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This article presents a method of mapping the spec-
trum of a sound so as to make it tonally consonant
with a given specified reference spectrum. One ap-
plication is to transform inharmonic sournds into
harmonic equivalents. Alternatively, this method
can be used to create inharmonic instruments that
retain much of the tonal quality of familiar [(har-
monic) instruments. Musical uses of such timbres
are discussed, and forms of {inharmonic! modula-
tion are presented. A series of sound examples dem-
onstrate both the breadth and limitations of the
method. [Sound examples will be included on the
forthcoming compact disc for Volume 22 of Com-
puter Music Journal. —Ed.]

Background

Wendy Carlos (Carlos 1987) gives several examples
of the interrelationship between timbre and tuning,
exclaiming, “Clearly the timbre of an instrument
strongly affects what tuning and scale sound best
on that instrument.” The relationship between the
spectrum of a sound and a scale or tuning in Wwhich
the sound is most consonant has been formalized
(Sethares 1993) using the idea of the dissonance
curve: a plot of the calculated dissonance of a spec-
tram versus frequency interval. Such dissonance
curves are based on a parameterization of tonal con-
sonance data {Plomp and Levelt 1965), which is in
turn closely related to Hermann von Helmholtz’s
work (Helmholtz 1863) on the beating of sine-wave
partials of simultaneously sounding tones.

For example, Figure 1 shows the dissonance
curve for a tone with seven harmonic partials,
which has minima at intervals formed from simple
integer ratios. Thus, harmonic tones are said to be
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related to (most tonally consonant when played in]
just intonations-—scales composed of intervals
with simple-integer frequency ratios. Other kinds
of sounds, such as those with inharmonic partials,
are related to other (non-just) scales, and can be ex-
plored using computer sound synthesis.

Given a sound, it is straightforward (as shown be-
low]) to plot its dissonance curve and determine the
scale in which it is predicted to sound most conso-
nant. This scale and its “chords” provide a sensible
starting point for the exploration of unfamiliar
scales when played in conjunction with inhar-
monic timbres. Conversely, given a desired scale, it
is possible to determine spectra {sets of partials) for
timbres that will be most {tonally) consonant when
played in that scale. Suppose a composer desires to
play in some specified scale, say, eleven-tone equal
temperament (1 1-TET]. Many familiar harmonic
sounds are very dissonant when played in 11-TET,
because the minima of the dissonance curve occur
far away from the scale steps, that is, many of the
11-TET intervals occur near peaks, rather than val-
leys of this harmonic dissonance curve. Observe
that the top horizontal axis of Figure 1 is labeled
with the scale steps of the familiar twelve-tone
equal temperament (12-TET), while the bottom
axis shows the 11-TET scale steps.

To increase the tonal consonance of a piece in
11-TET, it may be advantageous to create a new set
of sounds, with spectra that cause minima of the
dissonance curve to occur at the appropriate 11-
TET scale steps. Figure 2, for example, defines a
spectrum with a dissonance curve that has major
dips at many of the locations of the 11-TET scale
steps. These are locations where {tonal) consonance
is maximized. Such sounds are typically specified
as a desired set of partials, but a complete spec-
trum comnsisting of magnitude and phase must be
chosen to draw the dissonance curve and to trans-
form the sound into a time waveform for playback.
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Figure 1, Plots of the calcu-
Iated dissonance of a spee-
trim versus frequency in-
terval are called
dissonance curves. This is
the dissonance curve for a
seven-partial harmonic
spectrum. The minima of
this curve occur at 1, 7/6,

6.5, 5/4, 4/3, 7/5, 3/2, 5/3,
7/4, and 2/1, which lie
near many of the 12-TET
scale steps {top axis) and
relatively far from the 11-
TET scale steps (bottom
axis). Dissonance values
{on the vertical axis) are
normalized to unity,
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For the figure, all partials are assumed to have
equal amplitudes, giving the sound a rich, organ-
like quality.

The most straightforward approach to the prob-
lem of sound synthesis from a specified set of par-
tials is additive synthesis, such as described by
Jean-Claude Risset and David Wessel (Risset and
Wessel 1982), in which a family of sine waves of de-
sired amplitude and phase are summed. Though
computationally expensive, additive synthesis is
conceptually straightforward. A major problem is
that it is often a monumental task to specify all of
the parameters (frequencies, magnitudes, and
phases) required for the synthesis procedure, and

w

Figure 2, Dissonarnce curve
for the spectrum with par-
tials ar 1,alt,al?,a% g%,

2% 2% a%® 2% and a%8, where
a= ’{/E. In contrast to Fig-
ure 1, the minima of this

dissonance curve occur at
many of the 11-TET scale
steps (bottom axis), and
not at the 12-TET scale
steps (top axis).
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and Phase. The parameters are stored in memory
and are used to reconstruct the sound on demand.
In principle, the methods of analyvsis/synthesis
allow exact replication of any waveform. Of course,
the sound to be resynthesized must already exist
for this procedure to be feasible. Unfortunately,
11-TET flutes and guitars do not exist.

Once a sound is parameterized, it is possible to
manipulate the parameters. For example, one tech-
nique interpolates the envelopes of harmonics to
gradually transform one instrumental tone into an-
other [(Grev and Moorer 1977), while another ex-
changes the spectral and temporal envelopes among
a number of wind-family instruments, and con-
ducts tests to evaluate their relative significance
{Strong and Clark 1967). Probably the first

there is no obvious or intuitive path to follow when parameter-based analysis/synthesis methods were

generating new sounds. When attempting to create
sounds for new scales, such as the 11-TET timbre
above, it is equally challenging to choose these pa-
rameters in a musical way. Making arbitrary
choices often leads to organ- or bell-like sonorities,
depending on the envelope and other aspects of the
sound. While these can be quite striking, they can
also be limiting from a compositional perspective.
Is there any way to create a full range of tonal quali-
ties that are all related to the specified scale? For in-
stance, how can flute-like or guitar-like timbres be
built that are consonant when played in this 11-
TET tuning?

" A common way to deal with the vast amount of
information required by additive synthesis is to ana-
lyze a desired sound via a Fourier (or other) trans-
form, and then use the parameters of the transform
in the additive synthesis. In such analysis/synthesis
schemes, the original sound is transformed into a
family of sine waves, each with specified amplitude

the vocoder {Dudley 1939} and its modern descen-
dant, the phase vocoder (Flanagan and Golden
1966}, which were designed for the efficient encod-
ing of transmitted speech signals.

The consonance-based spectral mappings of this
article are a kind of analysis/synthesis method in
which the amplitudes and phases of the spectrum
of the source sound are grafted onto the partials of
a specified destination spectrum, which is chosen
SO as to maximize a measure of consonance {or
more properly, to minimize a measure of disso-
nance). The goal is to relocate the partials of the
original sound for compatibility with the destina-
tion spectrum, while leaving the tonal quality of
the sound intact. Musically, the goal is to modify
the spectrum of a sound while preserving its rich-
ness and character. This provides a way to simulate
the sound of non-existent instruments such as the
11-TET flute and guitar. Figure 3 shows the spectral
mapping scheme in block-diagram form. The input
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normalized measure of
tonal dissonance. The dif-
ferent plots show how the
tonal consonance and dis-
sonance varies, depending
on the frequency of the
lower tone.

two tones (at first with
roughness, and later with-
out) for larger ratios. The
horizontal axis represents
the frequency interval be-
tween the two sine waves,
and the vertical axis is a

Figure 4. Two sing waves
are sounded simultane-
ously. Typical perceptions
include pleasant beating
(at small frequency ratios),
roughness (at middle ra-
tios), and separation into

Figure 3. Block diagram of
a transform-based
analysis-synthesis spectral
mapping. If the mapping is
chosen to be the identity,
then the input and output
signals are identical,
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signal is transformed into its spectral parameters,
the mapping block manipulates these parameters,
and the inverse transform returns the signal to a
time-based waveform for output to a digital-to*
analog converter (DAC) and subsequent playback.
The next section of this article briefly reviews
the construction of consonance and dissonance
curves. The third section details the design of prac-
tical consonance-based spectral mappings, and the
fourth section gives several examples that show
both the strengths and limitations of the method.
The fifth section discusses various aspects of tim-
bral change in light of the sound examples, and sug-
gests certain forms of inharmonic modulation.

Drawing Dissonance Curves
Existing psychoacoustic work provides a basis on

which to build a measure of tonal consonance and
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dissonance that can be used to guide the choice of
spectral mapping (Plomp and Levelt 1965}. Reinier
Plomp and W. Levelt asked volunteers to rate the
perceived dissonance of pairs of pure sine waves,
giving curves such as in Figure 4, in which the dis-
sonance is minimum at unity, increases rapidly to
its maximum somewhere near one-quarter of the
critical bandwidth, and then decreases steadily
back toward zero. When considering sounds with
spectra that are more complex, dissonance can be
calculated by summing the dissonances of all the
partials, and weighting them according to their rela-
tive amplitudes. This leads to dissonance curves
such as Figure 1 (for harmonic sounds) and Figure 2
{for the specified inharmonic sound).

To be concrete, the dissonance between a sinus-
oid of frequency f, with amplitude v, and a sinus-
oid of frequency f, with amplitude v, can be param-
eterized as

d(flffzrvyvg) = Vle[eiﬁs‘frfl-} - g_bs‘fz‘flq (1)
where

d+

B s,min{f,f,} + s,

(2)

a=23.5b=575d" =245 =.21,ands, =19
are determined by a least-squares fit. The ampli-
tude term v, v, ensures that softer components con-
tribute less to the total dissonance measure than
those with larger amplitudes; d* is the interval at
which maximum dissonance occurs; and the s pa-
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rameters in Equation 2 allow a single functional
form to smoothly interpolate between the various
curves of Figure 4 by sliding the dissonance curve
along the frequency axis so that it begins at the
smaller of f, and f,, and by stretching {or compress-
ing) it so that the maximum dissonance occurs at
the appropriate frequency. Derivation, justification,
and discussion of this model are available {Sethares
1993).

More generally, a spectrum F with base (or funda- ~
mental} frequency f is a collection of n sine waves
(or partials) with frequencies f,a,f, ..., a_f and ampli-
tudes v,,v,,...,v,, where the a, are ordered and are
all are greater than one. The intrinsic dissonance of
the sound F is the sum of the dissonances of all
pairs of partials:

iid(aiflajffvﬂvfjl {3)

i=1 =1

D, =1
2
with the convention that @, = 1. When two notes
of F are played simultaneously at an interval ¢, the
resulting sound has a dissonance that is the same
as that of a timbre with frequencies

f'azfl'"Janfxcfrcagff---,caﬂf_

Equation 3 can then be used to calculate the in-
trinsic dissonance of this concatenated spectrum.
Equivalently, the transposed version of F can be de-
fined as ¢F with partials at ¢f,ca,f....,f and ampli-
tudes v,,v,,...,v,. The dissonance of F at the interval
C 18
n n

2.2, dlafcafv,v,) (4)

[

1
DF(C] = E(DF + D)+

and the dissonance curve geherated by the spec-
trum F is defined to be this function, D,{c), over an
appropriate range of ¢. '

There have been many uses of the words “conso-
nance” and “dissonance” throughout the centuries.
James Tenney has identified five distinct notions,
all of which implicitly apply to sounds with har-
monic spectra, when used in a diatonic setting [ Ten-
ney 1988). Dissonance curves such as these general-
iz¢ Mr. Tenney’s fifth notion of tonal consonance
and dissonance to situations in which possibly in-
harmonic sounds are played in unfamiliar tunings.

Except where explicitly noted, all use of the words
consonance and dissonance are in this tonal sense.
Such a mechanistic approach to consonance is

not without controversy, and its use has been at-
tacked from at least two perspectives. First, the
idea of tonal dissonance cannot hope to capture the
functional ideas of musical dissonance as restless-
ness or desire to resolve, and the linked notion of
consonance as the restful place to which resolution
occurs (Cazden 1945). In contrast, tonal conso-
nance is a static notion appropriately applied only
to clusters of partials. It is the responsibility of the
composer to impose motion from tonal dissonance
to tonal consonance, if such a motion is desired.
The second attack comes from certain experiments
in psychoacoustics that address the relevance of
beats and roughness to perceptions of intonation.
Among these, Douglas Keislar (Keislar 1991} exam-
ines musicians’ preferences to various Just and tem-
pered thirds and fifths by manipulating the partials
of the sounds in a patterned way. Mr. Keislar con-
cludes that beating is not a significant factor in in-
tonation, but other studies (Vos 1988), using differ-
ent techniques, have found the opposite.

This article takes a pragmatic approach, whereby
the implications of the tonal consonance theories
are pursued to their logical musical conclusions.
These conclusions are in the form of predictions of
the ways that certain kinds of timbres and scales
will relate. The sound examples are included so
that readers may judge the validity of the predic-
tions.

Mappings between Specira

A spectral mapping is defined to be a transforma-
tion from a set of n partials s,,s,,...,5, {called the
source spectrum)] to the partials d,,d,,...d, of the
destination spectrum, for which Ts,) = d, for all i.
Suppose that an N-point discrete Fourier transform
(DFT) (or a fast Fourier transform, FFT) is used to
compute the spectrum of the original sound, re-
sulting in a complex valued vector X. The mapping
T is applied to X (which presumably has partials at
or near the s,), and the result is a vector T{X),
which represents a spectrum with partials at or
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(from the G string of a gui-
tar with fundamental at
194 Hz) is transformed by
the spectral mapping for
compatibility with the des-
tination spectrum. The
mapping changes the fre-
gquencies of the partials
while preserving both am-
plitudes (shown) and
phases (not shown).

Figure 5. Schematic repre-
sentation of a spectral
mapping. The first nine
partials of ¢ harmonic
source spectrum are
mapped into a non-
harmonic destination spec-
frum with partials at
£,2.1£2.9,3.8L,5.4f,5. 8, 71,
§.4f, and 8 9. The spec-
trum of the original sound
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near the d,. This is shown schematically in Figure 5
for an arbitrary destination spectrum,
The simplest T is a straight-line transformation:

T[S) = (dm — diJS + [dxsm - dmsf]
Sn 75, Sa T 5 ,

I+] 1

where

S, =s=s,,

Smoother curves, such as parabolic or spline in-
terpolations, can be readily used, but problems
arise with such direct implementations, owing to
the quantization of the frequency axis inherent in
any digital representation of the spectrum. For in-
stance, if the slope of T is significantly greater than
unity, then certain elements of 7(X) will be empty.
More seriously, if the slope of T is significantly less
than unity, then more than one element of X will
be mapped into the same element of T(X], causing
an irretrievable loss of information. In addition, it
is not obvious how to sensibly combine the rele-
vant terms.

A better way to think of the spectral mapping pro-
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Figure 6. Resampling
causes asymmetries in the
transformed spectrum,
which may cause audible

anomalies.
z specirum of a
= single partial of
E_ the original sound
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cedure is as a kind of resampling, in which the in-
formation contained between the frequencies s, and
5., is resampled to occupy the frequencies d, to
d.,. We use a standard polyphase implementation
with an anti-aliasing low-pass finite-impulse-
response (FIR) filter incorporating a Kaiser window.
The examples filter ten terms on either side of x,,
and use B = 5 as the window-design parameter.

One presumption underlying spectral mappings
is that the most important information {the par-
tials of the sound) is located at or near the s, and is
to be relocated near the d, while being kept as in-
tact as possible. Figure 6 shows an exaggerated
view of what occurs to a single partial when per-
forming a straightforward resampling with a non-
unity spectral map, 7. In essence, the left half of
the spectrum becomes asymmetric from the right
half, and the transformed spectrum no longer repre-
sents a single sinusoid. This is a kind of nonlinear
distortion that can produce audible artifacts.

Omne way to reduce this distortion is to choose a
window of width 2w about the g, that is mapped
identically to a window of the same width about
d,. The remaining regions, between s, + w and
5;,1—W, can then be resampled to fit between d, +
wand d,,, ~ w: This is shown (again in exaggerated
form} in Figure 7. In this method of resampling
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Figure 7. Resampling with
identity windows reduces
the asymmaetry of the
transformed spectrum.
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with identity window (or RIW), the bulk of the
most significant information is transferred to the
destination intact. Changes occur only in the less
important (and relatively empty) regions between
the partials. We have found window widths of
about 1/3 to 1/5 of the minimum distance between
partials to be the most effective in reducing the au-
dibility of the distortion.

Spectral mappings are most easily implemented
in software {or in hardware to emulate such soft-
ware) in 4 program:

input spectrum = FFT{input signal),
mapped spectrum = T{input spectrum}, and
output-signal = IFFT{mapped spectrum),

where the function FFT{) is the discrete Fourier
transform or its fast equivalent, IFFT() is the in-
verse, and the RIW spectral mapping is represented
by T. Other transforms, such as the wavelet or
constant-Q transform {Brown 1991), might also be
useful. Spectral mappings can be viewed as linear
{but time-varying| transformations of the original
signal. Let the signal be x, and let F be the matrix
that transforms x into its DFT. Then the complete
spectral mapping vields the output signal:

These are transformed by
the spectral mapping, and
the modified parameters
drive n oscillators, which
are surmmed to form the

Figure 8. A filter-bank im-
plementation of a spectral
mapping. The input is
band-pass filtered, and the
signal is parameterized

into n amplitude, phase, output.
and frequency paramerers.
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ampy amp
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where T is a matrix representation of the resam-
pling procedure. This is clearly linear, and it is
time varying because the frequencies of signals are
not preserved. Often T fails to be invertible, and
the original signal x cannot be reconstructed from
its spectrally mapped version .

There are many possible variations of 7. For in-
stance, many instrumental sounds can be character-
ized using formants: fixed linear filters through
which a variable excitation passes. If the original
samples are of this kind, it is sensible to modify
the amplitudes of the resulting spectra accordingly.
Similarly, an energy envelope can be abstracted
from the original sample, and in some situations it
might be desirable to preserve this energy during
the transformation. In addition, there are many
kinds of resampling, and there are free parameters
{and filters) within each kind. Trying to optimally
choose these parameters is a daunting task.

It may be more computationally efficient to im-
plement spectral mappings as a filter bank rather
than as a transform, especially when processing a
continuous audio signal. (A good modern approach
to filter banks is available [Strang and Nguyen
1996].) This is diagrammed in Figure 8, which
shows a bank of filters carrying out the analysis por-
tion of the procedure, a spectral mapping to manip-
ulate. the spectrum parameters, and a bank of oscil-
lators to carry out the synthesis portion. This does
not change the motivation or goals of the map-
pings, but it does suggest an alternative hardware
or software approach.
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Figure 9. A square wave
and its transformation
into an 11-TET version.
Maintaining the phase re-
lationships among the par-
tials helps the artack por-
tion maintain its integrity.
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Maintaining Amplitudes and Phases

The tonal quality of a harmonic sound is deter-
mined largely by the amplitudes of its sinusoidal
frequency components. In contrast, the phases of
these sinusoids tend to play a small role, except in
the transient {or attack) portion of the sound,
where they contribute to the envelope. The transfor-
mation T is specified so as to keep each frequency
component roughly matched with its original am-
plitude and phase. This tends to maintain the
shape of the waveform in the attack portion. For ex-
ample, Figure 9 shows a square wave and its trans-
formation into the 11-TET timbre specified in Fig-
ure 2. The first few pulses are clearly discernible in
the mapped waveform. Since the first few millisec-
onds of a sound are important in terms of the over-
all sound quality (Strong and Clark 1967), main-
taining the initial shape of the waveform
contributes to the goal of retaining the integrity of
the sound.

Looping

A common practice in sample-based synthesizers is
to loop sounds, which is to repeat certain portions
of the waveform under user control. Periodic por-
tions of the waveform are ideal candidates for loop-
ing. Strictly speaking, inharmonic sounds, such as
those that result from transformations like the 11-
TET spectral mappings, have aperiodic waveforms.
Apparently, looping becomes impossible. On the
other hand, the FFT induces a quantization of the
frequency axis in which all frequency components
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loop” rather than a “All
with zeroes” strategy to in-
crease the length of the
wave to 8 K samples (b).

Figure 10. A 4,500-sample
trumpet waveform, with
the looped region indi-
cated (a}; the sarme wave-
form using a “fill with
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are integer multiples of the frequency of the first
FFT bin (for instance, about 1.3 Hz for a 32-K FFT
at a 44.1-kHz sampling rate). Thus, true aperiodic-
ity is impossible in a transform-based system. In
practice, it is often possible to loop the sounds ef-
fectively using the standard assortment of looping
strategies and cross-fades, though it is not uncom-
mon for the loops to be somewhat longer in the
modified waveform than in the original.

To be concrete, suppose that the original wave-
form contains a looped portion. A sensible strategy
is to append the loop onto the end of the waveform
several times, as shown in Figure 10. This tends to
make a longer portion of the modified waveform
suitable for looping. It is also a sensible way of fill-
ing or padding the signal until the length of the
wave is an integer power of two (so that the more ef-
ficient FFT can be computed in place of the DFT).
The familiar strategy of padding with zeroes is inap-
propriate in this application. Figure 11, for in-
stance, shows the results of three different map-
pings of the 4,500-sample trumpet waveform of
Figure 10. Calculating the DFT and applying the
F-TET spectral mapping of Figure 2 yields the
waveform in Figure 11a. This version consists pri-
marily of the attack portion of the waveform, and
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and using an FFT of the

wave in Figure 10b and

the “fill with loop” strat-
egy (c). Version {c) gives a
longer, steadier waveform
with more opportunity to
achieve a successful loop.

Figure 11. Spectrally
mapped versions of the
trumpet waveform in Fig-
urg 10: using a DFT of the
wave in Figure 10a (a); us-
ing an FFT of the wave in
Figure 10a and the “fll
with zeroes” strategy (b);
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is virtually impossible to loop without noticeable
artifacts. An alternative is to extend the waveform
to 8K [i.e., 8192} samples by filling in with zeroes.
This allows use of the FFT for faster computation,
but the resulting stretched waveform of Figure 11b
1s no easier to loop than the signal in Figure 11a. A
third alternative is to repeatedly concatenate the
original looped portion until the waveform reaches
the desired 8K length. The resulting stretched ver-
sion, shown in Figure 11c, contains a longer sus-
tain portion, and is correspondingly easier to loop.

Sepatating Attack from Loop

The attack portion of a sound is often quite differ-
ent from the looped portion. The puff of air as the
flute chiffs, the “blat” of the trumpet’s attack, or
the scrape of the violins bow are quite different

from the steady-state sounds of the same instru-
ments. Indeed, it has been shown (Strong and Clark
1967] that it can often be difficult to recognize in-
strumental sounds when the attack has been re-
moved.

Naive application of a spectral mapping would
transform the complete sampled waveform simulta-
neously. Because the Fourier transform has poor
time-localization properties, this can cause a
“'smearing” of the attack portion over the whole
sample, with noticeable side effects. First, the
smearing can sometimes be perceived directly as ar-
tifacts: a high tingly sound or noisy grating that re-
peats irregularly throughout the looped portion of
the sound. Second, because the artifacts are non-
uniform, they make it even more difficult to create
a good loop of the mapped sound.

Thus, a good idea when spectrally mapping sam-
pled sounds (for instance, those with predefined at-
tack and loop segments) is to map the attack and
the loop portions separately, as shown in Figure 12.
The resulting pieces can then be pasted back to-
gether using a simple cross-fade. This tends to
maintain the integrity of the attack portion (it is
shorter, and less likely to suffer from phase and
smearing problems), and reduce artifacts occurring
in the steady state.

Often, a complete sampled instrument contains
several different waveforms sampled in different
pitch ranges and at different dynamic ranges. The
creation of a spectrally mapped version should map
each of these samples, and then assign them to the
appropriate pitch or dynamic level. In addition, it is
reasonable to impose the same envelopes and other
performance parameters such as reverb, vibrato,
etc., as were placed on the original samples, since
these will often have a significant impact on the
overall perception of the sound quality.

Exampies

This section presents examples of spectral maps in
which the integrity of the original sounds is main.
tained, and others in which the perceptual identity
of sounds is lost. Examples include instruments
mapped into a spectrum consonant with 11-TET, in-
struments mapped into the spectrum of a drum,
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Figure 12, Transforming
the attack and steady-
state (Iooped) portions sep-
arately helps to maintain
the tonal integrity of the
sound.

‘ N
Transform Transform
/
Speciral Spectral
Mapping Mapping
\ Y
Inverse Inverse
Transform Transform
New attack /
New loop

and a cymbal sound mapped so as to be consonant
with 12-TET.

Timbres for Eleven-Tone Equal Temperament

Familiar harmonic sounds may be dissonant when
played in 11-TET, because minima of the disso-
nance curve occur far from the desired scale steps,
as in Figure 1. By using an appropriate spectral map-
ping, harmonic instrumental timbres can be trans-
formed into 11-TET versions with minima at many
of the 11-TET scale steps, as shown in Figure 2.
These can be used to play consonantly in an
11-TET setting. The mapping used to generate the
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tones in the sound example maps a set of harmonic
partials at

fIZfISfI4f15ff6ff7fI8f19f110f111f

to

Y
f.' allf.' a”f,amf,a“f, a!&f} aglf.' aasf/ assf,' as?f.' aSBf

where a = “\/i and f is the fundamental of the har-
monic tone. All frequencies between these values
are mapped using the RIW method.

The waveforms were taken from commercially
available sample CD-ROMs, and transferred to a
computer running a MATLAB program that per-
formed the spectral mappings. After looping {which
was done manually, with the help of Infinity loop-
ing software), the modified waveforms were sent to
an Ensoniq ASR-10 sampler. The performances
were sequenced and recorded to digital audio tape.
In all cases, the same performance parameters [fil-
ters, envelopes, velocity sensitivity, reverberation,
etc.) were applied to the spectrally mapped sounds
as they were used in the original samples.

Sound Example | contains several different
instrumental sounds that alternate with their
11-TET versions: '

(a} Harmonic trumpet compared to 11-TET
trumpet

{b) Harmonic bass compared to 11-TET bass

{c) Harmonic guitar compared to 11-TET guitar

(d} Harmonic pan flute compared to 11-TET pan
flute

{e) Harmonic oboe compared to 11-TET obhoe

(f} Harmonic Moog synthesizer compared to
11-TET Moog synthesizer

(g} Harmonic phase synthesizer compared to
11-TET phase synthseizer

The instruments are clearly recognizable after
mapping into their 11-TET counterparts. There is
almost no pitch change caused by this spectral map-
ping, probably because some partials are mapped
higher while others are mapped lower. Indeed, the
third partial is mapped lower than its harmonic
counterpart (2.92 versus 3), but the fifth is higher
(5.14 versus 5}. Similarly, the sixth is lower (5.84
versus 6), but the seventh is higher (7.05 versus 7).

Perhaps the clearest change is that some of the
samples have acquired a soft, high-pitched inhar-
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monicity. It is hard to put words to this, but we try.
In (a), it may almost be called a whine; (b) has a
slight lowering of the pitch, as well as a feeling that
something else is attached; and (c) has acquired a
high jangle in the transition. It is hard to pinpoint
any changes in {d) and (f). In (e, as in some of the
others, it becomes easier to hear out one of the par-
tials in the mapped sound, giving it a kind of dimin-
ished feel; and the vibrato of (g} appears to have
changed slightly, but the sound is otherwise intact.

Despite the fact that all sounds were subjected to
the same mapping, the perceived changes differ
somewhat from sample to sample. This is likely an
inherent aspect of spectral mappings. For instance,
the bass has a strong third partial and a weak fifth
partial compared to the other sounds. Since the
third partial is mapped down in frequency, it is rca-
sonable to hypothesize that this causes the low-
ering in pitch. Because the fifth partial is relatively
weak, it cannot cormpensate, as might occur in
other sounds. Similarly, differing amplitudes of par-
tials may cause the varying effects perceivable in
(a) through (g).

Such perceptual changes may be owing to the
way that inharmonicities are perceived. For in-
stance, the question of how much detuning is
needed before an inharmonic partial causes a sound
to break into two sounds, rather than remain fused
into a single percept, has been examined [Moore,
Peters, and Glasberg 1985}, Alternatively, the
changes may be owing to artifacts created by the
spectral mapping procedure itself. For instance,
other choices of filters, windows widths, etc., may
generate different kinds of artifacts. Certainly it is
true that by doing the mapping foolishly, one can
introduce strange cffects. This was the major rea-
son for separating the attack and looped portions of
the sounds in the mapping procedure—separation
reduces the smearing artifacts significantly.Isolated
sounds do not paint a very good picture of their be-
‘havior in more complex settings. A short sequence
of major chords are played:

{(h} Harmonic oboe in 12-TET
(i) Spectrally mapped 11-TET oboe in 12-TET

As before, the individual sounds have only a
small pitch shift. The striking difference between
{h) and (i) may therefore be of interest to those who

hold that consonance, dissonance, and the “out-of-
tune” percept are caused primarily by pitch or inter-
val relationships, and not by the structure of the
partials of a sound. While (i) is not out of tune, it
may be said to be “out of spectrum” or “out of tim-
bxe,” in the sense that the partials of the sound in-
terfere when played at certain intervals |in this
case, the 12-TET major third and fifth).
The next segments contain 11-TET dyads formed
« from scale steps 0-6 and 0-7, and culminate in a
chord composed of scale steps 0—4-6:

{ji harmonic oboe in 11-TET
(k) spectrally mapped I1-TET oboe in 11-TET

Examples {j) and (k) reverse the situation from [h)
and (i}. Because of the extreme unfamiliarity of the
intervals [observe that 11-TET scale steps 4 and 6
do not lie close to any 12-TET intervals), the situa-
tion is perhaps less clear, but there is a readily per-
ceivable beating of the 0-4—6 chord in (j) that is ab-
sent from (k). Thus, after acclimation to the
intervals, (k) appears arguably less out-of-spectrum
than (j|.

Recall that it is possible to hear out the third par-
tial of the sound used in (i} and (k). This suggests
that the triads of (i} could be heard as dissonant six-
note clusters [with the three extra notes arising
from the detuned, unfused third partials), providing
an alternative explanation of the dissonance in [i).
The comparative smoothness of the three-note
chords in (k|, however, argues against such an inter-
pretation; since these notes remain well fused.

Isolated chords do not show clearly what hap-
pens in genuine musical contexts. An excerpt of
the piece The Turquoise Dabo Girl is played two
ways:

{1) In 11-TET with all sounds spectrally mapped
(m] In 11-TET with the original harmonic sounds

The out-of-spectrum effect of {m) is far more dra-
matic than the equivalent isolated chord effect of
(i}, illustrating that the more musical the context,
the more important (rather than the less important]
a proper matching of the tuning with the spectrum
of the sound becomes.

The excerpt from The Turquoise Dabo Girl may
also suggest that many of the kinds of effects nor-
mally associated with (harmonic) tonal music can
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occur, even in strange settings such as 11-TET
(which is often considered among the hardest tun-
ing systems in which to play tonal music). Observe
that many of the subtle oddities in the mapped tim-
bres, as noted in (a) through (g) of the sound ex-
ample, seem to disappear when contextualized.
Even with careful listening, it is difficult {impossi-
ble?] to hear the inharmonicities or artifacts that
were so clear when presented independently; ex-
cept for the percussion, all the timbres used in The
Turquoise Dabo Girl were demonstrated in (a)
through (g). This may be owing to a simple mask-
ing of the artifacts, or to a kind of capture effect, in
which the artifact or inharmonicity of one note is
captured (or streamed with) other notes, and thus
becomes part of the music. If this is the case, then
the inharmonicities become a “feature” of the 11-
TET setting, rather than a problem to be avoided.

Spectrum of a Drum -

The spectral mapping of the previous example
changes the partials only moderately. In contrast,
mapping from harmonic tones into the spectrum of
a drum such as a tom-tom changes the partials
dramatically. The extreme inharmonicity of the
sample is shown in Figure 13, and the severe map-
ping is readily heard as drastic changes in the tonal
quality and pitch of the transformed instruments.
A harmonic spectrum at g, 2g, 3g, 4g, 5g is mapped
to d, 1.67d, 2.46d, 3.2d, 3.8d (which is precisely
245, 410, 603, 786, 934 for d = 245) using the RTW
spectral mapping. Of the guitar, bass, trumpet, and
flute, only the flute is recognizable, and even this
is not without drastic audible changes. One listener
remarked that the transformed sounds were
“glassy—like a fingernail scratching across a glass
surface.” This description makes a certain amount
of physical sense, since glass surfaces and drum
heads are both two-dimensional vibrating surfaces.

Sound Example 2 contains several different in-
struments and their transformations into the tom-
tom spectrum shown in Figure 13:

{a) Harmonic flute compared to tom-tom flute
(b} Harmonic trumpet compared to tom-tom
trumpet
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Figure 13. A harmonic
spectrim with fundamen-
tal g is mapped into the
tom-tom spectruim.
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(c) Harmonic bass compared to tom-tom bass
(d) Harmonic guitar compared to tom-tom guitar

Clearly, this spectral mapping causes a large
change in the character of the sounds. As before, it
is unclear what aspects of the resulting changes are
owing to the way inharmonic sounds are perceived,
and what may be associated with the details of the
spectral mapping procedure. For instance, each of
the sounds undergoes a pitch change, but the pitch
change is different for each sound. Presumably this
is because the partials of the mapped sounds in-
herit the amplitudes of the original sounds. Likely,
the ear picks out different “harmonic templates”
(Moore, Glasberg, and Peters 1985) for each arrange-
ment of amplitudes.

Again, it is hard to describe in words the kind of
effects perceived. While (a) has a noticeable pitch
change, it still sounds something like a flute. The
trumpet undergoes a huge pitch change, and gains a
kind of glassy texture. The single note of the bass
becomes a “minorish” chord, and the guitar pluck
also gains a chord-like sound along with jangly arti-
facts.

Though the transformed timbres do not sound
like the instruments from which they were derived,
they are not necessarily useless. The next audio
track is an excerpt from The Glass Lake, which il-
lustrates the transformed instruments [a) through
(d) played in the related scale, with steps defined by

Computer Music Journal



Figure 14. The dissonance
curve for the tom-tom spec-
trum has the 11-ncte re-
lated scale, 1, 1.19, 1.3,
1.51, 1.55, 1.63, 1.98, 2.35,
2.46, 3.21, and 3.83, which
covers a little less than 2
octaves.

Tonal dissonance

2.352.46

1.98

1 1.5 2 25 3

Frequency interval

the dissonance curve of Figure 14. This scale sup-
ports perceptible chords, though they are not neces-
sarily composed of familiar intervals. The piece is
thoroughly xenharmonic, a word coined by Ivor
Darreg (Darreg 1975}, meaning music unlike any-
thing possible in a traditional 12-TET setting.

A Harmonic Cymbal

The previous examples transformed familiar har-
monic timbres into various unfamiliar timbres and
scales. The third and final example uses spectral
mappings to transform familiar inharmonic sounds
into sounds maximally consonant with harmonic
spectra. The spectrum of a cymbal contains many
peaks spread irregularly through the whole audible
range. For the chosen cymbal sample, the N = 35
largest peaks {labeled p, i = 1,2,...,N) were fit to a
nearby harmonic template by finding the fundamen-
tal f that minimizes

Sip, -l

21p;
2
fine the source and destination of the spectral map-
ping. The transformed sound retains some of the
noisy character of the original cymbal strike, but
has become noticeably more harmonic and has in-
herited the pitch associated with the fundamental
. The two brief segments of the third sound ex-
ample are:

and the p, and the if de-

The solution is f =

{a}) The original sample contrasted with the spec-
trally mapped version

3.5 4

(b] A simple chord pattern played with the origi-
nal sample, and then with the spectrally
mapped version

The transformed instrument supports both chord
progressions and melodies, even though the origi-
nal cymbal strike does not.

Discussion

The discussion begins with a consideration of vari-
ous aspects of timbral change, and then suggests ad-
ditional perceptual tests that might further validate
[or falsify| the use of spectral mappings in inhar-
monic musical applications. Several types of inhar-
monic musical modulation are discussed.

]

Robustness of Sounds under Spectral Maps

How far can partials be mapped before the sound
loses cohesion or otherwise changes beyond recog-
nition? It is clear from even a cursory listen that
small perturbations in the locations of the partials
(i.e., mappings that are not too distant from identi-
ties} have little effect on the overall tonal quality of
the sound. Flutes and guitars in 11-TET timbres re-
tain their identities as flutes and guitars. The con-
sistency of such sounds through various spectral
mappings argues that perceptions of tonal quality
are not primarily dependent on the precise fre-
quency ratios of the partials. Rather, there is a band
in which the partials may lie without affecting the
“fluteness” or “guitarness” of the sound. Equiva-
lently, the partials of such a sound can underge a
wide variety of mappings without significantly af-
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fecting its inherent tonal gestalt. Sounds with
stretched spectra have been used to investigate
when the sounds fuse into a single entity and when
they fission into separate partials {Cohen 1984).

Agide from the sounds demonstrated here, the au-
thor has spectrally mapped a variety of about 50
sounds into several different destination spectra, in-
cluding stretched timbres with stretch factors from
1.5-3.0 [detailed discussions of stretched timbres
are available [Slaymaker 1968; Mathews and Pierce
1980]), spectra designed to be consonant with n-
TET for n = 8§,..., 19, and a variety of destination
spectra derived from objects such as a tom-tom, a
bell, a metal wind chime, and a rock. Overall, there
is wide variation in the robustness of individual
sounds. For instance, the sound of a tom-tom or
cymbal survives translation through numerous
mappings, some of them quite drastic. Only the
flute still retains any part of its tonal identity when
mapped into the tom-tom spectrum of Figure 13.
Sounds such as the guitar and clarinet can be
changed somewhat without losing their tonal quali-
ties, surviving the transformation into the n-TET
spectra but not into the more drastic tom-tom spec-
trum. Other sounds, like the violin, are quite frag-
ile, and are unable to survive even modest transfor-
mations. Thus, not all mappings preserve the
perceptual wholeness of the original instruments,
and not all instruments are equally robust to spec-
tral mappings.

Using the RIW spectral mapping technique ‘of the
previous sections, the attack portion is mapped sep-
arately from the looped portion, which tends to
maintain the character of the attack. Since the en-
velope—and other performance parameters-—are
also maintained, changes in timbral quality are
likely caused primarily by changes in the spectrum
of the steady-state {looped| portion of the sound.

As a general rule, the change in timbral quality
of instruments with complex spectra appears to be
greater than that of instruments with relatively
simple spectra. The flute and tom-tom have fairly
simple spectra (only four or five spectral peaks),
and are the most robust of the sounds examined, re-
taining their integrity even under extreme spectral
maps. Sounds with an intermediate number of sig-
nificant spectral peaks, such as the guitar, bass, and
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trumpet, survive transformation through modest
spectral mappings. In contrast, sounds like the vio-
lin and oboe, which have very complex spectra, are
the most fragile sounds encountered, since they
were changed significantly by a large variety of
spectral mappings.

Perhaps the most familiar spectral mapping is
transposition, which modulates all partials up or
down by a specified amount. As is well known,
pitch transposition over a large interval leads to dis-
tortions in tonal guality. For instance, voices raised
too far in pitch undergo “munchkinization.” It
should not be surprising that other spectral maps
also have perceptual side effects.

Timbral Change

Is there a way to quantify the perceived change in a
tone?

Even a pure sine wave can change in timbre.
Low-frequency sine waves are “soft” or “round,”
while high-frequency sine waves are “shrill” or
“piercing.” Thus one aspect of timbral change is fre-
quency dependent, which may explain timbral
changes that are caused by transposition. A second
¢lement of timbral change is the familiar notion
that tonal quality changes as the amplitudes of the
harmonically related partials change. This idea is
the likely explanation for the timbral differences be-
tween, say, a clarinet and a flute playing the same
pitch. Spectral mappings suggest a third aspect of
timbral change, namely, that modification of the in-
ternal structure of a sound (i.e., a change in the in-
tervals between the partials| causes perceptual
changes in the sound. Depending on the spectral
mapping (and the partials of the sound that is
mapped), this may involve the introduction—or re-
moval~—of inharmonicity.

Clearly, any measure of timbral change must ac-
count for all three mechanisms. It is reasonable to
hypothesize that perceptions of change are:

Proportional to the amount of transposition

Proportional to the change in amplitude of the

partials, and

Proportional to the change in the spectra under

the mapping T
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Table 1. Mappings for spectra consonant with n-tone equal-tempered scales.

Number of steps

Partial number

per octave 0 1 2 3 4 5 6 7 8 9 10 11
5 1 5 8 10 12 13 14 15 i6 17 17 18
6 1 6 10 12 14 16 17 18 19 20 21 22
7 1 7 11 14 16 18 20 21 22 23 24 25
8 1 8 13 16 19 21 22 24 25 27 28 29
9 1 9 14 18 21 23 25 27 29 30 31 32
10 1 10 16 20 23 26 28 30 32 33 35 36
11 1 11 17 22 26 7 28 31 33 35 37 38" 39
12 1 12 19 24 28 31 34 36 38 40 42 43
13 1 13 21 26 30 34 36 39 41 43 45 47
14 1 14 22 28 33 36 39 42 44 47 48 50
15 1 15 24 30 35 39 42 45 48 50 52 54
16 1 16 25 32 37 41 45 48 51 53 55 57
17 1 17 27 34 39 44 48 51 54 56 59 63
18 1 18 29 36 42 47 51 54 57 60 62 65
19 1 19 3o 38 44 49 53 57 60 63 66 68
20 1 20 32 40 46 52 56 60 63 66 69 72
21 1 21 33 42 49 54 59 63 67 70 73 75
22 1 22 35 44 51 57 62 66 70 73 76 79
23 1 23 36 46 53 59 65 69 73 76 80 82

Explanation: The table shows how the fundamental and the next 11 higher partials are mapped to scale steps of an n-tone equal tem-
perament, for 1 from 5 to 23. For n-TET timbres, let a = ﬁ Define the timbre by the spectral map that takes
F(1,2,3,4,5,6,7,8,9,10,11,12] to f[1,ar:,ap2,am,aps,aws, ars, ar7,afs, aps,a"10,0°1t|, where f is the fundamental of the harmonic sound, and p,

represents the partial numbers in the appropriate row.

Some general trends are suggested. Frequency
shifts in a uniform direction {such as those of a
stretched map, or in a transposition mapping) may
not be as damaging to timbral integrity as those
that shift some partials higher and others lower
(such as the 11-TET mapping). Sounds with greater
spectral complexity, like the violin, seem to un-
dergo larger perceptual changes than simpler
sounds, like the flute,

To minimize the amount of perceptual change,
the mapping T should be defined so that all slopes
are as close to unity as possible, that is, so that the
mapping is as near to the identity as possible,
while still consistent with the desire to minimize
dissonance. For instance, when specifying timbres
for n-tone, octave-based equal temperaments, it is
reasonable to place the partials at frequencies that
are multiples of ¢ = ‘{]IZ to insure that local min-
ima of the dissonance curve occur at the appro-
priate scale steps. A good rule of thumb is to define

the mapping by transforming partials to the nearest
power of ¢. Thus an 11-TET timbre may be speci-
fied:by mapping the first harmonic to ¢! {= 2), the
second harmonic to ¢'” (=3}, the third harmonic to
c2 (= 4), etc., as given in Figure 2. Analogous defi-
nitions of timbres for scales between 5-23 are given
in Table 1.

Related Perceptual Tests

One way to investigate timbral change is to gather

data from listener tests and apply a multidimen-
sional scaling technique, as Reinier Plomp did
{(Plomp 1970). For instance, John Grey and John Gor-
don (Grey and Gordon 1978 swapped the temporal
envelopes of the harmonics of instrumental tones,
and tested listeners to determine how different the
modified sounds were from the originals. Such a
study could be conducted for sounds formed from
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various spectral mappings, giving a quantitative
way to speak about the degree to which sounds re-
tain their integrity under spectral mappings. The
clustering technique used by Mr. Grey and Mr. Gor-
don found three dimensions to the sounds, which
were interpreted as a spectral dimension, a dimen-
sion that represents the amount of change in the
spectrum over the duration of the tone, and a di-
mension determined primarily by the explosiveness
or abruptness of the attack. Sounds that undergo
modest spectral mappings are likely to change in
the first dimension and to remain more or less
fixed in the latter two. Instrumental sounds that
are mapped so as to be consonant with 11-TET
[say) sound far more like the original instrumental
samples than they sound like each other. An inter-
esting question is whether the spectrally mapped
sounds might cluster into a new dimension.

The sound examples of this article suggest cau-
tion in the interpretation of results such as the
above, which rely on listening tests that lack musi-
cal context. Taken in isolation, 11-TET-mapped
trumpet sounds are very similar to harmonic trum-
pet sounds, and thus should cluster nicely with har-
momnic trumpet timbres. But in a 12-TET musical
context, the 11-TET trumpet will sound out of
tune, for instance, when it is played in concert
with harmeonic instruments. Similarly, the har-
monic trumpet will sound out of tune when played
in 11-TET in an ensemble of 11-TET instruments.
In this contextual sense, similarly mapped instru-
ments should tend to cluster separately from har-
monic instruments.

Increasing Consonance

Much of the current xenharmonic music is written
in just intonations and other scales that are closely
related to harmonic timbres. Many of the most pop-
ular equal temperaments (7, 17, 19, 21, and 31, for
example] contain intervals that closely approxi-
mate the intervals of scales related to harmonic
timbres. There is, of course, a body of work in tun-
ings such as 11-TET that are unrelated to harmonic
timbres. Some of these pieces revel in their disso-
nance, emphasizing just how strange xenharmonic
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music can be. Other composers have sought to min-
imize the dissonance. Bregman (1990) reports that
the dissonance between a pair of sounds can be re-
duced by placing them in separate perceptual
streams. This implies that musical parts that
would normally be dissonant ¢an sometimes be
played without dissonance if the listener can be en-
couraged to hear the lines in separate perceptual
streams. Skilled composers can coax sounds into
streaming or fusing in several ways, including large
contrasts in pitch, tone color, envelope, and modula-
tion. These techniques have not gone unexploited
in xenharmonic music, and they can be viewed as
clever ways of finessing the problem of dissonance.
They are solutions at the compositional level.

The spectral mappings of this article provide an
alternative answer at the timbral level. It is pos-
sible to compose tonally consonant music in virtu-
ally any tuning by redesigning the spectra of the in-
struments so that their timbres are related to the
desired scale. Of course, it is not always desirable
to maximize consonance. Rather, the techniques
suggested here are means for achieving increased
contrast in the consonance and dissonance of inhar-
monic sounds when played in nonstandard tunings.
Utilizing spectra that have dissonance curves with
minima at the scale steps allows these intervals to
be as consonant as possible, thus giving the com-
poser greater control over the perceived conso-
nance. (It is typically easy to increase the disso-
nance by playing more notes or more tightly
clustered chordal structures; the hard part is to de-
crease the dissonance without removing notes or
simplifying the spectra). That this is possible even
for notorious scales such as 11-TET expands the
range of possible moods or feelings in these scales.
Similarly, consonance is only a part of the musical
landscape. Even ignoring essential aspects such as
thythm, pattern, and modulation, it is certzinly not
desirable to simply maximize consonance. Indeed,
silence is the most tonally consonant “sound.”

Consonance-Based Modulations
Morphing from one set of related scales and tim-

bres to another is a new kind of musical modula-
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tion. This might consist of a series of passages,
each with a different tuning and timbre. For
instance, a piece might begin with harmonic
timbres in 12-TET, mave successively through 2.01,
2.02, ..., 2.1 stretched octaves, and then return to
harmonic sounds for the finale. Such consonance-
based modulation can be extremely subtle, as in
the modulation from 2.01-2.02 stretched. It can
also be extremely dramatic, since it involves the
complete timbre of the notes as well as the scale
on which the notes are played. Alternatively, such
modulations might move between various n-TET
structures. By carefully choosing the timbres, the
same instruments can play in different tunings,
and the dissonance can be tightly controlled.

It is also possible to morph from one spectrum to
another in the evolution of a single sustained
sound. This can be done by partitioning the wave-
form into a series of overlapping segments, calculat-
ing a Fourier transform for each segment, applying
a different spectral mapping to each segment, and
then rejoining the segments. Such consonance-
based morphing of individual tones can be used to
smooth transitions from one tuning/timbre pair to
another, or it can be used directly as way to control
timbral evolution.

At a point when the mapping becomes too se-
vere, individual notes can lose cohesion and fission
into a cluster of individually perceptible partials.
Albert Bregman has suggested several tone-
manipulation methods that can be used to control
the degree to which inharmonic tones fuse {Breg-
man 1990}, Simultanecus onset times and common
fluctuations in amplitude or frequency contribute
to fusion, while independent fluctuations tend to
promote fission. These can be readily used as com-
positional tools to achieve a desired amount of
tonal coherence. For instance, a sound can be mod-
ulated from perceptual unity into a tonal cluster
and then back again by judicious choice of such
tools. In Inharmonigue Jean-Claude Risset ex-
plored this type of modulation using an additive-
synthesis approach (Risset 1987). Because spectral
maps directly affect the amount of a tone’s inhar-
monicity, a series of spectral maps can be used to
approach or cross the boundaries of tonal fusion in
a controlled manner.

Another form of modulation involves the bound-
ary between melody and rhythm. For instance,
when the cymbal of Sound Example 3 is played us-
ing the original sample, it is primarily useful as a
rhythm instrument. When the same sound is trans-
formed into a harmonic spectrum, it can support
melodies and harmonies. Consider a series of spec-
tral mappings that smoothly interpolate between
these two. At some point the melodic character

.must disappear and the rhythmic character predom-
inate. Careful choice of spectral mappings allows
the composer to deliberately control whether the
sound is perceived as primarily unpitched and
rhythmic or as primarily pitched and harmonic,
and to modulate smoothly between the two ex-
tremes.

Conclusions

Most of the sounds of the orchestra {minus certain
members of the percussion family) and many of the
common sounds of electronic synthesizers have har-
monic spectra. Because the tonal quality of sounds
is not destroyed under many kinds of spectral map-
pings, entire orchestras of sounds can be created
from inharmonic spectra. These sounds can retain
much of the character of the sounds from which
they were derived, though they are not perceptually
identical. For example, 11-TET sounds were cte-
ated that clearly reflect their origins as guitar and
flute samples. These are clearly perceived as instru-
mental in nature, and can be played consonantly in
an 11-TET setting.

It is not necessary to abandon the familiar sound
qualities of conventional musical instruments to
play in unusual scales. The spectral mappings of
this article provide a way to convert a large family
of well-established, musically useful sounds into
timbres that can be played consonantly in a variety
of scales. Musical tastes change slowly, and it can
be difficult for audiences to appreciate music in
which everything is new. The creation of familiar
sounds that can be played in unusual scales may
help to ease the transition to xenharmonic musics.

Alternatively, extreme spectral mappings can be
used to generate genuinely new sounds using famil-
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iar instrumental tones as raw material. When
plaved in the related scales, these tend to retain fa-
milizr musical features such as consonance, even
though the timbres and intervals of the scales are
unfamiliar.

Spectral mappings can also be used to transform
inharmonic sounds (such as certain cymbals) into
harmonic equivalents. Using these sounds, it is pos-
sible to play familiar chord patterns and melodies -
using this new class of harmonic percussion instru-
ments. Consonance-based spectral mappings make
it possible to explore a full range of tonal possibili-
ties for many different spectra.
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