAPTIVE CLUSTERINGALGORITHM VIA WAITING TIMER.

a) Letm,@ be the number of possible clusterhead candidates at
iterationk at round;.
b) Let N(J"€> be the sum of neighboring sensors at iteration

P
at round;, N< k) — mk N(] *) | wherei € I, x; I; 1 is the

index set of Ilkely candldates at |terat|dmat roundj.

c) Let EG-*)[N;] be the average number of neighbors at
NGO

OO

iteration & at roundj, EU:0[N;] =

9]
d) Assign the prior probablllty;“’ ) to sensoti, proportional

to the number of neighboring sensdk?(j ) and energy

k) )
J gk ’ B,
IeveIE( )/Em‘“” That is p( ) N(7 Ry BT

e) Let E((jb) be the remaining energy of a clusterhead at round

f) Let the initial number of sensors that will be removg&f) be OV j.

assignj =0
while E(J) <n
Q) subclusterlng formation
assignk =0 )
while (m{) — () > 0
m) (J) }(Cj)

Tt = (G8) _p(9) . 3.k
E g,k‘+1)[Ni] _N ( E [Ni]y
7)
Met1
7’1&) [EUR+D[N;]T* + 1,
k=k+1.
end
Jj=j+1L
(2) reselecting a new clusterhead
if k>0

assign the subclusterhead with the lowest sensor ID

to be the new clusterhead with energﬁ).
else
stop (restructure the cluster formation).
end
end
*[] is the ceiling function.

and a simple formula for predicting the number of subcluster-
heads at roung is
m&)

seh = TEON]] £ 1 (8)

The close relationship between the behavior of the ACAWT
and that of the modified Averaged Model is shown experimen-
tally in Section VI.

IV. ENERGY CONSUMPTIONANALYSIS

This section considers energy consumption of the ACAWT
using both the centralized and distributed models. The total
power requirements include both the power required to trans-
mit messages and the power required to receive (or process)
messages. The 1-hop and 2-hop cluster members depend on
the initial hierarchy of clusters. A-hop cluster member is a
sensor which ish hops away from its initial clusterhead. Let
N; be the number of neighboring sensors of semsb/ff’h"”
be the number ofi-hop cluster members of clusterhead sensor
i, and I, be the index set of the subclusterheads.

A. The Centralized Model

For the present clusterhead to select a new clusterhead, it
must gather information from the sensors in the cluster. Thus
the clusterhead requests data by sending the interest message
using 2 rounds of local flooding propagation to its 1-hop and
2-hop cluster members. The number of transmissigfisand
receptionsNg, of this design choice are approximately given

by

Thus, the distribution of the number of subclusterheads can

be approximated by (iisch; , azchj), where

N’_(tj) N(J) ()

k

oo, = by = 30 30,
k=1 k=1 1=1

(7) N(J)
k )
Orchy = ZU:« ZZP“ (=),
k=1 i=1

where N/ is the number of iterations at rourid

Moreover, suppose that the expectation of the number of

N§, ~1+4 N7, (9)
NI%I ~ Nil—hop + Z N77 (10)
JEC;

where(; is the index set of the cluster members of sensor

Data from the cluster members is then sent towards the
clusterhead. The number of transmissidvig, and receptions
Ng, are

neighboring sensors of each sensor is used to approximate the
number of neighboring sensors that will be removed at each

iteration (i.e. the sensors which will eventually join the new

subcluster). Thus,

-
1
5 ZN,, for allk.

mg’ =1

EURN,] = EV[N;] =

Then
) = [ED[N,]] +1,

N;’Q s Nilfhop + fohop, (11)
Nf, ~ > Nj. (12)
JjEC;

When the clusterhead receives the desired information for
solving the optimization problem of (2) and (3), it determines
the new clusterhead and notifies all members. The number of
transmissionsVy, and receptionsVy ~ are thusNg, = Ng,
andNg = Ng, .



B. The Distributed Model V. SENSORLIFETIME AND CLUSTERLIFETIME

This subsection examines the energy consumption of thel he main objective of the ACAWT is to extend the lifetime

distributed model in three phases. Phase | of this moddl the clusters so that the network may remain functional
is to broadcast a message and group cluster members fRf¢ger Say that the cluster lifetime occurs when the first
subclusters. In this phase, the cluster is considered as a sif@fISor in the cluster fails. Since the clusterhead requires large
network where the energy consumption analysis of the CAWAmounts of energy for communication, it is likely that the

[6] can be applied. Therefore, if the current clusterhead figst sensor failure occurs at the clusterhead. Therefore, it is
sensori. the number of transmissiom\z‘,% and receptionwg, worthwhile to understand the lifetime of individual sensors.
1 1 L1

in an error-free channel are approximately given by Depending on th_e traffic model_ of the network, the ex-
pected sensor lifetime may be different. Suppose that the
J L ho o ho sensors measure periodically and transmit the data back to the
Np, =2 (N; "7+ NP, (13)  clusterhead for further processing with a steady traffic. We
also assume that the clusterhead collects the information from
cluster members and communicates with the base station with
N}%I ~2. Z N;. (14) a steady traffic flow. Denot@c" as the power dissipation of
sensot for being a clusterhead arfg] as the power dissipation
of sensor for being a cluster member. From the analysis of
The mission of Phase Il is to collect sufficient informatiothe Modified Averaged Model in Section Ill, sensas chosen
from subcluster members. The subclusterhead first broadcastbe a clusterhead at roupabith probabilitypgj). Note that if
an interest message to inform its members about what kindggfnsor has not been chosen as a clusterhead before,péﬁén
data it requires. Based on this message, the subcluster mgproportional to the number of neighboring sensors and its

bers propogate the desired data back to the subclusterheafbrgy level; otherwiSQqu) = 0. Thus, the expected lifetime
Thus, the number of transmissiong}, and receptionsVy; E[Tl(j)] of senson at roundj is

are approximately

JjEC;

Ez(]) _ Ei(j'i‘l)

_p(]) . Ez(J) _ E§j+1)
i P ’

Ni ~ S (142N NZheny as) E[TY)] = PR
jel, ¢

+(1-p)

where £ — EUTY s the energy consumption at round

d 1—hop . j- Hence, the operation time of performing the phase of
Np, = Z(NJ' +2 Z Ne). (16) reselecting a clusterhead is

jel, keC; 4

_ _ B[Ten = > BT
In the final phase, subclusterheads exchange ID informa- ;

tion in order to determine the new clusterhead. The ener . . .

consumed in this phase may depend on the number of s%-‘ce th's_ Process Is a _p_art .Of the network operation, the

clusterheads, the related positions among subclusterheads,ea{?P&Cted lifetime of sensons given by

how they communicate with each other. Assume that there E[T;] > E[Tien

exists ny.,, subclusterheads in a cluster. In this case, each _ ZE[T(]')]

subclusterhead broadcasts an interest message including its , i

sensor ID to the whole cluster, which allows subclusterheads !

to figure out which subclusterhead is the new clusterheadBased upon the definition of the cluster lifetime, the cluster

immediately as they receive the ID information and thereijetime is equal to the minimum of the expected lifetime of

complete the reselection process. Therefore, we may appré®nsors. That is,

i issioREd i d

g;ate the number of transmissioé;, and receptionsVy_ Lon = min{E[T}]} > min,{E[T}]on}. (19)

However, for a cluster with a fixed clusterhead, the expected
lifetime of sensori with the prior probabilityp; for being a

d . _l—hop 2—h0p
NE, ~ fusen - (N + N, A7) Clusterhead is
- E; E;
NE ~ngen - Y N, (18) Peh 2
J€Ci Similarly, the expected lifetime of a cluster with a fixed
h vsi h d with th I clusterhead is . y
e analysis suggests that, compared with the overall energy Lo = min{ E[T}]}. 1)

consumption of the distributed model, the centralized model

consumes less energy for reselecting a clusterhead while th&o quantitatively measure how well the cluster lifetime are

reselection process may fail due to the malfunction of thextended, we introduce a parameter, cluster lifetime factor
current clusterhead and the corrupted information collectiofCLF). The CLF is defined as the ratio of the cluster lifetime



of a changing clusterhead to the cluster lifetime of a fixed
clusterhead. Thus, the CLF is
crLF = Len _ M E[T]} 22)
L., mind{E[T;]}

Now we provide an example on how the cluster lifetime can
be extended by applying the ACAWT. Assume that sensors
of the network have identical initial energy levels and power
dissipation, which meang8?** = Ej,, P*" = P.;, and P; =
P for all i. Note thatP"* = P., = u- P, whereu > 1. In o
a cluster with the strategy of fixing clusterhead, the cluster
lifetime is

~ . Emer Ey y
Len = mint oo} = 75 o
On the other hand, assuming that senis@ the clusterhead
at roundj, the cluster lifetime with a changing clusterhead is '
EY) _ gUtD) pmes _ (pU) _ Ut No—e
Lep > min{—= o + = L L I . . . . ) .
Piﬂ v P; Fig. 1. A subcluster is formed in a specific cluster which requires reselection
AE: En — AE: of a new clusterhead. In the subclustering formatior” represents the initial
— mini{ L 0 l} clusterhead (ich);‘ = ” represents a subclusterhead (sch) using the ACAWT.
u- P P ’
where AE; = EY) — EVTY_ Therefore, the cluster lifetime 81
factor (CLF) is @ L
©
. AFE; 2
CLF > u—(u—1) min{—=}, (3) & 16|
0 3
. . o
which shows thatC' LF > 1 sinceu > 1 and Ey > AFE;. ] 5
That means the cluster can last longer by using dlfferentﬁg

I
T

clusterheads at different times, further extending the lifetime
of the network.

VI. EXPERIMENTAL RESULTS

Average Numb

This section explores the dynamic distribution of cluster- L
heads by applying the centralized or the distributed model
for reselecting clusterheads. In the experiments, the CAWT P o6 e 024
is carried out first to form the initial hierarchy of clusters, R
which provides the backbone for the clusterhead-reselection
process. Afterwards, each clusterhead examines its enef@y?2. Average number of subclusterheads as a function of the Ratio
level to determine whether to start the reselection process.

The following experiments investigate how subclusters are
formed in a cluster and how the role of the clusterhead changesand the transmission powek/l. Observe that compared
among the cluster members after carrying out the reselectioith the algorithm, though the standard deviation of the the
operation. Given a randomized energy level to each sensmgan number of subclusterheads of the analysis is large, these
figure 1 shows how the subclusters are formed in a specif@sults suggest that the modified Averaged Model is a way to
cluster. approximately predict the performance of the ACAWT. The

Figure 2 illustrates the relationship between the averageaphs also show that in most cases the number of subclusters
number of subclusterheads aRd! ratio over 200 runs, where in a cluster is either one or two at the first round.

R/l is the ratio of transmitting range to the side lengtt of For comparison, the same network topology and sensor
the square. It shows that for a largBy! ratio (i.e. a larger energy level are used to study the performance of the two
cluster), it is less likely to have a new clusterhead to include atlodels during the first round. Let the threshold leyebe
sensors in the original cluster. This may be because a senggy,. /2. Samples from the distributiong,,,... - U(0,1) and
can not be a clusterhead twice. Emas/2-(14U(0,1)) are assigned to clusterheads and cluster

In order to validate the analysis of the procedure of thmembers as the remaining energy, respectively. Figures 4 and
proposed algorithm, figure 3 shows the standard deviatibrdemonstrate typical runs of the ACAWT. It shows that this
of the mean number of subclusterheads when applying tkied of local dynamic distribution of clusterheads allow each
ACAWT, the prediction formula, and the Modified Averagedluster to adjust its energy load among cluster members, which
Model, respectively. The plots vary the number of sensoadleviates the problem that the battery of fixed clusterheads
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deviations are taken 200 runs.

The average number of subclusterheads formed in a cluster us
(1) the Adaptive Clustering Algorithm, (2) the prediction formula, and (3) th
Modified Averaged Model, respectively, with varyidg/! ratio; the standard

o

23
NG P o=,
\]m;fcﬁ' cch

Clusters are formed and clusterheads are reselected in a random

Fig. 5.
network of 200 sensors witlR/l

0.125; “[1” represents the initial

will drain quickly. Therefore, when the reselection operatiogiusterhead (ich);“0” represents a new clusterhead using the centralized

is completed, the energy usage is spread among the net

and thereby the lifetime of the network is extended.
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Fig. 4.

protocol (dch).

Clusters are formed and clusterheads are reselected in a ran
network of 100 sensors witlR/l = 0.175; “[I” represents the initial
clusterhead (ich);“¢” represents a new clusterhead using the centralized
protocol (cch);“ A ” represents a new clusterhead using the decentralized

VIl. CONCLUSION

This paper has presented a randomized decentralized[%il-c"Y' Wen and W. A. Sethares, “Automatic decentralized clustering for

V\R{Hpcol (cch);“ A ” represents a new clusterhead using the decentralized
protocol (dch).

the algorithm. Under the assumption of energy levels and
power dissipation of the sensors, the analysis of cluster lifetime
suggests that the proposed algorithm may be a solution to

_ospread the energy usage over the network and achieve a better

load balancing among clusterheads.
In this paper, we have assumed that the sensors function well
and the communication environment is error free. In future,

“©we plan to investigate certain failure scenarios in the network,

such as the event of clusterhead failure, and consider fault-
tolerance in the network operation.

h
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