Online Learning via Congregational Gradient Descent*

Kim L. Blackmore,† Robert C. Williamson,‡ Iven M. Y. Mareels,§ and William A. Sethares¶

Abstract. We propose and analyse a populational version of stepwise gradient descent suitable for a wide range of learning problems. The algorithm is motivated by genetic algorithms which update a population of solutions rather than just a single representative as is typical for gradient descent. This modification of traditional gradient descent (as used, for example, in the backpropagation algorithm) avoids getting trapped in local minima. We use an averaging analysis of the algorithm to relate its behaviour to an associated ordinary differential equation. We derive a result concerning how long one has to wait in order that, with a given high probability, the algorithm is within a certain neighbourhood of the global minimum. We also analyse the effect of different population sizes. An example is presented which corroborates our theory very well.

Key words. Online learning, Genetic algorithm, Gradient descent.

1. Introduction

Stepwise Gradient Descent (SGD) schemes are widely used in practice for a range of learning and optimization problems. In some sample cases, such as a linearly parametrized hypothesis class with quadratic cost, one can ensure there is only one local minimum which is thus the global minimum of the cost function. However, in many practically interesting cases, such as neural networks, there can be a large number of local minima [2], [29], [55], [58]. Sontag has shown [54] that the number of critical points is countable in many cases, but stronger results about even the number of critical points are not yet known. Adaptation of the parameters can thus get stuck and a suboptimal solution can be produced. This paper proposes and analyses a general scheme for modifying online SGD algorithms to alleviate this problem. We show how the running of several versions of a stepwise

* Date received: May 1, 1995. Date revised: April 1, 1997. This work was supported by the Australian Research Council.
† DSTO C3 Research Centre, Frenhill Park, Department of Defence, Canberra, ACT 2600, Australia.
‡ Department of Engineering, Australian National University, Canberra, ACT 0200, Australia.
§ Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Vic 3052, Australia.
¶ Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53796-1691, U.S.A.
gradient algorithm in parallel (a “congregation”) with periodic selection of the fittest, and concomitant random restarting of the less fit, can ensure convergence to the global minimum. We show this both theoretically and practically via simulation examples. Furthermore, we analyse the speed of convergence, and determine the “correct” congregation size to use. The algorithm can be applied in the case where the best parameter value does not give zero cost.

There are two main motivations to this work. The first, mentioned in the previous paragraph, has motivated earlier work for fixing SGD algorithms [20], [15]. In particular, [20] addresses the Constant Modulus Algorithm (CMA) for blind equalization [38], which solves a special sort of learning problem, and is based on the wide-spread LMS algorithm. It has been shown that there are non-global local minima in many situations [19]. In [20] techniques are proposed which statistically detect when the CMA is stuck in a local minimum, and then randomly restart it. We show, as an alternative, how our method can be applied to the CMA, and can ensure global convergence, at relatively little additional computational cost.

The original motivation for this work was to provide a way of making a fair comparison between gradient descent based algorithms and Genetic Algorithms (GAs) for a range of optimization and learning problems. Genetic algorithms [32], [23] (described in more detail below) are optimization/adaptation techniques based on an hypothesized model of biological evolution. A key difference between GAs and standard SGD is that GAs evolve a population of solutions, whereas SGD evolves only a single solution, which unsurprisingly can get stuck. Our congregational algorithm is perhaps the simplest populational SGD algorithm that can be envisaged. We have chosen this algorithm because it demonstrates the power of simply running multiple solutions of an existing (locally convergent) online algorithm, and because its simplicity allows the application of averaging theory for a deterministic convergence analysis.

1.1. Relationship to Existing Work

Online algorithms are widely used for learning problems. In practical neural networks, the widespread backpropagation algorithm is a form of SGD [29]. In adaptive signal processing the LMS algorithm is widely used [37]. Computational Learning theorists have analysed simple cases of online algorithms, often based on SGD [14] in their own framework. There are other analyses of SGD algorithms based on the more traditional adaptive filtering approach [11], [21], [39]. The perceived advantages of SGD are that it is computationally simple, and because of the algorithm’s (often exponential) stability, it is robust to noise and model mismatches. Various analyses have shown that there is a non-zero probability of the algorithm actually escaping from local minima, since for non-vanishing adaptation gain the actual algorithm jiggles about the average trajectory [40], [25], [21], [41], [30]. However, one has to wait a time exponential in the depth of the local minima for the escape to occur [17].

Since we plan to compare our scheme with GAs, we should say a little about simple versus complex adaptive systems (GAs are often held to be complex systems, and thus by definition not amenable to theoretical analysis). The distinction

between simple and complex is usually made in a vague way, and seems simply to denote the complexity of the parametrization or extent of adaptation undergone. Gell-Mann [26, pages 292ff.] tries to clarify this distinction, but even his classification is still a matter of degree. For the purposes of this work we do not draw any distinction between the use of SGD for “simple” problems such as adaptive filtering, and “complex” tasks such as learning in complicated neural networks. Both can be smoothly parametrized, and thus SGD, and the variant proposed in this paper, can be applied to them.

Many people have recognized the relationship between populational methods of optimization and decisional evolution (see, e.g., [12] and papers 24–39 of [22]). The idea now comes under the heading of Evolutionary Computation (EC) [22]. Apart from GAs [32], [23] (which are the most widely known form of EC), there are a variety of other methods such as Evolutionary Strategies [4] and Evolutionary Algorithms (EA) [5]. In order to use most of these algorithms, problems are usually encoded in some binary form. GAs combine different elements of their populations using operations based on theories of biological genetics. EAs and ESs tend to rely more on random perturbations (mutation) of members of the populations. The key idea of these EC techniques is the use of selection (survival of the fittest). According to some scheme, the fitness of the various members is evaluated, and the less fit are removed. New members are then created, in a variety of ways, and the process is repeated. There is a long running debate about the efficacy of crossover versus mutation in creating the next generation and what the “right” method of simulating evolution is. We take the view articulated by Atmar [1] that the key point is the process, not the symptoms; in particular there is a population of solutions, and the unfit are removed. This idea is captured in our proposed algorithm.

Because of the complexity of the algorithms, a theoretical analysis of GAs is quite difficult. Although there have appeared papers proving convergence of GAs [49], such proofs essentially rely on showing that in the limit GAs reduce to a random search, and if the whole space is sampled eventually the global minimum will be found. There have been some (not completely successful) attempts to characterize what sorts of problems GAs are good at [46], [24]. For our simpler congregational algorithm we can easily state what the key factor in problem difficulty is. GAs have been used for a range of learning problems [37], but so far there has been only one paper on a PAC analysis of a GA for a discrete learning problem [48]. See also [8] and [56].

Often real problems come with a natural continuous parametrization, such as a feedforward neural network. GAs usually require a binary coding, which leaves open the problem of which mapping to use. (There exist real coded GAs, but these still require a choice of crossover operator, which is usually dependent on some coding scheme for its very definition.) This can make a large difference [7]. Our motivation is that if there is a smooth (differentiable) parametrization of the target class of functions available, it may as well be utilized. (This is not to say that there is no question concerning choice of parametrization or that the parametrization would not affect the performance of an SGD algorithm.)

Curiously, although it has been recently shown [47] how mutation driven EAs
can be interpreted in certain limits as effectively simulating Newton's algorithm when operated on quadratic cost surfaces, we have found little in the previous literature that addresses the simple idea of the algorithm proposed in this paper, namely, to run a bunch of SGD algorithms as a population. Most existing random search techniques for optimization which we are aware of [46], [61], [52], [12], [3], [35], [45] are based on local random perturbations (mutation) to perform the local search.

One exception we have found is the "multistart" algorithm described on page 24 of [61]. This algorithm works when a fully known cost function, rather than just samples of it, exists, and is somewhat different to our algorithm in other ways. Certainly the analysis of our algorithm is different to that presented in [61]. Another is "Brann's method" [61, pages 32-33], which is essentially a deterministic method of escaping from local minima in descent algorithms. Very recently [44] has appeared, in which the idea of running several gradient descent algorithms in parallel is considered. However, this work is not for the online setting, and furthermore the theoretical results are rather different, and, when comparable, rather weaker than ours. The present work is quite different in style to GA classifier systems as presented in [37] and Chapter 10 of [32]. Such systems could not directly be put into a form amenable to a congregational SGD.

Perhaps the work closest in spirit to the present work is by Yakowitz [59]. In his paper he proposes and analyses an algorithm that combines a random search with a gradient descent procedure (actually a Keifer-Wolfowitz stochastic approximation). Whilst the general idea is similar, the details differ. For example, we explicitly use fixed step sizes, run multiple algorithms in parallel rather than sequentially, and in our analysis explicitly address the tradeoffs inherent in the size of the population. Yakowitz bas his analysis on standard general stochastic results due to Kushner and Clark, and his final results are in the form of proofs of asymptotic convergence. In contrast, we are explicitly interested in the behaviour over finite times, although we admit our analysis ends up in terms of constants that cannot be determined explicitly in a practical setting. Thus both the algorithms and their analyses are not really commensurate.

Other work which has analysed the beneficial effect of some additional stochasticity for gradient descent procedures includes that of Kushner [40]. His algorithm is much closer in spirit to simulated annealing, and the randomization enters through some additional driving noise in the difference equations, rather than as a random restart of multiple versions of the difference equations. His analysis too is different, and it uses rather different tools.

We leave open the possibility that the different aspects of the algorithms mentioned here, and their analysis techniques, may be combined in order to develop better algorithms, or more precise analyses. At the moment, it is not clear whether such additional effort is warranted.

1.2. What This Paper Shows

This paper formally states the congregational algorithm and derives a result describing its behaviour. We extend the existing averaging theory [50], which is not general enough for our case, to allow us to describe the behaviour of the SGD in terms of an ordinary differential equation (ODE). We then apply a stability result applicable to local minima based on a result in [60]. The stability technique is different to that which sufficed in [11], in order to have it apply about local minima, where one will not necessarily get uniform exponential stability of the associated ODE, but rather just uniform asymptotic stability. (These differences are detailed in Appendix A.) We show that, for certain parameter settings, the output of the algorithm will be close to the solution of the ODE, and furthermore the ODE associated with one of the members of the congregation will converge as required, such that the algorithm will, with high probability, produce an estimate in a small ball about the global minimum of the cost function after some finite time.

Since we can describe the behaviour of the algorithm in terms of an associated ODE we can thus talk of the basins of attraction [31] of that ODE. Our subsequent analysis is couched in such terms. Note that whilst the notion of a basin of attraction has been utilized in the analysis of GAs [56], [34], the very concept is rather more problematical there [36].

We then perform an analysis of the expected amount of computation required by the congregational algorithm. We derive a formula for the expected time to convergence in terms of N and σ, where N is the size of the congregation used and σ the probability of the initial point of a member of the congregation being chosen to be in the basin of attraction of the global minimum. The expected computational cost will be proportional to N times the expected time to convergence. We then show that for small σ the optimal (in the sense of minimizing expected computation) choice of N is $N_{opt} \approx (2/\sigma)^{1/2}$, and, more interestingly, that using $N = 2$ will result in an algorithm which will never (in expectation) use more than twice as much computation as one using N_{opt}. This argument is rather different to analyses of GAs that attempt to determine the right population size to use [27].

Finally, we apply the algorithm to two examples: blind equalization of a linear communications channel using the CMA and a simple non-linear regression problem. We show that our theoretical analysis is well corroborated by our simulations. Some open problems and directions for future work are stated in the conclusions.

2. Notation and Dynamical Systems Theory

For any $a \in \mathbb{R}^m$, $\|a\|$ denotes the Euclidean norm of a and $B(a,r) := \{b \in \mathbb{R}^m : \|b-a\| \leq r\}$ is the closed ball with centre a and radius $r > 0$.

For any function $f: A \times X \to \mathbb{R}$, where $A \subset \mathbb{R}^n$ and $X \subset \mathbb{R}^s$, $\delta f/\delta a$ denotes the gradient of f with respect to the first argument. For $a: \mathbb{R} \to \mathbb{R}^s$, $\dot{a}(t)$ denotes the derivative of a with respect to t.

Definition 2.1. A function $h: \mathbb{R}^+ \to \mathbb{R}$ is called an order function if $h(\mu)$ is continuous and nonzero on $(0, \delta_0)$ for some $\delta_0 > 0$, and if $\lim_{\mu \to 0} h(\mu)$ exists.

Definition 2.2. Let $h(\mu)$ and $l(\mu)$ be order functions. Then the notations $O_h(l(\mu))$,
Consider the initial value problem
\[\dot{a} = F(a(t)); \quad a(0) = a_0, \quad (2.1) \]
for \(t \geq 0; a(t) \in \mathbb{R}^m; F: \mathbb{R}^m \to \mathbb{R} \) continuous. Suppose \(F(a^*) = 0 \) for some \(a^* \in \mathbb{R}^m \).

Definition 2.3. The solution \(a \equiv a^* \) of the initial value problem (2.1) is uniformly asymptotically stable with basin of attraction \(A^* \subset \mathbb{R}^m \) if:

1. It is stable: for all \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that, for all \(a_0 \in A^* \),
 \[\|a_0 - a^*\| \leq \delta \Rightarrow \|a(t) - a^*\| < \varepsilon, \quad \forall t \geq 0. \]
2. It is uniformly attractive in \(A^* \): for all \(\delta > 0 \) and \(\varepsilon > 0 \), there exists \(\sigma > 0 \) such that, for all \(a_0 \in A^* \),
 \[\|a_0 - a^*\| < \delta \Rightarrow \|a(t) - a^*\| < \varepsilon, \quad \forall t \geq \sigma. \]

Definition 2.4. The ODE (2.1) is Lagrange stable if, for all \(a_0 \in \mathbb{R}^m \), there exists \(\delta > 0 \) such that
\[\|a(t)\| \leq \delta, \quad \forall t \geq 0. \]

The ODE (2.1) is Lagrange stable if and only if it does not have an attractor at infinity.

Theorem 2.5. With Assumptions A1–A5, let \(a_k \) and \(a_{\text{av}}(t) \) be defined according to the following equations for all \(k \in \mathbb{N}_0 \) and \(t \geq 0 \):

\[a_{k+1} = a_k - \mu H(a_k, x_k) - \mu \beta(\mu) h_k(a_k, x_k); \quad a_0 = A, \quad (2.2) \]
\[\dot{a}_{\text{av}} = -\mu \dot{H}(\dot{a}_{\text{av}}(t)); \quad a_{\text{av}}(0) = a_0. \quad (2.3) \]

Assume \(a^* \in \text{interior of} \ A \) is a uniformly asymptotically stable critical point of (2.3), with basin of attraction \(A^* \subset A \). Then for any compact set \(B \subset A^* \) there exists an \(o(1) \) function \(l(\mu) \) and a constant \(\mu_0 > 0 \) such that, for \(\mu \leq \mu_0 \), there exists \(k_\mu \in \mathbb{N}_0 \) such that
\[a_0 \in B \Rightarrow \|a_k - a^*\| \leq l(\mu), \quad \forall k \geq k_\mu. \]

Theorem 2.5 is proved in Appendix A.

3. The Congregational Gradient Descent Algorithm

This paper addresses the problem of locating the global minimum of some cost function \(J: A \to \mathbb{R} \), where \(A \subset \mathbb{R}^m \). The cost function is not known explicitly, but rather it is the average of a known function \(\varphi: A \times X \to \mathbb{R} \) over a known sequence \((x_k) \) of points in \(X \). That is,
\[J(a) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K-1} \varphi(a, x_k). \quad (3.1) \]

We say that \(\varphi(a, x_k) \) is the instantaneous cost at time \(k \). Points \(a \in A \) are called parameters and points \(x_k \in X \subset \mathbb{R}^n \) are called inputs. The inputs are received
sequentially, and it is desired to have a parameter estimate which is updated as each input is received.

Stepwise gradient descent of \(J \) is achieved by updating estimate parameters \(a_k \) according to

\[
a_{k+1} = a_k - \mu \frac{\partial \Phi}{\partial a_k} (a_k, x_t)
\]

From Theorem 2.5, it can be shown that the estimate parameters generated by this recursion will converge to a neighborhood of the global minimizer of \(J \) provided that the initial parameter estimate is in a certain region of parameter space. As \(\mu \to 0 \), this region approaches the basin of attraction of the global minimizer in the associated averaged ODE. However, if there are non-global local minima of \(J \), some choices of the initial estimate will cause the estimate parameters to converge to a local minimizer. In general the basin of attraction of the global minimum is not known, so SGD cannot be guaranteed to find the global minimum.

The CGD algorithm is a modification of SGD which gets around the problem of local minima. It is perhaps the simplest possible globally convergent population algorithm for online minimization. Instead of choosing one initial parameter estimate and updating it as each input is received, a number of estimates with randomly chosen initial values are run in parallel. At the same time, an estimate of the cost function at each of the parameter estimates is calculated. Periodically, the estimates are compared and all but the best are restarted according to some continuous probability distribution \(D_a \) with compact support \(A^0 \subset \mathbb{R}^n \). The time between restarts is called an epoch.

A similar non-population modification of SGD would be to run a number of SGD estimates serially. Again, an online cost estimate could be kept, and at the end of the epoch the parameter estimate could be kept only if the cost estimate is better than the estimate cost for all previous parameter estimates. The congregation algorithm requires slightly more computation than this serial algorithm, because we continue to update the best estimate through all epochs. However, it requires considerably less input than the serial algorithm, because all \(N \) members in the congregation are updated using the same inputs. Moreover, the continued updating of the best estimate allows the estimate to continue to improve, which can be useful in cases where the cost at the global minimum is much better than at all local minima.

The function \(\text{random}(A) \) generates independent and identically distributed random variables according to some fixed distribution \(D_a \) which has compact support \(A^0 \subset A \).

At time \(k \) in epoch \(T \), member \(n \) of the congregation takes on the value \(a^n_{k,T} \). In Section 5 it is shown that, as \(T \) increases, the probability that \(a^n_{k,T} \) is close to the global minimum of \(J \) is bounded below by a quantity that depends on various parameters of the problem.

The subscript \((T-1)K + k \) on the samples in (3.3) and (3.4) ensures that the algorithm is online, in that each update is made according to a new sample. This is not necessary—the algorithm also works if the same set of samples is used for each epoch. However, if it is possible to store and reuse the samples, there is less point in using an online algorithm.

The CGD Algorithm

Choose the cost stepsize \(\alpha \in (0, 1) \);
Choose the parameter stepsize \(\mu > 0 \);
Choose the epoch length \(K > 0 \);
Choose the congregation size \(N \geq 2 \);
for \(n \in \{1, \ldots, N\} \) do

\[
a^n_{0,1} := \text{random}(A);
\]
\[
\Phi^n_{0,1} := 0;
\]
\(T := 1; \)
while (true) do

for \(k = 0 \) to \(k = K - 1 \) do

for \(n \in \{1, \ldots, N\} \) do

\[
a^n_{k+1, T} := a^n_{k, T} - \mu \frac{\partial \Phi}{\partial a} (a^n_{k, X(T-k)}, x_{(T-k)+k});
\]
\[
\Phi^n_{k+1, T} := (1 - \alpha) \Phi^n_{k, T} + \alpha \Phi^n_{k, X(T-k), x_{(T-k)+k}};
\]

end for

end for

end while

end for

end for

end for

end for

Equation (3.4) defines an online estimate \(\Phi^n_{k, T} \) of the average cost at \(a^n_{k, T} \). The online estimate is a weighted average of all instantaneous cost estimates since the beginning of the epoch. It can be written

\[
\Phi^n_{k, T} = \alpha \sum_{j=0}^{k-1} (1 - \alpha)^{k-j+1} \Phi^n_{a^n_{j, T}, x_{(T-1)K+j}}.
\]

The weighting causes the instantaneous cost at the beginning of the epoch to have less effect than the instantaneous cost at the end of the epoch. As \(\alpha \to 0 \), the cost estimate updates slower, so more averaging occurs. However, this also implies that the effect of the changing parameter estimate is larger. As \(\alpha \to 1 \) the cost estimate more closely resembles the instantaneous cost. As the cost estimate is only used at the end of the epoch for testing fitness of the members, it is required that the estimate cost at the end of the epoch is close to the average cost for the final value of the estimate parameter. In Lemma 5.3 it is shown that \(\Phi^n_{k, T} \) can be made arbitrarily close to \(J(a^n_{k, T}) \) by choosing \(\alpha \) and \(\mu \) sufficiently small and \(K \) sufficiently large.
because changing the notation would require formally defining the simplified algorithm, and distract from the essential ideas expressed in this section. Note that the second simplification is not valid even for solutions of (4.1), since the distance between solutions of (4.1) and the critical points of J decays exponentially.

Here and in the rest of this paper the probabilities are with respect to the randomly chosen initial estimates a_0, where either $T = 1$ or $T > 1$ and $n \neq 1$. For any event E which depends on the value of the initial estimates, the probability that E occurs is written $Pr\{E\}$. Occasionally in Section 5 the same probability is written $Pr(E)$ where $a \sim D_a$. This second notation is redundant, but is used anyway to reduce the confusion caused by the other complicated notation that is necessary. For instance, it is simpler to interpret "$a_{0,T} \sim D_a$" than "$a_{0,T} \in D_a$ where either $T = 1$ or $T > 1$ and $n \neq 1$".

Let a^* be the global minimizer of J let A^* be the basin of attraction for a^* in
\[
\dot{a} = -\frac{\partial J}{\partial a} |_{a(t)},
\]
and let $A^0(a^*) := A^* \cap A^0$, where A^0 is the set of all possible initial estimates. Let σ be the probability of initializing a member of the congregation in the basin of attraction of the global minimum. That is,
\[
\sigma := Pr\{a \in A^* \mid a \sim D_a\} = \int_{A^0(a^*)} dD_a.
\]
Except for trivial cases σ is an unknown quantity. It may be seen as providing a measure of the difficulty of the task of finding the global minimum. This crucial parameter appears in all of the results of this paper. In Section 7 a method for estimating σ from simulation curves is demonstrated.

The probability of convergence of the simplified algorithm by the end of the epoch is derived as follows. The numbered steps in the derivation form the basis of the proof of Theorem 5.1 in the next section.

Step 1. Since the average ODE is used to determine the estimate parameters, and all estimates converge to critical points by the end of the epoch, if member n is initialized in A^* at the beginning of epoch t, then at the end of the epoch t member n is equal to a^*. If member n is initialized outside A^* at the beginning of epoch t, then at the end of epoch t member n does not equal a^*.

Step 2. At the end of an epoch estimates can be divided into "good" estimates, for which $a_{k,T} = a^*$, and "bad" estimates, for which $a_{k,T} \neq a^*$. Since a^* is the global minimizer of J, the average cost at all bad estimates is larger than the average cost at good estimates.

Step 3. Since the exact value of the average cost J is used for testing if a good estimate exists at the end of an epoch, the estimate that is chosen to be kept at the end of the epoch will be a good estimate.

Step 4. Using steps 1 and 3, the probability that $a_{0,2} = a^*$ is equal to the probability of choosing at least one initial estimate in A^*, i.e.,
\[
Pr\{a_{0,2} = a^*\} = 1 - (1 - \sigma)^N.
\]
Step 5. For later epochs, only \(N - 1 \) of the members are restarted. The first
member of the population does not move from the critical point that it converged
to by the end of the previous epoch. Therefore the probability that \(a_{0,T+1}^* = a^* \)
is equal to the probability that one of the new members is initialized in \(A^* \) plus
the probability that none of them is, but the member that was carried over from
the previous epoch was equal to \(a^* \):

\[
Pr[a_{0,T+1}^* = a^*] = 1 - (1 - \sigma)^{N-1} + (1 - \sigma)^{N-1} Pr[a_{0,T}^* = a^*]. \tag{4.4}
\]

Step 6. The recursive relationship (4.4) yields

\[
Pr[a_{0,T+1}^* = a^*] = [1 - (1 - \sigma)^{N-1}] + (1 - \sigma)^{N-1} Pr[a_{0,T}^* = a^*].
\]

Use of the geometric sum and (4.3) shows that

\[
Pr[a_{0,T+1}^* = a^*] = \frac{1 - (1 - \sigma)^{N-1}}{1 - (1 - \sigma)^{N-1}} \left(1 - \sigma \right)^{N-1} Pr[a_{0,T}^* = a^*] = 1 - (1 - \sigma)^{N+1}. \tag{4.5}
\]

In the following section, analogous steps are taken in order to establish the
probability of convergence of the CGD algorithm. Without the simplifications
mentioned above, the results of steps 1–3 cannot apply. However, somewhat
weaker results can be derived with some extra work.

5. Convergence Analysis

For any \(r > 0 \) such that \(B(a^*, r)^c = A^0(a^*) \), the CGD algorithm is said to have
converged after epoch \(T \) (to accuracy \(r \)) if the best estimate is no further than \(r \)
from the global minimizer of \(J \) (i.e., \(a_{0,T+1}^* \in B(a^*, r) \)). Clearly, \(r \) has to be chosen
small enough for such a definition to be of value.

In Theorem 5.1 the following assumptions are used to show that the probability
that the algorithm has converged to accuracy \(r \) after epoch \(T \) is greater than or
equal to a function which is monotonically increasing with \(T \). In the process, it is shown
that there exists an \(o_\mu(1) \) function \(I(\mu) \) such that it is possible to set
\(r = I(\mu) \). Thus when the algorithm converges, the estimate parameters will be very
close to the global minimizer if \(\mu \) is very small. In the discussion following Theorem
5.1 the derived bound on probability of convergence of the CGD algorithm is compared
with the probability given in (4.5) for the simplified algorithm.

Assumptions.

C1. \(A^0 \subset A \subset \mathbb{R}^m \), \(X \subset \mathbb{R}^n \), \(A^0 \) and \(X \) are compact, and \((x_k)_{k \in \mathbb{N}_0} \) is a sequence
of points in \(X \).

C2. For \(T = 1 \) and \(n \in \{1, \ldots, N\} \), or \(T \in \mathbb{N} \), \(T > 1 \), and \(n \in \{2, \ldots, N\} \), the
initial estimates \(a_{0,T}^* \in A^0 \) are i.i.d. random variables distributed according
to a continuous probability distribution \(D_{n,T} \) with support \(A^0 \).

C3. Both \(\varphi(a, x) \) and \(\varphi(\cdot, a) \) are bounded and Lipschitz continuous in the first
parameter (uniformly in the second) on a compact domain in \(\mathbb{R}^n \).

C4. The average \(J \) defined in (3.1) exists, and

\[
\delta(\mu) := \sup_{k_0 \in \mathbb{N}} \sup_{a \in A} \sup_{k \in [1, \infty)} \left\| \sum_{i=k_0}^{k-1} (\varphi(a, x_i) - J(a)) \right\| = o_\mu(1).
\]

C5. \(J \) has a (unique) global minimum at some \(a^* \) in the interior of \(A^0 \).

Furthermore, \(J \) has a finite number of local minima which have basins
of attraction intersecting \(A \), and (4.1) is Lagrange stable.

C6. \(\mu = o_\mu(1) \).

Assumption C4 implies that the average cost function converges uniformly to \(J \)
with respect to the initial time \(k_0 \). This implies that the error introduced by the use
of the instantaneous cost rather than the average cost in the CGD algorithm updates
can be bounded independently of the epoch under consideration.

Assumption C5 requires that there is a unique global minimum of the cost
function (or only one global minimum for which the basin of attraction intersects
\(A \), and (4.1) is Lagrange stable. These assumptions are not necessary, but
have been included in order to streamline the notation. The assumption that (4.1)
is Lagrange stable is discussed further at the end of the section. The assumption
that \(J \) has a finite number of local minima precludes the existence of an attracting
manifold in the parameter space. It can be interpreted as including a persistence
of excitation condition. For example, assume \(\varphi \) is the output error squared for a
linear system: \(\varphi(a, x) = ((a - a^*)^T x)^2 \). If the input \((x_k) \) does not span \(\mathbb{R}^n \), \(\varphi(\cdot, x_k) \)
will have a unique local minimum for each value of \(x_k \), but \(J \) will not have a
unique local minimum. Instead, there will be a line of points in \(\mathbb{R}^n \), passing
through \(a^* \), which are all global minimizers of \(J \).

C6 is used in Lemma 5.3 in order to ensure that the estimate
parameters converge to an \(o_\mu(1) \) neighbourhood of the local minimizers. Once the
estimate parameters have converged, the averaging result in Theorem 2.5 is used
with small parameter \(\mu \). For sufficiently large \(k \) and \(K \), the difference between the
instantaneous cost at the estimate \(a_{K,T}^* \) and at \(A_{K,T}^* \) is a second-order effect, so it
can be dismissed.

Theorem 5.1. Consider the CGD algorithm with Assumptions C1–C6. Let \(\sigma \) be
given by (4.2) and let \(\gamma \in (0, 1) \). For all sufficiently small \(r, x \) and sufficiently large
\(K \), the probability that the algorithm converges by the end of the \(T \)th epoch satisfies

\[
Pr\{\|a_{0,T+1}^* - a^*\| \leq r\} \geq (1 - \gamma)^{N-1} \left(\frac{(1 - I_1) I_2^{N-1} (T-1)}{1 - I_2^{N-1}} + \frac{1 - I_1^{N-1}}{1 - I_2^{N-1}} \right), \tag{5.1}
\]
where

\[I_1 := \frac{1 - \sigma}{1 - \gamma \sigma}, \quad I_2 := (1 - \gamma)^2 I_1. \tag{5.2} \]

Since \(\sigma, \gamma \in (0, 1) \), \(I_1, I_2 \in (0, 1) \). Moreover, as \(\gamma \to 0 \), \(I_1 \to (1 - \sigma) \) and \(I_2 \to 1 \).

Theorem 5.1 does not provide a practical method for choosing the quantities \(\sigma, \mu, \) and \(K \) required for application of the algorithm. However, it does prove that suitable quantities exist. In Appendix C Theorem 5.1 is stated more formally. The more formal statement reveals the way in which the quantities depend on each other—\(\sigma \) must be chosen first, then \(\mu \) and \(K \) must be chosen.

In the limit as \(\gamma \to 0 \), the lower bound in (5.1) is equal to the probability (4.5) derived in Section 4. The parameter \(\gamma \) arises from the discrete nature of the algorithm. In order to make \(\gamma \) close to 0, \(\mu \) and \(\sigma \) must be allowed to approach zero and \(K \) must be allowed to approach infinity. The relationship between \(\gamma, \mu, \sigma, \) and \(K \) is not simple, and is constrained explicitly in the first step of the proof. In Appendix B it is shown that, for \(\gamma \in (0, 1) \), the lower bound in (5.1) is less than the probability in (4.5). Thus the lower bound on the probability of convergence is weaker here than the corresponding result for the simplified version described in Section 4, as would be expected.

A sketch of the proof of Theorem 5.1 is given at the end of this section. First we give two technical lemmas that are used in the proof. The proofs of Theorem 5.1 and the two lemmas are given in Appendix C. Both lemmas rely on Theorem 2.5.

Assume either \(T = 1 \) or \(T > 1 \) and \(n \neq 1 \), so that \(a_{0,T}^r \sim D_a \). For any \(r > 0 \) such that \(B(a^*, r) \subset A^0(a^*) \), let

\[p(K, T, r) := \Pr\{a_{K,T}^r \in B(a^*, r) \mid a_{0,T}^r \sim D_a\}, (5.3) \]

where \(a_{K,T}^r \) is defined according to (3.3). In addition, define

\[J_{\text{loc}} := \min\{J(a) : J(a) \text{ is a non-global local minimum of } J\}, \tag{5.4} \]

\[q(K, T) := \Pr\{J(a_{K,T}^r) \geq J_{\text{loc}} \mid a_{0,T}^r \sim D_a\}. \tag{5.5} \]

Then \(p(K, T, r) \) is the probability that a newly initialized estimate converges to an accuracy \(r \) by the end of the \(T \)th epoch, and \(q(K, T) \) can be regarded as the probability that the estimate converges to some other local minimum. Both \(p \) and \(q \) are independent of \(n \) because all members are initialized according to the same distribution \(D_a \) and are updated according to (3.3). Since \(B(a^*, r) \subset A^0(a^*) \), the events defined in (5.3) and (5.5) are mutually exclusive, so \(q(K, T) \geq 1 - p(K, T, r) \).

If there are no non-global local minima of \(J \), any value of \(J_{\text{loc}} \) satisfying \(r_{\text{loc}} > J(a^*) \) can be used. In the following lemma it is shown that \(\sigma \) and \(K \) can be chosen in order to make \(p \) arbitrarily close to \(\sigma \) and \(q \) arbitrarily close to \(1 - \sigma \).

Lemma 5.2. With Assumptions C1–C6, let \(a_{K,T}^r \) be defined according to the CGD algorithm. If \(a_{0,T}^r \sim D_a \) then for all \(r > 0 \) such that \(B(a^*, r) \subset A^0(a^*) \), and all \(\eta \in (0, 1) \), there exists \(\alpha_r > 0 \) such that if \(\alpha \leq \alpha_r \) then there exists \(K_r(\alpha) \) such that if
on the probability that the algorithm has converged at the end of the \((T - 1)\)th epoch. This uses the bound found in step 3 and the fact that only \(N - 1\) members are randomly initialized at the beginning of the epoch.

Step 6. The recursive relationship derived in step 5 is combined with the bound in step 4 and a closed form expression for the lower bound on the probability that the algorithm has converged at the end of the \(T\)th epoch is derived.

The assumption that (4.1) is Lagrange stable (Assumption CS) is used in the proof of Lemma 5.3 in order to show that the estimate cost \(\Phi_{k,T} \) is a good estimate of \(J(a_{k,T}^*) \). For all estimates starting in the basin of attraction of a local minimum, once the estimate parameters have converged to the local minimum, the difference between the instantaneous cost at \(a_k \) and \(a_T^* \) is \(o_p(1) \) for all \(x \). If the initial estimate lands in the basin of attraction of an attractor at infinity this does not apply.

A gradient system such as (4.1) is not Lagrange stable if the cost function is decreasing is the size of the parameter increases. Here the global minimum of \(J \) is assumed to occur at some finite point \(a^* \), so that the value of the cost function cannot keep decreasing at a rapid rate as \(||a|| \to \infty \). Rather, the gradient of \(J \) must decrease, so that \(J \) "flattens out". In such cases, the estimate parameters move very slowly if \(||a|| \) is large. This fact can be used to show that the estimate cost will (eventually) be a good estimate of the average cost even if \(a_{k,T}^* \) lands in the basin of attraction of an attractor at infinity. Moreover, for any finite epoch length \(K \) \(||a_{k,T}^*|| \) is bounded, so even if \(J(a) \to J(a^*) \) as \(||a|| \to \infty \) there is a positive minimum value of \(J(a_{k,T}) - J(a^*) \) for estimates not originating in \(a^* \). In this way the assumption that there is no attractor at infinity could be avoided in Theorem 5.1.

6. Expected Time to Convergence

In Section 5 a lower bound on the probability of convergence after \(T \) epochs was derived. Under the assumptions of this paper, it is not possible to know exactly the probability of convergence after \(T \) epochs unless further assumptions are made. This is because whenever the algorithm is implemented, \(\mu \) is non-zero and \(K \) is finite, so there is always some non-zero probability that estimates do not converge to a local minimum of \(J \) by the end of each epoch. That is, the quantity \(\eta \) used in Lemma 5.2 must be non-zero. However, this probability of non-convergence decreases as \(\mu \) decreases and \(K \) increases. That is, \(p \to \sigma \) and \(q \to 1 - \sigma \). Moreover, as \(\alpha \to 0 \) the online gradient estimate \(\Phi_{k,T} \) approaches the true cost \(J(a_{k,T}^*) \). Therefore if the algorithm has converged, the best estimate will never be restarted.

Choose some \(r \) such that \(B(a^*, r) \subseteq A^0(a^*) \). The size of \(r \) can be arbitrarily small, since in the limit \(\alpha \to 0 \), trajectories originating in the global basin of attraction converge exactly to \(a^* \). Let \(\hat{T}_N \) be the first epoch for which \(a_{0,T+1}^* \in B(a^*, r) \), i.e., \(\hat{T}_N \) is the number of epochs until the algorithm first converges. The size of the congregation is used as a superscript because, as the next lemma shows, the expected time until convergence varies with \(N \). Using the above limiting argument, we will prove the following lemma about the expected time to convergence.

Lemma 6.1. Consider the CGD algorithm with Assumptions C1-C6. Set \(K = K(\alpha, L, \mu, \alpha) \) for some fixed nonzero \(L \). As \(\alpha \to 0 \) the expected number of epochs until convergence satisfies

\[
E(\hat{T}_N) \to \frac{1 - \alpha(1 - \sigma)^{N-1}}{1 - (1 - \sigma)^{N-1}} + o_\alpha(1).
\]

(6.1)

Inspection of the proof of Lemma 5.2 reveals that there exists an \(o_p(1) \) function \(I(\mu) \), such that it is possible to let \(r = I(\mu) \) in the definition of \(\hat{T}_N \). Thus the estimate parameters will be very close to the global minimum if \(\mu \) is very small and \(K \) is sufficiently large. The result of Lemma 6.1 still holds, but the fact that \(r \) shrinks with \(\mu \) makes it necessary to allow \(K \) to grow faster than \(1/\mu \) in the assumptions of the lemma.

Proof. By Assumption 6, \(\mu = o_p(1) \), so \(\mu \to 0 \) as \(\alpha \to 0 \). The linking of \(K \) to \(\alpha \) via \(K = K(\alpha, \mu) \) ensures the averaging results in Appendix A still hold. Therefore \(\alpha \to 0 \), \(K \to \infty \), and \(r \to \sigma \). The probability that the first member in the congregation is initialized in \(B(a^*, \epsilon) \) is \(\zeta(\epsilon) = \int_{B(a^*, \epsilon)} dD_x = o_p(1) \), so the probability that the algorithm converges immediately approaches \(Pr(\hat{T}_N > 0) \to 1 - \zeta(\epsilon) \).

The probability that more than one epoch is needed satisfies

\[
Pr(\hat{T}_N > 1) = Pr\{a_{0,T}^* \notin B(a^*, \epsilon) \text{ for all } n \in \{1, \ldots, N\}\} \to (1 - \sigma)^N.
\]

The probability that \(\hat{T}_N > T \) satisfies

\[
Pr(\hat{T}_N > T) = Pr\{a_{0,T}^* \notin B(a^*, \epsilon) \text{ for all } n \in \{2, \ldots, N\}\} \times Pr(\hat{T}_N > T - 1) \to (1 - \sigma)^{(T-1)(N-1)+N}.
\]

Therefore the expected time until convergence satisfies

\[
E(\hat{T}_N) = \sum_{T=0}^{\infty} Pr(\hat{T}_N > T) \to 1 - \zeta(\epsilon) + (1 - \sigma)^{\sum_{T=1}^{\infty} (1 - \sigma)^{(N-1)T}}.
\]

Using the geometric series, it can be seen that

\[
E(\hat{T}_N) \to 1 + \frac{(1 - \sigma)^N}{1 - (1 - \sigma)^{N-1}} + o_\alpha(1),
\]

which gives (6.1).

From (6.1) it can be seen that \(E(\hat{T}_N) \to 1 \) as \(N \to \infty \), which may lead one to the conclusion that it is best to have a very large congregation. However, in order to make a fair comparison between different population sizes, the expected computation for each must be compared. The expected computation increases like \(NE(\hat{T}_N) \) as \(N \) increases. Thus the expected computation is unbounded in the limit
\[N \to \infty. \] The expected computation also increases as \(\alpha \to 0 \) (and thus \(\mu \to 0 \)) since \(K \to \infty \).

For small values of \(\sigma \), Laurent series expansion of (6.1) reveals that
\[
NE(\hat{T}^N) \approx \frac{N}{(N-1)\sigma} + \frac{N(N-4)}{2(N-1)},
\]
(6.2)
where from here on we are ignoring the \(o(1) \) term. For \(N > 2 \) small, the first term is dominant, and is decreasing as \(N \) increases from 2. The right-hand side of (6.2) is a minimum when \(N \approx 1 + \sqrt{2/\alpha} \). Therefore for small values of \(\sigma \) the optimal value of \(N \) is approximately \(1 + \sqrt{2/\sigma} \). The following lemma shows that, for any \(\sigma \in (0, 1) \), in the limit as \(\mu \to 0 \) and \(K \to \infty \), the expected computation for a congregation with \(N \) members is never less than half of the expected computation for a congregation with two members. Thus the reduction in computation gained by using the optimal value of \(N \) is not more than a factor of 2.

Lemma 6.2. Consider the CGD algorithm with Assumptions C1–C5. Set \(K = K(\alpha) = L/\mu(\alpha) \) for some fixed nonzero \(L \). As \(\alpha \to 0 \), the expected number of epochs until convergence satisfies
\[
\frac{NE(\hat{T}^N)}{2E(\hat{T}^2)} \geq \frac{1}{2}.
\]
(6.3)

Proof. From Lemma 6.1, it is known that
\[
NE(\hat{T}^N) = N \frac{1 - \sigma(1 - \sigma)^{N-1}}{1 - (1 - \sigma)^{N-1}}.
\]
Substituting \(N = 2 \) gives
\[
2E(\hat{T}^2) = 2 \frac{1 - \sigma(1 - \sigma)}{\sigma}.
\]
(6.4)
Since \(N \geq 2 \) and \(\sigma \in (0, 1) \), \(1 - (N-1)\sigma \leq (1 - \sigma)^{N-1} \leq (1 - \sigma) \). Therefore
\[
NE(\hat{T}^N) \geq N \frac{1 - \sigma(1 - \sigma)}{(N-1)\sigma}.
\]
(6.5)
Combining (6.4) and (6.5) gives
\[
\frac{NE(\hat{T}^N)}{2E(\hat{T}^2)} \geq \frac{N}{2(N-1)} \geq \frac{1}{2}.
\]

The limit of the variance of \(\hat{T}^N \) as \(\alpha \to 0 \) and \(K \to \infty \) can also be determined. We have \(\text{var}(\hat{T}^N) = E((\hat{T}^N)^2) - E(\hat{T}^N)^2 \), where
\[
E((\hat{T}^N)^2) = \sum_{T^N} T^2 P_{\{\hat{T}^N = T\}}
\]
\[
\to 1 + 3(1 - \sigma)^N + \frac{5(1 - \sigma)^{2N-1} - 3(1 - \sigma)^{3N-2}}{(1 - (1 - \sigma)^{N-1})^2},
\]
which can be obtained from a straightforward but tedious evaluation of the sum. Thus substituting (6.1) for \(E(\hat{T}^N) \) gives (after some further manipulation)
\[
\text{var}(\hat{T}^N) \to (1 - \sigma)^N \left(3 + \frac{6(1 - \sigma)^{N-1}}{(1 - (1 - \sigma)^{N-1})^2} \right) =: v(\sigma, N)
\]
(6.6)
as \(\alpha \to 0 \) and \(K \to \infty \). By inspection, \(v(\sigma, N) = \Omega(\sigma^{-2}) \) but \(v(\sigma, N) \) is monotonically decreasing in \(N \), and goes to zero exponentially fast in \(N \) for fixed \(\sigma \). This suggests a slight advantage in a larger value of \(N \) not apparent from solely considering the expected number of epochs (or expected amount of computation) required for convergence.

7. CMA Simulation Results

In this section one application of the CGD algorithm is discussed, and results of simulation studies are presented. In particular, the expected time relationships derived in Lemmas 6.1 and 6.2 are illustrated. We have chosen this example because theoretical studies demonstrating the existence of local minima have been published.

In band-limited data communication systems, the transmitted signals can be extended (smeared out) by the distortion of an analog channel over a much longer interval than their original duration. Adaptive equalizers are used to remove the resulting intersymbol interference, and thus reconstruct the original signal [9], [19].

Blind equalizers are a special kind of adaptive equalizers which do not require a known training sequence. Instead, they aim to restore known generic properties of the original signal. The CMA is a popular algorithm for adaptive blind channel equalization. The original signals are assumed to have constant modulus, and the algorithm minimizes a cost function defined by both the modulus of the original signal and of the reconstructed signal. It is known that the underlying cost function possesses non-global local minima for even very simple channel models [19]. Some schemes for fixing the ill-convergence caused by local minima have been devised [20]. These schemes use more information than is assumed for the CGD algorithm.

A sequence of i.i.d. binary-valued signals \((u_k \in \{-1, 1\}) \) is sent by a transmitter through a channel exhibiting linear distortion. In the following, it is assumed that the channel has an AR(\(n \)) structure. Therefore the transmitted signal satisfies
\[
u_k = \sum_{i=0}^{\infty} a^*(i + 1) y_{k-i}
\]
for some parameter vector \(a^* \in \mathbb{R}^{n+1} \), where \(y_k \) is the received signal. This can be written
\[
y_k = \frac{1}{a^*(1)} \left(u_k - \sum_{i=1}^{n} a^*(i + 1) y_{k-i} \right).
\]
Let $x_k = (y_k, y_{k-1}, \ldots, y_{k-n})^T$. The objective of the equalizer is to recover the original sequence (u_k) from the received sequence (x_k). In the following an MA(n) equalizer is used, which gives the reconstructed signal

$$z_k = \sum_{i=0}^{n} a(i+1)y_{k-i} = a^T x_k$$

for some parameter vector $a \in \mathbb{R}^n$. The ordinary CMA algorithm is simply a stepwise gradient descent with the instantaneous cost function

$$\varphi(a, x) = \frac{1}{2} (z^2 - 1)^2 = \frac{1}{2} ((a^T x)^2 - 1)^2.$$ \hspace{1cm} (7.1)

Therefore application of the CGD algorithm to this problem requires only minimal alteration of the ordinary CMA algorithm.

Clearly, $\varphi \geq 0$ and $\varphi(\pm a^* , \cdot) = 0$. Moreover, if the received sequence x_k is sufficiently exciting, $\varphi = 0$ if and only if $a = \pm a^*$. Hence the average cost function J has exactly two global minima: a^* and $-a^*$. The CGD algorithm can be used for this cost function. In order to comply with Assumption C5 of Theorem 5.1, the sign of the first component of the estimated parameter can be fixed, so that only one of a^* and $-a^*$ is in A. For any $a \in \mathbb{R}^n$, $\varphi(c a, x) \to \infty$ as $c \to \infty$ for almost all x, so there is no attractor at infinity.

Figure 1 shows the results of a series of experiments using the above setup. In this case $n = 7$ was used, the channel parameters were

$$a^* = (1, -0.25, -0.5, 0.2, 0.1, -0.2, -0.1)^T,$$ \hspace{1cm} (7.2)

and the initial parameter estimates were chosen in $A = [0, 2] \times [-2, 2]^6 \subset \mathbb{R}^7$. The signal u_k took on the values ± 1 with approximately equal probability. The stepsize and approximation parameters were $\mu = 0.005$. The epochs were $K = 1999$ iterations long, and the algorithm was said to have converged when $\|a_0 - a^*\|^2 \leq 0.02$ (i.e., $r^2 = 0.02$). For each $N \in \{2, \ldots, 10\}$, the algorithm was run and \hat{N}^N, the number of epochs until convergence, was recorded. This was repeated 1000 times using the same binary signal u_k (and hence the same sequence (x_k)), but different initial estimates. For each $N \in \{2, \ldots, 10\}$, the average, over all 1000 trials, of $N \hat{N}^N$, is marked with a circle in Figure 1. The solid curve plotted in Figure 1 is the expected value of $N \hat{N}^N$, calculated by multiplying N times the limiting value of $E(\hat{N}^N)$ that appears in Lemma 6.1, with $\sigma = 0.167$. The dashed lines are calculated by adding $\pm 3N \sqrt{\psi(0.167, N)/1000}$, where $\psi(\cdot, \cdot)$ is the limiting value of the variance given in (6.6). The initial estimates were uniformly distributed in A, so it can be surmised that the volume of $A^0(a^*)$ is approximately 0.167 times the volume of A^0.

1 Although we are assuming here that the channel is in fact exactly invertible by an MA(n) equalizer, such an assumption is not necessary for our algorithm. Nor is the assumption necessarily valid in practice.
8. Conclusions

We have proposed and analysed a version of SGD which is based upon the idea of evolving a population of solutions. It is suitable for a wide range of learning and optimization problems. We have determined the expected computation required for the algorithm to locate the global minimum of the expected cost function and have applied the algorithm to some examples and shown that our predictions about its behaviour are well corroborated in our experiments. The algorithm is well suited to problems where there is a naturally occurring differentiable parametrization; of course not all learning problems fit into this category.

The most obvious further work to be done on the algorithm is to perform a stochastic averaging analysis [42], [10], [53], [13], where the results would depend in some explicit way on the distribution of the (x_k) sequence. (All our results are in terms of a given (fixed) (x_k) sequence, as are similar analyses such as [11].) The extension to stochastic analysis is not straightforward, since standard techniques would introduce a non-zero probability of escape from local minima during each epoch [40]. However, such an analysis may allow the rate with which γ shrinks as $\alpha \to 0$ and $K \to \infty$ to be determined. If that were done, then rather strong (PAC-like) assertions about the performance of the algorithm could be made.

One other question concerns the adaptation of a solution to a changing environment. In the literature there has been much discussion about the importance of diversity of the population in a GA in order for the GA to be able to respond well to changes in the environment [16], [51], [43]. In parametric optimization it is well known [28] that one cannot expect to be able to follow a smooth trajectory and stay at the optimal solution even if the environment changes are themselves smooth. Thus one cannot rely on the algorithm presented here always to sit at the global optimum, after the initial convergence phase. There is an obvious question concerning our algorithm and whether it is necessary to modify the restart schedule in order to optimize the algorithm’s performance under a changing cost function.

Acknowledgements. Thanks to Stephanie Forrest for helpful and enjoyable discussions and pointers to the GA literature.

Appendix A. Averaging Theory

In this appendix Theorem 2.5 is proved. The derivation of Theorem 2.5 is very similar to the derivation of Theorem 4.2.1 in [50]. Theorem 2.5 differs from Theorem 4.2.1 in [50] in two ways: in [50] the original equation is a differential equation rather than a difference equation; and in [50] the critical point must be a uniformly asymptotically stable critical point of the linearization of the averaged ODE, rather than of the averaged ODE itself. Their condition is much stronger than the condition used here—it is equivalent to saying that the critical point is a uniformly exponentially stable critical point of the ODE. In order to impose only the weaker condition, an inverse Lyapunov function result (Theorem A.4) is used.

However, the weaker condition results in a weaker approximation result—the error has form $e_{\mu}(1)$ instead of the $O_{\mu}(e^{1/2}(\mu))$ error in [50].

Theorem 4.2.1 in [50] would not suffice for the purposes of our analysis because the SGD algorithm we use is a difference equation and members converge to local minima of the average cost function. Whilst local minima of gradient flows are always asymptotically stable [31, page 206], it is apparently not known whether they are in addition exponentially stable. In the absence of a proof that they are, we only rely on the weaker asymptotic stability in the analysis below.

Before proving Theorem 2.5, some useful results are stated. The following lemma is a special case of the Comparison Principle [60] (see the Bellman–Gronwall Lemma in [19]). In Theorem A.3 a finite time averaging result is stated. It can be derived in a manner analogous to Theorem 3.3.3 in [50], using discrete versions of Lemma 3.2.6 to Theorem 3.3.3. Theorem A.3 is used repeatedly in the proof of Theorem 2.5. Theorem A.4 is a variant of Theorem 11.4 on page 111 of [60]. It is simpler than the result in [60] because the ODE is assumed to be autonomous.

Lemma A.1 (Comparison Principle). Assume that, for all $t > t_0$,

$$\dot{a}(t) \leq c a(t),$$

where $a(t)$ is continuous and non-negative for all $t > t_0$. Then

$$a(t) \leq a(t_0)e^{c(t-t_0)}.$$

Definition A.2. A property is said to hold for k on the time scale $I(\mu)$ if it is true for all k satisfying $0 \leq k \leq K(\mu)$, where K is a constant independent of μ and $I(\mu)$ is an order function.

Theorem A.3. With Assumptions A1–A5, let $k_0 \in N_0$, $\dot{a} \in A$, and a_k, $a_{av}(t)$ be defined according to the following equations:

$$a_{k+1} = a_k - \mu I(a_k, x_k) - \beta(\mu) y_k(a_k, x_k), \quad a_k = \dot{a},$$

$$\dot{a}_{av} = -\mu I_{av}(a_{av}(t)), \quad a_{av}(k_0) = \dot{a},$$

for all $k \in N_0$, $t \in R$ such that $k, t \geq k_0$. Then $a_k = a_{av}(k) + o(1)$ for k on the time scale $1/\mu$.

Theorem A.4. Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be Lipschitz continuous on some compact set $A \subset \mathbb{R}^n$. If $a^* \in A$ is a uniformly asymptotically stable critical point of the ODE $\dot{a} = f(a)$, with basin of attraction $A^0 \subset A$, then there exists a Lyapunov function $V(a): A^0 \to \mathbb{R}$ and an open neighbourhood $N \subset A^0$ of a^* such that, for all $a, b \in N$,

1. $V(a) - V(b) \leq c \lambda^\nu |a - b|, \quad \lambda, \nu > 0$.
2. $V(a) \to V(b)$ as $t \to \infty$.
3. $V(a) \leq c V(a), \quad \forall a \in A^0, \quad c > 0.$

Therefore, $\dot{a} = f(a)$ is an asymptotically stable equilibrium point of $\dot{a} = f(a)$.

Proof. Let $N \subset A^0$ be an open ball of radius ρ centered at a^*. Choose $\epsilon > 0$ such that $V(a) < \epsilon$ for all $a \in N$. Since f is Lipschitz continuous, there exists a constant $L > 0$ such that $|f(a) - f(b)| \leq L |a - b|$ for all $a, b \in N$. Therefore, for all $a, b \in N$,

$$|V(a) - V(b)| \leq L |a - b|.$$
Outline of the Proof of Theorem 2.5. Theorem A.4 applies to (2.3) (equivalently (A.1)). The neighbourhood N where the Lyapunov function satisfies properties 1–3 contains an open ball centred at a^* with some radius $\delta > 0$.

Since a^* is asymptotically stable in (2.3), all solutions of (2.3) that originate in B^0 enter $B(a^*, \delta)$ in some finite time K. The finite time averaging result in Theorem A.3 can be applied for $k \in \{0, \ldots, K\}$, so that all solutions of (2.2) that originate in B^0 enter N in time K.

Once the solution of (2.2) enters N, the contraction properties of the Lyapunov function can be employed. A new solution of the average equation is initialized at time K. Since V is decreasing in N, the new solution of the average equation will be moving closer to a^*. Again, Theorem A.3 can be applied, for $k \in \{0, \ldots, K\}$, to show that the solution of (2.2) has moved closer to a^* at time $2K$. This process is repeated until $\|a_k - a^*\| = o_\mu(1)$.

Proof of Theorem 2.5. Let $B^0 \in A^0$ be compact and let $\delta := \sup\{r > 0 : B(a^*, \delta) \subseteq N\}$, where N is defined in Theorem A.4. Then

$$K := \max\left\{ \frac{\ln 2}{c}, \max_{c a_0(0) \in B(a^*, \delta)} \min_{k \in K} \left\{ k : \|a_{k+}(k) - a^*\| \leq \frac{\delta}{2} \right\} \right\}$$

exists, where a_{k+} is defined in (2.3). From the definition of a_{k+}, it is clear that μK is independent of μ, so k is on the time scale $1/\mu$ if $0 \leq k \leq K$.

For each $k \in \mathbb{N}_0$, define b_k as the solution of (A.1) with initial value $b_0(nK) = a_{k+}$ (so $b_0(t) = a_0(t)$). Theorem A.3 implies that for each $\delta > 0$ there exists an $o_\mu(1)$ function $l_\mu(\mu)$ and a constant μ_0 such that if $\mu \leq \mu_0$, then

$$\|a_{n+k+} - b_n(nK + j)\| \leq l_\mu(\mu)$$

for all $j \in \{0, \ldots, K\}$.

Let $\mu = \min_0 \mu_0 \mu_0$ and, for each $\mu \leq \mu_1$, let $l_1(\mu) = \min_{j \in \mathbb{N}} l_\mu(\mu)$. Then, for all $a_{n+k} \in B^0$, if $\mu \leq \mu_1$,

$$\|a_{n+k+} - b_n(nK + j)\| \leq l_1(\mu)$$

for all $j \in \{0, \ldots, K\}$.

From the definitions of K and b_n, if $a_{n+k} \in B^0 \cup B(a^*, \delta)$, then

$$\|b_n((n+1)K) - a^*\| \leq \frac{\delta}{2}$$

If $\mu \leq \mu_1$ is sufficiently small, $l_1(\mu) \leq \delta/2$, so (A.1) implies that

$$\|a_{n+k+} - a^*\| \leq \|a_{n+k+} - b_n((n+1)K)\| + \|b_n((n+1)K) - a^*\| \leq \delta,$$

i.e., $a_{n+k+} \in B(a^*, \delta)$. Thus there exists $\mu_0 \leq \mu_1$ such that if $\mu < \mu_0$, then $a_0 \in B^0$ implies $a_{n+k} \in B(a^*, \delta)$ for all $n \in \mathbb{N}$. Thus the properties of the Lyapunov function hold for all a_{n+k+} and $b_n(nK + j)$ where $n \in \mathbb{N}$ and $j \in \{0, \ldots, K\}$.

Let $a_{n+k} \in B(a^*, \delta)$. Combining property 3 of V with the Comparison Principle shows that, for $f \in \{0, \ldots, K\}$,

$$V(b_n(nK + j)) \leq V(a_{n+k})e^{-\gamma j}.$$ \hfill (A.2)

Using the definition of K, (A.2) gives

$$V(b_n((n+1)K)) \leq \frac{1}{2} V(a_{n+k}).$$ \hfill (A.3)

Lipschitz continuity of V implies that

$$V(a_{n+1}) \leq V(b_n((n+1)K)) + \lambda V(a_{n+1}) K - b_n((n+1)K)$$

$$\leq \frac{1}{2} V(a_{n+k}) + \lambda V(a_{n+k})$$

using (A.1) and (A.3). Since $a_0 \in B^0$, this recursion yields

$$V(a_{n+k}) \leq 2^{1-n} V(a_k) + \lambda V(a_k) + \sum_{i=0}^{n-1} \left(\frac{1}{2} \right)^i$$

$$\leq 2^{1-n} V(a_0) + \lambda V(a_0)$$

For any $k \in \mathbb{N}_0$,

$$\|a_k - a^*\| \leq \|a_k - b_k(k)\| + \|b_k(k) - a^*\|,$$

where $n = \lfloor k/K \rfloor$. Using (A.1), property 1 of V, and (A.2), this gives

$$\|a_k - a^*\| \leq l_1(\mu) + \alpha^{n-1} V(a_{k+})$$

$$\leq l_1(\mu) + \alpha^{n-1}(2^{1-n} V(a_0))$$

Choose μ_0 such that $2^{1-n} \alpha(\delta) \leq l_1(\mu_0)$. Now $l_1(\mu) = 2 l_1(\mu)$ is an $o_\mu(1)$ function, and $\|a_k - a^*\| \leq l(\mu)$ for all $k \geq k_*$.

\section*{Appendix B. Technical Appendix}

In this appendix we prove the inequality

$$\left(1 - \gamma \right)^{N-1} \left(1 - I^1(1) \right) + \frac{1 - I^{N-1}}{1 - I^1(1) - I^{N-1}} \left(1 - I^{N-1} \right)$$

$$< 1 - (1 - \sigma)^{N+1}(1)$$

that appears in the discussion immediately following Theorem 5.1. It is assumed that $\sigma, \gamma \in (0, 1)$, and I_1, I_2 are defined in (5.2), so $0 < I_2 < I_1 < 1$, and $(1 - \sigma) < I_1$. Moreover, $N, T \geq 1$ so the inequalities are preserved when terms are raised to powers of $N, N - 1$, and $T - 1$.

The first term in the left-hand side of (B.1) satisfies

$$\left(1 - \gamma \right)^{N-1} (1 - I^1(1)) \left(1 - I^{N-1} \right)$$

$$= \left(1 - \gamma \right)^{(N-1)T} \left(1 - (1 - \sigma)^N \right)^{(N-1)(T-1)} \left(1 - (1 - \sigma)^{(N-1)(T-1)} \right)$$

$$\leq \left(1 - (1 - \sigma)^N \right)^{(N-1)(T-1)}.$$ \hfill (B.2)
The second term in the left-hand side of (B.1) satisfies
\[
(1 - \gamma)^{N-1} \frac{1 - I_2^{N-1}}{1 - I_2^{N-1}} < (1 - I_1^{N-1}) \frac{1 - (1 - \gamma)^2 I_1^{N-1}}{1 - (1 - \gamma)^2 I_1^{N-1}}.
\]
(B.3)

Expression B.3 is of the form \((1 - b) \left((1 - (ab)^b) / (1 - ab) \right)\). Since \(a, b \in (0, 1)\),
\[
\frac{1 - (ab)^b}{1 - ab} = \sum_{t=0}^{\infty} (ab)^t < \sum_{t=0}^{\infty} b^t = \frac{1 - b}{1 - b}.
\]
The new denominator cancels the first factor in (B.3), so the second term in the left-hand side of (B.1) is less than
\[
(1 - I_1^{(N-1)-(T-1)}) < 1 - (1 - \sigma)^{(N-1)-(T-1)}.
\]
(B.4)

Combining (B.2) with (B.4) gives the result.

Appendix C. Proofs for Section 5

Proof of Lemma 5.2. In the following, the lower bounds on \(p(K, T, r)\) and \(q(K, T)\) are determined. The upper bounds follow from the fact that the events defined in (5.3) and (5.5) are mutually exclusive.

As before, the average equation (4.1) is a gradient equation. Since the local minima of \(J\) are isolated points, they are uniformly asymptotically stable critical points of (4.1). For any local minimizer \(a^{loc}\) of \(J\), let \(A^{loc}\) denote the intersection of the associated basin of attraction with \(A\). For all \(a^{loc}\) such that \(A^{loc} \neq \emptyset\), it is possible to choose compact sets \(B^{loc} \subset A^{loc}\) such that:

1. \(B^{loc}(a^{loc}) \subset B(a^{loc}, r)\) (provided \(r\) is sufficiently small).
2. For all \(a^{loc}\), \(B^{loc}(a^{loc})\) contains an open neighbourhood of \(a^{loc}\).
3. \(Pr\{a \in B^{loc}(a^{loc})\} \geq (1 - \eta)\sigma\).
4. \(Pr\{a \in B^{loc}(a^{loc})\} \geq (1 - \eta)(1 - \sigma)\), where \(B^{loc}(a^{loc}) = \bigcup a^{loc} \neq \emptyset a^{loc}(a^{loc})\).

This follows from the fact that the basins of attraction of local minima are open sets in \(\mathbb{R}^{m}\) and the union of all \(A^{loc}\) is dense in \(A\) [31].

Consider Theorem 2.5, with the function \(H(a, x)\) identified with \(\partial / \partial a\) and \(h_k(\cdot, \cdot) = 0\) for all \(k\). The assumptions of Theorem 2.5 are satisfied—in particular, Assumptions C3 and C4 imply Assumptions A2 and A3. Therefore for any \(a^{loc}\) there exists an \(\alpha(1)\) function \(l(\mu)\) and a constant \(\mu^{loc}(a^{loc}) > 0\) such that if \(\mu \leq \mu^{loc}(a^{loc})\), then the solution of (4.1) with initial condition \(a^{loc}_0 \in B^{loc}(a^{loc})\) enters and remains in a ball centred at \(a^{loc}\) with radius \(I^{loc}(a^{loc})\). Let \(I^{loc}(a^{loc})\) be the set of all local minima of \(a^{loc}\) and for all \(\mu \leq \mu_0\) let \(I(\mu) = \min I^{loc}(a^{loc})\). These minima exist since there is a finite number of local minima of \(J\).

Choose \(\mu_0 \leq \mu_0\) such that \(l(\mu) \leq r\) for all \(\mu \leq \mu_0\). Theorem 2.5 says that, for all \(\mu \leq \mu_0\), there exists \(K(\alpha) \in \mathbb{N}_0\) such that if \(a_0 \in B^{loc}(a^{loc})\), then \(a_k \in B(a^{loc}, r)\) for all \(k \geq K(\alpha)\).

Since \(\mu = \alpha(1)\), there exists \(a_0\) such that \(\mu \leq \mu_0\), whenever \(\alpha \leq \alpha_0\). For any \(\alpha \leq \alpha_0\), if \(K \geq K(\alpha)\), let
\[
B^{loc}(K, T, r) := \{a^{loc}_0 \in A^{loc} : a^{loc}_{K+1} \in B(a^{loc}, r)\}.
\]
(C.1)

Then \(B^{loc}(a^{loc}) \subset B^{loc}(K, T, r)\) for all \(T \in \mathbb{N}\), so comparing with the definition of \(p(K, T, r)\) shows
\[
p(K, T, r) = Pr\{a^{loc}_0 \in B^{loc}(K, T, r)\} \geq Pr\{a^{loc}_0 \in B^{loc}(a^{loc})\} \geq (1 - \eta)\sigma.
\]

Combining B.2 with B.4 gives the result.

Proof of Lemma 5.3. Let \(\epsilon > 0\) and choose \(T \in \mathbb{N}\), and \(n \in \{1, \ldots, N\}\). The parameter estimate \(a^{loc}_{k+1}\) is the solution of (3.3) randomly chosen according to \(D_n\), evolved for at least \(K\) time steps. The union of the basins of attraction of the local minima are dense in \(A\) [31], so, by Assumption C2, with probability 1 the initial condition is contained in the basin of attraction of some local minimizer \(a^{loc} \in A\).

Consider Theorem 2.5, with the function \(H(a, x)\) identified with \(\partial / \partial a\) and \(h_k(\cdot, \cdot) = 0\) for all \(k\). Theorem 2.5 applies, so there exists \(\mu_0 > 0\) such that, for all \(\mu \leq \mu_0\), there exists \(K(\alpha)\) such that, for all \(k \geq K(\alpha)\),
\[
||a^{loc}_k - a^{loc}|| \leq l(\mu),
\]
(C.2)

where \(l(\mu)\) is some \(\alpha(1)\) function. Since \(\mu = \alpha(1)\), there exists \(a^{loc}_{K(\alpha)}\) such that \(\mu = a^{loc}_{K(\alpha)}\), whenever \(\alpha \leq \alpha_0\), and \(l(\mu) = \alpha(1)\).

Equation (3.4) can be written
\[
\Phi_{k+1, T} = \Phi_{k, T} - \alpha(\Phi_{k, T} - \psi(a^{loc}_{k+1}, x_T - (T-1)x_0)).
\]
(C.3)

This can be put into the framework of Theorem 2.5 by using the small parameter \(\alpha\) instead of \(\mu\), and identifying \(a_k\) in Theorem 2.5 with \(a^{loc}_k\) here. Identify \(H(\Phi, x)\) with \(\Phi - \psi(a^{loc}_k, x)\), \(h_k(\Phi, x)\) with \(\psi(a^{loc}_{k+1}, x) - \psi(a^{loc}_k, x)\), \(l(\mu)\) with \(l(\mu) = \alpha(1)\). The averaged ODE associated with (C.3) is
\[
\dot{\Phi} = -\alpha(\Phi - J(a^{loc}_k)).
\]
(C.4)

The ODE (C.4) has a globally uniformly asymptotically stable critical point \(J(a^{loc}_k)\). Moreover, \(H\) is bounded and Lipschitz continuous in its first arguments (uniformly in the second argument) on a compact domain.
Since \(\varphi \) is Lipschitz continuous, there exists a constant \(\lambda_\varphi > 0 \) such that
\[
|\varphi_\mu(\Phi_T, x)| \leq \lambda_\varphi \|a_T^\varphi - \mu_T^\varphi\|_H \leq 2 \lambda_\varphi
\]
if \(k, K \geq \Phi_T^m(\mu) \), using (C.2). Theorem 2.5 applies, with small parameter \(\alpha \) and initial condition \(\Phi_T^m(\mu) \) at time \(\Phi_T^m(\mu) \geq 0 \). Thus there exists \(c_T^\varphi \) such that if \(\alpha \leq c_T^\varphi \) there exists \(K_T^\varphi(x) \) such that if \(k \geq K_T^\varphi(x) + \Phi_T(x) \), then (5.8) holds.

Now let the bounds \(\alpha_\epsilon \) and \(K_\epsilon(x) \) be given by
\[
\alpha_\epsilon = \sup_{T \in \mathbb{N}} \min_{x \in \{1, \ldots, \epsilon\}} \{L^\varphi_{n,T}, a_T^\varphi, c_T^\varphi\}, \quad \text{and, for all } \alpha \leq \alpha_\epsilon, K_\epsilon(x) = \sup_{T \in \mathbb{N}} \max_{x \in \{1, \ldots, \epsilon\}} \{L^\varphi_{n,T}(\mu(x)) + K_T(x)\}.
\]
In both cases the existence of the supremum is guaranteed by the assumption in C4 that the short term average converges uniformly to \(\eta \).

Formal Statement of Theorem 5.1. Consider the CGD algorithm with Assumptions C1–C6. Let \(\alpha \) be given by (4.2). There exists \(r_0 > 0, \alpha_0(r, \gamma) > 0, K_0(\alpha) \in \mathbb{N} \) such that, for all \(\gamma \in (0, 1), 0 < r \leq r_0, 0 < \alpha \leq \alpha_0(r, \gamma), K \geq K_0(\alpha), \) and \(N, T \in \mathbb{N} \), the probability that the algorithm converges by the end of the \(T \)th epoch satisfies (5.1).

Proof. Step 1. Let \(r_0 \) be sufficiently small such that \(J(a) \leq J(a^*) + D \) for all \(a \in B(a^*, r_0) \), where \(D \) is defined in (5.9). Then \(B(a^*, r_0) \subset A^* \), so any \(r < r_0 \) is sufficiently small for Lemma 5.2. Let \(\eta = I_\gamma \), where \(I_\gamma \) is defined in (5.2). Lemma 5.2 applies since \(\eta \) (0, 1). Letting \(\epsilon = D/2 \), Lemma 5.3 applies. Define \(\alpha_0 = \min\{\alpha_0, \alpha_\epsilon\} \) and for any \(\alpha \leq \alpha_0 \) let \(K_0(\alpha) = \max\{K_0(x), K_\epsilon(x)\} \), where \(\alpha_0, K_0(\alpha) \) are determined by Lemma 5.2 and \(\alpha_\epsilon, K_\epsilon(x) \) are determined by Lemma 5.3. Then if \(\alpha \leq \alpha_0, K \geq K_0(\alpha), \) and \(r \leq r_0 \) for all \(T \in \mathbb{N}, \)
\[
(1 - I_\gamma)\sigma \leq \sigma(K, T, r) \leq (1 - I_\gamma)(1 - \sigma) + I_\gamma, \tag{C.5}
\]
\[
(1 - I_\gamma)(1 - \sigma) \leq \sigma(K, T) \leq (1 - I_\gamma)(1 - \sigma) + I_\gamma, \tag{C.6}
\]
\[
a^\alpha_0, T \in B(a^*, r) \Rightarrow a^\alpha_0, T \in B(a^*, r), \tag{C.7}
\]
\[
\Phi_{K_T} - J(a^\alpha_0, T) \leq \frac{D}{2}, \quad \forall n \in \{1, \ldots, \epsilon\}, \tag{C.8}
\]
Equations (C.5) and (C.6) are derived from (5.6) and (5.7), using the above definition of \(\eta \). The above facts are used throughout the rest of the proof.

Step 2. Let \(r \leq r_0 \). Let \(a^m \) be a good estimate and let \(a^n \) be a bad estimate, in the sense that \(a^m \in B(a^*, r) \) and \(Q(a^n) \geq J_{\text{loc}} \). By the definition of \(r_0, J(a^n) \leq J(a^m) + D \leq J(a^m) - D \). That is, the cost at a bad estimate is at least \(D \) larger than the cost at a good estimate. Now assume that \(a^m \) is not good (but not necessarily bad). That is \(a^m \notin B(a^*, r) \). The probability that this \(D \) separation between the costs still exists is
\[
Pr\{J(a^m) < J(a^n) - D \text{ given } a^m \in B(a^*, r) \} \text{ and } a^n \notin B(a^*, r)\}
\]
\[
\geq Pr\{J(a^n) \geq J(a^m) + 2D \text{ given } a^n \notin B(a^*, r)\}
\]
\[
= Pr\{J(a^n) \geq J_{\text{loc}} \text{ and } a^n \notin B(a^*, r)\}
\]
\[
Pr\{a^n \notin B(a^*, r)\}.
\]
using the definition of \(D \)
\[
Pr\{J(a^m) \geq J_{\text{loc}}\}
\]
\[
Pr\{a^n \notin B(a^*, r)\}
\]
since \(a^n \notin B(a^*, r) \) whenever \(J(a^n) \geq J_{\text{loc}} \). Now assume that \(a^m \) and \(a^n \) correspond to estimates at the end of an epoch. From the definitions of \(p \) and \(q \) in (5.3) and (5.5), we have
\[
Pr\{J(a^m) < J(a^n) - D \text{ given } a^m \in B(a^*, r) \}
\]
\[
\geq q(K, T)\left(1 - p(K, T, r)\right)^{-1}
\]
\[
\geq (1 - \gamma), \tag{C.9}
\]
using the lower bounds in (C.5) and (C.6).

Step 3. The probability of keeping a good estimate at the end of the \(T \)th epoch, given that a good estimate exists, is
\[
Pr\{a_{K_T}^m \in B(a^*, r) \text{ given } a^m_0, T \in B(a^*, r) \}
\]
\[
= Pr\{K_T^m < K_T^m \text{ for all } m \text{ such that } a_{K_T}^m \notin B(a^*, r) \}
\]
\[
\geq Pr\{J(a^{K_T}) < J(a^{K_T}) - D \text{ for all } m \text{ such that } a_{K_T}^m \notin B(a^*, r) \}
\]
\[
\geq (1 - \gamma)^{N-1}, \tag{C.10}
\]
using (C.9).

Step 4. The probability that the algorithm has converged at the end of the first epoch is
\[
Pr\{a_{1,T}^1 \in B(a^*, r) \} = Pr\{a_{1,T}^1 \in B(a^*, r) \text{ given } a_{1,T}^1 \in B(a^*, r) \text{ for some } n \}
\]
\[
\times Pr\{a_{1,T}^1 \in B(a^*, r) \text{ for some } n \}.
\]
All \(N \) members in the congregation are randomly restarted at the beginning of the first epoch, so the probability that at least one converges to the ball around \(a^* \) is equal to 1 minus the probability that none do. By definition of \(p(K, T, r) \) in (5.3), this gives
\[
Pr\{a_{1,T}^1 \in B(a^*, r) \text{ for some } n \} = 1 - (1 - p(K, T, r))^N.
\]
Combining with the lower bounds in (C.5) and (C.10), (C.11) becomes
\[
Pr\{a_{1,T}^1 \in B(a^*, r) \} \geq (1 - \gamma)^{N-1}(1 - I_\gamma^N).
\]
Step 5. Assume $T \geq 1$. The probability that the algorithm has converged at the end of the Tth epoch is

$$\Pr \{ a_{0,T+1} \in B(a^*, r) \} = \Pr \{ a_{0,T+1} \in B(a^*, r) \} \text{ given } a_{n,T} \in B(a^*, r) \text{ for some } n \} \times \Pr \{ a_{n,T} \in B(a^*, r) \} \text{ for some } n. \quad (C.13)$$

The probability that at least one of the $N-1$ restarted members converges to the ball around a^* is equal to

$$\Pr \{ a_{n,T} \in B(a^*, r) \} \text{ for some } n \neq 1 \} = 1 - (1 - p(K, T, r))^N - 1. \quad (C.14)$$

The first member of the conglomeration is not restarted, but (C.7) shows that

$$\Pr \{ a_{n,T} \in B(a^*, r) \} \geq \Pr \{ a_{m,T} \in B(a^*, r) \}. \quad (C.15)$$

For independent events $E = \{ a_{n,T} \in B(a^*, r) \} \text{ for some } n \neq 1 \}$ and $F = \{ a_{m,T} \in B(a^*, r) \}, \Pr (E \text{ or } F) = \Pr (E) + (1 - \Pr (E)) \Pr (F)$. Therefore (C.14) and (C.15) imply

$$\Pr \{ a_{n,T} \in B(a^*, r) \} \geq 1 - (1 - p_T)^N - 1 + (1 - p_T)^N - 1 \Pr \{ a_{0,T} \in B(a^*, r) \}. \quad (C.16)$$

where $p_T = p(K, T, r)$. Combining with (C.10) and (C.16), (C.13) becomes

$$\Pr \{ a_{0,T} \in B(a^*, r) \} \geq (1 - p_T)^N - 1 \sum_{i=0}^{N-1} \frac{f^{(N-1)}(T-1)}{f^{(N-1)}(T-1)} \Pr \{ a_{0,T} \in B(a^*, r) \}. \quad (C.17)$$

Step 6. The recursive relationship (C.17) applied T times gives

$$\Pr \{ a_{0,T+1} \in B(a^*, r) \} \geq (1 - p_T)^N - 1 \sum_{i=0}^{N-1} \frac{f^{(N-1)}(T-1)}{f^{(N-1)}(T-1)} \Pr \{ a_{0,T} \in B(a^*, r) \}$$

$$= (1 - p_T)^N - 1 \sum_{i=0}^{N-1} \frac{f^{(N-1)}(T-1)}{f^{(N-1)}(T-1)} + (1 - p_T)^N - 1 \Pr \{ a_{0,T} \in B(a^*, r) \},$$

using the geometric sum and (C.12). Rearranging the first term gives the result.

References

