
Beat Tracking of Musical Performances Using Low-Level
Audio Features

Beat tracking methods attempt to automatically synchronize to complex
nonperiodic (yet repetitive) waveforms; to create an algorithm that can “tap
its foot” in time with the music.

Beat tracking methods attempt to auto-
matically synchronize to complex non-
periodic (yet repetitive) waveforms; to
create an algorithm that can “tap its
foot” in time with the music. Important
for
• musical signal processing
• information retrieval
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Applications of Beat Tracking

• helping to understand how people process temporal information

• editing of audio data

• synchronization of visuals with audio

• audio information retrieval

• audio segmentation and signal processing

• a drum machine that “plays along with the band” rather than the band
playing to the machine
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Two Ideas:

The first is a method of data reduction that creates a collection of rhythm
tracks (feature vectors) which represent the rhythmic structure of the piece.
Each track uses a different method of (pre)processing the audio, and so
provides a (somewhat) independent representation of the beat.

The second idea is to model the rhythm tracks (in simplified form) as a
collection of random variables with changing variances: the variance is
small when “between” the beats and large when “on” the beat. Exploiting
this simple stochastic model of the rhythm tracks allows the beat detection
to proceed using Bayesian methods.
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What is a “beat” anyway?

Definition 1 An auditory boundary occurs at a time t when the sound stim-
ulus in the interval [t− ε, t] is perceptibly different from the sound stimulus
in the interval [t, t+ ε].

Definition 2 A beat is a regular succession of auditory boundaries.

For example, a series of audio boundaries occurring at times

τ, τ + T, τ + 2T, τ + 3T, τ + 4T, . . .

forms a beat of tempo T with a “phase” of τ .
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Idea of the rhythm track model

• T is on the order of 100ms-2s (hence want data reduction by a factor
of ≈ 100).

• Beats tend to occur at auditory boundaries, when the sound changes.

• Many things may cause boundaries (amplitude changes, pitch/frequency
changes, changes in timbre/spectrum, etc.) Will measure (initially) four
different aspects.

• Because they look at different characteristics of the audio (each of
which is related to the rhythmic aspects), they may be considered
quasi-independent observations. Need way to combine these.
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Building a rhythm track feature vector

original signal

break into segments
(possible overlaps

not shown)

transform (mag/phase
spectra, cepstrum,

histograms, CDF, PDF)

distance or size 
measurement

difference

rhythm track

3.0 2.7 5.1 4.9

0.3 -2.4 0.2
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Four rhythm tracks ap-
plied to the first 10

seconds of a recording
of Handel’s Water Mu-
sic: part (a) the audio
waveform, (b) the energy
method, (c) group delay,
(d) center of the spec-
trum, and (e) the disper-
sion. Tick marks empha-
size beat locations that
are visually prominent.

(a)

(b)

(c)

(d)

(e)

0 1        2        3 4 5 6        7 8 9 10

time in seconds
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The four rhythm tracks of Pieces of Africa by the Kronos quartet between 2 and 6

seconds. The estimated beat times (which correctly locate the beat in cases (1), (3), and

(4)) are superimposed over each track.
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Parameters of the rhythm track model

Structural parameters:
• σ2

1 is the “off the beat” variance,
• σ2

2 is the “on the beat” variance,
and
• ω is the beatwidth, the variance

of the width of each set of “on
the beat” events. For simplicity,
this is assumed to have Gaus-
sian shape.

Timing parameters:
• τ is the time of the first beat
• T is the period of the beat, and
• δT is the rate of change of the

beat period.
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beats

width of the
"on" beat

variance of 
the "off" beat

variance of 
the "on" beat

Parameters of the rhythm track model are T , τ , ω, σ1, σ2 and δT (not
shown). Generative model assumes rhythm tracks composed of normal

zero-mean random variables with variances defined by σ’s.
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So now we have ways of transforming the raw audio into rhythm tracks.
Second idea is to somehow parse the rhythm tracks in order to identify the
parameters. Investigated two methods:

• A gradient method

• A Bayesian approach

Gradient is straightforward to implement, and computationally fast. But. . .
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Estimates of the beat period for the Theme from James Bond using the gradient
algorithm. Depending on initialization it may converge to a 1/8-note beat near 40

samples per period (0.23s) or to the 1/4-note beat near 80 (0.46s).

13



Applying a Baysian model

Collect the timing parameters, τ, T and δT into a state vector t, and let
p(tk−1|·) be the distribution over the parameters at block k − 1. The goal
of the (recursive) particle filter is to update this to estimate the distribution
over the parameters at block k, that is, to estimate p(tk|·).

The predictive phase details how tk is related to tk−1 in the absence of
new information: a diffusion model.

The update phase incorporates new information from the current time block.
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Tracking using particle filters

• p(tk|current block of rhythm tracks) is proportional to p(current block of rhythm tracks|tk)p(tk|previous block of rhythm tracks)

• Because the rhythm tracks are considered to be independent, the pos-
terior is

Πi p(rhythm track i|tk)p(tk|previous block of rhythm tracks)

• p(rhythm track|tk) is modeled as a product of Gaussians with the
structured pattern of variances given above.
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Particle Filters II

Applied to the beat tracking problem, the particle filter algorithm can be
written in three steps. The particles are a set of N random samples,
tk(i), i = 1 . . . N distributed as p(tk−1|Rk−1).

1. Prediction: Each sample is passed through the system model to ob-
tain samples of

t†k(i) = tk−1(i) + wk−1(i) for i = 1,2, . . . , N,

which adds noise to each sample and simulates the diffusion portion
of the procedure, where wk−1(i) is assumed to be a 3-dimensional
Gaussian random variable with independent components. The vari-
ances of the three components depend on how much less certain the
distribution becomes over the block.
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2. Update: with the new block of rhythm track values, rk, evaluate the
likelihood for each particle. Compute the normalized weights for the
samples

qi =
p(rk|t

†
k(i))∑

i p(rk|t
†
k(i))

.

3. Resample: Resample N times from the discrete distribution over the
t†k(i)’s defined by the qi’s to give samples distributed as p(tk|Rk).



How well does it work?

OK.

Listen to a couple of examples. What we’ve done is to superimpose a short
noise burst at each beat – hence it’s easy to hear when things are working
and when they’re not.

• Theme from James Bond (bondtap)

• Handel’s Water Music (watertap)

• Brubeck’s Take Five (take5tap)

• Joplin’s Maple Leaf Rag (maplecoolrobtap)

• Baltimore Consort’s Howell (BChowelltap)
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Examples of some things you can do when you know the
beat structure of a piece of music:

• Manipulate on a per-beat basis (e.g., Reversed Rag) (maplecoolre-
verse)

• An ideal situation for FFT-based analysis (e.g., Rag Minus Noise, Rag
Minus Signal) (maplecoolnoise) (maplecoolsig)

• Edit/add stuff (e.g., Switched on Rag) (maplecoolrobdrums)

• Re-order a piece 1-2-3- . . . - 30-31-32-31-30-29 - . . . -3-2-1 (friendneirf)

• Manipulate structure of piece (e.g., the Maple Leaf Waltz, James Bond
Waltz, Backwards Bond, Take 4) (maple34) (bond34) (bondback) (take4)

18



Beat-Based Signal Processing. . .

• David Bowie singing backwards. . . (New Star City)

• Map Maple to 5-tet (Pentatonic Rag)

• Map Maple to many n-tets (maplemanytet)

beat

n-tet destination

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 3 3 4 4 4 4 5 5 5 5 7 7 7 7 3

beat

n-tet destination

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 4 4 5 4 4 4 5 5 5 4 5 5 5 4 4

A

B
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Beat-Based Signal Processing II. . .

Changing the duration of beat intervals can be used as a kind of beat-
synchronized delay processing. Performing different versions simultane-
ously increases the density, often in a rhythmic way.

1/13/2 3/2 3/2 3/21/1

4/3 1/12/3 1/1 1/1 1/14/3 2/3

4/3 1/12/3 1/1 1/1 1/14/3 2/3

4/31/11/1 2/3 4/31/11/1 2/3

(a) (c)

(b)

4/3 4/3 4/3 4/3 4/3 4/3

(d)

(MagicLeafRag, MakeItBriefRag)
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Beat-Based Signal Processing III. . .

Using complex waveforms (like the Maple Leaf Rag) as an input to a syn-
thesizer, carrying out synthesis on a per-beat basis.

• Beat Gated Rag (BeatGatedRag)

• Noisy Souls and Frozen Souls (NoisySouls, FrozenSouls)
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Beat-Based Signal Processing IV. . .

Spectral band filters sound radically different from any linear filter. Local
Variations results from application of a fixed (eight band) spectral band

filter to Local Anomaly. Within each beat, the relative sizes of the spectral
peaks are rearranged, causing drastic timbral changes that nonetheless

maintain the rhythmic feel.
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τ1

frequency (Hz)

input spectrum
thresholds

τ2

τ3

x

a3

x +

a2

x

a1

x

a0

(LocalAnomaly, LocalVariation)
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Phase Vocoder Beat-Synchronized FFT
windows small frames from 1K-4K with 2

to 8 times overlap
large beat-sized windows 1

5
-1

2
sec, zero padded to a power of
two

FFT resolution 40 Hz - 10 Hz (improved by
phase adjustment)

3 Hz - 1.5 Hz (phase adjustment
possible)

peak finding all local max above median or
threshold

plus distance parameter (forbid-
ding peaks too close together)

spectral mapping direct resynthesis: output
frequencies placed in FFT vector
with phase adjustment

resampling with identity window,
no phase adjustment

beat detection optional required
examples

Maple5tetPV Maple5tetFFT

Soul65HzPV Soul65HzFFT
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Feature Vectors attempt to extract relevant features of the sound from
the waveform by reducing it to frames and deriving a single number from

each frame

original signal

break into segments

(possible overlaps

not shown)

transform (mag/phase

spectra, cepstrum,

histograms, CDF, PDF)

feature vector

3.0 2.7 5.1 4.9extract feature
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Some Interesting Features

Sensory dissonance (within each
frame)
Centroid of magnitude spectrum
Dispersion about centroid
Signal to Noise ratio
Number of significant partials
Slope of Noise Floor

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
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frequency

partials/overtones

noise floor

Some examples using Berg’s Angel Concerto. . .
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Of course, method can’t possibly work when music is inappropriate, e.g.,
swirling undifferentiated sound masses with no discernable rhythm. But,
when the music is appropriate, it still does not always work.

What are the failure modes?

When the algorithm cannot find the correct beat times, is it that

• the rhythm tracks fail to correctly locate beat boundaries?

• the Bayesian algorithm fails to find τ , T , and/or dT despite good
rhythm tracks?

What other kinds of rhythm tracks can we think of?
29



other ways to measure distance
1

∑
i x

2
i l2 energy

2
∑

i |xi| l1 norm
3

∑
i log(x2

i ) log energy
4

∑
i x

2
i log(x2

i ) entropy
5

∑
i |xi| log(|xi|) absolute entropy

6 argmax |xi| location of maximum
7 max |zi − yi| KS test (for CDF)
8 #{i : |zi| > η}, η = mean(zi) number of |zi| larger than mean
9 η =

√
2 loge(n log2(n)) SURE threshold in measure 8

10 max(zi)−min(zi) range of data
11 minm

∑
i(zi −mi− b)2 slope

12 minm |
∑m

j=1 z
2
j −

1
2

∑n
i=1 z

2
i | center

13
∑

i(m− z2
i )2 dispersion about center m

14
∑

i |zi+1 − zi| total absolute variation
15

∑
i(zi+1 − zi)2 total square variation

16
∑

i log( |zi||yi|) cross information

17
∑

i |zi| log( |zi||yi|) + |yi| log( |yi||zi|) symmetrized cross entropy
18

∑
i iz

2
i weighted energy
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The partitioned data can
be transformed into dif-
ferent domains.

label domain
A time signal
B magnitude of FFT
C phase of FFT
D cepstrum
E PDF of time signal
F CDF of time signal
G FFT of the PDF of time
H PDF of FFT magnitude
I CDF of FFT magnitude
J PDF of cepstrum
K CDF of cepstrum
L various subbands
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How many different ways of building rhythm tracks are
there?

Approximately the product of:{
# ways to

choose partitions

}
×

{
# of

domains

}
×

{
# of distance

measures

}
×

{
# ways of

differencing

}
We found 7344 different rhythm tracks. Need a way of testing to see if
these are good or bad.
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Idea for a test

Since rhythm tracks may be modeled as a collection of normal random vari-
ables with changing variances, can measure the qualityQ of a rhythm track
by measuring the fidelity of the rhythm track to the model.

(a) Choose a set of test pieces for which the beat boundaries are known.

(b) For each piece and for each candidate rhythm track, calculate the
quality measure Q.

(c) Those rhythm tracks which score highest over the complete set of test
pieces are the best rhythm tracks.

(d) Independence: check that the rhythm tracks are truly independent of
eeach other (e.g., SVD test).
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The best rhythm tracks

• based on magnitude of FFT

• based on CDF/PDF (histograms) of FFT

• based on CDF/PDF (histograms) of cepstrum

• the only time-based measure remaining was energy

• none of standard stochastic tests (SURE, K-S, etc.) based on time
signal, but some using CDFs
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A new book focusing on the tech-
nologies of beat tracking. Rhythm
and Transforms describes the im-
pact of beat tracking on music the-
ory and on the design of sound pro-
cessing electronics such as musical
synthesizers, drum machines, and
special effects devices. Coming this
summer!
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