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Online Learning via Congregational Gradient Descent*

Kim L. Blackmore,t Robert C, Williamson,} Iven M. Y. Mareels,§
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Abstract. We propose and analyse a populational version of stepwise gradient
descent suitable for a wide range of learning problems. The algorithm is moti-
vated by genetic algorithms which update a population of sclutions rather than
just a single representative as is typical for gradient descent. This medification of
traditional gradient descent (as used, for example, in the backpropogation algo-
rithm) aveids getting trapped in local minima, We use an averaging analysis of
the algorithm to relate its behaviour to an associated ordinary differential equa-
tion. We derive a result concerning how long one has to wait in order that, with
a given high probability, the algorithm is within a certain neighbourhood of the
global minimum. We also analyse the effect of different population sizes. An
example is presented which corroborates our theory very well.

Key words. Online learning, Genetic algorithm, Gradient descent.

1. Introduction

Stepwise Gradient Descent (SGD) schemes are widely used in practice for a range
of learning and optimization problems. In some sample cases, such as a linearly
parametrized hypothesis class with quadratic cost, one can ensure there is only
one local minimum which is thus the global minimum of the cost function. How-
gver, in many practically interesting cases, such as neural networks, there can be a
large number of local minima [2], [29], [55], [58). Sontag has shown [54] that the
number of critical points is countable in many cases, but stronger results about
even the number of critical points are not yet known. Adaptation of the parame-
ters can thus get stuck and a suboptimal solution can be produced. This paper
proposes and analyses a general scheme for modifying online SGD algorithms to
alleviate this problem. We show how the running of several versions of a stepwise
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gradient algorithm in parallel (a “congregation”) with periodic selection of the
fittest, and concomitant random restarting of the less fit, can ensure convergence
to the global minimum. We show this both theoretically and practically via simu-
lation examples. Furthermore, we analyse the speed of convergence, and deter-
mine the “correct” congregation size to use. The algorithm can be applied in the
case where the best parameter value does not give zero cost.

There are two main motivations to this work. The first, mentioned in the pre-
vious paragraph, has motivated earlier work for fixing SGD algorithms [20], [15].
In particular, [20] addresses the Constant Modulus Algorithm {CMA) for blind
equalization [38], which solves a special sort of learning problem, and is based on
the wide-spread LMS algorithm, It has been shown that there are non-global local
minima in many situations [19]. In [20] techniques are proposed which statistically
detect when the CMA is stuck in a local minimum, and then randomly restart it.
We show, as an alternative, how our method can be applied to the CMA, and can
ensure global convergence, at relatively little additional computational cost.

The original motivation for this work was to provide a way of making a fair
comparison between gradient descent based algorithms and Genetic Algorithms
(GAs) for a range of optimization and learning problems. Genetic algorithms
[32], [23] (described in more detail below) are optimization/adaptation techniques
based on an hypothesized model of biological evolution. A key difference between
GAs and standard SGD is that GAs evolve a population of solutions, whereas
SGD evolves only a single solution, which unsurprisingly can get stuck. Our con-
gregational algorithm is perhaps the simplest populational SGD algorithm that
can be envisaged. We have chosen this algorithm because it demonstrates the
power of simply running multiple solutions of an existing (locally convergent)
online algorithm, and because its simplicity allows the application of averaging
theory for a deterministic convergence analysis.

1.1, Relationship to Existing Work

Online algorithms are widely used for learing problems. In practical neural
networks, the widespread backpropagation algorithm is a form of SGD [29]. In
adaptive signal processing the LMS algorithm is widely used [57). Computational
Learning theorists have analysed simple cases of online algorithms, often based
on SGD [14] in their own framework. There are other analyses of SGD algo-
rithms based on the more traditional adaptive filtering approach [11], [21],
[39]. The perceived advantages of SGD are that it is computationally simple, and
because of the algorithm’s (often exponential) stability, it is robust to noise
and model mismatches. Various analyses have shown that there is a non-zero
probability of the algorithm actually escaping from local minima, since for non-
vanishing adaptation gain the actual algorithm jiggles about the average trajec-
tory [40], [25], {217, [41], [30]. However, one has to wait a time exponential in the
depth of the local minima for the escape to occur [17].

Since we plan to compare our scheme with GAs, we should say a little about
simple versus complex adaptive systems (GAs are often held to be complex sys-
tems, and thus by definition not amenable to theoretical analysis). The distinction
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between simple and complex is usually made in a vague way, and seems simply to
denote the complexity of the parametrization or extent of adaptation undergone.
Gell-Mann [26, pages 292f1.] tries to clarify this distinction, but even his classi-
fication is still a matter of degree. For the purposes of this work we do not draw
any distinction between the use of SGD for “simple” problems such as adaptive
filtering, and “complex™ tasks such as learning in complicated neural networks.
Both can be smoothly parametrized, and thus SGD, and the variant proposed in
this paper, can be applied to them.

Many people have recognized the relationship between populational methods
of optimization and biological evolution (see, e.g., [12] and papers 24-39 of [22]).
The idea now comes under the heading of Evolutionary Computation (EC) [22].
Apart from GAs [32], [23] {(which are the most widely known form of EC), there
are a variety of other methods such as Evolutionary Strategies (ES) [4] and Evo-
futionary Algorithms (EA) [5]. In order to use most of these algorithms, problems
are usualiy encoded in some binary form. GAs combine different elements of their
populations using operations based on theories of biological genetics. EAs and
ESs tend to rely more on random perturbations (mutation) of members of the
populations. The key idea of these EC techniques is the use of selection (survival
of the fittest). According to some schedule, the fitness of the various members is
evaluated, and the less fit are removed. New members are then created, in a vari-
ety of ways, and the process is repeated. There is a long running debate about the
efficacy of crossover versus mutation in creating the next generation and what the
“right” method of simulating evolution is. We take the view articulated by Atmar
(1] that the key point is the process, not the symptoms; in particular there is a
population of solutions, and the unfit are removed. This idea is captured in our
proposed algorithm.

Because of the complexity of the algorithms, a theoretical analysis of GAs is
quite difficult. Although there have appeared papers proving convergence of GAs
[49], such proofs essentially rely on showing that in the limit GAs reduce to a
random search, and if the whole space is sampled eventually the global minimum
will be found. There have been some (not completely successful) attempts to
characterize what sorts of problems GAs are good at [46], [24]. For our simpler
congregational algorithm we can easily state what the key factor in problem dif-
ficulty is. GAs have been used for a range of learning problems [37], but so far
there has been only one paper on a PAC analysis of a GA for a discrete learning
problem [48]. See also [8] and [56).

Often real problems come with a natural continuous parametrization, such as a
feedforward neural network. GAs usually require a binary coding, which leaves
open the problem of which mapping to use. (There exist real coded GAs, but
these still require a choice of crossover operator, which is usually dependent on
some coding scheme for its very definition.) This can make a large difference [7}
Our motivation is that if there is a smooth (differentiable) parametrization of the
target class of functions available, it may as well be utilized. (This is not to say
that there is no question concerning choice of parametrization or that the para-
metrization would not affect the performance of an SGD algorithm.)

Curiously, although it has been recently shown [47] how mutation driven EAs
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can be interpreted in certain limits as effectively simulating Newton’s algorithm
when operated on quadratic cost surfaces, we have found little in the previous lit-
erature that addresses the simple idea of the algorithm proposed in this paper;
namely, to run a bunch of SGD algorithms as a population. Most existing ran-
dom search techniques for optimization which we are aware of [46], [61], [52],
[12], [3], (35], [45] are based on local random perturbations (mutation) to perform
the local search.

One exception we have found is the “multistart” algorithm described on page
24 of [61]. This algorithm works when a fully known cost function, rather than
just samples of it, exists, and is somewhat different to our algorithm in other
ways. Certainly the analysis of our algorithm is different to that presented in [61].
Another is “Branin’s method” [61, pages 32-33), which is essentially a determin-
istic method of escapting from local minima in descent algorithms. Very recently
[44] has appeared, in which the idea of running several gradient descent algo-
rithms in parallel is considered. However, this work is not for the online setting,
and furthermore the theoretical results are rather different, and, when compa-
rable, rather weaker than ours. The present work is quite different in style to GA
classifier systems as presented in [37] and Chapter 10 of [32]. Such systems could
not directly be put into a form amenable to a congregational SGD.

Perhaps the work closest in spirit to the present work is by Yakowitz [59]. In his
paper he proposes and analyses an algorithm that combines a random search with
a gradient descent procedure (actually a Keifer-Wolfowitz stochastic approx-
imation). Whilst the general idea is similar, the details differ. For example, we
explicitly use fixed step sizes, run multiple algorithms in parallel rather than
sequentially, and in our analysis explicitly address the tradeoffs inherent in the
size of the population. Yakowitz bases his analysis on standard general stochastic
results due to Kushner and Clark, and his final results are in the form of proofs of
asymptotic convergence. In contrast, we are explicitly interested in the behaviour
over finite times, although we admit our analysis ends up in terms of constants
that cannot be determined explicitly in a practical setting. Thus both the algo-
rithms and their analyses are not really commensurate.

Other work which has analysed the beneficial effect of some additional stochas-
ticity for gradient descent procedures includes that of Kushner [40]. His algorithm
is much closer in spirit to simulated annealling, and the randomization enters
through some additional driving noise in the difference equations, rather than as a
random restart of multiple versions of the difference equations. His analysis too is
different, and it uses rather different tools.

We leave open the possibility that the different aspects of the algorithms men-
tioned here, and their analysis techniques, may be combined in order to develop
better algorithms, or more precise analyses, At the moment, it is not clear whether
such additional effort is warranted.

1.2. What This Paper Shows

This paper formally states the congregational algorithm and derives a result
describing its behaviour. We extend the existing averaging theory [50], which is
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not general enough for our case, to allow us to describe the behaviour of the SGD

" in terms of an ordinary differential equation (ODE). We then apply a stability

result applicable to local minima based on a result in [60]. The stability technique
is different to that which sufficed in [11], in order to have it apply about local
minima, where one will not necessarily get uniform exponential stability of the
associated ODE, but rather just uniform asymptotic stability. (These differences
are detailed in Appendix A.) We show that, for certain parameter settings, the
output of the algorithm will be close to the solution of the ODE, and furthermore
the ODE associated with one of the members of the congregation will converge as
required, such that the algorithm will, with high probability, produce an estimate
in a small ball about the global minimum of the cost function after some finite
time. :

Since we can describe the behaviour of the algorithm in terms of an associated
ODE we can thus talk of the basins of attraction {31] of that ODE. Our sub-
sequent analysis is couched in such terms. Note that whilst the notion of a basin
of attraction has been utilized in the analysis of GAs [56}, [34], the very concept is
rather more problematical there [36].

We then perform an analysis of the expected amount of computation required
by the congregational algorithm. We derive a formula for the expected time to
convergence in terms of N and o, where N is the size of the congregation used and
o is the probability of the initial point of a member of the congregation being
chosen to be in the basin of attraction of the global minimum. The expected com-
putational cost will be proportional to N times the expected time to convergence.
We then show that for small o the optimal (in the sense of minimizing expected
computation) choice of N is Nop = (2/0‘)1/ 2, and, more interestingly, that using
N = 2 will result in an algorithm which will never (in expectation) use more than
twice as much computation as one using Nope- This argument is rather different to
analyses of GAs that attempt to determine the right population size to use {27].

Finally we apply the algorithm to two examples; blind equalization of a linear
communications channel using the CMA and a simple non-linear regression prob-
lem. We show that our theoretical analysis is well corroborated by our simulations,
Some open problems and directions for future work are stated in the conclusions.

2. Notation and Dynamical Systems Theory

For any a e R™, ||a|| denotes the Euclidean norm of a and Bla,r):={beR":
ib — al| <} is the closed ball with centre a and radius r > 0.

For any function f/: 4 x X — IR, where 4 = R™ and X = R", af /da denotes
the gradient of f'with respect to the first argument. For a: R — R a: t++a(l), a
denotes the derivative of a with respect to 1.

Definition 2.1. A function 4: IRt — R is called an order Junction if h(y) is con-
tinuous and nonzero on {0, ) for some g, > 0, and if lim,, 1o A(z) exists.

Definition 2.2, Let 4{u) and /(1) be order functions. Then the notations Oull(u)),
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0u(I(1)), and Q,,(!(x)) are defined by:

L. h(u) = O,(I(u)) if there exists a constant ¢ > 0 such that |r{e)| < c]l(u}] on
(0, 1], for some gy > 0.

2. h(u) = 0,(I(4) if lim,go(h(u) /1)) = 0.

3. hlp) = Qu(I(u)) if there exists a constant ¢ > 0 such that |h(y)| = ¢|i{u)]| on
(0, 4y), for some g, > 0.

Consider the initial value problem
a=Fla()  a(0)=ap, (2.1)

= 0; a(t) € R™; F: R — IR continuous. Suppose F(a*) = 0 for some a* € R".

Definition 2.3. The solution a = g* of the initial value problem (2.1} is uniformly
asymptotically stable with basin of attraction 4* = R™ ift

L. Tt is stable: for all & > 0 there exists & > 0 such that, for all gy € A*,

lao—a'l <6 = |a(t)—a*|| <&, Ve = 0.
2. It is uniformly attractive in A*: for all § > 0 and ¢ > 0, there exists ¢ > 0

such that, for all ap e A*,

lao —a*'ll <6 = [la(t)~a*| <e Yi>o.

Definition 2.4. The ODE (2.1} is Lagrange stable if, for all ap & IR™, there exists
¢ > 0 such that '
fla(t)]| <4, ¥t = 0.

The ODE (2.1) is Lagrange stable if and only if it does not have an attractor at
infinity,

The following theorem is a deterministic averaging result that relates the solu-
tion of a difference equation depending on a sequence (xx) of inputs to the corre-
sponding solution of an averaged ODE. In essence, it says that if there is a
uniformly asymptotically stable critical point of the ODE, then solutions of the
difference equation originating within the basin of attraction of the critical point
converge to a small neighbourhood of the critical point. Thus it is possible to use
results about the existence of asymptotically stable critical points of an ODE in

order to characterize the behaviour of the solution of a difference equation. In -

particular, it will be shown that the averaged ODE corresponding to the parame-
ter update equation for the Congregational Gradient Descent (CGD) algorithm
presented in the next section is a gradient equation. Therefore all {isolated) local
minima of the cost function are uniformly asymptotically stable critical points of
the ODE. ,

Assumptions.

Al. A cR™ and X < R”", X is compact, and {(%k)iew, 18 a sequence of points
in X.
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A2 H: A x X -+ 4 is bounded and Lipschitz continuous in the first argument
(uniformly in the second argument) on a compact domain: There exist
functions M, i: R — R such that, for all » > 0, [|afl, [|6}] < r, and x € X,

|H(a,x)]| < M(r),
|1H(a,x) — H(b, x)|| < A(r)]la - b|.
A3. The function .
HY(q) = 21_'11010 % é H{a, xy)

exists uniformly for all & € R™, That is,

- kotde—1
o)1= sup sup sup S (#ax) - 1@ = o)
kpeNp ae A ke[d1/p) i=ky

A4, f: RY — R satisfies (z) = 0,(1).

AS5. For each ke Ny, A3: A x X — A is bounded and Lipschitz continuous in
the first argument (uniformly in the second argument and in &) on a com-
pact domain,

Theorem 2.5. With Assumptions A1-AS, let a, and aau(1) be defined according to
the following equations for all k e Ng and 1 = O

A1 = ar — pH (@, xi) — pf{i)he(ag, xi); ap € A, (2.2)

Gay = —#Hav(aav(l)); a2 (0} = ay. (2-3)

Assume & € interior of A is a uniformly asymprotically stable critical point of
(2.3), with basin of attraction A° = A. Then for any compact set B° = A° there
exists an 0,(1) function I(u) and a constant g > 0 such that, for u < Ho, there
exists k, € Ny such that

aweB = |a-a| <y, Vkzk,

Theorem 2.5 is proved in Appendix A.

3. The Congregational Gradient Descent Algorithm

This paper addresses the problem of locating the global minimum of some cost
function J: A — R, where 4 < R™. The cost function is not known explicitly, but
rather it is the average of a known function ¢: 4 x X — R over a known
sequence (x) of points in X, That is,

=

-
Ta) = Jim =" olax). (3.1)
0

=
il

We say that g(a, x¢} is the instantaneous cost at time k. Points a € 4 are called
parameters and points x; € X = R” are called inputs. The inputs are received
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sequentially, and it is desired to have a parameter estimate which is updated as
each input is received,

Stepwise gradient descent of J is achieved by updating estimate parameters ay
according to

dp

Ber) = 8~ p 5 {3.2)

{ax %x) ‘

From Theorem 2.5, it can be shown that the estimate parameters generated by
this recursion will converge to a neighbourhood of the global minimizer of J pro-
vided that the initial parameter estimate is in a certain region of parameter space.
As u — 0, this region approaches the basin of attraction of the global minimizer
in the associated averaged ODE. However, if there are non-global local minima
of J, some choices of the initial estimate will cause the estimate parameters
to converge to a local minimizer. In general the basin of attraction of the globai
minimum is not known, so SGD cannot be guaranteed to find the global minimum.

The CGD algorithm is a modification of SGD which gets around the problem
of local minima. It is perhaps the simplest possible globally convergent popula-
tional algorithm for online minimization. Instead of choosing one initial param-
eter estimate and updating it as each input is received, a number of estimates with
randomly chosen initial values are run in parallel. At the same time, an estimate
of the cost function at each of the parameter estimates is calculated. Periodically,
the estimates are compared and all but the best are restarted according to some
continuous probability distribution D, with compact support A% = R”. The time
between restarts is called an epoch.

A similar non-populational modification of SGD would be to run a number of
SGD estimates serially. Again, an online cost estimate could be kept, and at the
end of the epoch the parameter estimate could be kept only if the estimate cost is
better than the estimate cost for all previous parameter estimates. The congrega-
tional algorithm requires slightly more computation than this seriai algorithm,
because we continue to update the best estimate through all epochs. However, it
requires considerably less input than the serial algorithm, because all N members
in the congregation are updated using the same inputs. Moreover, the continued
updating of the best estimate allows the estimate to continue to improve, which
can be useful in cases where the cost at the global minimum is much better than at
all local minima.

The function random(4) generates independent and identically distributed random
variables according to some fixed distribution D, which has compact support A% < 4.

At time k in epoch T, member » of the congregation takes on the value apr. In
Section 5 it is shown that, as T increases, the probability that a(]w is close to the
global minimum of J is bounded below by a quantity that depends on various
parameters of the problem.

The subscript (7 — [)X + k& on the samples in (3.3) and (3.4) ensures that the
algorithm is online, in that each update is made according to a new sample. This
is not necessary—the algorithm also works if the same set of samples is used for
each epoch. However, if it is possible to store and reuse the samples, there is less
point in using an online algorithm.

S—
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The CGD Algerithm

Choose the cost stepsize u € (0,1);
Choose the parameter stepsize i > 0;
Choose the epoch length K > 0;
Choose the congregation size N > 2;
forne{l,...,N}do

ag | = random(A);

(Dé,"] =0
od
T:=1
while (zrue) do

fork=0tok=K—-14do

forne{l,...,N} do
d
Qe = ay—p ‘“g : (3.3)
(a2 r X7 -1gak)

Oeori={1-a)®f .+ {7y X(T_1)k+k); (3.4)

od

od

ﬁl:= arg mi_nn e {l,...,N}(D?(‘T;

Ay, 14t = “’1'(,1";

q)(l),T+l = (D},Ti

T=T+1;

forne {2,...,N}do
aj r = random(4);
G5 =0;

on

od

Equation (3.4) defines an online estimate @ r of the average cost at af ,.. The
online estimate is a weighted average of all instantaneous cost estimates since the
beginning of the epoch. It can be written

k-]
k—j+l
Oir=a Z(l ~a) 7t ¢’(a}:7~,x(r—1)x+j)-
=

The weighting causes the instantaneous cost at the beginning of the epoch to have
less effect than the instantaneous cost at the end of the epoch. As & — 0, the cost
estimate updates slower, so more averaging occurs. However, this also implies
that the effect of the changing parameter estimate is larger. As o — 1 the cost
estimate more closely resembles the instantaneous cost. As the cost estimate is
only used at the end of the epoch for testing fitness of the members, it is required
that the estimate cost at the end of the epoch is close to the average cost for the
final value of the estimate parameter. In Lemma 5.3 it is shown that Oy r can be
made arbitrarily close to .I(af,}|,-) by choosing « and g sufficiently small and K
sufficiently large.
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The connection between the recursions defined in (3.3) and (3.4) can be viewed
in 2 number of ways, depending on the relationship between the small parameters
# and o It has been shown [33] that the rate of convergence of online estimates
such as these decreases as the dimension of the estimate increases. Since the
parameter estimate is an m-dimensional vector and the cost estimate is a scalar,
the parameter estimate can be expected to converge more slowly than the cost
estimate. This would seem to indicate that u should be chosen larger than «. In
this case « is small, so the cost estimate averages over the trajectory of the esti-
mate parameters. On the other hand, since the cost estimate is only used at the
end of an epoch, x could be chosen smaller than «, so the cost estimate is more
closely related to the current value of the estimate parameter.

Choosing 1 = 0,(2) would lead to an averaging analysis using split time scales,
such as appears in [6]. Split time scales are not used in the analysis that appears in
this paper—it is assumed only that x = 0,{1). Furthermore, in the simulation
results in Section 7, u and  are chosen to be identical. This is possible because the
fact that the average ODE for the estimate parameters is a gradient system en-
ables application of the infinite horizon averaging result in Theorem 2.5, Thus the
epoch length is chosen long enough that the estimate parameters converge to local
minima and sit there, and the cost estimates converge to the average cost near the
corresponding local minima. However, the use of split time scales would be nec-
essary if the online cost estimate were to be used before the parameters have con-
verged to local minima. :

4. Analysis for a Simpler Case

Analysing the behaviour of the CGD algorithms is complicated because the suc-
cess of the algorithm relies on the combination of online gradient descent and
randomized restarts. The results require an intricate combination of real analysis
and probabilistic argument. In this section we highlight the probabilistic aspects
of the analysis by considering a simplified version of the CGD algorithm calcu-
lated. In Section 5 the CGD algorithm itself is analysed and the parallel with this
simplified analysis is made clear in a sketched outline of our main result (Theo-
rem 5.1).

The simplification takes the form of the following assumptions, which are not
valid in the online optimization context of the problem. Comparison of the argu-
ments in this section and Section 5 shows that these simplifications do not change
the overall behaviour of the algorithm significantly.

1.-The parameters are updated according to continuous time gradient descent
on the average cost function J,

2. All estimates converge to critical points of J by the end of each epoch.

3. The exact value of the average error function J, rather than its estimate @,
is used for testing fitness at the end of the epochs.

When these simplifications are made, so that the estimates are defined in con-
tinuous time, the notation 4} . is misleading, However the notation is still used,

s  —
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because changing the notation would require formally defining the simplified
algorithm, and distract from the essential ideas expressed in this section. Note
that the second simplification is not valid even for solutions of (4.1), since the dis-
tance between solutions of {4.1) and the critical points of J decays exponentially.

Here and in the rest of this paper the probabilities are with respect to the ran-
domly chosen initial estimates 45,7, where either T =1 or (T > 1 and n # 1). For
any event E which depends on the value of the initial estimates, the probability
that £ occurs is written Pr{E}. Occasionally in Section 5 the same probability is
written Pr{E where a ~ D,}. This second notation is redundant, but is used any-
way 1o reduce the confusion caused by the other complicated notation that is nec-
essary. For instance, it is simpler to interpret “af . ~ D, than “af » where either
T=lor(T>1landn1). ' ’

Let a* be the global minimizer of J let A* be the basin of attraction for &* in

oJ 4.1

0a |y (1)
and let A%(a*) := A* ~ 4%, where 4% is the set of ail possible initial estimates. Let

a be the probability of initializing a member of the congregation in the basin of
attraction of the global minimum. That is,

o= Pr{ae A" where a ~ D,} = J dD,. {4.2)
AV ax)
Except for trivial cases ¢ is an unknown quantity. Tt may be seen as providing a
measure of the difficuity of the task of finding the global minimum. This crucial
parameter appears in all of the results of this paper. In Section 7 a method for
estimating o from simulation curves is demonstrated.
The probability of convergence of the simplified algorithm by the end of the
epoch is derived as follows. The numbered steps in the derivation form the basis
of the proof of Theorem 5.1 in the next section,

Step 1. Since the average ODE is used to determine the estimate parameters,
and all estimates converge to critical points by the end of the epoch, if member »
is initialized in A* at the beginning of epoch ¢, then at the end of the epoch ¢
member # is equal to ¢*. If member # is initialized outside A* at the beginning of
epoch ¢, then at the end of epoch f member # does not equal a*

Step 2. At the end of an epoch estimates can be divided into “good” estimates,
for which af r = ¢*, and “bad” estimates, for which axr # a'. Since a” is the
global minimizer of J, the average cost at all bad estimates is larger than the
average cost at good estimates,

Step 3. Since the exact value of the average cost J is used for testing if a good
estimate exists at the end of an epoch, the estimate that is chosen to be kept at the
end of the epoch will be a good estimate.

S.tgp 4. Using steps 1 and 3, the probability that a), = a* is equal to the proba-
bility of choosing at least one initial estimate in A, i:e.,

Pr{aélz =ay=1-(1-ag". (4.3
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Step 5. For later epochs, only N — 1 of the members are restarted. The first
member of the population does not move from the critical point that it converged
to by the end of the previous epoch. Therefore the probability that aé‘, b =4 s
equal to the probability that one of the new members is initialized in 4* plus the
probability that none of them is, but the member that was carried over from the
previous epoch was equal to g*: '

Pr{aé,',_,,1 =a}=1-(1-)"'14 (1~ U)N"IPr{afl)', =a'}. (4.4)
Step 6. The recursive relationship (4.4) yields

P"{acl),rﬂ =a'}
T-2
=1 ==Y (1 - )" Vg (1 - VNV ppfa), — 7).
=0

Use of the geometric sum and {4.3) shows that

1— (1 _ a_)(N—l)(THl)
1—(1—g)"!
+ (1 - a)(N_l)(T"l)Pr{af,.z =a*}

[ (1= VT (4.5)

Priayrp =a'} = {1~ (1-0)""]

In the following section, analogous steps are taked in order to establish the
probability of convergence of the CGD algorithm. Without the simplifications
mentioned above, the results of steps 1-3 cannot apply. However, somewhat
weaker results can be derived with some extra work.

5. Convergence Analysis

For any r > 0 such that B(a*,r) = 4%(a*), the CGD algorithm is said to have
converged after epoch T (to accuracy r) if the best estimate is no further than r
from the global minimizer of J (i.e., “é,r +1 € B{a*,1)). Clearly, r has to be chasen
small encugh for such a definition to be of value.

In Theorem 5.1 the following assumptions are used to show that the probability
that the algorithm has converged to accuracy r after epoch T is greater than or
equal to a function which is monotonically increasing with T, In the process, it is
shown that there exists an o,(1) function /(z) such that it is possible to let
r = I(u). Thus when the algorithm converges, the estimate parameters will be very
close to the global minimizer if y is very small. In the discussion following Theo-
rem 5.1 the derived bound on probability of convergence of the CGD algorithm is
compared with the probability given in (4.5) for the simplified algorithm.

Assumptions.

Cl. A c A = R™, X < R”, 4° and X are compact, and (%)kem, 18 a sequence
of points in X.

e At § et o e
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C2.ForT=1andne{l,...,N},or TeN, T>1, and ne {2,...,N}, the
initial estimates ayr€ A% are i.i.d. random variables distributed according
to a continuous probability distribution D, with support 4°.

C3. Both p(a,x) and dg/da are bounded and Lipschitz continuous in the first
parameter (uniformly in the second) on a compact domain in R™.

C4. The average J defined in {3.1) exists, and

fegtk—1
50 = sup swp swp ul > (plarn) ~J@)| = ou)
koelNy acAd kel0,1/n) i=ke )

C5. J has a (unique) global minimum at some point a* in the interior of A°.
Furthermore, J has a finite number of local minima which have basins of
attraction intersecting 4, and (4.1) is Lagrange stable.

C6. = a,(1).

Assumption C4 implies that the average cost function converges uniformly to J
with respect to the initial time kq. This implies that the error introduced by the use
of the instantaneous cost rather than the average cost in the CGD algorithm
updates can be bounded independently of the epoch under consideration.

Assumption C5 requires that there is a unique global minimum of the cost
function (er only one global minimum for which the basin of attraction intersects
A), and that (4.1) is Lagrange stable. These assumptions are not necessary, but
have been included in order to streamline the notation, The assumption that (4.1)
is Lagrange stable is discussed further at the end of the section. The assumption
that J has a finite number of local minima precludes the existence of an attracting
manifold in the parameter space. It can be interpreted as including a persistence
of excitation condition. For example, assume ¢ is the output error squared for a
linear system: ¢(a, x) = ((a — a*)" x)2. If the input (%x} does not span R, p(., x)
will have a unique local minimum for each value of x,, but J will not have a
unique local minimum. Instead, there will be a line of points in R”, passing
through a*, which are all global minimizers of J.

Assumption C6 is used in Lemma 5.3 in order to ensure that the estimate
parameters converge to an o,(1) neighbourhood of the local minimizers. Once the
estimate parameters have converged, the averaging result in Theorem 2.5 is used
with small parameter «. For sufficiently large & and X, the difference between the
instantaneous cost at the estimate af r and at af ;. is a second-order effect, so it
can be dismissed.

Theorem 5.1.  Consider the CGD algorithm with Assumptions C1-C6. Let o be

given by {4.2) and let y € (0,1). For all sufficiently small r, « and sufficiently large

K, the probability that the algorithm converges by the end of the Tth epoch satisfies

Pr{”atll,TH —a'l s}
1— ¥t

> (=)' (1= g0 LI
2

(R ) RIER
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where
l—-¢o 2
I = L= (1 -9)L. 52
il v 2= (1 —9)"] (5.2)

Since o,y € (0,1), f1,5; € (0,1). Moreover,as y — 0, ; —» (1 —¢) and |, — I.
Theorem 5.1 does not provide a practical method for choosing the quantities a, g,
and X required for application of the algorithm. However, it does prove that suit-
able quantities exist. In Appendix C Theorem 5.1 is stated more formally, The
more formal statement reveals the way in which the quantities depend on each
other-—g must be chosen first, then z and K must be chosen.

In the limit as y — 0, the lower bound in (5.1) is equal to the probability {4.5)
derived in Section 4. The parameter y arises from the discrete nature of the algo-
rithm. In order to make y close to 0, z and « must be allowed to approach zero
and K must be allowed to approach infinity. The relationship between y, y, o, and
K is not simple, and is constrained explicitly in the first step of the proof. In
Appendix B it is shown that, for y € {0, 1), the lower bound in (5.1} is less than the
probability in (4.5). Thus the lower bound on the probability of convergence is
weaker here than the corresponding result for the simplified version described in
Section 4, as would be expected.

A sketch of the proof of Theorem 5.1 is given at the end of this section. Flrst
‘we give two technical lemmas that are used in the proof, The proofs of Theorem
5.1 and the two lemmas are given in Appendix C. Both lemmas rely on Theorem
2.5. .

Assume either 7' = 1 or T > 1 and n # 1, so that aj ;. ~ D,. For any r > 0 such
that B(a*,r) = 4%a*), let

p(K,T,r):= Pr{ag r € B(a",r) where af ;- ~ Dy}, (5.3)

where gy ;- is defined according to (3.3). In addition, define
J" ;= min{J(a) : J(a) is a non-global local minimum of J Y, (54)
g(K,T) = Pr{J(ag r) = J where agr ~ Dg}. {5.5)

Then p(K, T,r} is the probability that a newly initialized estimate converges to
accuracy r by the end of the T'th epoch, and ¢(X, T) can be regarded as the prob-
ability that the estimate converges to some other local minimum. Both p and ¢ are
independent of n because all members are initialized according to the same distri-
bution D, and are updated according to (3.3). Since B(a*,r) = A%a*), the events
defined in (5.3) and (5.5) are mutually exclusive, so ¢(X,T) = [ - p(K, T, r) and
p(K T,r) =z 1 —q(K,T). If there are no non-global local minima of J, any value
of J1% satisfying J' > J{4*) can be used. In the following lemma it is shown that
o and K can be chosen in order to make p arbitrarily close to o and ¢ arbitrarily
closeto 1 —a.

Lemma 5.2, With Assumptions C1-C6, let af} ; be defined according to the CGD
algorithm. If agr ~ Do, then for all r > 0 such that B(a*,r) c 4%a"), and all
1 € (0,1), there exists o, > 0 such that if o < e, then there exists K,(«) such that if
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K2z K (&), forall T eN,
(1 -mo<p(K,T,r) < {1 ~na+y, (5.6)
(I-mMI-0)<qK,T)<(1-n)(l-0a)+n. (5.7)
If a7 € B(a*,r), then a, and K,(«) can be found such that, for all T € N,

ar € Bla',r) = agreBla,r).
The bounds «, and X;(«) depend on the particular sequence {x;), the distribu-
tion of the local minima, and the boundaries of the basins of attraction. -

Lemma 5.3. Consider the CGD algorithm with Assumptions C1-C6. For any
¢ > 0, with probability |, there exists w, such that if o < o, there exists K {a) such
that if K > Ky(a), then

|k, r — J(ag )l <& (5.8)

JorallTeNandne {1,... ,N}.

Proof Sketch for Theorem 5.1. The proof of Theorem 5.1 is conceptually the
same as the derivation in Section 4. The steps involved in the proof are outlined
below.

Step 1. It is shown that Lemmas 5.2 and 5.3 apply for particular choices of #
and &. The bounds oy and Kp(«) that appear in the theorem statement are defined
by taking the minimum and maximum, respectively, of the corresponding bounds
that appear in the lemmas.

Step 2. Lemma 5.2 is used to bound the probability that, at the end of an epoch,
the difference between the average cost at a good estimate (an estimate in the ball
B(a*,r)) and the average cost at a “bad” estimate {an estimate that is not in the
ball B(a*,r)) is more than
J(a@*) ~ Jloe
Di=—
2

D > 0 by (5.4). This probability is not equal to 1 because the behaviour of esti-
mates which start on (or arbitrarily close to) the boundaries of the basins of
attraction of the various minima is not known. In particular, the estimate may be
very close to, but not in, the ball B(a*,r).

(5.9)

Step 3. The bound derived in step 2 is combined with the result of Lemma 5.3 to
bound the probability of keeping a good estimate at the end of the epoch, given
that one exists.

Step 4. A lower bound on the probability that the algorithm has converged at
the end of the first epoch is calculated, using the bound found in step 3 and the
fact that all members are randomly initialized at the beginning of the first epoch.

Step 5. Forany T > 1, the final result from Lemma 5.2 is used to show how the
probability that the algorithm has converged at the end of the Tth epoch depends
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on the probability that the algorithm has converged at the end of the (T — 1)th
epoch. This uses the bound found in step 3 and the fact that only N — 1 members
are randomly initialized at the beginning of the epach.

Step 6. The recursive relationship derived in step 5 is combined with the bound
in step 4 and a closed form expression for the lower bound on the probability that
~ the algorithm has converged at the end of the Tth epoch is derived. |

The assumption that {4.1) is Lagrange stable (Assumption C35) is used in the
proof of Lemma 5.3 in order to show that the estimate cost @  is a good esti-

mate of J(a} ;). For all estimates starting in the basin of attraction of a local

minimum, once the estimate parameters have converged to the local minimurm,
the difference between the instantaneous cost at a; and ag is o4(1) for all x. If the
initial estimate lands in the basin of attraction of an attractor at infinity this does
not apply.

A gradient system such as (4.1) is not Lagrange stable if the cost function is
decreasing is the size of the parameter increases. Here the global minimum of J is
assumed to occur at some finite point 4*, so that the value of the cost function
cannot keep decreasing at a rapid rate as ||af) — co. Rather, the gradient of J
must decrease, so that J “flattens out”. In such cases, the estimate parameters
move very slowly if ||a]| is large. This fact can be used to show that the estimate
cost will (eventually) be a good estimate of the average cost even if ay r lands in
the basin of attraction of an attractor at infinity. Moreover, for any finite epoch
length K, ||a¥ r|| is bounded, so even if J(a) — J(a*) as ||a|| — oo there is a pos-
itive minimum value of J (ak,r) — J{(a*) for estimates not originating in 4*. In this
way the assumption that there is no attractor at infinity could be avoided in
Theorem 35.1.

6. Expected Time to Convergence

In Section 5 a lower bound on the probability of convergence afier T epochs was
derived. Under the assumptions of this paper, it is not possible to know exactly
the probability of convergence after T epochs unless further assurnptions are
made, This is because whenever the algorithm is implemented, y is non-zero and
K is finite, so there is always some non-zero probability that estimates do not
converge to a local minimum of J by the end of each epoch. That is, the quan-
tity # used in Lemma 5.2 must be non-zero. However, this probability of non-
convergence decreases as u decreases and K increases. That is, p— 0o and
g~ 1 — . Moreover, as « — 0 the online gradient estimate Oy r approaches the
true cost J (aE’T). Therefore if the algorithm has converged, the best estimate will
never be restarted.

Choose some r such that B(a*,r) = 4%(a*). The size of r can be arbitrarily
small, since in the limit « — 0, trajectories originating in the global basin of
attraction converge exactly to a*. Let T be the first epoch for which a(I,'T +1 €
B(a*,r), ie., TV is the number of epochs until the algorithm first converges. The
size of the congregation is used as a superscript because, as the next lemma shows,

— ~—
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the expected time until convergence varies with N. Using the above limiting argu-
ment, we will prove the following lemma about the expected time to convergence.

Lemma 6.1. Consider the CGD algorithm with Assumptions C1-C6. Set
K = K(«) = L/u(x) for some fixed nonzero L. As o — 0 the expected number of
epochs until convergence satisfies

1—og(1-a)!

T +o,(1). (6.1)

E(TY) —

Inspection of the proof of Lemma 5.2 reveals that there exists an 0,(1) function

I(u), such that it is possible to let » = I(x) in the definition of 7. Thus the esti-

mate parameters will be very close to the global minimum if 4 is very small and X

is sufficiently large. The result of Lemma 6.1 still holds, but the fact that r shrinks

with 4 makes it necessary to allow X to grow faster than 1/u in the assumptions
of the lemma.

Proof. By Assumption 6, u = 0,(1), so # — 0 as @ — 0, The linking of X to «
via K = L/u(a) ensures the averaging results in Appendix A still hold. Therefore
«— 0, K — oo, and p — o. The probability that the first member in the con-
gregation is initialized in B(a*,r) is {(r) = jg{a, n 4Da = 0,(1), so the probability
that the algorithm converges immediately approaches Pr{TY >0} =1-¢().
The probability that more than one epoch is needed satisfies

Pr{TV > 1} = Priay, ¢ Bla",r)forallne {1,...,N}} — (1 - )",
The probability that 7% > T > | satisfies _
Pr{T¥ > T} = Pr{a} ; ¢ B(a",r) forallne {2,...,N}} x Pr{T" > T — i}

= (I _0_)(T—1)(N—1)+N‘

Therefore the expected time until convergence satisfies

“ s 5]
E(TY) = Z Pr{f" > T} =1 -¢{()+(1-0a) Z(l — N7
T=0 £t

Using the geometric series, it can be seen that
(1-a)"
— 2 ta(l),
I—(1_ g (1

which gives {6.1). |

E(TY) =1+

From (6.1) it can be seen that E(TY) — 1 as N — oo, which may lead one to
the conclusion that it is best to have a very large congregation. However, in order
to make a fair comparison between different population sizes, the expected com-
putation for each must be compared. The expected computation increases like
NE(T") as N increases. Thus the expected computation is unbounded in the limit
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N — . The expected computation also increases as o — 0 (and thus g — 0)
since K — 0. :
For small values of o, Laurent series expansion of (6.1) reveals that

N N(N-4)
N T2 =)

where from here on we are ignoring the 0,(1) term. For N > 2 small, the first
term is dominant, and is decreasing as N increases from 2. The right-hand side of
(6.2) is a minimum when N =~ 1 + 1/2/g. Therefore for small values of o the
optimal value of N is approximately 1 -+ / 2/a. The following lemma shows that,
for any o e (0, 1), in the limit as 4 — 0 and K — <0, the expected computation for
a congregation with N members is never less than half of the expected computa-
tion for a congregation with two members. Thus the reduction in computation
gained by using the optimal value of N is not more than a factor of 2.

NE(TV) ~

(6.2)

Lemma 6.2. Consider the CGD algorithm with Assumptions C1-C6. Set
K = K(a) = L/p(a) for some fixed nonzero L. As o — 0, the expected number of
epochs unti] convergence satisfies

NE(TYy 1
2E(T) =72 , (63)

Proof. From Lemma 6.1, it is known that

_ PRy
1-(1-g)
Substituting N = 2 gives
1 -0l —0)

2E(TY) =2 . (6.4)
Since N 2 2and o€ (0,1), 1 — (N - 1)o < (1 - ¢)¥~! < (I - o). Therefore
NE(T¥y 2 N T (6.5)
Combining (6.4) and (6.5) gives
N
AP "
2B(T%) T 2(N-1) T 2

The limit an the varianﬂce of TV as ¢ — 0 and X — oo can also be determined.
We have var(T%) = E((TVY?) — E(TV)?, where
O
E((TM))y =" TPV = T}
T=1
5(1 - O')ZN_I _ 3(1 _0_)3N—2
~ 14301 -}V +
R T e

H
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which can be obtained from a straightforward but tedious evaluation of the sum.
Thus substituting (6.1) for E(7") gives (after some further manipulation)

61— (1" — 1
(1-(1-a)"")

var(T%) = (1 - a)¥ (3 + ) = v(a,N)  (6.6)

as « — 0 and X — co. By inspection, v(a, N) = 0,(¢72) but v{a, N} is monotoni-
cally decreasing in N, and goes to zero exponentially fast in ¥ for fixed o. This
suggests a slight advantage in a larger value of ¥ not apparent from solely con-
sidering the expected number of epochs (or expected amount of computation)
required for convergence.

7. CMA Simulation Results

In this section one application of the CGD algorithm is discussed, and results of
simulation studies are presented. In particular, the expected time relationships
derived in Lemmas 6.1 and 6.2 are illustrated. We have chosen this example
because theoretical studies demonstrating the existence of local minima have been
published.

In band-limited data communication systems, the transmitted signals can be
extended (smeared out) by the distortion of an analog channel over a much longer
interval than their original duration, Adaptive equalizers are used to remove the
resulting intersymbol interference, and thus reconstruct the original signal [9],
[19].

Blind equalizers are a special kind of adaptive equalizers which do not require a
known training sequence. Instead, they aim to restore known generic properties of
the original signal. The CMA is a popular algorithm for adaptive blind channel
equalization, The original signals are assumed to have constant modulus, and the
algorithm minimizes a cost function defined by both the modulus of the originai
signal and of the reconstructed signal. It is known that the underlying cost func-
tion possesses non-global local minima for even very simple channel models {19].
Some schemes for fixing the ill-convergence caused by local minima have been
devised [20]. These schemes use more information than is assumed for the CGD
algorithm.

A sequence of i.i.d. binary-valued signals (1 € {1, 1}) is sent by a transmitter
through a channel exhibiting linear distortion. In the following, it ts assumed that
the channel has an AR (n) structure. Therefore the transr...tted signal satisfies

we=)_a'(i+ 1)y

i=0

for some parameter vector a* € R™!, where Vi is the received signal. This can be

written
1 n
Yr = a‘(l) (uk - Z da (l+ l)yk_,-).
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Yet xe = (e Poetye ooy yk_,,)T. The objective of the equalizer is to recover the
original sequence (u;) from the reccived sequence (x;). In the following an
MA(n) equalizer is used,’ which gives the reconstructed signal

n

Zp = Z ai+ Vye—i = a'x
pary

for some parameter vector ¢ € R”. The ordinary CMA algorithm is simply a
stepwise gradient descent with the instantaneous cost function

#la,x) =1~ 1)? = }((aTx)? - 1), (7.1)
i q

Therefore application of the CGD algorithm to this problem requires only mini-
mal alteration of the ordinary CMA algorithm.

Clearly, ¢ = 0 and ¢{ & a*,-) = 0. Moreover, if the received sequence x; is
sufficiently exciting, ¢ = 0if and only if ¢ = +a*. Hence the average cost function
J has exactly two global minima: a* and —a*. The CGD algorithm can be used
for this cost function. In order to comply with Assumption C5 of Theorem 5.1,
the sign of the first component of the estimated parameter can be fixed, so that
only one of a* and —4* is in A. For any ae R, ¢(cq, X)— oo as ¢ — w for
almost all x, so there is no attractor at infinity.

Figure 1 shows the results of a series of experiments using the above setup. In
this case n = 7 was used, the channel parameters were

a* = (1,-0.25,-0.5,0.2,0.1,-0.2, —0.1)", (7.2)

and the initial parameter estimates were chosen in 4 = [0,2] x [-2, 2]6 c R
The signal #; took on the values 41 with approximately equal probability. The
stepsize and approximation parameters were y = o = 0.005. The epochs were
K = 1999 iterations long, and the algorithm was said to have converged when
lafr — a*[|* < 0.02 (ie., ©* = 0.02). For each N € {2,...., 10}, the algorithm was
run and 7%, the number of epochs until convergence, was recorded. This was
repeated 1000 times using the same binary signal 1 (and hence the same sequence
{x%)), but different initial estimates. For each N e {2,...,10}, the average, over
all 1000 trials, of N7V, is marked with a circle in Figure 1. The solid curve
plotted in Figure 1 is the expected value of NT¥, calculated by multiplying ¥
times the limiting value of E(7Y) that appears in Lemma 6.1, with o = 0.167.
The dashed lines are calculated by adding +3N/v(0.167, N)/1000, where v(-, -}
is the limiting value of the variance given in (6.6). The initial estimates were uni-
formly distributed in A, so it can be surmised that the volume of Aa*) is
approximately 0,167 times the volume of 4°.

! Although we are assuming here that the channef is in fact exactly invertible by an MA(n) equal-
izer, such an assumption is not necessary for our algorithm. Nor is the assumption necessarily valid in
practice,

e n———"
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Fig. 1 ‘ The average and expected number of epochs to convergence for varying population sizes (N},
multiplied by &, when applied to a blind equalization problem, {See text for why we multiply by ¥ in
order to get expected computation.)

The congregational algorithm has also been successfully applied to a non-linear
regression problem. The input—output relationship of the system to be identified
was

9
hy
) = E, T+ 100 % Jx — o]

fgr particular values of 4; and ¢;. Each term in the sum defines a “bump” func-
tion, centred at ¢; and of height /;, and vanishing as ||x - ¢|| increases. The model
class was defined by the input-output relationship

1

X)) =
S = o e al

and the instantaneous cost function g(a, x) = (f(a,x) — p(x))* was used, so that

(?GD performed minimization of the output error. In effect we were trying to fit a

single bump to a function with multiple bumps of varying heights. This problem
was shown numerically to have muitiple local minima.



352 K. L. Blackmore, R. C. Williamson, 1. M, Y. Mareels, and W. A. Sethares

8. Conclusions

We have proposed and analysed a version of SGD which is based upon the idea
of evolving a population of solutions. It is suitable for a wide range of learning
and optimization problems. We have determined the expected computation
required for the algorithm to locate the global minimum of the expected cost
function and have applied the algorithm to some examples and shown that our
predictions about its behaviour are well corroborated in our experiments. The
algorithmn is well suited to problems where there is a naturally occurring differ-
entiable parametrization; of course not all learning problems fit into this category.

The most obvious further work to be done on the algorithm is to perform a
stochastic averaging analysis [42), [10], [53], [13], where the results would depend
in some explicit way on the distribution of the {x;) sequence. (All our results are
in terms of a given (fixed) (x;) sequence, as are similar analyses such as [11].} The
extension to stochastic analysis is not straightforward, since standard techniques
would introduce a non-zero probability of escape from local minima during each
epoch [40]. However, such an analysis may allow the rate with which y shrinks as
o« — 0 and K — oo to be determined. If that were done, then rather strong (PAC-
like) assertions about the performance of the algorithm could be made.

One other question concerns the adaptation of a solution to a changing envi-
ronment. In the literature there has been much discussion about the importance of
diversity of the population in a GA in order for the GA to be able to respond well
to changes in the environment {16], [51), [43]. In parametric optimization it is well
known [28] that one cannot expect to be able to follow a smooth trajectory and
stay at the optimal solution even if the environment changes are themselves
smooth. Thus one cannot rely on the algorithm presented here always to sit at the
global optimum, after the initial convergence phase. There is an obvious ques-
tion concerning our algorithm and whether it is necessary to modify the restart
schedule in order to optimize the algorithm’s performance under a changing cost
function.

Acknowledgements. Thanks to Stephanie Forrest for helpful and enjoyable dis-
cussions and pointers to the GA literature.

Appendix A. Averaging Theory

In this appendix Theorem 2.5 is proved. The derivation of Theorem 2.5 is very
similar to the derivation of Theorem 4.2.1 in [50]. Theorem 2.5 differs from Theo-
rem 4.2.1 in [50] in two ways: in [50] the original equation is a differential equa-
tion rather than a difference equation; and in [50] the critical point must be a
uniformly asymptotically stable critical point of the linearization of the averaged
ODE, rather than of the averaged ODE itself. Their condition is much stronger
than the condition used here—it is equivalent to saying that the critical point is a
uniformly exponentially stable critical point of the ODE. In order to impose only
the weaker condition, an inverse Lyapunov function result (Theorem A.4) is used.
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However, the weaker condition results in a weaker approximation result—the
error has form o,(1) instead of the 0, (5'/%(4)) error in [50].

Theorem 4.2.1 in [50] would not suffice for the purposes of our analysis because
the SGD algorithm we use is a difference equation and because members converge
to local minima of the average cost function. Whilst local minima of gradient flows
are always asymptotically stable [31, page 200], it is apparently not known whether
they are in addition exponentially stable. In the absence of a proof that they are,
we only rely on the weaker asymptotic stability in the analysis below.

Before proving Theorem 2.5, some useful results are stated. The following
lemma is a special case of the Comparison Principle [60] (see the Bellman—Gron-
wall Lemma in [19]). In Theorem A.3 a finite time averaging result is stated. It
can be derived in a manner analogous to Theorem 3.3.3 in [50], using discrete
versions of Lemma 3.2.6 to Theorem 3.3.3, Theorem A.3 is used repeatedly in
the proof of Theorem 2.5, Theorem A.4 is a variant of Theorem 11.4 on page 111
of [60]. It is simpler than the result in [60] because the ODE is assumed to be
autonomous,

Lemma A.1 (Comparison Principle). Assume that, for all t > 1,
a(t) < ca(s),
where a(t) is continuous and non-negative for all 1 > ty. Then
a(?) < alty)e™n),

Definition A.2. A property is said to hold for k on the time scale [{u) if it is true
for all k satisfying 0 < & < KI(u), where K is a constant independent of 4 and
I(#) is an order function.

Theorem A.3. With Assumptions A1-AS, let kg e Ny, 4 €A, and ai, a,(t) be
defined according to the following equations:

Q] = G — .UH(akka) - .uﬁ(ﬂ)hk(ah xk)» iy = a,
Gay = —pH™ (a4 (1)), uy(ko) = 4,

Jor all k € Ny, t € R such that k1 > ko. Then a;, = au, (k) + 0.(1) for k on the time
seale 1/p,

Theorem A4, Let f:IR™ — R™ be Lipschitz continuous on some compact set
A< R™ If @ € A is a uniformly asymptotically stable critical point of the ODE
&= f(a), with basin of attraction AY < A, then there exists a Lyapunov function
V{a): A — R and an open neighbourhood N < A® of a* such that, for all a,be N,

L aflie — a*ll) < V{(a) < B(lla— a'||), where of-), f(-) are continuous, increas-
ing, positive definite, a(r) — o asr — oo, and §(0) = 0;

2. {V{a) ~ V(b)| < Mila — b||, for some 2, > 0;

3. V(a} < ~cV(a), for some ¢ > 0, where a(t) is a solution of & = f(a).
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Outline of the Proof of Theorem 2.5. Theorem A.4 applies to (2.3) {equivalently
(A.1)). The neighbourhood N where the Lyapunov function satisfies properties
1-3 contains an open ball centred at a* with some radius § > 0.

Since a* is asymptotically stable in (2.3), all solutions of (2.3) that originate
in B enter B(a*,8) in some finite time K. The finite time averaging result in
Theorem A.3 can be applied for & € {0,.. ., K}, so that all solutions of (2.2) that
originate in B® enter N in time K.

Once the solution of (2.2) enters N, the contraction properties of the Lyapunov
function can be employed. A new solution of the average equation is initialized at
time K, Since V is decreasing in N, the new solution of the average equation will
be moving closer to a*. Again, Theorem A.3 can be applied, for k € {0,..., K}, to
show that the solution of (2.2) has moved closer to a* at time 2K. This process is
repeated until [[a; — a*|[ = o,(1).

Proof of Theorem 2.5. Let B® = A" be compact and let & := sup{r> 0:
B(a*,8) = N}, where N is defined in Theorem A.4. Then

&
K := max h1_2, max _ ming k: [fa. (k) —a*|| < =
€ 4,,(0)e PUB(a* §) KEN 2

exists, where g,y is defined in (2.3). From the definition of Qay, it is clear that uK is
independent of 4, so & is on the time scale 1/uif 0 < k < K.

For each n € Ny, define b, as the solution of (A.1) with initial value bp(nK) =
ayg (30 bo(f) = agy(1)). Theorem A.3 implies that for each & € B° there exists an
ox(1) function /;(x) and a constant u; such that if 4 < g, then

lank+y — ba(nK + j)|| < la(u)
for all je{0,...,K}. Let y=ming. py, and, for each u <y, let f(u) =
ming . g la(x). Then, for all a,x € B, if g < py,
' l@nk+; — bulnK + /)| < hi(n) (A1)

forallje {0,...,K}. _ X
From the definitions of K and by, if a,x € B°UB(a*,4), then

. ]
[a((3 + 1K) ~ 0l < 5.
If 4 < py is sufficiently small, /; (1) < /2, so (A.1) implies that
lam+iyx — @'l < llagenx — bal(n + DK)|| + [|6a((n + 1)K) — a*|| < 4,

ie., auink € B(a‘,é). Thus there exists uy < g, such that if u < g, then ay € B°
implies a,x € B(a*,d) for all n &€ N, Thus the properties of the Lyapunov function
hold for all angy and b,(nK + j) where ne N and j € {0,...,K}.

Let anx € B(a*,d). Combining property 3 of ¥ with the Comparison Principle
shows that, for j € {0,..., K},

V{ba(nK +j)) < Viawg)e ™. {A.2)

~—v—r
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Using the definition of K, (A.2) gives

V(bn((n + I)K) < %V(anK)- (A.3)

Lipschitz continuity of ¥ implies that

V(@mink) S V(ba((n+ D)K)) + Ay llag i — ba{(n + 1)K))|
= % V(a,,;(J + Avly (p)

using (A.1) and (A.3). Since ay € B°, this recursion yields

n—2
Vi) < 27"V (ax) + k() ()
=0

< 2'7a(8) + b ().
For any k& e Ng.
lax = a*ll < llax = bl + [1ba(k) - )],
where n = {k/K|. Using (A.1), property 1 of ¥, and (A.2), this gives

lax ~ a'll < B () + a7 (¥ (i)
< h{) + a7l (2'"a(9)),

Choose ky such that 21~15/Kla(§) < u(l, (4)). Now () = 20 (u) is an o,(1) func-
tion, and |la; — a*| < () for all & > k. |

Appendix B. Technical Appendix

In this appendix we prove the inequality

_ JN-1
- h

< 1 - (1 _ a)N‘F(N—])(Tﬁ]) (B ])
that appears in the discussion immediately following Theorem 5.1. It js assumed
that o, ye (0,1), and I, L are defined in (52}, so 0<hL <l <1, and
( 1_— o) < f;. Moreover, N, T > 1 so the inequalities are preserved when terms are
raised to powers of N, N — 1, and T — 1.

The first term in the left-hand side of (B.1) satisfies

(l _ }I)N_I(l _IiN)IZ(N—l)(T—I)

- (N-17T-1)
= (1= YVIT( (1 = gy (11 }’) (1 — gyN=1(r-1)
“ oy

< (1= (1 =a)¥)(1 — g)¥-1(T-13, (B.2)
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The second term in the left-hand side of (B.1) satisfies

- [(1 _ y)ZII](N—l)(T—l)
L—[(1=yR*!

v 1-1

! T 1.1
m‘:(l—fzw My < (1 - Yy
2

(1-»

(B.3)
Expression B.3 is of the form (1 — b)}((1 — (ab)"}/(1 — ab)). Since a,b € (0,1),

1-— (ab)! —1 ) —1 . 1-§
T =_z;(ab)' <Zojb =1T—%
=l i=
The new denominator cancels the first factor in (B.3), so the second term in the
left-hand side of (B.1) is less than

(1= 7W-DI=y g (g — )00, (B.4)
Combining (B.2) with (B.4) gives the result.

Appendix C. Proofs for Section 5

Proof of Lemma 5.2, In the following, the lower bounds on p(K,T, r) and
g(K, T} are determined. The upper bounds follow from the fact that the events
defined in (5.3) and (5.5) are mutually exclusive.

As before, the average equation (4.1) is a gradient equation. Since the local
minima of J are isolated points, they are uniformly asymptotically stable critical
points of (4.1). For any local minimizer @'° of J, let 4°(a'*®) denote the inter-
section of the associated basin of attraction with 4° For all 2 such that
AYa'™) # §, it is possible to choose compact sets 8°(a'*®) = A°(2'*) such that:

1. B%a*) o B(a*,r) (provided r is sufficiently small).

2. For all a'**, B(a'*°) contains an open neighbourhood of a'*c.

3. Pr{ae B%a*) where a ~ D,} = (1 — p)o.

4. Pr{ae B%loc) where a~D,}2(1-p)(1—-0), where B(loc):=
Ualﬂc co BO(aloc).

This follows from the fact that the basins of attraction of local minima are open
sets in IR™ and the union of all 4%(@'*) is dense in 4° [31].

Consider Theorem 2.5, with the function H(a,x) identified with (6¢/6a)|(alx)
and A(+,-) =0 for all k. The assumptions of Theorem 2.5 are satisfied—in
particular, Assumptions C3 and C4 imply Assumptions A2 and A3. Therefore for
any a'® there exists an 0,(1) function /() and a constant 4% > 0 such that if
# < pi, then the solution of (4.1) with initial condition aj) r € B%(a') enters and
remains in a ball centred at a'* with radius /'°°(x). Let gy = minan tocal minima of 7 4%
and for all g < gy let /(4) = Minaniocal minimaor s °°(1). These minima exist since
there is a finite number of local minima of J.

Choose 4, < py such that /(u) < r for all 4 < 4,. Theorem 2.5 says that, for all
4 < p,, there exists K(a) € Ng such that if ap € B%(a*), then a; € B{a*,r) for all
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k = K.(x). Since iz = 04(1), there exists o, such that z < g, whenever « < o,. For
any o < o, if K = K, (a), let

B'(K,T,r) = {ajr € A% a} 1 € B(a", 1)} (C.1)

Then B%a*) c B*(K,T,r) for all T ¢N, so comparing with the definition of
p(K, T, r) shows

pK,T,r)= Pr{ag‘T € B*(K, T,r) where a ;. ~ D,}
> Pr{ag, e B(a")}
=(1-ne

from the choice of B%(a*).

For the lower bound on ¢(K, T), choose u; < g such that B(a'™, I(x)) < A°
for all 4 < p; and @', Then Theorem 2.5 implies that, for all i < 1y, there exists
Ki(a) e Np such that if a5 & B%(a'), then af ;€ A° for all k > K,(«). Now
a € A°(a'®) implies J(a) = J'*¢, 50

9K, T) = Pr{ag ;€ B(loc}} = (1 — )(1 — o).
The last claim follows similarly, since B(a*,r) = B%(a*) = B*(K, T, r). [ |

Proof of Lemma 5.3. Let ¢ >0 and choose TeN, and ne{l,... N} The
parameter estimate af - is the solution of (3.3) randomly chosen according to D,,
evolved for at least K time steps. The union of the basins of attraction of the local
minima are dense in A4 [31}, so, by Assumption C2, with probability 1 the initiai
condition is contained in the basin of attraction of some local minimizer ¢'¢ e A.

Consider Theorem 2.5, with the function H(a, x) identified with _(6¢/6¢)|(a_x)
and A(-,-) = 0 for all k. Theorem 2.5 applies, so there exists s, > 0 such that,
for all u < 4 r, there exists K (x) such that, for all k > Ky (),

laf 7 ~ @™ < Iu), (C.2)

where /(u) is some o,(1} function. Since g = o,(1), there exists o » such that
# < pp y whenever o < o 7, and /(i) = o,(1).
Equation (3.4) can be written

(DI’:H,T = (DE,T - “(d’;r - ¢(“3‘T»X(T-1)K+k))- (C.3)

This can be put into the framework of Theorem 2.5 by using the small parameter
o instead of u, and identifying a; in Theorem 2.5 with @ 7 here. Identify H(®, x)
with @ — p(af .x), he(®,x) with (g(af 7, x) - p(af ))/Hp), and B(a) with
I{u{a)) = 04(1). The averaged ODE associated with {C.3) is

® = —a(® — J(al ). (C.4)

The ODE (C.4) has a globally uniformly asymptotically stable critical point
J(aj r). Moreover, H is bounded and Lipschitz continuous in its first arguments
(unif"orm]y in the second argument) on a compact domain.
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Since ¢ is Lipschitz continuous, there ‘exists a constant Ap > 0 such that
(@, )| < dpllag 7 — af 2 1|/Hp) < 244 if &, K = KD +{n), using (C.2). Theorem
2.5 applies, with small parameter « and initial condition @ G At time Kp?.T(ﬂ)

>0. Thus there exists a, r such that if « < a} there exists K, r(2) such that if
k = K} r(0) + K} (), then {5.8) holds.

Now let the bounds and  K(a) be  given by
% = SUPpe N Millye 1w {08 7 o) 7}, and, for all o < o, K,(0) =
SUPy ¢ iy MaXy ¢ q1,..,m) {Kp 7(4(9)) + K} 7(«)}. In both cases the existence of the
supremum is guaranteed by the assumption in C4 that the short term average

converges uniformly to J. |

Formal Statement of Theorem 5.1. Consider the CGD algorithm with Assump-
tions C1-C6. Let g be given by (4.2). There exists ry > 0, ap(r,7) > 0, Ky(a) € N
such that, for all y & (0,1), 0 <r < ro, 0 < a < ag(r,7), K = Ko(at), and N, T e N,
the probability that the algorithm converges by the end of the Tth epoch satisfies (5.1).

Proof. Step 1. Let ro be sufficiently small such that J{a) <.J(a")+ D for
all a € B(a*, ry), where D is defined in {5.9). Then B{a*,rg) c A*, soany r<rp is
sufficiently small for Lemma 5.2, Let 5 = I, where I is defined in (5.2). Lemma
5.2 applies since 7 € (0,1). Letting &= D/2, Lemma 5.3 applies. Define oy =
min{e,, o} and for any o < ug let Kp{a) = max{K;(«), K,(«)}, where o, K,{a) are
determined by Lemma 5.2 and ¢, K,(«) are determined by Lemma 5.3. Then if
<o, K2 Ky(a),and r <7, forall T e N,

(1 -hy)e <p(K,T,r) < (1 - Ly)o+ §y, (C.5)

(1 -hy)(1—0) < q(K,T) < (1= hy)(1 - o) + Iy, (C.6)
agreBla,r) = ag r € B(a*,r), . (C.7)
10 - SIS 5, Wne{l,..., V). (8

Equations (C.5} and (C.6) are derived from {5.6) and (5.7), using the above defi-
nition of #. The above facts are used throughout the rest of the proof.

Step 2. Let r < rg. Let a” be a good estimate and let «” be a bad estimate, in
the sense that a" € B(a”,r) and J(a™) 2 J!°. By the definition of ro, J(a") <
J(a@')+ D < J(¢™} — D. That is, the cost at a bad estimate is at least D larger
than the cost at a good estimate. Now assume that ¢” is not good (but not neces-
sarily bad). That is ¢ ¢ B(a*,r). The probability that this D separation between
the costs still exists is

Pr{J(a") < J(a™} — D given (a" € B(a',r) and a™ ¢ B(a", )}
= Pr{J(a™) z J(a*) + 2D given a” ¢ B(a*,r)}

_ Pr{J(@) > J'* and " ¢ B(a", 1)}
- Pr{a™ ¢ B(a*,r)} '
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using the definition of D
_ Pr{J(a") = J)
~ Pr{am ¢ B(a*,r))
since @” ¢ B(a®,r) whenever J(a”) > J', Now assume that a” and & corre-

spond to estimates at the end of an epoch. From the definitions of pandgin (5.3)
and (5.5), we have

Pr{J(a;'c,T) < J{ag ) — D given (a;’('T € B(a®,r) and agr ¢ B(a',r)}
g(K,T)

I _p(K) T) r) ’

z(1-y), (C9)

using the lower bounds in (C.5) and (C.6).

=

Step 3. The probability of keeping a good estimate at the end of the Tth epoch,
given that a good estimate exists, is

Pr{{(aj r,, € B(a",r) given ak y € B(a*,r) for some n}
= Pr{®% y < ®¥ 1 for all m such that dy,r ¢ B(a",r) given af , € B(a",r)}
= Pr{J(ak ) < J(dg r) — D for all m such that ay r ¢ B(a’,r) given
ag r € B(a*,r}},
using (C.8)
2 Pr{J(ag ) < J(ag ) — D for all m # 1 given
(ak r ¢ B{a®,r) and ag r € Bla',r))},
= (1-9)"" (C.10)
using (C.9).

Step 4. The probability that the algorithm has converged at the end of the first
epoch is

Pr{aél2 € Bla*,r)} = Pr{aé_z € B(a’,r) given ay | € B(a",r) for some n}
x Pr{ay , e B(a*,r) for some n}. (C.10)

All N members in the congregation are randomly restarted at the beginning of the
first epoch, so the probability that at least one converges to the ball around a” is
equal to 1 minus the probability that none do. By definition of P(K,T,r) in (5.3),
this gives

Priay, € B(a",r) for some n} = 1 — (1 — p(K, L))",
Combining with the lower bounds in (C.5) and (C.10), (C.1 1) becomes
Priay, e B(a*,r)} = (1 — )" (1 = 1Y), (C.12)
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Step 5. Assume T > 1. The probability that the algorithm has converged at the
end of the Tth epoch is
Pr{ajs,. € Bla",r)} = Pr{ay 7, € B(a®,r) given at € B(a*,r) for some n}
x Priag r € B(a*,r) for some n}. (C.13)

The probability that at least one of the N — 1 restarted members converges to the
ball around a* is equal to

Pr{ayr € B(a",r) forsome n # 1} =1 — (1 — p(K, T, 1)1, (C.14)
The first member of the congregation is not restarted, but (C.7) shows that
Pr{ay ;€ B(a",r)} > Pr{a} ; € B(a",1)}. (C.15)

For independent events E = {ag r e B(a*,r) for somen #1} and F=
{akr € B(a*,r)}, Pr{EorF} = Pr{E}+ (1 - PH{E})Pr{F}. Therefore (C.14)
and (C.15) imply

Pr{ay r € B(a*,r) for some n}
2 1= (1=pr)" " (1 pr)¥ ' Pr{al ; € Ba®,1})}, (C.16)
where pr = p(K, T, r). Combining with (C.10) and (C.16), (C.13) becomes
Pr{ag,’l,n_'_1 e Bla*,r)} .
2 (=" = (=)™ (1= pr)" Pr{aj 1 € Bla*. 1))
Using the bounds in (C.5),
Pr{atI],TH € B(a*,r)}
2 (=) =1 4 (1= )Y Pr{a) e Ba", ). (C.17)
Step 6. The recursive relationship (C.17) applied T times gives
Pr{afl,,ﬂ, € B(a",r)}

-2
==y - 1Y B T el € Bat )}

=0
~ [ — f¥-1)T-1) 5 o
= (=" = Y R () - D
—
using the geometric sum and {C.12). Rearranging the first term gives the
result. | |
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