Algorithms for Old Master Painting Canvas Thread Counting from X-rays

A.G. Klein*, D.H. Johnson†, W.A. Sethares‡, H. Lee‡, C.R. Johnson, Jr.§ and E. Hendriks¶ *Worcester Polytechnic Institute, †Rice University, ‡Univ. of Wisconsin, §Cornell University, ¶Van Gogh Museum

Image processing in support of painting analysis

- Museums have embraced digital imaging. **>>**
- Facilitates interaction between image processors and art **>>** historians for such tasks as:
 - image acquisition, storage, and database search.
 - image analysis that supports the art historian's mission of painting analysis
- » Art historical painting analysis and signal processing are disparate fields, presenting a daunting challenge to cross-disciplinary collaboration.
- One approach: provide signal processing tools that assist **>>** or automate procedures art historians currently conduct.

Thread count information

- Used by art historians in support of claim that canvases on **>>** which different paintings are painted are from same bolt.
- Can justify conclusions that paintings are from the same **>>** artist, or a collaborative effort (e.g. van Gogh and Gauguin).
- Has been used as a major forensic tool in attribution **>>** efforts (e.g. the decades-long Rembrandt Research Project).
- Often cannot be obtained from front of canvas **>>**
 - front is covered by paint.
- Often cannot be obtained from back of canvas **>>**
- additional canvas glued to back for strengthening In such cases, must count threads from x-rays. **>>**

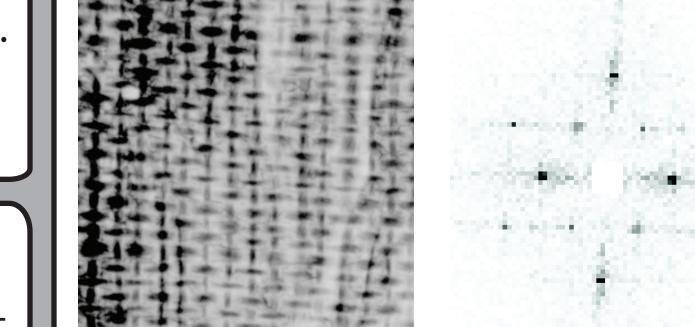
Current manual thread counting procedure

- » Cumbersome, involves estimating the (possibly fractional) number of threads along a 2cm line segment under a microscope.
- Done as a specific question arises, not as standard method of documentation. **》**
- Difficult to document location from which thread counts were obtained.
- Not repeatable. **>>**

Canvas weave model

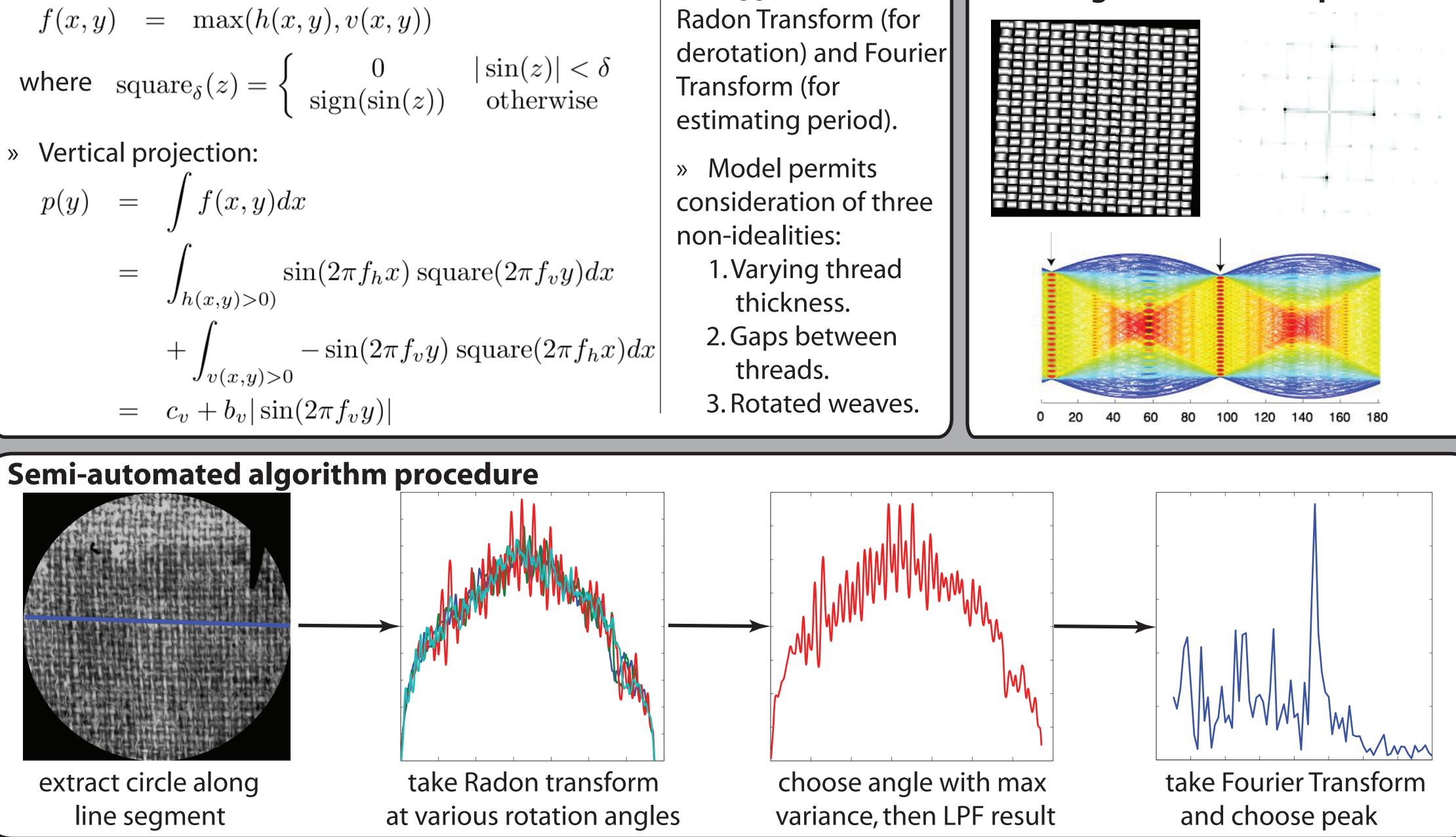
- » Define horizontal, vertical, and composite weave as: $h(x,y) = \sin(2\pi f_h x) \operatorname{square}_{\delta}(2\pi f_v y)$
 - $v(x,y) = -\sin(2\pi f_v y) \operatorname{square}_{\delta}(2\pi f_h x)$

$$f(x,y) = \max(h(x,y), v(x,y))$$


$$(y) = \int f(x,y)dx$$

= $\int_{h(x,y)>0} \sin(2\pi f_h x) \operatorname{square}(2\pi f_v y)dx$
= $\int_{h(x,y)>0} \sin(2\pi f_h x) \operatorname{square}(2\pi f_v x) \operatorname{square}(2\pi f_h x)$

» Projection contains sinusoidal component.


» Suggests use of Radon Transform (for Transform (for estimating period).

» Model permits consideration of three non-idealities: 1. Varying thread

van Gogh's "The Sheep-Shearer" and its 2-D Fourier Transform

Model-generated examples

Results/Conclusion

- Dataset of 20 paintings, x-rays scanned at 600 dpi grayscale. **>>**
- Cornell undergraduates manually (and doubly) counted threads over ~1000 2cm swatches. **>>**
- Algorithm performance within ± 0.5 threads/cm 84% of time, ± 1 thread per centimeter 95%. **>>**
- As accurate as human, and repeatable. **>>**