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Abstract—The task of determining the weave density in the
canvas support of Old Master paintings is introduced as a period
extraction problem. Because of the way paintings were commonly
prepared and preserved, the threads in the horizontal and vertical
directions in the canvas support can be counted from x-ray
images of the painting. Current procedures are tedious, time-
consuming, and (usually) insufficiently documented. This paper
describes the design of an algorithm for counting threads from x-
rays that uses the Fourier Transform of the Radon Transform ofa
portion of the image with some crude, but appropriate, decision-
making. The algorithm is presented as a sequence of refinements
based on a simple mathematical model of the available image
data: high resolution x-rays of paintings by Vincent van Gogh
from the collection of the Van Gogh Museum. Over 900 spot
counts were performed manually by a student team at Cornell
using a graphical user interface created for this project. These
manual counts provide a dataset for evaluating performance
of the algorithm. A major goal is to convince art historians
of the viability of automated (and semi-automated) counting
procedures.

I. I NTRODUCTION

As image data acquisition technology has advanced in
the past decade, museums have routinely begun to assemble
digital libraries of images of their collections. As described
in [1], image processors and art historians can now inter-
act on image analysis tasks that support the art historian’s
mission of painting analysis as well as activities in image
acquisition, storage, and database search. The application of
image processing to the investigation of visual art works
has recently [2] been declared an important future area for
signal processing research. As [1] and [2] acknowledge, the
“distance” between the areas of art historical painting analysis
and signal processing is a daunting impediment to this cross-
disciplinary collaboration.

One approach to this collaboration is to provide (possibly
primitive) signal processing tools that help “automate” proce-
dures art historians currently conduct in painting analysis with
the hope of expanding the reach of this common practice.
Determining the density in threads/cm of the weave in the

canvas support of a painting, also known as thread counting,
is a candidate procedure.

Art historians use thread count information in support of a
claim that the canvases on which different paintings are painted
are from the same bolt. When combined with knowledge
of the artist’s common studio practices, this information can
justify the conclusion that the paintings are from the same
artist [3], or, as in a study [4] of the collaboration of van
Gogh and Gauguin, from two artists. Thread counting has been
utilized as a major forensic tool in the attribution effortsof
the decades-long Rembrandt Research Project [5].

The counting of threads in the painting’s original canvas
cannot usually be done from the front of the painting as it
is covered by paint. Thread counting also cannot be done
from the back (for the vast majority of Old Master paintings)
because canvasses have often been strengthened by gluing
additional canvas to the back. Fortunately, the preparation of
canvas in European painting from the 16th through the 19th
centuries commonly involved the application of a layer of
x-ray absorbent paint to produce a smooth surface on the
rough fabric. With radio-absorbent paint thicker in the valleys
between threads, a (positive) x-ray of a painting with a simple
linen weave reveals a roughly periodic pattern as shown in the
enlarged detail from van Gogh’s F651 in Fig. 1.

An analogous task (though distinct due to the character
of the images) for which period estimation procedures have
been developed is that of chain pattern identification in paper
used, e.g., in the prints of Rembrandt [6], [7], as well as in
identifying fabric structures in textiles [8].

Current manual thread counting procedures are cumber-
some, and are therefore typically done only as a specific ques-
tion arises rather than as a standard method of documentation
for entire collections, as could be the case with automated
procedures. The x-ray films are commonly mounted on a
light box in a composite of the whole painting. A magnifying
eyepiece is used to view the threads alongside a 1 or 2 cm ruler.
Since the number of threads traversed in exactly 1 or 2 cm is



Fig. 1. The left-hand side shows an enlarged detail from a positive print of
x-ray negative of van Gogh’s “The Walk: Falling Leaves” (F651). Another
detail appears in Fig. 3. All thread x-rays are provided courtesy of the Van
Gogh Museum. The right-hand side shows the pixel intensitiesacross row 50.

unlikely to be an integer, the remaining fraction is estimated
by eye. This makes the preservation of a record of the spots
where counts were taken, up to 15 in each – horizontal and
vertical – direction, so arduous that it is rarely done. Thus, the
current procedure is not repeatable. Such archiving aspects
can be readily handled, along with enhanced viewing and
manipulation capabilities, once the x-ray images are scanned
and thread counting is performed on the computer-generated
image. In fact, such record keeping improvements may be as
important to the adoption of automated thread counters as the
time savings.

Discerning thread density from a digital image is a basic
period estimation task to which the Fourier Transform [9] is
well suited. The right-hand side of Fig. 1 plots the intensity
values from row 50. The Fourier Transform of this signal
produces a peak at the location corresponding to 11.84 vertical
threads/cm crossing row 50. (The Van Gogh Museum has a
value of 11.5 vertical threads/cm recorded in its archives for
F651.) However, this crude scheme needs to be modified to
deal with the realities of the dataset which consists of x-rays
of paintings by Vincent van Gogh scanned at 600 dots per
inch and saved as 8-bit greyscale images.

This paper describes an algorithm based on a sequence of
refinements to this primitive Fourier-transform-based method.
The input is a swatch of an x-ray image (approximately 1 inch
square) and the output is an estimate of the thread density.
The goal is an accuracy within±1 thread/cm 99% of the
time. A simple mathematical model of a generic thread pattern
is introduced and the goal of the algorithm can be viewed
as estimating parameters in that model. Refinements to the
model, added to make it represent observed images more
closely, are used to guide improvements in the algorithm.
Several specific refinements and corresponding improvements
are detailed, including use of a Radon transform to determine
the rotation compensating for tilt, appropriate data averaging to
combat monochromatic “dropout”, and “intelligent” rejection
of subharmonics due to observed non-uniform thread width
patterns. To provide a ground truth against which the algorithm
can be tested (which is also needed to convince art historians
the algorithm is performing correctly), a team of students at
Cornell University counted threads at over 900 spots in over
20 paintings by Vincent van Gogh.

II. A M ODEL OF WEAVE PATTERNS

A. Idealized Model

Fig. 2 shows an idealized weave pattern consisting of
horizontal and vertical ribbons that undulate up and down
and intertwine their neighbors. The first assumption is that
these undulations are sinusoidal in nature and they occur with
(spatial) frequenciesfh and fv in the horizontal and vertical
directions, respectively. Moreover, each set of ribbons alter-

Fig. 2. An idealized weave pattern consists of intertwined horizontal and
vertical ribbons. The 6 vertical and 10 horizontal “ribbon”fields are defined
in (1) with fh = 3 andfv = 5. The complete image as defined in (2) is the
maximum of the vertical and horizontal ribbon fields.

nates in phase. For instance, if the top-most horizontal ribbon
is described bysin(2πfhx), the second horizontal ribbon is
phase shifted tosin(2πfhx + π

2 ). Significantly, these phase
alternations occur at a rate (frequency) defined by the vertical
frequencyfv. Describing this tight coupling between the two
frequencies is a key step. Letsquare(z) , sign(sin(z)) so
that square(2πfvy) represents a square wave with the same
frequency as the vertical sinusoidsin(2πfvy). Then the field
of horizontal and vertical ribbons, respectively, are described
by

h(x, y) = sin(2πfhx) square(2πfvy) (1)

v(x, y) = − sin(2πfvy) square(2πfhx).

The two ribbon fields are superimposed so that only the
closest (largest) value in each segment remains. This is equiv-
alent to retaining only the maximum value at each point in the
image. Hence

f(x, y) = max(h(x, y), v(x, y)) (2)

= max(sin(2πfhx) square(2πfvy),

sin(2πfvy) square(2πfhx))

provides a model of this idealized weave pattern as in Fig. 2.
Observe that the number of visible ribbons is twice the
frequency value.

Of course, real images of weave patterns such as those
provided by x-rays of paintings will not be so ideal. There are
gaps between successive ribbons, the sinusoidal undulations
will not all be the same size, and the ribbons may not be
perfectly aligned vertically and horizontally. Each of these
imperfections will be modeled in the next subsection.



B. Refined Model

A typical thread x-ray is shown in the left hand side of
Fig. 3. This is enhanced using Dagel’s thread enhancement
algorithm [10] (which conducts a series of morphological
operations on the image) to more clearly reveal the underlying
ribbon fields, as shown on the right hand side. All three kinds
of nonidealities are present: the image is clearly tipped, the
ribbons are not all the same size, and there are gaps between
adjacent rows and columns.

Fig. 3. A segment of a thread x-ray from van Gogh’s “The Sheep-Shearer”
(F634) and its enhancement using Dagel’s thread enhancement algorithm.

Since the problem of thread counting is closely linked to
the determination of the frequency parametersfh andfv, it is
also worthwhile to look at the 2-D Discrete Fourier Transform
(DFT). Fig. 4 shows the magnitude of the DFTs of the thread
x-ray and the DFT of the enhanced version from Fig. 3.
Indeed, the most intense spots in the DFT occur at the true
thread frequencies, as we would expect.

Fig. 4. The magnitude spectra of the thread x-ray and its enhanced version
from Fig. 3.

Gaps can be added between adjacent ribbons by creating a
dead zone in the square wave whenever it changes values. A
constantδ defines the width of the dead zone by

squareδ(z) =

{

0 | sin(z)| < δ
sign(sin(z)) otherwise

and the functionsquareδ(·) can be used in (1)-(2) in place
of square(·). For example, the left hand side of Fig. 5 shows
the same idealized weave pattern as in Fig. 2 with a smallδ
added in both the horizontal and vertical dimensions.

Fig. 5. Dead zones of size 3 and 4 pixels are added to the idealized weave
model of Fig. 2. Duty cycles of40% and 60% are incorporated into the
idealized weave model of Fig. 2.

Changing widths of threads can be modeled by changing
the duty cycle of the square wave, which is defined to be
the percent of the period during which the wave is positive.
Changing the duty cycle away from 50% changes the widths of
the adjacent ribbons and gives the field more variety of shapes
and sizes. The example in the right hand side of Fig. 5 shows
the ideal weave with duty cycles of 40% in the horizontal and
60% in the vertical direction. Finally, the image can be rotated
a small amount by interpolating adjacent pixel values.

Putting these three kinds of nonidealities together leads to
figures such as in Fig. 6, which has many of the features of
the enhanced thread x-ray.

Fig. 6. Using the model, it is possible to replicate many of the features of an
enhanced thread x-ray. The left hand side of this figure is generated from the
model with 12 vertical and 8 horizontal ribbons. Compare to theenhanced
x-ray on the right hand side of Fig. 3. The DFT also duplicatesmany of the
most salient features of the DFTs of the originals.

III. A NALYSIS OF WEAVE MODEL

One way of determining the amount of rotation of a weave
pattern is to project through the image, summing up the values
at each angle of projection. Such projections are called the
Radon transform [9][11], and this is shown in Fig. 7 for a
synthetic weave pattern with a rotation of5◦.

The vertical slice in Fig. 7 at the rotation angle (in this
case, the arrow pointing to the5◦ slice) is plotted in Fig. 8.
This projection can be described mathematically in terms of
the idealized weave model of Section II-A. To be concrete,



Fig. 7. The weave pattern on the left is rotated by 5 degrees. The radon
transform shown on the right projects through the weave pattern at every
angle (from0◦ to 180◦) and sums the pixel values. The display shows large
values in red, through yellow to small values in blue. The arrows pointing to
the narrowest slices are readily discernible as those with the largest variance,
which occurs because the projection at these angles alternately intersects all
the ribbons and (nearly none) of the ribbons. These can be seen in this image
at 5◦ and at95◦.

the vertical projection is represented in terms of the modelas

p(y) =

∫

f(x, y)dx =

∫

max(h(x, y), v(x, y))dx (3)

where the horizontal and vertical functionsh(x, y) andv(x, y)
are defined in (1).

Fig. 8. The projection at5◦ through the weave pattern in Fig. 7 has a shape
that can be calculated from the model.

Observe that the sin term inh(x, y) and the square term in
v(x, y) always have the same sign. Similarly, the sin term in
v(x, y) and the square term inh(x, y) also have the same sign.
Henceh(x, y) is nonnegative wheneverv(x, y) is nonpositive
and v(x, y) is nonnegative wheneverh(x, y) is nonpositive.
Accordingly,

max(h(x, y), v(x, y)) =

1{h(x,y)>0}h(x, y) + 1{v(x,y)>0}v(x, y)

where

1z>0 =

{

1 z > 0
0 z ≤ 0

is the indicator function. Hence the integral (3) can be rewrit-
ten as the sum

p(y) =

∫

h(x,y)>0

sin(2πfhx) square(2πfvy)dx

+

∫

v(x,y)>0

− sin(2πfvy) square(2πfhx)dx.

Assuming the special case whenfh and fv are such that an
integer number of cycles fit in the image, the first integral is

a constant for any value ofy
∫

h(x,y)>0

rectify{sin(2πfhx)}dx = cv,

where rectify{z} = z1z>0 is the half-wave rectification
function. The second integral can also be calculated under the
same assumption as
∫

v(x,y)>0

− sin(2πfvy) square(2πfhx))dx

= sin(2πfvy)

∫

v(x,y)>0

−square(2πfhx))dx

= bv| sin(2πfvy)|.

Accordingly,

p(y) = cv + bv| sin(2πfvy)| (4)

which is directly comparable with the numerical calculation
in Fig. 8. An analogous argument shows that the projection in
the x direction is

p(x) = ch + bh| sin(2πfhx)|.

Thus the projections of a derotated weave image directly
contain information about the frequency of the threads. In
the more general case where an integral number of cycles of
fh and fv do not fit in the image,

∫

h(x,y)>0
h(x, y) takes on

two values (one for the ‘even’ part of each cycle and one for
the ‘odd’ part of each cycle) and

∫

v(x,y)>0
v(x, y) becomes a

weighted combination of two terms of the form| sin(2πfvy)|.

IV. D ESCRIPTION OF ASEMI-AUTOMATED ALGORITHM

This section describes an algorithm for semi-automated
thread counts that employs the Radon transform (for derotation
to ensure appropriate thread alignment) in combination with
the 1-D Fourier Transform (for determinantion of the thread
periodicity). Derotation of the image is necessary for two
reasons: the x-ray foils may not have been perfectly aligned
on the scanner during digitization, and it is also quite common
that the horizontal and vertical threads are not perfectly
orthogonal (i.e.90◦ to one another). As discussed above in the
caption for Fig. 7, the variance of the Radon transform over a
range of projection angles is expected to be largest when the
threads are exactly vertically (resp. horizontally) aligned. The
angle at which the Radon has the largest variance determines
the best angle to align the threads. Without loss of generality,
we will assume in the following that vertical threads are being
counted.

In any painting x-ray, some regions will be better than
others as candidate locations for performing the thread count.
It is typical for art historians to avoid counting threads very
near the edges, due to scalloping and stretching of the canvas.
In addition, certain pigments can be opaque on the resulting
x-ray, thus reducing the visibility of the underlying weave.
Rather than approach the problem of fully automated counting,
we consider a semi-automated scheme where a human operator
has selected a line segment along a horizontal thread over



which over which the number of vertical threads may be
counted. It is assumed that the endpoints of the line start
and stop on the center of a whole crossing thread; thus, the
total number of threads over the user-selected line is expected
to be an integer, and the assumption used to arrive at (4) is
valid. The inputs to the algorithm are the digital x-ray image
and the coordinates(x1, y1) and(x2, y2) of the two endpoints
over which the thread count is to be taken. The steps of the
algorithm are as follows:
Step 1: Extract a circular region of the image which
encompasses the user-selected line segment.Assuming the
user-selected line segment is approximatelym pixels in length,
the resulting extracted circular image is contained in anm×m
matrix, where values outside the circle of radiusm/2 are set
to zero.
Step 2: Perform the Radon transform over a range
of angles. The maximum rotation angle encountered in
the Van Gogh Museum dataset is about±5◦. Hence the
Radon transform is calculated for 101 different anglesθ ∈
[−5,−4.9, . . . , 5] degrees. The output of the Radon transform
is a m× 101 matrix R, representing the 101 different projec-
tions at each angle.
Step 3: Choose the rotation angle with the largest variance.
The projection with the largest variance is anm-dimensional
column fromR denotedr.
Step 4: Filter the resulting projection. This optional step
helps to reduce the effects of high frequency noise. A zero-
delay forwards/backwards low-pass filter is used so that the
location of the peak is not moved.
Step 5: Take the Fourier Transform of the Radon Trans-
form. Ideally, the filtered projection is something of the form
of (4). Consequently, the task is reduced to a one-dimensional
period estimation problem (i.e. that of estimatingfv), for
which the DFT is well suited.
Step 6: Choose frequency bin with largest magnitude.The
frequency bin of the Fourier Transform with largest magnitude
is the estimate offv. The n = 9 lowest frequencies are not
considered, however, as there may be a significant (though
irrelevant) DC or low-frequency component which dominates
the peak of interest.

The number of threads per centimeter is then calculated
directly from the estimate of the thread frequency over a line
segment of known length.

V. RESULTS AND CONCLUSION

In parallel with the algorithm development, we have de-
veloped a graphical user interface (GUI) for testing the al-
gorithm on the dataset provided by the Van Gogh Museum.
Using the GUI, a team of Cornell undergraduates manually
counted threads over 983 line segments spanning the entire
dataset of painting x-rays. Each of these thread counts were
independently, blindly verified by another student, and arethus
assumed to be 100% accurate. The algorithm of Section IV
was tested on all 983 points, and it was found that the esti-
mated thread counts were within±0.5 threads per centimeter
84% of the time, and within±1 thread per centimeter 95% of

the time. When compared with manual thread count measure-
ments provided by the Van Gogh Museum, the algorithm was
found to be as accurate [12]. In addition, the semi-automated
algorithm provides repeatability and checkability.

Of course, there is still room for improvement in semi-
automated thread counting. With further refinement of the
model, and further refinement of the corresponding algorithm,
we are optimistic that thread counting algorithm performance
can be improved. In addition, the use of fully automated
algorithms is also of interest, a topic which has recently
been explored in [13]. The ability to assemble thread count
data that provides a “map” of local counts across the canvas
and the cataloging of thread count data for a wide range of
van Gogh’s paintings have already had a substantial impact
on the preparation of the next catalog of late French period
paintings by Vincent van Gogh in the collection of the Van
Gogh Museum.
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