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Abstract — A method of approximate channel identi-
fication is proposed that is based on a simplification of
the correlation estimator. Despite the numerical simplifi-
cation (no multiplications or additions are required, only
comparisons and an accumulator), the performance of the
proposed estimator is not significantly worse than that of
the standard correlation estimator. A free (user selectable)
parameter moves “smoothly” from a situation with a
small sum-squared channel estimation error but hard-to-
identify channel peaks, to one with a larger sum-squared
estimation error but easy-to-identify channel peaks. The
proposed estimator is shown to be biased and its behavior
is analyzed in a number of situations. Applications of the
proposed estimator to sparsity identification, symbol tim-
ing recovery, and to the initialization of blind equalizers
are suggested.

I. INTRODUCTION

Many communication channels have a naturally sparse
structure (e.g., underwater acoustic communications, wireless
communications in a hilly environment) and the channel im-
pulse response has most of its energy concentrated in a few
locations [1]. In the digital domain, the sampled channel re-
sponse has only a few significant tap weights and most of the
other tap weights are very small. Performing a channel iden-
tification or a channel equalization on such a sparse channel
requires filters with long time spans relative to the number of
nonzero tap weights. The advantages of exploiting sparsity
are that less hardware is needed, fewer computations are re-
quired in the adaptation of the channel/equalizer coefficients,
and there is less misadjustment noise (excess MSE) when an
adaptive algorithm is used to track a smaller number of chan-
nel/equalizer coefficients [2]. In addition, using fewer taps
tends to increase the speed of convergence of the adaptive
algorithm [2]. To exploit channel sparsity, it is necessary to
know the locations (and possibly the magnitudes) of the taps
with significant energy.

The correlation method of identification [3], FFT-based ap-
proaches [4], and Least Squares channel estimation [5](and
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the recursive implementations such as RLS) are all designed
to estimate the complete impulse response of the channel, and
cannot be readily simplified to identify just the largest taps of
the channel, unless the location of the taps is known a priori.
Because of this, these methods are computationally complex,
requiring at least O(N ) computations per channel tap, where
N is the length of the training sequence.

This paper proposes a method of estimating the channel im-
pulse response by correlating the training sequence with the
received data using the sgn� function (a signum function with a
� sized ‘dead zone’). This is a low complexity scheme that ad-
dresses the problem of sparsity identification and peak detec-
tion and may be used in a variety of applications. Though the
estimates are biased, the estimation error is not significantly
worse than when using the standard correlation estimator. In
addition, the peaks or centers of energy of the channel taps
may be more prominently displayed in some of the sgn� ver-
sions than in the standard correlation estimator.

This paper is organized as follows. The standard correla-
tion estimator is reviewed in Section II and the �-signed corre-
lation estimator is introduced in Section III. The mean of the
�-signed correlation estimator is derived in Section IV. Sec-
tion V analyzes the behavior of the �-signed correlation esti-
mator in a number of situations. Simulation results illustrating
some of the properties of the proposed estimator are provided
in Section VI. Possible applications of the proposed method
are detailed in Section VII and Section VIII concludes.

II. BACKGROUND: THE CORRELATION METHOD

The correlation method is suitable when the training se-
quence is self-orthogonal, i.e., white. The locations of the
nonzero portions of the channel response can be determined
by correlating the training sequence with the received data for
all possible time shifts over a time window that spans the en-
tire duration of the channel impulse response. The peaks of the
correlation estimate give an idea of the time delays at which
the channel shows significant energy.

The system model consists of the transmission of a source
sequence u(k) through a linear finite-impulse-response (FIR)
channel. Let r(k) denote the noisy output of the system rep-
resented by the impulse response h(i). Let L be the number



of channel impulse response coefficients. Then the received
sequence r(k) can be expressed as

r(k) =

L�1X
i=0

u(k � i)h(i) + w(k) ; (1)

where w(k) is the additive noise sequence at the receiver. The
“correlation estimates” ĥ(i) of the channel taps can be calcu-
lated as

ĥ(i) =
1

N

NX
k=1

u(k)r(k + i) ; (2)

where N is the length of the training sequence. It is
well known that under suitable assumptions, namely a self-
orthogonal training sequence and a zero-mean uncorrelated
noise sequence, this method leads to unbiased estimates of the
channel coefficients, with a variance that decays smoothly as
the number of points used in the correlation grows.

III. THE �-SIGNED CORRELATION METHOD

As is clear from equation (2), the correlation method re-
quires N multiplications and N additions for estimating each
coefficient of the channel impulse response, leading to an
O(N ) algorithm. This is computationally prohibitive in many
applications, especially in systems operating at high data rates.

The kernel of the idea presented here is to observe that the
most important information (in terms of the cross-correlation)
is not really contained in the amplitudes of the data, but in its
sign. Hence one can consider using a “signed correlation”.
Formally, consider estimates of the channel impulse response

ĥsgn(i) =
1

N

NX
k=1

sgnfu(k)g sgnfr(k + i)g ; (3)

where the signum or sign function is defined by

sgn(x) =

8<
:

1 if x > 0

0 if x = 0

�1 if x < 0

:

In terms of computational complexity, equation (3) requires no
multiplies, but simply a counter that accumulates how many
times the signs agree and disagree. Obviously, ĥsgn(i) differs
from ĥ(i), but are the differences significant?

This depends on the application. In [6], a variety of au-
tocorrelation methods are considered for use in spectroscopy
and radio astronomy. Under the assumption that the inputs
are Gaussian, the true autocorrelation function can be inferred
from that of a signed version, though the number of symbols
necessarily increases for a desired level of accuracy. In com-
munication systems, [7] has studied the performance degrada-
tion caused by the use of a signed correlator in the detection

problem and [8, 9] have investigated the application of quan-
tized correlation for frame synchronization in mobile OFDM
systems.

The following intuitive argument suggests how the signed
channel estimator might be improved. The most reliable data,
from the point of view of the sign function, is that with a large
absolute value, since even small amounts of noise may change
the sign of the data that has a small absolute value. Conse-
quently, it might be possible to improve the estimates by using
only those data points that are above some critical threshold �.
Now, consider the estimates

ĥ�(i) =
1

N

N�1X
k=0

sgnfu(k)g sgn�fr(k + i)g ; (4)

where the function sgn� is defined by

sgn�(x) =

8<
:

1 if x > �

0 if �� � x � �

�1 if x < ��
:

Clearly, the signed-correlator is a special case of the sgn� cor-
relator with � = 0.

IV. MEAN OF THE ESTIMATORS

This section derives expressions for the mean of the chan-
nel estimates for the signed and �-signed correlator under the
following simplifying assumptions.

� The noise sequence w(k) is zero mean, real, white and
Gaussian with variance �2.

� The training symbols, u(k) are i.i.d, uncorrelated with
the noise sequence w(k) and are selected from a BPSK
constellation.

Since the training sequence is BPSK, equation (4) can be
rewritten as

ĥ�(i) =
1

N

NX
k=1

u(k)sgn�fr(k + i)g: (5)

Recall from equation (1)

r(k + i) =

L�1X
m=0

h(m)u(k + i�m) + w(k + i): (6)

Define the sequence yi(k) as

yi(k) ,

L�1X
m=0;m6=i

h(m)u(k + i�m) (7)

and the vectors b�i and h�i, each of length L� 1 as

b�i , [b0; � � � ; bi�1; bi+1; � � � ; bL�1]T ;

h�i , [h(0); � � � ; h(i� 1); h(i+ 1); � � � ; h(L� 1)]T :



The sequence yi(k) is a weighted sum of i.i.d binary ran-
dom variables and has a discrete probability distribution that
takes on a value of 21�L at each possible bT�ih�i, where the
vector b�i 2 f�1gL�1. Since w(k + i) is independent of
yi(k), the probability density function of fyi(k) + w(k + i)g
can be computed by convolving the probability densities of
yi(k) and w(k + i). Hence, sgn�fr(k + i)g can be written as

sgn� fr(k + i)g =
8<
:
�u(k)sgnfh(i)g with prob p(i)

0 with prob q(i)� p(i)

u(k)sgnfh(i)g with prob 1� q(i)

with

p(i) =
X

b
�i2f�1gL�1

2�L+1Q
� jh(i)j+ b

T
�ih�i + �

�

�
;

(8)

q(i) =
X

b
�i2f�1gL�1

2�L+1Q
� jh(i)j+ b

T
�ih�i � �

�

�
;

(9)

whereQ is the error function defined as

Q(x) =
1p
(2�)

Z 1

x

exp

�
�y2

2

�
dy: (10)

Hence, the mean of the channel estimates for the �-signed cor-
relator is given by,

E[ĥ�(i)] = sgnfh(i)g � sgnfh(i)g

�
X

b
�i2f�1g

L�1

bL2f�1g

2�L+1Q
� jh(i)j+ b

T
�ih�i + bL�

�

�
: (11)

The mean of the �-signed correlation channel estimator is
upper-bounded by unity, and hence the estimator is biased.

Theorem 1 (Order Preservation) The �-signed correlation
channel estimator preserves the order of the channel coeffi-
cients in the mean, i.e, ifjh(m0)j � � � � � jh(mL�1)j then
jE[ĥ�(m0)]j � � � � � jE[ĥ�(mL�1)]j.

Thus, on average, the tap estimates from the �-signed cor-
relation are ranked in the same order as the taps of the channel
impulse response. Since the signed-correlation channel esti-
mator is a special case of the �-signed correlator, it also satis-
fies the order preservation property.

A. Gaussian Approximation

If the length of the channel impulse response L is large it is
possible to employ the central limit theorem and approximate
the probability density function of fyi(k) + w(k + i)g (recall

equation (7)) as a zero-mean Gaussian distribution. Formally,
this requires the satisfaction of the Lindeberg-Feller condition
(see [10]). Let us assume that the Gaussian approximation
holds, and that the channel is unit norm, i.e., k h k2= 1. Then,

[yi(k) + w(k + i)] � N (0; �2i ) (12)

where �2i = 1 � jh(i)j2 + �2. Under this approximation,
equations (8) and (9) simplify to

p(i) = Q
� jh(i)j+ �

�i

�
; q(i) = Q

� jh(i)j � �

�i

�
(13)

and the mean of the �-signed correlator simplifies to

E[ĥ�(i)] = sgnfh(i)g
"
1�Q

(
jh(i)j+ �p

1� jh(i)j2 + �2

)

�Q
(

jh(i)j � �p
1� jh(i)j2 + �2

)#
: (14)

V. ASYMPTOTIC ANALYSIS

In an effort to understand the behavior of the signed and �-
signed correlation estimators, this section considers the special
cases when � ! 0 and � !1. Since the signed and �-signed
correlation estimators are typically biased, we focus attention
on the relative magnitudes of the channel tap coefficients.

A. 2-Tap Channel

Consider a channel impulse response with only two taps.
Without loss of generality, we assume that jh(0)j � jh(1)j.
Define the ratio of the magnitudes of the tap coefficients, �
and the ratio of the magnitudes of the mean of the estimates
�̂� as,

� ,
jh(0)j
jh(1)j � 1 and �̂� ,

jE[ĥ�(0)]j
jE[ĥ�(1)]j

: (15)

By using the approximation

Q(x) � 1

2
� xp

2�
; if x� 1 (16)

on equation (11), it can be shown that

lim
�!1

jE[ĥ�(i)]j = 2jh(i)jp
2��

; 8 i = 1; 2 (17)

and hence

lim
�!1

�̂� = �: (18)

In the noiseless scenario (when � ! 0) recall that

lim
�!0

Q
�x
�

�
=

8<
:

1 if x < 0

0:5 if x = 0

0 if x > 0

; (19)



and hence

lim
�!0

�̂� =

8<
:
1 if � < jh(0)j � jh(1)j
3 if � = jh(0)j � jh(1)j
1 if � > jh(0)j � jh(1)j

: (20)

For example, consider a 2-tap channel with an impulse re-
sponse of h = [0:8; 0:6]. Figure 1 plots the ratio of the mag-
nitudes of the mean of the �-signed correlation estimator, as
a function of the SNR, for various values of the threshold �.
From the plot, it is clear that at high values of SNR, the tap
with the larger magnitude is greatly enhanced as long as the
value of the threshold � � jh(0)j � jh(1)j. Such a property of
the �-signed estimator would be useful in an application where
only the location of cursor is required.
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Fig. 1: The ratio of the magnitudes of the mean of the �-signed cor-

relation estimator for a 2-tap channel, h = [0:8; 0:6] as a function of

the SNR for various choices of �.

B. L-Tap Channel

Now consider a channel impulse response with L taps. Let
us assume that the Gaussian approximation of Section IV.A
holds. Using the approximation in equation (16) on the mean
expression of equation (14) we have,

lim
�!1

jE[ĥ�(i)]j
jE[ĥ�(j)]j

=
jh(i)j
jh(j)j : (21)

Hence, at low values of SNR, the �-signed correlation estima-
tor preserves the relative magnitudes of the channel taps in the
mean.

Theorem 2 (Dominant Tap Enhancement) If the channel
impulse response coefficients are such thatjh(i)j � jh(j)j for
some pair of integers(i; j) and jh(i)j � p2(1 + �2)=3, then

the signed correlation channel tap estimate of the L-tap chan-
nel, under the Gaussian approximation, satisfies

�̂sgnij ,
jE[ĥsgn(i)]j
jE[ĥsgn(j)]j

� jh(i)j
jh(j)j , �ij (22)

Hence, the dominant tap is augmented compared to the smaller
taps, which reinforces the observations from the example in
figures 4 and 5 that the taps with the largest energy are more
clearly visible in the simpler �-signed correlator than in the
standard correlator. Note that this property of the �-signed cor-
relation estimator makes it suitable for applications like spar-
sity detection, where the aim is to determine the locations of
the significant taps of the channel impulse response.

VI. SIMULATION RESULTS

The performance of the signed and �-signed correlation es-
timators were studied using simulations. The channel impulse
response (see Figure 2) of a measured microwave channel [11]
was chosen for the simulations. The data set was drawn from
a BPSK source constellation. A 511-length PN sequence, as
defined by the High Definition Television (HDTV) standards
[12], was chosen as the training data. The SNR at the receiver
was assumed to be 15 dB. Since the �-signed channel esti-
mator is biased, the estimated channel impulse response was
normalized to unit norm, i.e., kĥ�k2 = 1.
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Fig. 2: (a) Channel impulse response of a measured channel from

the SPIB database [11] ; (b) Correlation estimate of the impulse re-

sponse.

Figure 3 compares the average sum-squared channel esti-
mation error of the �-signed estimator, for various choices
of �, with the performance of the standard correlation esti-
mator. The abscissa of “ -1” in the figure corresponds to the
correlation estimator, while abscissas between “0” and “9”
represents the estimation error as � varies from 0 to 1:8�

in steps of 0:2� each. The value of � is chosen to be the
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Fig. 3: Averaged sum-squared channel estimation error as a function

of �. The abscissa “ -1” corresponds to the standard correlation esti-

mator. The abscissas “0” to “9” correspond to �-signed estimators as

� takes on values between 0 to 1:8� in steps of 0:2� each.

mean of the absolute value of the received signal vector, i.e.,
� = E[jr(k)j]. Although the performance of the �-signed cor-
relator is worse than the standard correlation estimator, the
degradation is small and is only on the order of a couple of
dB. Furthermore, the performance of the �-signed estimator
improves with increasing values of � up to a point and this
suggests that there exists some optimal value for the choice of
�. For this particular example, 0:8� seems to be the optimal
choice of �. However, the value of the optimal � may be a
function of the channel and hence difficult to predict.
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Fig. 4: The estimated channel impulse response using the signed cor-

relation method in (a), and using the �-signed correlation method for

a value of � = 0:4� in (b)

Figures 4 and 5 show the estimates of the channel in Figure
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Fig. 5: The estimated channel impulse response using �-signed cor-

relation method for � values of 0:8� in (a) and 1:4� in (b).

2 for a number of different values of �. Figure 4 shows the
channel estimates for � values of 0 in (a) and 0:4� in (b). Fig-
ure 5 continues with 0:8� in (a) and 1:4� in (b). The signed
version (� = 0) clearly shows the location of the cursor but
much of the channel detail is lost, due to the coarseness of the
sign function. As � grows, the three peaks of the channel be-
come more and more prominent. Especially for the choice of
� = 1:4�, although the channel estimates are very noisy, the
three peaks of the channel are quite prominent (see Figure 5)
and hence suitable for sparsity detection. For yet larger val-
ues of � (not shown), there are not enough nonzero points to
register and the estimates in equation (4) degrade. This exam-
ple suggests that careful selection of � may allow the simpler
estimator to retain certain details of the channel despite the
numerical simplifications.

VII. USING THESE ROUGH ESTIMATES

The approximate channel estimates given by the �-signed
correlator can be used to initialize a blind adaptive equalizer
(or a decision feedback equalizer, if the estimates are accurate
enough). The taps that follow the cursor (generally, the largest
peak) can be used directly to initialize (for instance) a blind
infinite-impulse-response (IIR) equalizer. As shown in [13] if
this initialization is good enough to reduce the SINR to about
-3.8 dB, it can be guaranteed that the constant modulus algo-
rithm (CMA) will converge to a minimum corresponding to a
delay consistent with the initialization. In particular, this guar-
antees that no undesirable saddle points will be encountered.

The rough channel estimates provided by the �-signed cor-
relator can be used to detect the presence of sparsity in the
channel. By setting an appropriate threshold, all taps below
this threshold may be assumed insignificant (set to zero). Ex-
ploiting this sparsity is as simple as initializing and adapt-
ing only those parameters in or around these nonzero regions.



When sparse adaptation is being done in the equalizer, typi-
cally only a subset of the taps are actually adapted. One prob-
lem, however, is that in a time varying situation the locations
of the significant channel taps may change. A low complex-
ity solution to this problem is to use the �-signed channel es-
timator. One can adapt the sparse equalizer as before – but
when the rough channel estimates indicate energy at a loca-
tion where there are no taps in the equalizer, then these taps
can begin to be adapted.

Finally, some kind of correlation is often done to look for
the start of each frame. Monitoring the time difference be-
tween successive peaks in the correlation (i.e., between suc-
cessive frames) and dividing by the number of symbols ex-
pected in that frame, gives a measure of clock timing. For
example, [14] describes a timing recovery technique based on
detecting the “fi eld sync” signals in the HDTV data record and
using some sort of phase locked loop (PLL). As illustrated in
Section VI the �-signed correlation estimator is especially well
suited for detecting the peaks and hence can be used for timing
recovery.

VIII. SUMMARY

This paper has proposed a method of correlating the train-
ing sequence with the received data using the sgn� function
(a signum function with a � sized ‘dead zone’ ). The �-signed
correlation estimator was shown to be biased and its behav-
ior was analyzed in a number of situations. The performance
of the �-signed correlation estimator was found to be only
marginally worse than that of the correlation estimator. It was
further shown that the �-signed correlation estimator displays
the peaks in the channel impulse response more prominently
than the correlation estimator, for suitable choices of �. This
property of the �-signed correlation estimator makes it suitable
for applications like peak detection and sparsity identification.
In scenarios where the use of a correlation procedure would
be useful, but where computational complexity is of concern,
it may be worthwhile to consider using a �-signed correlator.
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