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Abstract— This paper discusses a joint decentralized clustering
and ranging algorithm for wireless ad-hoc sensor networks.
Each sensor uses a random waiting timer and local criteria
to determine whether to form a new cluster or to join a
current cluster and utilizes the messages transmitted during
hierarchical clustering to establish two-way communications so
that clock calibration for distance estimation can be achieved. The
algorithm operates without a centralized controller, it operates
asynchronously, and does not require that the location of the
sensors be known a priori. An analysis of the distance measure-
ment, and the energy requirements of the algorithm are used to
study the behaviors of the proposed algorithm. The performance
of the algorithm is described analytically and via simulation.

I. I NTRODUCTION

Sensor location estimation is required in many sensor
network applications [1]-[3]. Due to the low power, lower
cost, and simple configuration requirements of wireless sensor
networks, GPS devices, accurate synchronous clocks, and the
installation of a base station may be precluded. However, when
all sensors can measure the range to their neighbors, accurate
relative location estimates are possible [4]-[6]. Moreover,
wireless ad-hoc sensor networks are self-configuring distrib-
uted systems and, for reliability, should also operate without
centralized control. In order to share information between sen-
sors which cannot communicate directly, communication may
occur via intermediaries in a multi-hop fashion. Scalability
and the need to conserve energy lead to the idea of organizing
the sensors hierarchically, which can be accomplished by
gathering collections of sensors into clusters [7]-[10].

In previous work, the Clustering Algorithm via Waiting
Timer (CAWT) [10] and The Distance Estimation via Asyn-
chronous Clocks (DEVAC) [11] methods were applied sepa-
rately to carry out the clustering and ranging tasks, respec-
tively. This paper introduces a unified approach, theJoint
Distributed Clustering and Ranging Algorithm( JDCRA) ,
which is applied at the network level to group sensors into
clusters and to estimate the distances between pairs of sensors
simultaneously. The JDCRA comprises the Modified CAWT
algorithm using a local criterion to self-organize the network
and the Modified DEVAC method (detailed in Section II)
using bi-directional communications to bypass the need of syn-
chronous clocking for accurate distance estimation based on
time-of-arrival measurements. An estimation-theoretic analysis
of the proposed measurement mechanisms is presented to
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assess the achievable ranging accuracy. The performance of the
algorithm is investigated by simulation and numerical results
are presented in a number of settings.

II. T HE JOINT DISTRIBUTED CLUSTERING AND RANGING

ALGORITHM (JDCRA)

A. Forming Clusters

1) The Modified CAWT:When the sensors of a network are
first deployed, they may be partitioned into clusters using the
modified CAWT from [10] with the waiting timer

WT
(k+1)
i = β ·WT

(k)
i , (1)

where WT
(k)
i is the waiting time of sensori at time step

k and 0 < β < 1 is inversely proportional to the number of
neighbors. Assume the initial value of the waiting time of sen-
sor i, WT

(0)
i , is a sample from the distributionC+α·U(0, 1),

whereC andα are positive numbers, andU(0, 1) is a uniform
distribution. If a sensor receives aHello message from a
neighboring sensor before transmitting itsHello, wait r time
units and the processing delay for clock calibration and then
transmit a repliedHello message; otherwise, waitr time units
and transmit aHello message. As the random waiting timer
expires and none of the neighboring sensors are in a cluster,
then sensori declares itself a clusterhead. It then broadcasts a
message including the notification of its neighbors that they are
assigned to join the new cluster with IDi and the information
of the distance estimation.

2) Hierarchical Clustering: After applying the Modified
CAWT, there are three different kinds of sensors: (1) the
clusterheads (2) sensors with an assigned cluster ID (3) sensors
which become 2-hop sensors. These sensors will join any
nearby cluster afterτ seconds whereτ is a constant chosen
to be larger than all of the waiting times. Thus, the topology
of the ad-hoc network is now represented by a hierarchical
collection of clusters. In the proposed JDCRA, each sensor
initiates 2 rounds of local flooding to its 1-hop neighboring
sensors, one for broadcasting sensor ID and the other for
broadcasting cluster ID, to select clusterheads and form 2-
hop clusters. Hence, the time complexity isO(2) rounds. The
complete procedure of the initialization phase is outlined in
Table I.

B. Two-Way Ranging

The most straightforward method of estimating the distance
between sensors directly measures the time required for a sig-
nal to propagate between the sensors. For low-powered sensors
where the communication range is limited to a few hundred



TABLE I

THE JDCRA: AN ALGORITHM FOR CLUSTERING AND RANGING

1. Each sensor initializes a random waiting timer with a valueWT
(0)
i .

2. A Hello message consists of:
(1) the sensor ID of the sending sensor,
(2) the cluster ID of the sending sensor,
(3) information.
(At the beginning, the cluster ID of each sensor is zero.)

3. Each sensor transmits theHello message at random times:
if a sensor receives aHello message from a neighboring sensor before

transmitting itsHello

(a)Draw a sampler from the distributionλ ·WT
(0)
i · U(0, 1),

where0 < λ < 0.5
(b)wait r time units and the processing delay for clock calibration

between pairs of sensors.
(c)transmit the repliedHello message.

else
wait r time units and then transmit theHello message.

4. Establish and update the neighbor identification:
if a sensor receives a message of assigning a cluster ID at time stepk

(a) join the corresponding cluster.

(b) draw a sampler
′

from the distributionWT
(k)
i · U(0, 1).

(c) wait r
′

time units and then send an updatedHello message with
the new cluster ID.

(d) stop the waiting timer. (Stop!)
else

count the number of neighboring sensors.
end

5. Decrease the random waiting time according to equation (1).
6. Clusterhead check:

if WTi = 0 and the neighboring sensors are not in another cluster
(a) broadcast itself to be a clusterhead.
(b) assign the neighboring sensors to cluster IDi. (Stop!)

elseif WTi = 0 and some of the neighboring sensors are
in other clusters

join any nearby cluster afterτ seconds, whereτ is greater
than any possible waiting time. (Stop!)

else
go to Step 3.

end

meters, the distance must be estimated to sub-meter accuracy.
This can be accomplished using accurate clocks, but these may
be more expensive than desired in the network application.
The Distance Estimation via Asynchronous Clocks (DEVAC)
method [11] helps to alleviate the need for highly accurate
synchronous clocking.

1) The Modified DEVAC Method:Instead of transmitting
a pulse signal twice to adjust the clock skew in the DE-
VAC method, sensor A transmits a ranging sequence using
Ultra-Wideband (UWB) signaling to achieve clock calibration.
Suppose that sensors A and B are equipped with clocks
(oscillators) that are assumed to be asynchronous in both
frequency and phase. Denotetai and tbj as the time stamps
in sensors A and B, respectively; lettadel and tbdel be the
delay time in sensors A and B, respectively;tab is the signal
propagation time. The estimation of the Modified DEVAC
method proceeds as shown in Figure 1:

a. Sensor A transmits aHello message, which is a ranging
sequence comprising K symbols and containing the
times ta0 and ta1 (the times indicated on its clock at the
start and the end of the transmission, respectively).

b. Sensor B receives the first symbol at timetb2 (which is
tab seconds after it is transmitted) and receives the last
symbol at timetb3.

c. Sensor B calibrates its clock to A’s using the differences
ta1 − ta0 (which is known from A’s message) andtb3 − tb2
(the arrival times).

d. Some timetdel later, sensor B transmits the timetadel =
z · tbdel that has elapsed since reception of A’s message
along with the time stamptb4 (the time on B’s clock when
it transmits). These times are adjusted (if necessary)
using the scale factorz = ta

1−ta
0

tb
3−tb

2
.

e. Sensor A receives the repliedhello message from sensor
B when its clock readsta5 (the time indicated on its clock
at the start of the reception). The transmission timetab

can be calculated as

tab =
ta5 − ta1 − tadel

2
.

Fig. 1. The Modified DEVAC Method: Sensor A receives its reply atta5 .
This is equal tota1 + 2tab + tadel, from which A can estimatetab and hence
the distance. In this variation, sensor B can calculate the difference between
its clock (tb3 − tb2) and A’s clock using the time stamped information in A’s
messages (ta1 − ta0 ).

2) Analysis of the Distance Estimation:This paper assumes
that only the line-of-sight (LOS) path exists. If multipath
interference exists, then more complex signaling schemes can
be used [20]. The accuracy of the distance measurement is
analyzed as a function of the accuracy of the clock by de-
riving an approximate distribution for the estimation based on
Figure 1. Quantitative expressions are provided to demonstrate
the operation of the Modified DEVAC method. The random
variableT represents the sensor estimate of the truet; thus
Tab is an estimate of the true timetab andT a

i is the estimate
of the time tai as measured by the clock of sensor A. The
estimated transmission time is

Tab =
T a

5 − T a
del − T a

1

2
. (2)

Since sensor B calibrates its clock to A’s using time differ-
ences,

T a
del = Z · T b

del, (3)

whereT b
del = T b

4 − T b
3 and

Z =
T a

1 − T a
0

T b
3 − T b

2

(4)

is a scale factor that represents how much faster or slower
clock A moves than clock B.



For the purpose of analysis, assume that all measurements
T a

i andT b
j are independent normal random variables with the

same varianceσ2 caused by the measurement error in the
clock:

T a
i ∼ N(tai , σ2) for i = 0, 1, 5. (5)

T b
j ∼ N(tbj , σ

2) for j = 2, 3, 4. (6)

This normality assumption is justified in [12] when the clock
skew is small.

Hence the random variableZ is the ratio of two normal
random variables. As shown in [13] and [14], under reasonable
conditions on the distributions,Z is well approximated by

Z ∼ N(µZ , σ2
Z) (7)

with µZ = µ1
µ2

and σ2
Z = 2σ2

µ2
2

(
1 +

(
µ1
µ2

)2
)

, whereµ1 =

ta1 − ta0 andµ2 = tb3 − tb2. For this Gaussian approximation to
hold, µ2 must be biased away from zero and the ratioµ2/σ2

must be large. These are reasonable assumptions in the sensor
communication application.

From (3) and (7),T a
del can be viewed as the product of two

normal random variables. Since the measurement errors are
small, [15] shows that the distribution ofT a

del can be sensibly
approximated by

T a
del ∼ N

(
µZtbdel, 2µ2

Zσ2 + tbdel

2
σ2

Z

)
(8)

whenµZ/σZ andµT b
del

/σT b
del

are large, which is a reasonable
assumption in this case.

Using the above analysis and referring to (2), the distribu-
tion of Tab is

Tab ∼ N
(
µTab

, σ2
Tab

)
, (9)

where µTab
= 1

2 (ta5 − µZtbdel − ta1) and σ2
Tab

=
1
4

[
(2 + 2µ2

Z)σ2 + tbdel

2
σ2

Z

]
. Note that the mean of random

variableTab is the true value of the transmission time between
sensors A and B and the variance ofTab depends on the
variance of the timing measurementσ2, the characteristic of
the clock-adjustment factor (4), and the time delaytbdel.

Finally, the distribution of the distance measurementDab is
given by

Dab ∼ N
(
cµTab

, c2σ2
Tab

)
(10)

since the transmission distance is the product of the trans-
mission speedc and the transmission time. Observe that the
mean of random variableDab is the true value of the distance,
showing that the estimator is unbiased. Numerical results are
presented in Section IV.

Results from [16]-[17] relate the accuracy of synchronous
distance estimates to the signal-to-noise ratio (SNR) and the
effective bandwidth of the signal. The expression in (10) is
the added inaccuracy due to the asynchronous clocking mech-
anism. For the ranging method, the fundamental limitation on
the accuracy of the estimates is related to the form of the signal
and the clock, including the signal bandwidth, the SNR, and
the timing calibration. Assume that the random range error and
range bias error from propagation conditions are negligible.
The range-measurement accuracy may be characterized by the

measurement error,σR, given by the root-sum-square of the
error components.

σR =
(
σ2

S + σ2
clock

)1/2
, (11)

whereσS is the SNR-dependent random range measurement
error,

σS ≥ c

2βe

√
2SNR

, (12)

where βe is the effective bandwidth of the signal [17], and
σclock is the clock-dependent random range measurement
error, cσTab

.

III. A NALYSIS OF ENERGY CONSUMPTION

This section considers the energy consumption of the JD-
CRA method assuming homogenous sensors. The total power
requirements include the power required to transmit messages
ET , the power required to receive messagesER, and the power
required to process messagesEpro.

In the initialization phase, each sensor broadcasts aHello
message to its neighboring sensors. Therefore, the number of
transmissionsNTx is equal to the number of sensors in the
network,n, and the number of receptionsNRx is the sum of
the neighboring sensors of each sensor. That is,

NTx = n andNRx =
n∑

j=1

Nj , (13)

whereNj is the number of the neighboring sensors of sensor
j.

As a sensor, say sensori, meets the conditions of being
a clusterhead, it broadcasts and assigns cluster IDi to its
neighboring sensors. Its neighboring sensors then transmit a
signal to their neighbors to update cluster ID information.
During this clustering phase,(1 + Ni) transmissions and
(Ni +

∑
j∈Ci

Nj) receptions are executed, whereCi is the
index set of neighboring sensors of sensori. This procedure
is applied to all clusterheads and their cluster members. Now
let N c

Tx
and N c

Rx
denote the number of transmissions and

receptions for all clusters, respectively. Hence,

N c
Tx

=
∑

i∈I

(1 + Ni), (14)

N c
Rx

=
∑

i∈I

(
∑

j∈Ci

Nj + Ni), (15)

where I is a index set of clusterheads. Therefore, the total
number of transmissionsNT , the total number of receptions
NR, and the total number of information processing for clock
calibrationNpro are

NT = NTx + N c
Tx

= n +
∑

i∈I

(1 + Ni), (16)

NR = NRx + N c
Rx

=
n∑

j=1

Nj +
∑

i∈I

(
∑

j∈Ci

Nj + Ni). (17)

Npro =
∑

i∈I

(
∑

j∈Ci

Nj + Ni). (18)



From (16), (17), and (18), the total energy consumption,
Etotal, for cluster formation and distance estimation in the
wireless sensor network is

Etotal = NT · ET + NR · ER + Npro · Epro, (19)

whereEpro is consumed by the clock calibration or propaga-
tion time calculation.

Observe that the above analysis is suitable for any transmit-
ting range. However, overly small transmission ranges may
result in isolated clusters whereas overly large transmission
ranges may result in a single cluster. Therefore, in order to
optimize energy consumption and encourage linking between
clusters, it is sensible to consider the minimum transmission
power (or rangeR) which will result in a fully connected net-
work [18]. The performance of the total energy consumption
of the JDCRA with different selections ofR is examined via
simulation.

IV. SIMULATIONS AND NUMERICAL RESULTS

A. Ranging using UWB Communications

This subsection demonstrates the performance of the various
distance measurement methods. Assume that the propagation
time is tab = 10−7s (i.e. the true distance isdab = 30 m) for
all distance measurement settings. Note that these settings may
represent a reasonable transmission range for many wireless
sensor applications as in the emerging ZigBee standard.

The first set of numerical results evaluates the critical timing
parameterstai and tbj in the modified DEVAC method to
determine the required level of timing resolution (i.e. the
standard deviation of the time measurementσ). Figure 2
(left) shows the typical performances of time and distance
measurement using (10) with the parameters detailed in the
caption and the clocks providing a resolution of 1 ns and 10
ns, respectively.

The second set of numerical results shows the distribution
of the best possible ranging accuracy using different UWB
signal formats with synchronous clocking. Based on the char-
acteristics of UWB signaling [19] and assuming that channel
transfer function is independent of frequency and dependent
upon distance between transmitter and receiver as the inverse
of the square of distancedab, equation (12) can be further
expressed by

σs ≥ c · dab

4π

√
3N0

TobsG0(f3
H − f3

L)
, (20)

whereTobs is the observation time (Tobs = ta1 − ta0), N0 =
0.5 × 10−14 W/Hz, G0 = 7.413 × 10−14 W/Hz regulated by
FCC [19], andfH andfL are the highest and lowest frequency
of UWB frequency bands, respectively. Note that the ranging
accuracy in different UWB signal formats are related to the
difference in bandwidth and the center frequency. Figure 2
(right) depicts that the DS-UWB high band signal format has
the best ranging performance with time synchronization.

The third set of numerical results demonstrates the ranging
accuracy related to SNR, signal bandwidth, and clock cali-
bration using UWB communications. Figure 3 illustrates the
best possible ranging performance using the JDCRA approach
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Fig. 2. The distribution of distance measurement using the JDCRA Method
with a timing resolution of 10ns (left top) and 1ns (left bottom):tab =
10−7, tb4 = 0.3 + 2.92 µs, tb3 = 0.3 + 1.92 µs, tb2 = 0.3, ta1 = 0.25 +
1.83 µs, andta0 = 0.25 (left); the distribution of the ranging accuracy using
different UWB signal formats with synchronous clocking (right).

with UWB communications. It suggests that based on the same
observation time the DS-UWB signaling has better ranging
accuracy than the MB-OFDM signaling.
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Fig. 3. The performance of the ranging accuracy using different UWB signal
formats with the same observation timeTobs = 1.83 µs and the parameters
detailed in the caption of Figure 2.

B. Cluster Formation

The fourth set of experiments examines the variation of the
average number of clusterheads with respect to the ratioR/l.
With random waiting time parametersC = 100, α = 10, and
β = 0.9, Figure 4 depicts a typical run of the algorithm in a
random network of 100 sensors withR/l = 0.175. The result
shows that each cluster is a collection of sensors which are up
to 2 hops away from a clusterhead.

Figure 5 shows the relationship between the average number
of clusterheads and theR/l ratio with varying the number of
sensors. The average number of clusterheads in each case is the
sample mean of the results of 200 typical runs. Observe that
the average number of clusterheads decreases as the ratioR/l
increases (i.e. the transmission power increases). Since larger
transmission power allows larger radio coverage, a clusterhead
has more cluster members, which reduces the number of
clusters in the network.

The last set of experiments considers the total energy
consumption of the JDCRA. Assume that the communication
channel is error-free. Since each sensor does not need to
retransmit any data, two transmissions are executed, one
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for broadcasting the existence and the other for assigning
a cluster ID to its cluster members or updating the cluster
ID information of its neighbors. Hence, the total number of
transmissions is2n. Under these circumstances, sensori will
receive2Ni messages. Then, the total number of receptions is
2

∑n
i=1 Ni. Figure 6 shows the average receptions of random

networks after applying the proposed algorithm.

V. CONCLUSIONS

This paper proposes a novel approach for the simultaneous
clustering and ranging of sensors and provides a description
of an algorithm suitable for the infrastructure requirements
of wireless sensor networks. The algorithm has several ad-
vantages over standard approaches since it requires no GPS
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and no synchronous clocks. For the hierarchical cluster-based
network structure, local time synchronization is achieved by
referencing to the clock of a clusterhead while global cali-
bration can be achieved by (relatively sparse) communication
between clusterheads.

The analytical portions of the paper presume that only the
LOS path exists and future plans involve generalizing the
method to allow for multipath channels, to consider certain
failure scenarios, and to explore the influence of time syn-
chronization problem on the network operation.
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