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Abstract— This paper discusses a dynamic decentralized algo-
rithm for re-clustering the sensors of an ad hoc sensor network.
Each sensor uses a random waiting timer and local criteria to
determine whether to form a new cluster or to join a current
cluster. The clusterhead reselection process is triggered when the
energy reserves of the clusterhead falls below a threshold. The
algorithm operates without a centralized controller, it operates
asynchronously, and does not require that the location of the
sensors be knowna priori. An analysis of cluster lifetime, the
energy requirements of the algorithm, and a simplified model
are used to study the behaviors of the proposed algorithm. The
performance of the algorithm is described analytically and via
simulation.

I. I NTRODUCTION

Unlike wireless cellular systems with a robust infrastructure,
sensors in an ad hoc network may be required to self-organize.
Such sensor networks are self-configuring distributed systems
and, for reliability, should also operate without centralized
control. In addition, because of the limited energy source,
energy-efficiency is a critical consideration.

There has been extensive research on the design and
development of energy efficient networking techniques [1]-
[11]. In [1], the Low-Energy Adaptive Clustering Hierar-
chy (LEACH) utilizes a randomized periodical rotation of
clusterheads to balance the energy load among the sensors.
LEACH-C (Centralized) [2] uses a centralized controller to
select clusterheads. The main drawbacks of this algorithm are
nonautomatic clusterhead selection and the requirement that
the position of all sensors must be known. LEACH’s stochastic
algorithm is extended in [3] with a deterministic clusterhead
selection. Simulation results demonstrate that an increase of
network lifetime can be achieved compared with the original
LEACH protocol. The Ad hoc Network Design Algorithm
(ANDA) [4] maximizes the network lifetime by determining
the optimal cluster size and the optimal assignment of sensors
to clusterheads but requires a priori knowledge of the number
of clusterheads, number of sensors in the network, and the
location of all sensors. The Weighted Clustering Algorithm
(WCA) [5] considers the number of neighbors, transmission
power, mobility, and battery usage in choosing clusters. It
limits the number of sensors in a cluster so that clusterheads
can handle the load without degradation in performance.
These clustering methods rely on synchronous clocking for the
exchange of information among sensors which typically limits
these algorithms to smaller networks [12]. The authors in

[13] derived upper bounds on the lifetime of sensor networks,
while in [14] an analytical model to estimate and evaluate
the network lifetime is presented. [15] shows that a globally
optimal solution to the problem of maximizing a static network
lifetime can be provided through a graph theoretic approach.

Our previous work [6] used a decentralized algorithm for
organizing an ad hoc sensor network into clusters. Each sensor
operates independently, monitoring communication among its
neighbors. Based on the number of neightbors and a ran-
domized timer, each sensor either joins a nearby cluster, or
else forms a new cluster with itself as clusterhead. Since
clusterheads have more responsibilities than other sensors,
their power may drain more quickly. Accordingly, this paper
introduces a method of choosing new clusterheads for an
already established cluster. In theAdaptive Clustering Algo-
rithm via Waiting Timer(ACAWT), the clusterhead reselection
process is triggered when the energy reserves of the cluster-
head falls below a threshold. This self-configuration is energy
efficient, scalable, and extendeds the lifetime of the network.
An analysis of cluster lifetime and a simplified model of the
algorithm are derived, and the results are compared to the
behavior of the algorithm in a number of settings.

II. T HE ADAPTIVE CLUSTERING ALGORITHM VIA

WAITING TIMER (ACAWT)

This section describes a randomized distributed algorithm
that forms clusters and reselects clusterheads efficiently. The
network setup is performed in three phases: “clustering,”
“reselecting a clusterhead,” and “restructuring the clusters.”
The main assumptions on the network are that (a) the sensors
are in fixed but unknown locations, (b) all links between
sensors are bidirectional, and (c) all sensors have the same
transmitting range. Observe that there is no base station or
centralized control to coordinate or supervise activities among
sensors.

A. Phase I: Forming Clusters

When sensors of a network are first deployed, they may
apply the Clustering Algorithm via Waiting Timer (CAWT)
from [6] to partition the sensors into clusters using the waiter
timer

WT
(k+1)
i = β ·WT

(k)
i , (1)

whereWT
(k)
i is the waiting time of sensori at time step k

and 0 < β < 1 is inversely proportional to the number of
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neighbors. If the random waiting timer expires and none of
the neighboring sensors are in a cluster, then sensori declares
itself a clusterhead. It then broadcasts a message notifying its
neighbors that they are assigned to join the new cluster with
ID i.

After applying the CAWT, there are three different kinds
of sensors: (1) the clusterheads (2) sensors with an assigned
cluster ID (3) sensors which become 2-hop sensors. These
sensors will join any nearby cluster afterτ seconds whereτ
is a constant chosen to be larger than all of the waiting times.
Thus, the topology of the ad-hoc network is now represented
by a hierarchical collection of clusters.

B. Phase II: Re-select A Clusterhead

This subsection presents two methods of choosing a new
clusterhead for an existing cluster, the centralized model and
the distributed model. If the energyEi of clusterheadi is less
than a threshold levelη, then sensori broadcasts a message
to its cluster members to start the reselection process. Only
those sensors with energy larger thanη are eligible.

1) The Centralized Model:The current clusterhead, sensor
i, determines a new clusterhead by aggregating energy and
neighbor information from its cluster members and solving
the optimization problem:

arg max
l

(1− E
(k)
l

Emax
l

)Nl (2)

subject to: El > η; l ∈ Ci, (3)

whereE
(k)
l is the energy at time stepk, Emax

l is the initial
energy of sensorl, Ci is the index set of the cluster members
of sensori, andNl is the number of neighbors of sensorl. That
is, the current clusterhead picks the new clusterhead, choosing
a member with large energy and many neighbors.

2) The Distributed Model and Subcluster Formation:The
distributed method operates much like the CAWT in utilizing
a random timer. Once the energy in the current clusterhead
is below the threshold, it transmits a message to start the
reselection process. Each cluster member then checks the
energy constraint. As long as the cluster member satisfies the
constraint, it generates a random waiting time:

WT
(k+1)
i = (1− E

(k)
i

Emax
i

)Nc
i ·WT

(k)
i , (4)

which depends on the number of neighboring cluster members
N c

i and the remaining energy level. The motivation for forming
subclusters is to provide a way to do multi-hop communication
within a cluster, which may be needed because sensors are no
more than 2 hops away from the initial clusterhead and sensors
may be up to 4 hops away from the new clusterhead. Hence,
sensors in a cluster may be further classified as: (1) subcluster
member, (2) subclusterhead, or (3) clusterhead. Subclusters
and subclusterheads are generated by applying the ACAWT
to the cluster topology.

C. Phase III: Restructure the Clusters

For real applications, it is possible that the clusterhead may
malfunction before broadcasting the reselection message. One
solution is that if a certain amount of time has passed with
no messages from the clusterhead, then all sensors begin their
timers and apply the algorithm. As a result, restructuring the
cluster formation of the network may be required when the
clusterhead malfunctions or when none of the cluster members
satisfy the energy constraint. In this case, it may necessary to
re-initialize the network into new clusters to help balance the
energy burden.

III. A NALYSIS OF THE ACAWT

Since a cluster is a small network, the behavior of the
algorithms may be analyzed (following our results in [6]) by
modifying the Averaged Model to investigate and describe the
subclustering behavior.

A. Overview of The Averaged Model

The CAWT can be modeled by a simplified averaging
procedure. Assume that a single clusterhead and an average
number of neighboring sensorsE(k)[Ni] are removed during
each iterationk. Assume that each sensor will be removed with
probability p

(k)
rm = rk/mk, whererk is the number of sensors

to be removed andmk is the number of sensors remaining
at iterationk. Denote the collection of sensors at iterationk
by Vk. Since a clusterhead and its neighboring sensors are
removed at each iteration, the collection of sensors at the
next iteration,Vk+1, is simply a new and smaller network.
Lindeberg Theorem [16] can be applied to approximate the
distribution of the number of clusterheads at iterationk by
N (µk, σ2

k), whereµk =
∑mk

i=1 p
(k)
i , σ2

k =
∑mk

i=1 p
(k)
i (1−p

(k)
i ),

mk is the number of sensors inVk, p
(k)
i is the updated

probability distribution of sensori at iteration k, which is
proportional to the number of neighboring sensors,i ∈ Ik,
and Ik is the index set of sensors at iterationk. Once the
procedure terminates, the number of iterations is an estimate
of the number of clusterheads formed in the network.

B. Modified Averaged Model

The operation of the ACAWT with the distributed model
is partitioned into rounds, where each round initializes, sub-
clusters are formed, clusterheads are reselected, and finally a
reorganization phase may be needed. This modified Averaged
Model is given in Table I.

To obtain the mean and variance of the number of cluster-
heads of each iteration, the probability distribution of these
random variables must be updated. However, it is not simple
to calculatep(j,k)

i at iterationk at roundj since the process of
selecting a clusterhead at each iteration is complex. The fol-
lowing simplified analysis restructures the connectivity of the
network so that each sensor has the same average neighboring
density at each iteration. Therefore, we have

E(j,k+1)[Ni] =
N

(j,k)
b − r

(j)
k · E(j,k)[Ni]

m
(j)
k+1

. (5)



3

TABLE I

MODIFIED AVERAGED MODEL: PROCEDURE FOR ANALYZING THE

ADAPTIVE CLUSTERING ALGORITHM VIA WAITING TIMER.

a) Let m(j)
k be the number of possible clusterhead candidates at

iterationk at roundj.

b) Let N
(j,k)
b be the sum of neighboring sensors at iterationk

at roundj, N
(j,k)
b =

Pm
(j)
k

i=1 N
(j,k)
i , wherei ∈ Ij,k; Ij,k is the

index set of likely candidates at iterationk at roundj.
c) Let E(j,k)[Ni] be the average number of neighbors at

iterationk at roundj, E(j,0)[Ni] =
N

(j,0)
b

m
(j)
0

.

d) Assign the prior probabilityp(j,k)
i to sensori, proportional

to the number of neighboring sensorsN
(j,k)
i and energy

level E(j)
i /Emax

i . That is,p(j,k)
i ∝ N

(j,k)
i

N
(j,k)
b

· E
(j)
i

Emax
i

.

e) Let E(j)
ch be the remaining energy of a clusterhead at roundj.

f) Let the initial number of sensors that will be removedr
(j)
0 be 0∀ j.

assignj = 0

while E
(j)
ch < η

(1) subclustering formation
assignk = 0

while (m
(j)
k − r

(j)
k ) > 0

m
(j)
k+1 = m

(j)
k − r

(j)
k ,

E(j,k+1)[Ni] =
N

(j,k)
b

−r
(j)
k
·E(j,k)[Ni]

m
(j)
k+1

,

r
(j)
k+1 = dE(j,k+1)[Ni]e∗ + 1,

k = k + 1.
end
j = j + 1.

(2) reselecting a new clusterhead
if k > 0

assign the subclusterhead with the lowest sensor ID

to be the new clusterhead with energyE
(j)
ch .

else
stop (restructure the cluster formation).

end
end
∗d·e is the ceiling function.

Thus, the distribution of the number of subclusterheads can
be approximated byN (µschj , σ2

schj
), where

µschj =
N

(j)
it∑

k=1

µkj =
N

(j)
it∑

k=1

m
(j)
k∑

i=1

p
(j,k)
i , (6)

σ2
schj

=
N

(j)
it∑

k=1

σ2
kj

=
N

(j)
it∑

k=1

m
(j)
k∑

i=1

p
(j,k)
i (1− p

(j,k)
i ), (7)

whereN
(j)
it is the number of iterations at roundj.

Moreover, suppose that the expectation of the number of
neighboring sensors of each sensor is used to approximate the
number of neighboring sensors that will be removed at each
iteration (i.e. the sensors which will eventually join the new
subcluster). Thus,

E(j,k)[Ni] = E(j)[Ni] =
1

m
(j)
0

m
(j)
0∑

i=1

Ni, for all k.

Then
r
(j)
k = dE(j)[Ni]e+ 1,

and a simple formula for predicting the number of subcluster-
heads at roundj is

N
(j)
sch =

m
(j)
0

dE(j)[Ni]e+ 1
. (8)

The close relationship between the behavior of the ACAWT
and that of the modified Averaged Model is shown experimen-
tally in Section VI.

IV. ENERGY CONSUMPTIONANALYSIS

This section considers energy consumption of the ACAWT
using both the centralized and distributed models. The total
power requirements include both the power required to trans-
mit messages and the power required to receive (or process)
messages. The 1-hop and 2-hop cluster members depend on
the initial hierarchy of clusters. An-hop cluster member is a
sensor which isn hops away from its initial clusterhead. Let
Ni be the number of neighboring sensors of sensori, Nn−hop

i

be the number ofn-hop cluster members of clusterhead sensor
i, andIs be the index set of the subclusterheads.

A. The Centralized Model

For the present clusterhead to select a new clusterhead, it
must gather information from the sensors in the cluster. Thus
the clusterhead requests data by sending the interest message
using 2 rounds of local flooding propagation to its 1-hop and
2-hop cluster members. The number of transmissionsN c

T1
and

receptionsN c
R1

of this design choice are approximately given
by

N c
T1
≈ 1 + N1−hop

i , (9)

N c
R1
≈ N1−hop

i +
∑

j∈Ci

Nj , (10)

whereCi is the index set of the cluster members of sensori.
Data from the cluster members is then sent towards the

clusterhead. The number of transmissionsN c
T2

and receptions
N c

R2
are

N c
T2
≈ N1−hop

i + N2−hop
i , (11)

N c
R2
≈

∑

j∈Ci

Nj . (12)

When the clusterhead receives the desired information for
solving the optimization problem of (2) and (3), it determines
the new clusterhead and notifies all members. The number of
transmissionsN c

T3
and receptionsN c

R3
are thusN c

T3
= N c

T1

andN c
R3

= N c
R1

.
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B. The Distributed Model

This subsection examines the energy consumption of the
distributed model in three phases. Phase I of this model
is to broadcast a message and group cluster members into
subclusters. In this phase, the cluster is considered as a small
network where the energy consumption analysis of the CAWT
[6] can be applied. Therefore, if the current clusterhead is
sensori, the number of transmissionsNd

T1
and receptionsNd

R1

in an error-free channel are approximately given by

Nd
T1
≈ 2 · (N1−hop

i + N2−hop
i ), (13)

Nd
R1
≈ 2 ·

∑

j∈Ci

Nj . (14)

The mission of Phase II is to collect sufficient information
from subcluster members. The subclusterhead first broadcasts
an interest message to inform its members about what kind of
data it requires. Based on this message, the subcluster mem-
bers propogate the desired data back to the subclusterhead.
Thus, the number of transmissionsNd

T2
and receptionsNd

R2

are approximately

Nd
T2
≈

∑

j∈Is

(1 + 2 ·N1−hop
j + N2−hop

j ), (15)

Nd
R2
≈

∑

j∈Is

(N1−hop
j + 2 ·

∑

k∈Cj

Nk). (16)

In the final phase, subclusterheads exchange ID informa-
tion in order to determine the new clusterhead. The energy
consumed in this phase may depend on the number of sub-
clusterheads, the related positions among subclusterheads, and
how they communicate with each other. Assume that there
exists nsch subclusterheads in a cluster. In this case, each
subclusterhead broadcasts an interest message including its
sensor ID to the whole cluster, which allows subclusterheads
to figure out which subclusterhead is the new clusterhead
immediately as they receive the ID information and thereby
complete the reselection process. Therefore, we may approx-
imate the number of transmissionsNd

T3
and receptionsNd

R3

by

Nd
T3
≈ nsch · (N1−hop

i + N2−hop
i ), (17)

Nd
R3
≈ nsch ·

∑

j∈Ci

Nj , (18)

The analysis suggests that, compared with the overall energy
consumption of the distributed model, the centralized model
consumes less energy for reselecting a clusterhead while the
reselection process may fail due to the malfunction of the
current clusterhead and the corrupted information collection.

V. SENSORL IFETIME AND CLUSTER L IFETIME

The main objective of the ACAWT is to extend the lifetime
of the clusters so that the network may remain functional
longer. Say that the cluster lifetime occurs when the first
sensor in the cluster fails. Since the clusterhead requires large
amounts of energy for communication, it is likely that the
first sensor failure occurs at the clusterhead. Therefore, it is
worthwhile to understand the lifetime of individual sensors.

Depending on the traffic model of the network, the ex-
pected sensor lifetime may be different. Suppose that the
sensors measure periodically and transmit the data back to the
clusterhead for further processing with a steady traffic. We
also assume that the clusterhead collects the information from
cluster members and communicates with the base station with
a steady traffic flow. DenoteP ch

i as the power dissipation of
sensori for being a clusterhead andPi as the power dissipation
of sensori for being a cluster member. From the analysis of
the Modified Averaged Model in Section III, sensori is chosen
to be a clusterhead at roundj with probabilityp

(j)
i . Note that if

sensori has not been chosen as a clusterhead before, thenp
(j)
i

is proportional to the number of neighboring sensors and its
energy level; otherwise,p(j)

i = 0. Thus, the expected lifetime
E[T (j)

i ] of sensori at roundj is

E[T (j)
i ] = p

(j)
i · E

(j)
i − E

(j+1)
i

P ch
i

+ (1− p
(j)
i ) · E

(j)
i − E

(j+1)
i

Pi
,

where E
(j)
i − E

(j+1)
i is the energy consumption at round

j. Hence, the operation time of performing the phase of
reselecting a clusterhead is

E[Ti]ch =
∑

j

E[T (j)
i ].

Since this process is a part of the network operation, the
expected lifetime of sensori is given by

E[Ti] ≥ E[Ti]ch

=
∑

j

E[T (j)
i ]

Based upon the definition of the cluster lifetime, the cluster
lifetime is equal to the minimum of the expected lifetime of
sensors. That is,

Lch ≡ mini{E[Ti]} ≥ mini{E[Ti]ch}. (19)

However, for a cluster with a fixed clusterhead, the expected
lifetime of sensori with the prior probabilitypi for being a
clusterhead is

Ẽ[Ti] = pi · Ei

P ch
i

+ (1− pi) · Ei

Pi
. (20)

Similarly, the expected lifetime of a cluster with a fixed
clusterhead is

L̃ch ≡ mini{Ẽ[Ti]}. (21)

To quantitatively measure how well the cluster lifetime are
extended, we introduce a parameter, cluster lifetime factor
(CLF). The CLF is defined as the ratio of the cluster lifetime
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of a changing clusterhead to the cluster lifetime of a fixed
clusterhead. Thus, the CLF is

CLF ≡ Lch

L̃ch

=
mini{E[Ti]}
mini{Ẽ[Ti]}

. (22)

Now we provide an example on how the cluster lifetime can
be extended by applying the ACAWT. Assume that sensors
of the network have identical initial energy levels and power
dissipation, which meansEmax

i = E0, P ch
i = Pch, andPi =

P for all i. Note thatP ch
i = Pch = u · P , whereu > 1. In

a cluster with the strategy of fixing clusterhead, the cluster
lifetime is

L̃ch = mini{Emax
i

P ch
i

} =
E0

u · P .

On the other hand, assuming that sensori is the clusterhead
at roundj, the cluster lifetime with a changing clusterhead is

Lch ≥ mini{E
(j)
i − E

(j+1)
i

P ch
i

+
Emax

i − (E(j)
i − E

(j+1)
i )

Pi
}

= mini{4Ei

u · P +
E0 −4Ei

P
},

where4Ei = E
(j)
i − E

(j+1)
i . Therefore, the cluster lifetime

factor (CLF) is

CLF ≥ u− (u− 1) ·mini{4Ei

E0
}, (23)

which shows thatCLF > 1 since u > 1 and E0 > 4Ei.
That means the cluster can last longer by using different
clusterheads at different times, further extending the lifetime
of the network.

VI. EXPERIMENTAL RESULTS

This section explores the dynamic distribution of cluster-
heads by applying the centralized or the distributed model
for reselecting clusterheads. In the experiments, the CAWT
is carried out first to form the initial hierarchy of clusters,
which provides the backbone for the clusterhead-reselection
process. Afterwards, each clusterhead examines its energy
level to determine whether to start the reselection process.

The following experiments investigate how subclusters are
formed in a cluster and how the role of the clusterhead changes
among the cluster members after carrying out the reselection
operation. Given a randomized energy level to each sensor,
figure 1 shows how the subclusters are formed in a specific
cluster.

Figure 2 illustrates the relationship between the average
number of subclusterheads andR/l ratio over 200 runs, where
R/l is the ratio of transmitting rangeR to the side lengthl of
the square. It shows that for a largerR/l ratio (i.e. a larger
cluster), it is less likely to have a new clusterhead to include all
sensors in the original cluster. This may be because a sensor
can not be a clusterhead twice.

In order to validate the analysis of the procedure of the
proposed algorithm, figure 3 shows the standard deviation
of the mean number of subclusterheads when applying the
ACAWT, the prediction formula, and the Modified Averaged
Model, respectively. The plots vary the number of sensors

Fig. 1. A subcluster is formed in a specific cluster which requires reselection
of a new clusterhead. In the subclustering formation“×” represents the initial
clusterhead (ich);“ ∗ ” represents a subclusterhead (sch) using the ACAWT.
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Fig. 2. Average number of subclusterheads as a function of the ratioR/l.

n and the transmission powerR/l. Observe that compared
with the algorithm, though the standard deviation of the the
mean number of subclusterheads of the analysis is large, these
results suggest that the modified Averaged Model is a way to
approximately predict the performance of the ACAWT. The
graphs also show that in most cases the number of subclusters
in a cluster is either one or two at the first round.

For comparison, the same network topology and sensor
energy level are used to study the performance of the two
models during the first round. Let the threshold levelη be
Emax/2. Samples from the distributions,Emax · U(0, 1) and
Emax/2·(1+U(0, 1)) are assigned to clusterheads and cluster
members as the remaining energy, respectively. Figures 4 and
5 demonstrate typical runs of the ACAWT. It shows that this
kind of local dynamic distribution of clusterheads allow each
cluster to adjust its energy load among cluster members, which
alleviates the problem that the battery of fixed clusterheads
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Fig. 3. The average number of subclusterheads formed in a cluster using
(1) the Adaptive Clustering Algorithm, (2) the prediction formula, and (3) the
Modified Averaged Model, respectively, with varyingR/l ratio; the standard
deviations are taken 200 runs.

will drain quickly. Therefore, when the reselection operation
is completed, the energy usage is spread among the network
and thereby the lifetime of the network is extended.

Fig. 4. Clusters are formed and clusterheads are reselected in a random
network of 100 sensors withR/l = 0.175; “¤” represents the initial
clusterhead (ich);“♦” represents a new clusterhead using the centralized
protocol (cch);“ M ” represents a new clusterhead using the decentralized
protocol (dch).

VII. C ONCLUSION

This paper has presented a randomized, decentralized al-
gorithm for re-clustering the sensors of an ad hoc network.
A random waiting timer and a neighbor-based criterium are
used to form clusters automatically. The centralized model and
distributed model may be applied to execute the clusterhead-
reselection process. The Modified Averaged Model is intro-
duced for the purpose of understanding the performance of
the clustering algorithm. Simulation results indicate that the
analysis of the ACAWT agrees well with the behavior of

Fig. 5. Clusters are formed and clusterheads are reselected in a random
network of 200 sensors withR/l = 0.125; “¤” represents the initial
clusterhead (ich);“♦” represents a new clusterhead using the centralized
protocol (cch);“ M ” represents a new clusterhead using the decentralized
protocol (dch).

the algorithm. Under the assumption of energy levels and
power dissipation of the sensors, the analysis of cluster lifetime
suggests that the proposed algorithm may be a solution to
spread the energy usage over the network and achieve a better
load balancing among clusterheads.

In this paper, we have assumed that the sensors function well
and the communication environment is error free. In future,
we plan to investigate certain failure scenarios in the network,
such as the event of clusterhead failure, and consider fault-
tolerance in the network operation.

REFERENCES

[1] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,” in
Proceedings of IEEE HICSS, January 2000.

[2] W. R. Heinzelman, A. Chandrakasan, H. Balakrishnan, “An application
specific protocol architecture for wireless microsensor network,” in press:
IEEE Transaction on Wireless Networking.

[3] M.J. Handy, M. Haase, D. Timmermann, “Low energy adaptive clustering
hierarchy with deterministic cluster-head selection,” 4thInternational
Workshop on Mobile and Wireless Communications Network, pp. 9-11,
September 2002.

[4] C.F. Chiasserini, I. Chlamtac, P. Monti and A. Nucci, “Energy efficient
design of wireless ad hoc networks,” inProceedings of European Wireless,
February 2002.

[5] M. Chatterjee, S. K. Das, and D. Turgut, “WCA: A weighted clustering
algorithm for mobile ad hoc networks,”Journal of Cluster Computing,
Special issue on Mobile Ad hoc Networking, No. 5, pp. 193-204, 2002.

[6] C.-Y. Wen and W. A. Sethares, “Automatic decentralized clustering for
wireless sensor networks,” inEURASIP Journal on Wireless Communi-
cations and Networking, Volume 2005, Issue 5, pp. 686-697.

[7] A.D. Amis, and R. Prakash, “Load-balancing clusters in wireless ad hoc
networks,” in Proceedings of ASSET2000 , Richardson, Texas, March
2000.

[8] S. Basagni, “Distributed clustering for ad hoc networks,” inProceedings
of International Symposium on Parallel Architectures, Algorithms and
Networks, pp. 310-315, June 1999.

[9] M.N. Halgamuge, S. M. Guru, and A. Jennings, “Energy efficient cluster
formation in wireless sensor networks,” 10thInternational Conference on
Telecommunications, vol.2, pp. 1571-1576, 2003.



7

[10] C. R. Lin and M. Gerla, “Adaptive clustering for mobile wireless
networks,” IEEE Journal on Selected Areas in Communication, Vol. 15
pp. 1265-1275, September 1997.

[11] A. B. McDonald, and T. Znati, “A mobility based framework for adaptive
clustering in wireless ad-hoc networks,” inIEEE Journal on Selected
Areas in Communications, Vol. 17, No. 8, pp. 1466-1487, Aug. 1999.

[12] J. Lundelius and N. Lynch. “An upper and lower bound for clock
synchronization.”Information and Control, Vol. 62 1984.

[13] M. Bhardwaj and A. P. Chandrakasan, “Bounding the lifetime of sensor
networks via optimal role assignments,” inIEEE INFOCOM2002, vol.
3, 2002, pp. 1587-1596.

[14] J. Zhu and S. Papavassiliou, “On the energy-efficient organization and
the lifetime of multi-hop sensor networks,” inIEEE Communications
Letters, vol. 7, no. 11, November 2003, pp. 537-539.

[15] I. Kang and R. Poovendran, “Maximizing static network lifetime of
wireless broadcast ad hoc networks,” inIEEE International Conference
on Communications (ICC)2003, Anchorage, Alaska.

[16] P. Billingsley, Probability and Measurement, John-Wiley & Sons, Inc
1979.


