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SUMMARY

A new non-linear adaptive filter called blind image deconvolution via dispersion minimization has recently
been proposed for restoring noisy blurred images blindly. This is essentially a two-dimensional version of
the constant modulus algorithm that is well known in the field of blind equalization. The two-dimensional
extension has been shown capable of reconstructing noisy blurred images using partial a priori information
about the true image and the point spread function in a variety of situations by means of simulations. This
paper analyses the behaviour of the algorithm by investigating the static properties of the cost function and
the dynamic convergence of the parameter estimates. The theoretical results are supported with computer
simulations. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The new method for reconstructing noisy blurred images [1] called blind image deconvolution via
dispersion minimization, is a two-dimensional (2-D) extension of the constant modulus algorithm
(CMA) [2, 3]. Simulations show that the method is useful in recovering noisy images that are
blurred with an unknown linear shift invariant (LSI) point spread function (PSF). This paper
analyses the behaviour of the algorithm.

The problem is analogous to that of blind equalization. An unknown signal (the message in a
communications setting, the unknown underlying image in the present setting) is passed through
a linear system (the channel in communications systems, the blur or the PSF in the present
setting) and then further corrupted by noise. The result is a signal (the received signal in the
communications system, the observed image in the present setting), and the goal is to build a
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non-linear system that deconvolves the signal in an attempt to recover the underlying image (or
the unknown message).

In the blind equalization setting, the CMA algorithm, which uses a cost function that
minimizes the dispersion of the signal about some constant g called dispersion constant, is one
successful approach. CMA is applicable whenever the unknown input arises from a finite
alphabet, and the reader is referred to Reference [4] and the references therein for a
comprehensive introduction to the CMA and its analysis in the context of (1-D) adaptive
equalization. Since the pixels in a digitized picture are drawn from a ‘finite alphabet’ (usually
256 levels, though sometimes as few as two),z the dispersion cost function may also be useful in
the deblurring and denoising of images. The goal in this paper is to analyse the dispersion
minimization algorithm in two-dimensions.

The analysis proceeds in two steps, generalizing the basic procedure in Reference [5],
though our analysis does not ignore the presence of additive noise. The static analysis studies
the locations of the minimum points of the cost function and shows that under suitable
conditions, there is a minimum of the cost surface located near the statistically optimum
Wiener solution. This is significant because minima of the dispersion cost can be found
without the knowledge of the input, whereas the Wiener solution requires the knowledge
of the input. The dynamic analysis investigates the stochastic dynamics of the new method.
Results are given that describe the mean convergence of the adaptive parameters once
the trajectories are in the neighbourhood of the Wiener solution. This can be used to study
the amount of excess noise caused by truncation error due to the (finite) length of the
deconvolution filter.

In the remainder of the paper, it will be assumed that the adaptive filter coefficients are close
to the global minimum of the dispersion cost function. Under this assumption, a closed-form
expression for the coefficients of the adaptive filter is derived in the static analysis. Convergence
and consistency of the coefficients are investigated in the dynamic analysis. Only the
independence assumption (see References [6, 7]) is required, and results show that for a given
PSF and step-size, there is an optimum support for the adaptive filter. This result can be used as
a guideline in designing blind image deconvolution algorithms.

The paper is organized as follows: the method is described in detail in Section 2, properties of
the prediction error function are examined in Section 3, and the static convergence analysis is
performed in Section 4. Section 5 investigates the dynamic convergence behaviour of the 2-D
CMA algorithm and Section 6 provides computer simulation results. The final section
concludes.

2. BLIND IMAGE DECONVOLUTION VIA DISPERSION MINIMIZATION

Consider the single-input single-output (SISO) LSI system depicted in Figure 1, in which f ðm; nÞ
and hðm; nÞ represent the ðm; nÞth pixel of the zero-mean independent identically distributed
(i.i.d.) true image and the PSF of the degrading system. The zero-mean i.i.d. additive noise
vðm; nÞ is assumed to be independent of both the true image and the system. The output of the
model is the observed M �N noisy blurred image gðm; nÞ; which can be written as the

zMany fax machines and laser printers use 2-level quantization.
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convolution of hðm; nÞ and f ðm; nÞ as

gðm; nÞ ¼
XA
k¼�A

XB
l¼�B

hðk; lÞf ðm� k; n� lÞ þ vðm; nÞ ð1Þ

for m ¼ 1; . . . ;M and n ¼ 1; . . . ;N; where ½�A;A� � ½�B;B� is the support of the PSF.
In linear image restoration, the PSF hðm; nÞ is assumed to be known, and the true image

f ðm; nÞ is estimated using any of a number of well-known linear estimation methods [8, 9].
However, the PSF of the degrading system is usually unknown in most real imaging
applications. Hence, the true image must be estimated directly from the noisy blurred observed
image gðm; nÞ without knowing the true image or the PSF. While the underlying true image is
unknown, certain statistical properties are known; typically the pixel values must be one of a
small number of possibilities. This process is called blind image deconvolution.

As shown in Reference [1], ambiguities in both absolute gain and delay are inherent to blind
image deconvolution. That is, scaling the true image pixel values by a and the PSF coefficients
by a�1 simultaneously does not change the observed image, where a is a real fixed non-zero gain.
Similarly, advancing the true image by an integer-valued vector while delaying the PSF by the
same vector has no effect on the observed image. Keeping these ambiguities in mind, blind
image deconvolution problem can be stated more clearly as follows:

Obtain an estimate of the form #f ðm; nÞ ¼ af ðm�m0; n� n0Þ for some real a=0 and some
integers m0; n0 from the observed image gðm; nÞ without knowledge of the true image f ðm; nÞ
and the PSF hðm; nÞ:

Kundur and Hatzinakos [10, 11] provide excellent tutorials, which explain different blind
image deconvolution methods that can be categorized into two major groups: (i) those which
estimate the PSF a priori independent of the true image so as to use it later with one of the linear
image restoration methods, and (ii) those which estimate the PSF and the true image
simultaneously. Algorithms belonging to the first class are computationally simple, but they are
limited to situations in which the PSF has a special parametric form, and the true image has
certain features. Algorithms belonging to the second class, which are computationally more
complex must be used for more general situations. The method proposed in Reference [1]
belongs to the second class.

Figure 2 shows a block diagram of the blind algorithm based on dispersion minimization, in
which a 2-D linear finite impulse response (FIR) filter wðm; nÞ is used to deblur the observed
noisy blurred image gðm; nÞ: The coefficients of the deblurring filter are the adaptive parameters,
and are updated via a gradient algorithm. The adaptive filter output at the jth iteration at

h(m,n) + g(m,n)

v(m,n)

f(m,n)

Figure 1. Linear image degradation model.
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pixel ðm; nÞ can be written as

#f jðm; nÞ ¼
XC
k¼�C

XD
l¼�D

wjðk; lÞgðm� k; n� lÞ ð2Þ

where ½�C;C� � ½�D;D� is the support of the adaptive filter, wjðm; nÞ are the adaptive filter
coefficients at the jth iteration. #f jðm; nÞ can also be written as

#f jðm; nÞ ¼
XP
k¼�P

XQ
l¼�Q

yjðk; lÞf ðm� k; n� lÞ þ
XC
k¼�C

XD
l¼�D

wjðk; lÞvðm� k; n� lÞ ð3Þ

where yjðm; nÞ :¼ hðm; nÞ*wjðm; nÞ is the global impulse response at the jth iteration, P ¼ Aþ C
and Q ¼ BþD: If the true image f ðm; nÞ were known, then the difference between #f jðm; nÞ and
f ðm; nÞ could be used to provide an efficient update of the unknown parameters. In blind image
deconvolution, however, the true image is unavailable. As in blind equalization, one possibility
is to attempt to minimize the dispersion of #f jðm; nÞ using the constant modulus (CM) cost JCM
defined by

JCM :¼ E½ð#f 2j ðm; nÞ � gÞ2� ð4Þ

where g is the dispersion constant. This constant g is one piece of statistical information that must
be available about the true image, and it is given by

g ¼
E½f 4ðm; nÞ�
E½f 2ðm; nÞ�

ð5Þ

It is clear from Equation (4) that JCM penalizes the deviations of #f 2j ðm; nÞ from the dispersion
constant g: Since it is not possible to minimize an expected value directly, the method uses an
instantaneous estimate of JCM given by

J :¼ 1
4
ð#f 2j ðm; nÞ � gÞ2 ð6Þ

to obtain an implementable algorithm. Because the true image f ðm; nÞ is unknown, a desired
image (an artificial true image) must somehow be generated so that an error term that drives the
adaptive algorithm can be obtained. Note that the function of the zero-memory non-linearity
(the rightmost term in Figure 2) is to generate a desired image #fNLðm; nÞ from #f ðm; nÞ: The zero-
memory non-linearity is chosen such that the error term eðm; nÞ :¼ #fNL � #f ðm; nÞ corresponds to
negative of the gradient of J:Hence, the coefficients of the adaptive filter coefficients are updated

g(m,n)
f(m,n)ˆ

w(m,n)

Optimization
  Algorithm

Zero-memory
Nonlinearity

f  (m,n)
NL

ˆ

- +Σ
e(m,n)

Figure 2. Block diagram of the blind image deconvolution via dispersion minimization.
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according to

wjþ1ðk; lÞ ¼wjðk; lÞ � m
dJ

dwjðk; lÞ

¼wjðk; lÞ � mfð#f jðm; nÞÞgðm� k; n� lÞ ð7Þ

for �C4k4C; �D4l4D; where m is a small positive step-size and fð#f jðm; nÞÞ :¼
½#f 2j ðm; nÞ � g�#f jðm; nÞ is called the prediction error function. Note that both JCM and J depend on
the iteration j; though this dependence was not included in the notation for the sake of simplicity.

Writing Equation (7) for k ¼ �C; . . . ;C and l ¼ �D; . . . ;D gives

wjþ1 ¼ wj � mgðm; nÞfð#f jðm; nÞÞ ð8Þ

where wj is the lexicographically ordered coefficient vector of the adaptive filter at the jth
iteration defined as

wj :¼ ½wjð�C;�DÞ; . . . ;wjðC;DÞ�T ð9Þ

and gðm; nÞ is the lexicographically ordered adaptive filter input vector at pixel ðm; nÞ defined as

gðm; nÞ :¼ ½gðmþ C; nþDÞ; . . . ; gðm� C; n�DÞ�T ð10Þ

Note that as explained in Reference [1], gðm; nÞ can be rewritten as

gðm; nÞ ¼ HTfðm; nÞ þ vðm; nÞ ð11Þ

where H is a suitable ð2Pþ 1Þð2Qþ 1Þ � ð2C þ 1Þð2Dþ 1Þ blur matrix whose coefficients are
constructed from the PSF hðm; nÞ; and where fðm; nÞ and vðm; nÞ are the lexicographically
ordered true image vector and the additive noise vector for pixel ðm; nÞ given by

fðm; nÞ :¼ ½f ðmþ P; nþQÞ; . . . ; f ðm� P; n�QÞ�T ð12Þ

vðm; nÞ :¼ ½vðmþ C; nþDÞ; . . . ; vðm� C; n�DÞ�T ð13Þ

The output of the adaptive filter given in Equation (2) can be written in a compact form using
the above definitions as

#f jðm; nÞ ¼wT
j H

Tfðm; nÞ þ wT
j vðm; nÞ

¼ fTðm; nÞyj þ wT
j vðm; nÞ ð14Þ

where yj :¼ Hwj is the global impulse response vector at the jth iteration, i.e.

yj :¼ ½yjð�P;�QÞ; . . . ; yjðP;QÞ� ð15Þ

When convergence occurs, coefficients of the adaptive filter provide an approximate inverse of
the PSF. Furthermore, the output of the adaptive filter #f ðm; nÞ is an estimate of the true image.
The output of the zero-memory non-linearity at the jth #fNLðm; nÞ is given by

#fNLðm; nÞ ¼ #f ðm; nÞ þ fð#f ðm; nÞÞ

¼ #f 3ðm; nÞ þ ð1� gÞ#f ðm; nÞ
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3. PROPERTIES OF THE PREDICTION ERROR FUNCTION

This section states two lemmas that provide some useful properties of the prediction error
function fð�Þ; and proofs are provided in the Appendices. The first lemma shows that when the
algorithm attains one of its isolated minima, the expected value of the update term in the
algorithm is zero and the second derivative of the cost function is positive definite.

Lemma 1
Let *wjðm; nÞ be the coefficients of the adaptive filter that make JCM attain one of its isolated
minima. Then, output of the adaptive filter *f jðm; nÞ satisfies

(a) E½fð*f jðm; nÞÞgðm; nÞ� ¼ 0

(b) HT *FH þ *V is positive definite

where

*F :¼ E½fðm; nÞf0ð*f jðm; nÞÞfTðm; nÞ� ð16Þ

*V :¼ E½vðm; nÞf0ð*f jðm; nÞÞvTðm; nÞ� ð17Þ

and f0ð�Þ is derivative of fð�Þ:

The second lemma will be used in the static analysis to provide a closed-form expression for
the coefficients of the adaptive filter near the global minimum of JCM:

Lemma 2
When the adaptive filter has sufficiently large support, the true image has a uniform probability
density function, and the additive noise is small, then the prediction error function has the
following properties

(a) E½fðf ðm; nÞÞf ðk; lÞ� ¼ 0
(b) E½f0ðf ðm; nÞÞf 2ðk; lÞÞ� > 0

for all 14m; k;4M and 14n; l4N:

4. STATIC CONVERGENCE ANALYSIS

This section derives a closed-form expression for the coefficients of the adaptive filter near the
global minimum of JCM: Note that in the statement of Theorem 1, hðm0;n0Þ represents a unit
vector ½0; . . . ; 0; 1; . . . ; 0�T; where the non-zero coefficient is in the ðm0; n0Þth position which must
satisfy �P4m04P; �Q4n04Q:

Theorem 1
At the minimum near the global minimum of JCM; the coefficients of the adaptive filter can be
expressed as

*w ¼ E½f0ðf ðm; nÞÞf 2ðm; nÞ�R�1HThð0;0Þ ð18Þ
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where

R ¼ HTFH þ V

F :¼ E½fðm; nÞf0ðf ðm; nÞÞfTðm; nÞ� ð19Þ

V :¼ E½vðm; nÞf0ðf ðm; nÞÞvTðm; nÞ� ð20Þ

if H has full column rank and the true image f ðm; nÞ has a uniform probability density function.

Proof
Writing the Taylor series expansion of fð*f ðm; nÞÞ around f ðm; nÞ and ignoring second- and
higher-order terms give

fð*f ðm; nÞÞ ¼ fðf ðm; nÞÞ þ f0ðf ðm; nÞÞ½*f ðm; nÞ � f ðm; nÞ� ð21Þ

By Lemmas 1 and 2, multiplying both sides of Equation (21) by gðm; nÞ and taking expectations
result in

E½gðm; nÞf0ðf ðm; nÞÞ½*f ðm; nÞ � f ðm; nÞ�� ¼ 0 ð22Þ

Substituting gðm; nÞ ¼ HTfðm; nÞ þ vðm; nÞ and *f ðm; nÞ ¼ gTðm; nÞ *w; using the definitions of F
and V given in (19) and (20) in Equation (22) give

R *w ¼ HTE½fðm; nÞe0ðf ðm; nÞÞf ðm; nÞ� ð23Þ

Note that the RHS of Equation (23) can be written as

HTE½fðm; nÞf0ðm; nÞf ðm; nÞ� ¼ E½f0ðm; nÞf 2ðm; nÞ�HThð0;0Þ

since f ðm; nÞ are i.i.d. Hence, Equation (23) reduces to

R *w ¼ E½f0ðm; nÞf 2ðm; nÞ�HThð0;0Þ ð24Þ

Consequently, *w is given by Equation (18) if and only if R is non-singular. Since R is non-
negative definite by structure, non-singularity implies that it is positive definite. Note that F is a
diagonal matrix whose entries are of the form

E½f0ðf ðm; nÞÞf ði; jÞf ðk; lÞ� ¼

E½f0ðf ðm; nÞÞf 2ðm; nÞ� if m ¼ i ¼ k and n ¼ j ¼ l

s2f E½f
0ðf ðm; nÞÞ� if m=i ¼ k and n=j ¼ l

0 otherwise

8>><
>>: ð25Þ

which are positive by Lemma 2(b). Hence, F is positive definite. If H is full column rank, then
R ¼ HTFH is also positive definite. It is sufficient now to show that V is non-negative definite to
complete the proof. Note that since vðm; nÞ and f ðm; nÞ are independent, V can be written as

V ¼E½vðm; nÞvTðm; nÞ�E½f0ðf ðm; nÞÞ�

¼ s2vð3s
2
f � gÞI
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Because s2v > 0; it is sufficient to show that ð3s2f � gÞ50: The true image f ðm; nÞ was assumed to
have a zero-mean uniform probability distribution. For such an image, Table I shows values of
3s2f � g for different grey levels from which it is easy see that ð3s2f � gÞ50 and the proof is
complete. &

Theorem 1 can be used to find a necessary and sufficient condition such that *w ¼ w0; where w0

is the optimum Wiener filter. As shown in Reference [1], the optimum Wiener filter w0 which
minimizes E½ð#f 2ðm; nÞ � f ðm; nÞÞ2� is given by

w0 ¼ ðHTH þ lIÞ�1HThð0;0Þ ð26Þ

where l ¼ s2v=s
2
f : Comparing Equations (18) and (26), a necessary and sufficient condition for

*w ¼ w0 is that

HTH þ lI ¼
1

E½f0ðf ðm; nÞÞf 2ðm; nÞ�
ðHTFH þ VÞ ð27Þ

The distortion introduced by the new method due to finite support of the adaptive filter and
additive noise is

D1 :¼E½ð*f ðm; nÞ � f ðm; nÞÞ2�

¼ s2f jj*y� hð0;0Þjj
2
2 þ s2v jj *wjj

2
2

where jj � jj2 represents the l2-norm of a vector. D1 decreases as the support of the adaptive filter
ð�C;CÞ � ðD;DÞ gets larger because the global minimum of JCM will be closer to the optimum
Wiener solution. Hence, D1 is inversely proportional to the support of the adaptive filter.

5. DYNAMIC CONVERGENCE ANALYSIS

The dynamic convergence analysis is presented in this section. Since algorithm (7) uses an
instantaneous estimate of JCM; it suffers from gradient noise. Rather than converging to the
global minimum of JCM; the adaptive filter coefficients exhibit a random motion about
the minimum. Hence, it will be useful to work with the excess error vector at the jth iteration

Table I. Values of 3s2f � g for a zero-mean uniformly distributed image
having different grey levels.

Level s2f g 3s2f � g

2 1.000000 1.00000 2.000000
4 5.000000 8.20000 6.800000
8 21.55000 37.0000 27.65000

16 85.00000 152.200 102.8000
32 340.9900 613.000 409.9700
64 1365.010 2456.20 1638.830
128 5460.850 9829.00 6553.570
256 21844.44 39320.0 26213.33
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defined as
ej :¼ wj � *w ð28Þ

where *w is the global minimum of JCM:During the presentation it will be assumed that wj is near
*w and that the true image f ðm; nÞ and the additive noise vðm; nÞ are independent of ej : It is the
objective of this section to provide mean convergence behaviour of the adaptive filter and
evaluate the correlation matrix of ej : The following theorems are readily proved using the
independence assumption.

Theorem 2
Suppose that the largest eigenvalue of *R ¼ HT *FH þ *V is lmax: Then, mean convergence
behaviour of the adaptive filter near *w satisfies

E½ej� ¼ ½I � mðHT *FH þ *VÞ�jE½e0� ð29Þ

If the step-size satisfies 05m5ð2=lmaxÞ; then E½wj� ! *w:

Proof
Let #f jðm; nÞ and *f ðm; nÞ be the outputs of the adaptive filter resulting from wj and *w; respectively.
Then, #f jðm; nÞ can be written as

#f jðm; nÞ ¼ *f ðm; nÞ þ ½#f jðm; nÞ � *f ðm; nÞ� ð30Þ

Substituting #f jðm; nÞ ¼ fTðm; nÞHwj þ wT
j vðm; nÞ; *f ðm; nÞ ¼ fTðm; nÞH *wþ *wTvðm; nÞ in (30) and

using the definition of ej give

#f jðm; nÞ ¼ *f ðm; nÞ þ ½fTðm; nÞH þ vTðm; nÞ�ej ð31Þ

Near the global minimum of JCM; jjej jj2 is small. So is #f jðm; nÞ � *f ðm; nÞ: Writing the Taylor
series expansion of fð#f jðm; nÞÞ around *f ðm; nÞ and ignoring second- and higher-order terms
result in

fð#f jðm; nÞÞ ¼ fð*f ðm; nÞÞ þ f0ð*f ðm; nÞÞ½#f jðm; nÞ � *f ðm; nÞ� ð32Þ

Using (31), Equation (32) can be written as

fð#f jðm; nÞÞ ¼ fð*f ðm; nÞÞ þ f0ð*f ðm; nÞÞ½fTðm; nÞH þ vTðm; nÞ�ej ð33Þ

Recall that the adaptive filter is updated via

wjþ1 ¼ wj � mgðm; nÞfð#f jðm; nÞÞ ð34Þ

Substituting (32) in (34) and subtracting *w from both sides give

ejþ1 ¼ ej � m½gðm; nÞfð*f ðm; nÞÞ þ gðm; nÞf0ð*f ðm; nÞÞgTðm; nÞej � ð35Þ

Taking expectations of both sides of (35), using the independence assumption and definitions of
*F and *V lead to

E½ejþ1� ¼ ½I � mðHT *FH þ *VÞ�E½ej� ð36Þ
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which can be iterated to obtain

E½ej� ¼ ½I � mðHT *FH þ *VÞ�jE½e0� ð37Þ

Therefore, E½ej� ! 0; which means that E½wj� ! *w as long as 05m5ð2=lmaxÞ [6], which
concludes the proof. &

The next result evaluates the correlation matrix of ej :

Theorem 3
The adaptive filter vector wj ! *w is not consistent. At the equilibrium near the global minimum
of JCM; the correlation matrix of ej is uniquely determined by the following Lyapunov equation:

*RRe þ Re *R ¼ m *Rg ð38Þ

where *Rg ¼ HT *GH þ *T and

*G :¼ E½fðm; nÞf2ðf ðm; nÞÞfTðm; nÞ� ð39Þ

*T :¼ E½vðm; nÞf2ðf ðm; nÞÞvTðm; nÞ� ð40Þ

if 05m5ð1=lmaxÞ; where lmax is the maximum of eigenvalue of *R :¼ HT *FH þ *V :

Proof
From the definition of ejþ1 given in Equation (35), E½ejþ1eTjþ1� can be written as

E½ejþ1eTjþ1� ¼ E½ejeTj � � mðI1 þ I2 � mI3Þ ð41Þ

where z :¼ gðm; nÞfð*f ðm; nÞÞ þ gðm; nÞf0ð*f ðm; nÞÞgTðm; nÞej and

I1 :¼ E½zeTj � ð42Þ

I2 :¼ E½ejzT� ð43Þ

I3 :¼ E½zzT� ð44Þ

I1 and I2 can be simplified using Lemma 1 as

I1 ¼ ðHT *FH þ *VÞRej ð45Þ

I2 ¼ Rej ðH
T *FH þ *VÞ ð46Þ

where Rej ¼ E½ejeTj �: The dominant term in I3 is gðm; nÞf2ð*f ðm; nÞÞgTðm; nÞ: Hence, I3 can be
approximated as

I3 ¼E½gðm; nÞf2ð*f ðm; nÞÞgTðm; nÞ�

¼HT *GH þ *T

¼ *Rg ð47Þ
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Substituting (45), (46) and (47) in (41) and rearranging terms give

E½ejþ1eTjþ1� ¼ E½ejeTj � � mð *RRe þ Re *R� m *RgÞ ð48Þ

Let Re be the unique positive definite solution of the Lyapunov equation

*RRe þ Re *R ¼ m *Rg ð49Þ

Substituting (49) in (48) and subtracting Re from both sides lead to

Rejþ1 � Re ¼ ðI � 2m *RÞðRej � ReÞ ð50Þ

Consequently,

jjRejþ1 � Rejj ¼ jjI � 2m *RjjjjRej � Rejj ð51Þ

which can be iterated to obtain

jjRej � Rejj ¼ jjI � 2m *Rjjj jjRe0 � Rejj ð52Þ

If 05m5ð1=lmaxÞ; then jjI � 2m *Rjj51 and

lim
j!1
jjRej � Rejj ¼ 0 ð53Þ

Therefore, limj!1Rej ! Re: Since Re is positive definite, wj ! *w is not consistent and the proof
is complete. &

Adaptive filter coefficients exhibit a random motion around the global minimum at
convergence. Hence, the distortion due to gradient noise is

D2 :¼E½jjy� *yjj2�

¼E½jjHejj2�

¼E½trðeTHTHeÞ�

¼ trðE½eeTHTH�Þ

¼ trðReH
THÞ

When, *f ðm; nÞ � f ðm; nÞ; then *F ¼ F and *Rg ¼ Rg; where

Rg ¼ HTGH þ T

G :¼ E½fðm; nÞf2ðf ðm; nÞÞfTðm; nÞ�

T :¼ E½vðm; nÞf2ðf ðm; nÞÞfTðm; nÞ�

For this case,

RRe þ ReR ¼ mRg ð54Þ
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If E½f0ðf ðm; nÞÞf 2ðm; nÞ� ¼ s2f E½f
0ðf ðm; nÞÞ�; then R ¼ s2f E½f

0ðf ðm; nÞÞ�HTH: Hence,

D2 ¼ tr
1

2s2f E½f
0ðf ðm; nÞÞ�

mRg

 !

¼
1

2s2f E½f
0ðf ðm; nÞÞ�

m trðRgÞ ð55Þ

When E½f0ðf ðm; nÞÞf 2ðm; nÞ�=s2f E½f
0ðf ðm; nÞÞ�; (55) can still be used to approximate D2:

Note that Rg is a diagonal matrix of dimension ð2C þ 1Þð2Dþ 1Þ � ð2C þ 1Þð2Dþ 1Þ; where
ð�C;CÞ � ð�D;DÞ is the support of the adaptive filter. Hence, D2 increases as the support of the
adaptive filter gets larger.

The total distortion is D ¼ D1 þD2: D1 is inversely proportional to the support of the
adaptive filter while D2 is proportional to it. Consequently, there should be an optimum support
once the step-size m is fixed.

6. SIMULATION RESULTS

The theoretical results are supported with computer simulations in this section. The clas-
sical 8-bit grey-scale pepper image was chosen a test image. The procedure described [1] was
used to obtain true images with several grey levels, which fulfil most of the assumptions
made about the true image. For the sake of simplicity, a square support was used for
the adaptive filter in all simulations. A 2-D impulse function was used to initialize the adaptive
filter.

Figure 3. Dependence of D on the filter support for the motion blur. L ¼ 2 (left) and L ¼ 4 (right).
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The theory is first validated for a 1� 5 horizontal motion blur at 50 dB blurred signal-
to-noise ratio (BSNR). Relationships between the total distortion D given by

D ¼
1

MN

XM�1
m¼0

XN�1
n¼0

ðf ðm; nÞ � #f ðm; nÞÞ2 ð56Þ

and the support of the adaptive filters are illustrated in Figures 3 and 4 for several grey-level true
images. Observe that for each level there is an optimum support for a given step-size.

0
7

Figure 4. Dependence of D on the filter support for the motion blur. L ¼ 8 (left) and L ¼ 16 (right).

Figure 5. Dependence of D on the adaptive filter support for the scatter blur.
L ¼ 2 (left) and L ¼ 4 (right).
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Next, the theory is validated for a 5� 5 scatter blur with b ¼ 1 at 50 dB BSNR. Dependences
of the total distortion D on the adaptive filter supports are given in Figures 5 and 6 for several
grey levels. As in the horizontal motion blur case, there is an optimum support for the adaptive
filter for each level.

7. CONCLUSIONS

The static and dynamic convergence behaviour of the blind image deconvolution method
proposed in Reference [1] was studied in this paper. The analysis is based on the first-order
approximation of the CM cost under the independence assumption. Analysis has shown that
under suitable conditions, the global minimum of the CM cost is equal to the statistically
optimum Wiener solution. In addition, for a given blur and step-size there is an optimum
support for the adaptive filter to deblur the observed noisy blurred image. This striking result is
contrary to the common folklore that increasing FIR filter support results in increased
performance for the adaptive algorithms. Computer simulation results were provided to validate
the theory in a variety of settings.

It must be noted before concluding the paper that an autoregressive (AR) adaptive filter could
be used to implement the new method as well. In AR implementation, there is no need to find
the optimum support experimentally provided that support of the blur is known. Furthermore,
distortion introduced due to the finite support of the adaptive filter could be made zero in
theory. In addition, AR implementation provides an estimate of the blur (not an approximate
inverse of the blur as is the case in FIR implementation) at convergence. Despite these
important advantages, AR implementation has one limitation that makes its use difficult in real
applications: derivation of the algorithm and its implementation are not trivial. For further
details, see Reference [12].

Figure 6. Dependence of D on the adaptive filter support for the scatter blur.
L ¼ 8 (left) and L ¼ 16 (right).
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APPENDIX A: PROOF OF LEMMA 1

(a) If *wjðm; nÞ are the adaptive filter coefficients that make JCM attain one of its isolated minima,
then the gradient rJCM is equal to zero vector and the Hessian H is positive definite, i.e.

rJCM ¼

@JCM
@ *wjð�C;�DÞ

..

.

@JCM
@ *wjðC;DÞ

2
66666664

3
77777775
¼

0

..

.

0

2
6664
3
7775 ðA1Þ

and

H ¼

@2JCM
@ *w2

j ð�C;�DÞ
. . .

@2JCM
@ *wjð�C;�DÞ@ *wjðC;DÞ

..

. . .
. ..

.

@2JCM
@ *wjðC;DÞ@ *wjð�C;�DÞ

. . .
@2JCM

@ *w2
j ðC;DÞ

2
666666664

3
777777775

ðA2Þ

is positive definite. For �C4k4C and �D4l4D;

@JCM
@ *wjðk; lÞ

¼
@

@ *wjðk; lÞ
E½ð*f 2j ðm; nÞ � gÞ2�

¼ 4E½fð*f jðm; nÞÞgðm� k; n� lÞ�

Therefore, by Equation (A1)

E½fð*f jðm; nÞÞgðm� k; n� lÞ� ¼ 0 ðA3Þ

Writing Equation (A3) for �C4k4C and �D4l4D results in Lemma 1(a).
(b) Also, for �C4k; r4C and �D4l; s4D

@2JCM
@ *wjðk; lÞ@ *wjðr; sÞ

¼
@2

@ *wjðk; lÞ@ *wjðr; sÞ
E½ð*f 2j ðm; nÞ � gÞ2�

¼ 4E½gðm� k; n� lÞf0ð*f jðm; nÞÞgðm� r; n� sÞ� ðA4Þ

It is clear from (A4) that the Hessian H can be written as

H ¼ 4E½gðm; nÞf0ð*f jðm; nÞÞ�gTðm; nÞ� ðA5Þ

Substituting gðm; nÞ ¼ HTfðm; nÞ þ vðm; nÞ in (A5), using definitions of *F and *V given by (16)
and (17), and noting that f ðm; nÞ and vðm; nÞ are independent, give

H ¼ 4E½HT *FH þ *V �

Since H is positive definite, HT *FH þ *V is also positive definite.
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APPENDIX B: PROOF OF LEMMA 2

Suppose that the adaptive filter has sufficiently large support, the true image has a uniform
probability density function, and the amount of additive noise is small, then for sufficiently large
j; *wj ¼ w0 and *f jðm; nÞ � f ðm; nÞ; where w0 is the optimum Wiener filter. Hence,
(a)

E½fðf ðm; nÞÞf ðk; lÞ� ¼E½fð*f jðm; nÞÞ
X
r

X
s

*wjðr; sÞgðk� r; l � sÞ�

¼
X
r

X
s

*wjðr; sÞE½fð*f jðm; nÞÞgðk� r; l � sÞ� ¼ 0

by Lemma 1(a).
(b) Since the Hessian H is positive definiteX

r

X
s

X
u

X
t

*wjðr; sÞ *wjðu; tÞE½gðk� r; l � sÞf0ð*f ðm; nÞÞgðk� u; l � tÞ� > 0

As a consequence, for sufficiently large j

E½f0ðf ðm; nÞÞf 2ðk; lÞ� ¼E½f0ð*f ðm; nÞÞ
X
r

X
s

*wjðr; sÞgðk� r; l � sÞ

�
X
u

X
t

*wjðu; tÞgðk� u; l � tÞ�

¼
X
r

X
s

X
u

X
t

*wjðr; sÞ *wjðu; tÞ

� E½gðk� r; l � sÞf0ð*f ðm; nÞÞgðk� u; l � tÞ� > 0
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