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The principle of local consonance is based on an explicit parametrization of Plomp and Levelt’s
[J. Acoust. Soc. Am. 38, 548-560 (1965)] consonance curves. It explains the relationship
between the spectrum of a sound (its timbre) and a tuning (or scale) in which the timbre will
appear most consonant. This relationship is defined in terms of the local minima of a family of
dissonance curves. For certain timbres with simple spectral configurations, dissonance curves
can be completely characterized, and bounds are provided on the number and location of points
of local consonance. Computational techniques are presented which answer two complementary
questions: Given a timbre, what scale should it be played in? Given a desired scale, how can
appropriate timbres be chosen? Several concrete examples are given, including finding scales for
nonharmonic timbres (the natural resonances of a uniform beam, “stretched” and
“compressed” timbres, FM timbres with noninteger carrier-to-modulation ratios), and finding

timbres for arbitrary scales.

PACS numbers: 43.75.Bc, 43.66.Jh

INTRODUCTION

Carlos observed in Ref. 1 that “the timbre of an in-
strument strongly affects what tuning and scale sound best
on that instrument.” Interpreting “timbre” to mean spec-
tral decomposition and “sounds best” to refer to the tonal
consonance theory of Plomp and Levelt,? this paper estab-
lishes a concrete relationship between the timbre of a
sound and a family of intervals (a scale) in which the
sound will appear most consonant.

A musical interval is generally considered to be con-
sonant if it sounds pleasant or restful; a consonant interval
has little or no musical tension or tendency to change.
Dissonance is the degree to which an interval sounds un-
pleasant or rough; dissonant intervals generally feel tense
and unresolved. The auditory system typically perceives
certain intervals as consonant (such as the octave and
fifth) while other intervals are perceived as dissonant
(such as the minor second or major seventh). Noting that
the consonant intervals tend to be associated with simple
ratios of frequency suggests that people might naturally be
biased toward such “simple” intervals.

In the previous century, Helmholtz® suggested that the
perception of consonance and dissonance could be under-
stood in terms of the presence or absence of rapid beating
between the sinusoidal components of a complex tone.
Plomp and Levelt? concretized this in a series of experi-
ments in which subjects reported the relative consonance
of intervals of pure sine waves. The resulting curves exhibit
none of the complexities expected from studies conducted
with musical timbres. Figure 1 shows a family of such
curves (which are averaged curves obtained from Ref. 2),
each curve covering a different frequency range. All have
the same qualitative properties: They begin at unison with
high consonance (which appears in Fig. 1 as zero disso-
nance), and rise rapidly to a maximum dissonance, then
slowly decrease. This argues against a natural preference

1218 J. Acoust. Soc. Am. 94 (3), Pt. 1, Sept. 1993

0001-4966/93/94(3)/1218/11/%6.00

for simple ratios, since the thirds, fourths, fifths, and oc-
taves are undistinguished in these plots.

Plomp and Levelt explained perception of musical in-
tervals by noting that most “musical tones” have a spec-
trum consisting of a root or fundamental frequency, and a
series of partials that occur at integer multiples of the fun-
damental as in Fig. 2. Assuming that the total dissonance
between two complex tones is the sum of the dissonances of
all the sinusoidal components leads to the curve in Fig. 3
(see Ref. 4 for an alternate method of combining the
sinusoidal dissonance curves). Observe that this curve,
which we call the dissonance curve generated by the timbre
of Fig. 2, contains major dips at intervals of a fifth and an
octave. It also has local minima at most of the 12-tone
equal-tempered scale degrees: The major and minor thirds,
the fourth, the major sixth, and the seventh (scale steps 4,
3, 9, and 10, respectively). Thus intervals which occur at
points of local minima in the dissonance curve are per-
ceived as relatively consonant.

This correlation between consonant intervals and the
points of local minima of the dissonance curve suggests
two interesting avenues of investigation. Given an arbitrary
timbre T (perhaps one whose spectrum does not consist of
a standard harmonic series), it is straightforward to draw
the dissonance curve generated by 7. The local minima of
this curve occur at values which are good candidates for
notes of a scale, since they are (locally) points of minimum
dissonance (or maximum consonance). Alternatively,
given a desired scale (perhaps one which divides the octave
into n equal pieces, or one which is not based on the oc-
tave), one can find timbres which will generate a disso-
nance curve that contains local minima at precisely these
scale degrees.

The relationship between timbre and scale was first
explored in Pierce’s brief note,® which reported synthesiz-
ing a timbre designed specifically to be played in an 8-tone
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Dissonance curves for pure sine waves
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FIG. 1. Dissonance curves for pure sine waves as a function of frequency
difference. The consonance and dissonance scales are arbitrary: (a) base
frequency 125, (b) base frequency 250, (c¢) base frequency 500, (d) base
frequency 1000, (e) base frequency 2000.

equal-tempered scale. Pierce concludes, “... by providing
music with tones having accurately specified but nonhar-
monic partials, the digital computer can release music from
the tyranny of 12 tones without throwing consonance over-
board.” Slaymaker® investigated timbres with stretched
(and compressed) partials, and Mathews and Pierce’ ex-
plored their potential musical uses. Geary’s study8 em-
ployed quantitative methods to demonstrate the existence
of consonance and dissonance with nonharmonic timbres.
Recently, Mathews and Pierce’ examined a scale with steps
based on liﬁ (rather than the standard liﬁ) which is de-
signed to be played with timbres containing only odd par-
tials. Carlos' investigated scales for nonharmonic timbres
by overlaying their spectra and searching for intervals in
which partials coincide, thus minimizing the beats (or
roughness) of the sound. This is similar to the present
approach, but we provide a systematic technique that can
be used to find scales for a given timbre, or to find timbres
for a given scale.

amplitude

f 2 3 45 6 7

{requency

FIG. 2. The standard harmonic timbre used to generate the dissonance
curve of Fig. 3. Amplitudes fall at a rate of 0.88. The frequency axis is
normalized so that the root frequency is unity.
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FIG. 3. Dissonance curve for the timbre of Fig. 2. The horizontal axis
represents frequency difference. Dots mark the location of notes in the
standard 12-tone equal-tempered scale. The vertical axis is arbitrary, and
all dissonance curves are normalized so that the largest value occurs at
unity.

To make the discussion more concrete, Sec. I param-
etrizes the Plomp-Levelt curves with a model that is used
throughout the paper. This model is studied in detail in the
second section, which explores the principle of local con-
sonance and derives results about the existence and place-
ment of local minima. This leads, in Sec. I1I, to a way of
calculating the best scale to use with an arbitrary timbre.
Section IV examines the complementary question: How to
construct appropriate timbres given an arbitrary scale. The
final section summarizes, discusses the implications of the
principle of local consonance, and makes suggestions for
further experimentation. A simpler (nonmathematical)
view of the timbre-scale relationship can be found in Ref.
10.

I. A QUANTITATIVE MEASURE OF DISSONANCE

The Plomp-Levelt curves of Fig. 1 can be conveniently
parametrized by a model of the form

d(x)=e ¥—etx (1

where x represents the difference in frequency between two
sinusoids, and @ and b determine the rates at which the
function rises and falls. Using a gradient minimization of
the squared error between the (averaged) data and the
curve d(x) gives values of a=3.5 and b=5.75.

The dissonance function d(x) can also be scaled so
that the curves for different base frequencies and with dif-
ferent amplitudes are represented conveniently. If the point
of maximum dissonance occurs at d*, then the dissonance
between sinusoids at frequency f, with amplitude v, and at
frequency f, with amplitude v, (for f;<f3) is

d(f1,f201,07) =vpp(e” 2=/ _e=bsth=fiy - (2)
where
s=d*/(s,f1+57) (3

and
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Vi =U;. (4)

The form of Eq. (4) ensures that softer components con-
tribute less to the total dissonance measure than those with
larger amplitudes. For instance, if either v; or v, ap-
proaches zero, then v, decreases and the dissonance in Eq.
(2) vanishes. Conversely, if the amplitudes of the partials
increase, the dissonance increases. The point of maximum
dissonance d*=0.24 is derived directly from the model (1)
above. The s parameters in Eq. (3) allow a single func-
tional form to interpolate between the various curves of
Fig. 1 by sliding the dissonance curve along the frequency
axis so that it begins at f,, and by stretching (or compress-
ing) it so that the maximum dissonance occurs at the ap-
propriate frequency. A least-square fit was made to deter-
mine the values 5;=0.021 and 5,=19.

More generally, a (complex) timbre F with base fre-
quency f) is a collection of n sine waves with frequencies
f1<f2<--<f, and amplitudes v; for j=1,2,...,n. The
partials will typically be displayed as the n-tuple
(f15f 252 ). The dissonance of any timbre F can be cal-
culated as the sum of the dissonances of all pairs of partials

n

1
DF=" 2

3 E d(fisfjoviyvj)- (5)

i=1 j=1
Consider a fixed timbre F with base frequency f. When
two notes of this timbre are played simultaneously at an
interval with ratio a, the resulting sound has a dissonance
that is the same as that of a timbre with frequencies f;and
af; (with amplitudes v;). Thus Eq. (5) can be used di-
rectly to calculate the dissonance between intervals (and
chords) as well as the dissonance of isolated timbres. De-
fining the timbre aF to contain the frequencies
(af1,ef3,-0f,) (With amplitudes u;), the dissonance of
the timbre F at an interval a is

n n
Dp(@)=Dy+Dopt 2 X d(fpafjwpvp)- (6)
i=1 j=
Finally, the dissonance curve generated by the timbre F is
defined as the function Dg(a) over all intervals of interest
a.

Figure 3 is the dissonance curve generated by the tim-
bre of Fig. 2 over a range slightly larger than an octave,
i.e., for 1<a<2.2. The model predicts that the most con-
sonant interval is the unison, followed closely by the oc-
tave. Next is the fifth, followed by the fourth, the major
third, the major sixth, and the minor third. These agree
with standard musical usage. Looking at the data closely
(see Table I) shows that the minima do not occur at ex-
actly the scale steps of the 12-tone equal-tempered scale.
Rather, they occur at the nearby simple ratios 1:1, 2:1, 3:2,
4:3, 5:4, and 5:3, respectively. These are exactly the loca-
tions of notes in the “justly intoned” scales.!" Thus quali-
tatively, dissonance calculations using harmonic timbres
agree with musical experience and expectations.

It would be naive to suggest that truly musical prop-
erties can be measured in terms of a simple consonance.
Even in the realm of harmony (and ignoring musically
essential aspects such as melody and rhythm), consonance
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TABLE I. Location of minima of Fig. 3, B='%2.

Location of Nearest 12-tone Nearest

minima scale step ratio
1.20 B*=1.189 6:5
1.25 £=1.159 5:4
1.33 B=1.335 4:3
1.40 B=1414 7:5
1.50 B'=1.498 3:2
1.67 BE=1.587 5:3
1.75 B=1.782 74
2.00 B"=2.000 2:1

is not the whole story. Indeed, a harmonic progression that
was uniformly consonant would likely be boring. Har-
monic interest arises from a complex interplay of disso-
nance (restlessness) and consonance (rest).

Perhaps the most striking aspect of Fig. 3 is that many
of the scale steps are coincident with local minima of the
dissonance curve. Intervals which occur at points of local
minima of the dissonance curve are perceived as relatively
consonant. This observation forms the basis of the princi-
ple of local consonance. A timbre and a scale are said to be
related if the timbre generates a dissonance curve whose
local minima occur at scale positions.

Note that the shape of the dissonance curve is highly
dependent on the frequencies (and amplitudes) of the
components of the timbre. Changing these frequencies
(and amplitudes) changes the location and depth of the
local minima. By the principle of local consonance, this
will change the optimum scale on which the timbre should
be played. Thus we investigate scales and timbres which
are related in the sense that local minima of the dissonance
curve occur at (or very near) scale steps. The next section
provides a detailed examination of the dissonance model.

1l. PROPERTIES OF DISSONANCE CURVES

For certain simple timbres, dissonance curves can be
completely characterized. This section derives bounds on
the number and location of points of local consonance, and
reveals some general properties. Two simplifications are
made to streamline the discussion in this section. A single
dissonance function is assumed for all frequencies, and all
partials are presumed to have unit amplitudes. Thus s=1
in Eq. (3) and v;;=1in Eq. (4), simplifying Eq. (5) to Eq.
(1) with x=| f,— f,|. Taking the derivative of Eq. (1)
and setting it to zero shows that the point of maximum
dissonance occurs when d*=[1/(a—b)]In(a/b).

Theorem 1: For any timbre F with partials at
(f1sSf2s-ofn): (@) a*=1 is the global minimum of the
dissonance curve Dg(a); (b) lim,_ , Dp(a)=Dp+ D p.

Proof: All proofs are relegated to the Appendix.

Part (b) shows that dissonance decreases as the inter-
val a grows larger, approaching a value that is no more
than the dissonance of the timbres Dy and D, themselves.
Part (a) affirms that the unison is the most consonant
interval. Since a® is the global minimum of Dg(a), all
other minima must be local. The next several results seek
to characterize these local minima.
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Theorem 2: Let timbre F have partials at (f},/,) with
Jf2—f1>d*. Then the dissonance curve Dy(a) has a local
minimum at a*=f,/f.

This shows that the dissonance curve generated by a
timbre with partials at (f,f,) has a point of local conso-
nance when a*f=f,. For example, for the timbre with
partials at (500, 750), a*=1.5. The result asserts that the
timbre a*F, with frequencies (750, 1125) is a point of
local consonance. In symbols, Dg(a* —¢€) > Dg(a*) and
Dp(a*+¢€) > De(a*) for small e. Thus both (748, 1122)
and (752, 1128) are less consonant than (750, 1125). This
result is intuitively reasonable since when af,f,, the
dissonance between the partials at af, and £, is large, but
when af = f,, this term disappears from the consonance
measure. Interestingly, the result fails when f, and f) are
too close.

Theorem 3: Let timbre F have partials (f},/5). Then
there is a €>0 such that for |f,—f| <e the point
a*=f,/f) is not a local minimum of Dp(a).

In essence, if the partials f, and f; are too close, then
the point of local consonance at f,/f; disappears. Theo-
rem 2 shows that a minimum occurs when partials coincide
with each other. Minima can also occur when the partials
are widely separated. For a two partial timbre F, suppose
that f,— f|>4d*. Then there is a point of (local) maxi-
mum dissonance near af;=f,+d*, and another near
af,=f,—d*. Consequently, there must be a minimum for
some a between a; = (f+4*)/f  and ay=(f,—d*)/f,.

The full range of possible dissonance curves for two
partial timbres is shown in Fig. 4. Figure 4(b) demon-
strates the point of local consonance when a*= f,/f, for
moderate values of f,— f. Figure 4(a) illustrates theorem
3, for which f,— f, is too small to allow a point of local
consonance. Figure 4(c) shows the point of local conso-
nance at a*=/f,/f,, and also the minimum sandwiched
between a; and aj. Such minima are typically broad, and
tend to disappear for timbres with more than a few par-
tials. The dissonance curve of Fig. 3, for instance, consists
exclusively of local minima caused by coinciding partials;
the broad, in-between minima have vanished.

The next result describes points of local consonance
for timbres with three partials.

Theorem 4: Let timbre F have partials (f,,/5,/3).
Then there are ¢;>0 and ¢,>0 such that whenever
fi—f1>d*+c, and f— f,>d*+c,, local minima of the
dissonance curve occur at a,=f,/f, a,=f3/f,, and
ay=13/f,.

Thus timbres with three partials have three points of
local consonance at a,f1=/f,, a,f =f3, and a;f,=f3,
which are represented schematically in Fig. 5. Essentially,
a minimum occurs whenever two of the partials coincide.
Of course, other local minima may exist as well. Figure
6(a) shows the dissonance curve for the timbre
(f.Bf ,ﬁ“ f), where B8 = 1(\)/5. Note that the three minima
predicted by theorem 4 are at exactly the first and fourth
scale degrees of the ten-tone equal-tempered scale, and also
at the “difference” frequency B°f. Figure 6(b) places the
partials at (,8/,8°f ), generating the expected scale steps
at 1 and 6, and the difference 5°f at step 5. There is also a
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FIG. 4. Dissonance curves demonstrating the local minima of theorems 2
and 3. (a) For the timbre (/,1.01f ), the partials are too close to allow
a point of local consonance. (b) Point of local consonance for timbre
(f,1.15f) occurs at a*=1.15. (¢) Point of local consonance for timbre
(f,1.86f ) at a*=1.86 and second “broad” minimum due to sparsity of
partials.

“broad” equilibrium between the third and fourth steps,
which is a result of the sparsity of the partials.

The final result of this section specifies the maximum
number of points of local consonance of a timbre.

Theorem 5: Let timbre F have partials (f},/3,.-.f,).
Then the dissonance curve generated by F has at most
2n(n—1) local minima.

The local minima are symmetrically located (on a log-
arithmic scale) so that half occur for a between 0 and 1,
and half occur for a between 1 and «. Half of the local
minima are the broad type of Fig. 6(b), while half occur
when f;=af; for some i and j, which tend to be steep.
Since the musically useful information is located for values
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FIG. 5. Schematic representation of three local minima of a three partial
timbre.

of a near 1 or 2, since the broad minima tend to vanish
(except for sparse timbres), and since many minima are
annihilated when partials are densely packed, (as in Fig.
3), typical dissonance curves exhibit far fewer than 2n(n
—1) local minima. In Fig. 3, for instance, there are only
nine local minima within the octave of interest, consider-
ably fewer than the theoretical maximum of 2#7%6 = 84.
It is possible to achieve the bound. For instance, the timbre
(f.2 £,3f ) over the range 0 < @ < 6 exhibits all 12 possible
minima.

Despite the detail of this presentation, its main con-
clusion is not inaccessible: The most (musically) useful
points of local consonance (i.e., local minima of the disso-
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FIG. 6. Dissonance curves demonstrating the points of local consonance

predicted by Theorem 4: (a) timbre (f.8f/.8*f). B = “:ﬁ. (b) timbre
(f.BfBf).
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nance curve) tend to be located at intervals a for which
fi=af;, where f;and f; are arbitrary partials of the tim-
bre F.

The theorems of this section assumed that all partials
were of equal amplitude. The effect of nonequal amplitudes
is that some local minima may disappear, some may ap-
pear, and others may shift slightly in frequency. Fortu-
nately, these changes occur in a structured way. To be
concrete, let the timbre F have partials (fy,/3,.-.f,) with
amplitudes (vy,v,,...,0,) and let ¥ have the same set of
partials but with amplitudes A(l,],...,l). As discussed
above, the dissonance curve for F will have up to n(n—1)
local minima due to coinciding partials which occur at the
intervals a;;= f/ f;. As the amplitudes v; of F move away
from unity, the depth of the dissonance curve at a;; may
change and the local minima at some of the o;; may dis-
appear (an a;; which is a local minimum of F may not be
a local minimum of F) while other a;; may appear (an a;;
which is not a local minimum of F may be a local mini-
mum of F). Thus, amplitude variations of the partials tend
to affect which of the a;; happen to be local minima. The
dissonance curve also contains up to n(n— 1) local minima
of the “broad” type. The location of these equilibria are
less certain, since they move continuously with respect to
variations in the v;.

lil. FROM TIMBRE TQ SCALE

This section constructs examples of scales appropriate
for a variety of timbres, and explains various consonance
related phenomena in terms of the principle of local con-
sonance.

A. Harmonic timbres

Section I noted that the points of local consonance for
the harmonic timbre with partials at (f,2 f,...,7f ) are
located at simple integer ratios. The results of the previous
section explain this elegantly. Candidate points of local
consonance are at intervals a for which f;=af . Since the
partials are at integer multiples of f, a=n/m for integers
n and m between 1 and 7. The principle of local conso-
nance says that the most appropriate scale tones for har-
monic timbres are located at such a, and indeed, all the
points of local consonance of Fig. 3 occur at such values, as
tabulated in Table I. In a sense, this provides a physical
basis for justly intoned scales.

B. Stretched and compressed timbres

Slaymaker® and Mathews and Pierce’ have investi-
gated timbres with partials at

fj=fAl°“j- €))

When 4=2, this is simply a harmonic timbre, since f;
= f2°22J — jf. When A <2, the frequencies of the timbre
are closer together than in harmonic timbres (com-
pressed), while when 4> 2, the partials are further apart,
or stretched. The most striking aspect of compressed and
stretched timbres is the lack of a real octave. This can be
seen clearly from the dissonance curves, which are plotted
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FIG. 7. Dissonance curves generated by stretched (and compressed) timbres. Each figure has two horizontal axes. The bottom axis shows the standard
12-tone equal-tempered divisions of the octave (frequency ratio of 2:1). The top axis shows 12 equal divisions of the pseudo-octave with a frequency ratio
of A:1: (a) A==1.87 (pseudo octave=major seventh), (b) A=2 (true octave), (c¢) 4=2.1 (stretched octave), (d) 4=2.2 (stretched further).

in Fig. 7(a)-(d) for A=1.87, 2.0, 2.1, and 2.2, respec-
tively. In each case, the frequency ratio 4 plays the role of
the octave, which Mathews and Pierce call the pseudo-
octave. Real octaves sound dissonant and unresolved when
A2 while the psendo-octaves are highly consonant. More
importantly, each curve has a similar contour. Points of
local consonance occur at (or near) the twelve equal steps
of the pseudo-octaves. “Pseudo-fifths,” “pseudo-fourths,”
and “pseudo-thirds” are readily discernible. This suggests
that much of music theory and practice can be transferred
to compressed and stretched timbres, when played in com-
pressed and stretched scales.

C. A tuning for uniform beam instruments

Percussion instruments containing uniform beams
with free ends have partials that are not harmonically re-
lated. Indeed, considerable effort has been expended in an
attempt to manipulate the shape of the beam to force it to
vibrate harmonically.'? The principle of local consonance
suggests that there is a natural scale, defined by the timbre
of the instrument, in which it will sound most consonant.
The first seven frequencies of an ideal beam which is free to
vibrate at both ends are given by Fletcher and Rossing13 as

(f,2.7581,5.406 f,8.936 f,13.35f,18.645 f,24.82 f ).
(8)
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Two octaves of the dissonance curve for this timbre are
shown in Fig. 8. The curve has numerous minima which
are spaced unevenly at 1, 1.27, 1.33, 1.4, 1.49, 1.65, 1.96,
2.09, 2.25, 2.47, 2.76, 3.05, 3.24, 3.45, and 3.98, which
suggests that this would be the most natural sounding tun-
ing for a such an instrument, at least in terms of conso-
nance.

D. Tuning for FM timbres

One common method of sound synthesis is frequency
modulation (FM).!* Noninteger ratios of the carrier and

~
a

Dissonance
w

25

1.0 2.0 3.0 4.0

frequency
ratio

FIG. 8. Dissonance curve for uniform beam.
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TABLE II. Partials for the FM timbre with c:m of 1:1.4 and modulating
index I=2.

Frequency Amplitude
c—m 0.4 0.57
c 1.0 0.22
c—2m 1.8 0.35
c+m 24 0.57
c—3m 32 0.13
c+2m 3.8 0.35
c—4m 4.6 0.03
¢+3m 5.2 0.13
c+4m 6.6 0.03

modulating frequencies give nonharmonic timbres that are
often relegated to percussive or bell patches because they
sound dissonant when played in traditional 12-tone harmo-
nies. The principle of local consonance suggests that such
sounds can be played more harmoniously in scales which
are determined by the timbres themselves.

For example, consider a simple FM tone with carrier-
to-modulation ratio ¢:m of 1:1.4 and modulating index
I=2. The frequencies and amplitudes of the resulting tim-
bre are tabulated in Table II, and three octaves of the
dissonance curve are plotted in Fig. 9. The appropriate
scale notes for this timbre occur at the local minima of the
dissonance curve, which can be read directly from the fig-
ure.

IV. FROM SCALE TO TIMBRE

The optimal scale for a given timbre is found by locat-
ing the local minima of the dissonance curve. The comple-
mentary problem of finding an optimal timbre for a given
scale, on the other hand, is poorly posed. This section dem-
onstrates why there is no single “best” timbre for a given
scale. “Locally best” timbres, however, can be specified as
the solution to a certain multidimensional optimization
problem which can be solved via global search methods
such as the genetic algorithm. For certain types of scales
(such as the m-tone equal-tempered scales) properties of
the dissonance function can be exploited to bypass the
search procedure.

Dissonance

25

1.0 2.0 3.0 4.0
frequency
ratio

FIG. 9. Dissonance curve for FM timbre of Table II.
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A. Timbre selection as a constrained optimization
problem

Any set of m-scale tones specifies a set of m—1 inter-
vals a,,a,,...,a,,_1. The problem of timbre selection is to
choose a set of n partials (f|,f5,...f,) and amplitudes
(v{,25..0,) to minimize the sum of the dissonances over
the m—1 intervals. This criterion can be written

m—1
J,= min Y Dg(a), (9)
1S 20 fn) =1
(01,07 5-50y)

where Dg(a;) is the dissonance of the candidate timbre F
at the interval ¢; as defined in Eq. (6). Recall that Dg(a)
and hence J; are nonnegative for any F and a. Timbres
which minimize Eq. (9) can approach zero dissonance in
two ways: (1) Any timbre with v,=v,="-*=v,=0 has
Dg(a;)=0 for any a;. (2) Theorem 1 shows that for fixed
and nonzero v;, Dg(a;) can be made arbitrarily small by
choosing a, large enough. Thus, if left unconstrained, the
minimization of the criterion J, (9) will result in a trivial
timbre via either (or both) of the above mechanisms. In
order to avoid trivial solutions, some constraints are nec-
essary.

A simple way to avoid (1) is to fix the v; a priori.
Though not appealing, this is virtually necessary. For in-
stance, suppose the v; for i=1,...,.n—1 were fixed while v,
was allowed to vary. Then J,; could always be reduced by
choosing v,=0. An alternative might be to fix the sum of
the v;, say Sv;=v*. Again, J, could be reduced by setting
v;=v* and v;=0 for all i#;.

One way to avoid the intervals a; (and hence the fre-
quencies of the partials) from escaping to infinity is to
constrain them to some finite set. The cost J,; will then be
reduced by spreading the frequencies more or less evenly
throughout the set, while trying to keep the cost low at
Dp(a)).

Fixing the v; and constraining the ¢; to a finite set are
enough to avoid trivial solutions, but they are not enough
to provide good solutions. While the scale steps do tend to
have reasonably small dissonance values, they tend not to
occur at points of local consonance (i.e., at minima of the
dissonance curves). The following criterion counts the
number of q; that are not minima:

m—1
J,= min 2 Mg(a), (10)
(f1:f20nfn) =1
where
0, if Dp(a;+€)> Dp(a;)
Mg(a)= and Dp(a;—€)> Dr(a)), (11)

1, otherwise,

for some small €>0. Thus Mg(a;) is O if @, is a point of
local consonance and is 1 otherwise. Clearly, J,, alone
would not be an appropriate criterion to minimize since it
only reacts to the existence of minima and not to their
actual value. The weighted sum of J,, and J,
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m—1 m—1

J= min A, 2 Dr(a)+4, 2 Mg(a) (12)
S1: 20000 ) i=1 i=1

will tend to place the scale steps at local minima as well as
to minimize the value of the dissonance curve. Through
trial and error, we have found weightings of
A2/41=1000/1 to be reasonable.

Minimizing J of Eq. (12) is a n-dimensional optimi-
zation problem with a highly complex error surface. Gra-
dient descent methods are unlikely to prove useful since
they search only a small subset of the possible combina-
tions of f;. Random search methods such as simulated
annealing or the genetic algorithm are slow, but they are
global optirnizers, at least asymptotically. We have found
that the genetic algorithm (GA) often gives sensible an-
swers. See Goldberg'® for a complete discussion of the al-
gorithm.

Applications of the GA require that the problem be
coded in a finite string called the “gene” and that a “fit-
ness” function be defined. Genes for the timbre selection
problem are formed by concatenating binary representa-
tions of the f;, and the fitness function of the gene
(f1:f2s-+f,) 1s measured as the value J of Eq. (12). Thus
timbres are judged “more fit” if the cost J is lower. The
GA searches n-dimensional space measuring the fitness of
timbres. The most fit are combined (via a “mating” pro-
cedure) into “child timbres” for the next generation. As
generations pass, the algorithm tends to converge, and the
most fit timbre is a good candidate for the minimizer of J.
Indeed, the GA tends to return timbres which are well
matched to the desired scale in the sense that scale steps
tend to occur at points of local consonance and the total
dissonance at scale steps is low. For example, when the
12-tone equal tempered scale is specified, the GA con-
verges to harmonic timbres about 1 of the time. This is a
good indication that the algorithm is functioning and that
the free parameters (the 1’s) have been chosen sensibly.

B. Timbres for an arbitrary scale

As an example of the application of the genetic algo-
rithm to the timbre selection problem, a desired scale was
chosen with scale steps at 1, 1.1875, 1.3125, 1.5, 1.8125,
and 2. A set of amplitudes were chosen as 10, 8.8, 7.7, 6.8,

7%
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FIG. 10. Dissonance curve for timbre specified in Sec. IV B.
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5.9, 5.2, 4.6, 4.0, and the GA was allowed to search for the
most fit timbre. The frequencies were coded as 8-bit binary
numbers with 4 bits for the integer part and 4 bits for the
fractional part. The best three timbres out of ten trial runs
of the algorithm were

(f,1.8125£,4.9375 f,14.0725,9.875 f,
14.8125£,6.4257,12.96 f ),

(f,1.5£,3.325£,10.255 f,7.8125£,7.0975£,3.52 £,3.875f ),

(£,2.39£,9.9275f,7.5625 f,11.4025£,3.99f,
6.37/,10.60251 ).

The dissonance curve of the best timbre is shown in Fig.
10. Clearly, this timbre is matched to the specified scale,
since points of local consonance occur close to the scale
steps.

C. Timbres for equal temperaments

For certain scales, such as the m-tone equal-tempered
scales, properties of the dissonance curve can be exploited
to quickly and easily design timbres, thus bypassing the
need for an iterative solution to the constrained optimiza-
tion problem (12).

Letf = m\ﬁ be the ratio between successive scale steps,
and consider timbres for which successive partials are ra-
tios of B’ for integers i;y j=1,2,...,n. Since B =2, there is
an integer k, so that B4/2K = B* for some k, between O
and m—1. Thus, each partial, when transposed into the
same octave as the fundamental, lies on a note of the scale.
Such a timbre is said to be induced by the m-tone equal-
tempered scale. For example, harmonic timbres are in-
duced timbres for the justly intoned scale.

Induced timbres are good candidate solutions to the
optimization problem. Recall from Sec. II that points of
local consonance tend to be located at intervals a for which
fi=af;where f;and f; are partials of the timbre F. Since
the ratio between any pair of partials in an induced timbre
is B* for some integer k, the dissonance curve will tend to
have points of local consonance at such ratios; these ratios
occur precisely at steps of the scale. Such timbres tend to
minimize J of Eq. (12) since the term M (B%) is zero
whenever scale steps and points of local consonance coin-
cide.

This insight can be exploited in two ways. First, it can
be used to reduce the search space of the optimization
routine. Instead of searching over all frequencies in a
bounded region, the search need only be done over induced
timbres. More straightforwardly, the timbre selection
problem for equal-tempered scales can be solved by careful
choice of induced timbres.

As an example, consider the problem of designing tim-
bres to be played in ten-tone equal temperament. Ten-tone
is often considered one of the worst temperaments for har-
monic music, since the steps of the ten-tone scale are dis-
tinct from the (small) integer ratios, implying that har-
monic timbres are very dissonant when played at intervals
of B¥for B = “{/5. The principle of local consonance asserts
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FIG. 11. Timbre designed to be played in ten-tone equal-tempered scale.
Note that points of local consonance coincide with the ten-tone scale (top
axis), but not with the 12-tone equal-tempered scale steps (bottom axis).

that these intervals will become consonant if played with
correctly designed timbres. Here are three timbres induced
by the ten-tone equal-tempered scale:

(fBf.Bf.BOf B2 BELBYf ),
(SB BB fB BB ),
(fB 1B 1B f BB BOF ).

The dissonance curve of the first timbre is shown in Fig.
11.

V. DISCUSSIONS AND CONCLUSIONS

This paper developed the principle of local consonance
and proposed two complementary computational tech-
niques: A way to find consonant scales given a specified
timbre, and a way to find consonant timbres given a spec-
ified scale. Local consonance is based on an explicit param-
etrization of Plomp and Levelt’s consonance curves. By
exploiting this parametrization, several concrete results
were derived, which describe in generic terms the number
and location of local minima of the consonance curves.
These results explain certain consonance related phenom-
ena and simplify the timbre selection problem. One impli-
cation is that the musical notion of consonance of intervals
such as the octave and fifth can be viewed as a result of the
timbre of the tones we listen to. The justly intoned scales
can similarly be viewed as a consequence of the harmonic
timbres of musical instruments.

The consonance theory of Plomp and Levelt is proba-
bly the most important current consonance theory, but it is
not uncontroversial. In the long run, the importance and
usefulness of the timbre-scale relationship presented here
depends on the validity and power of the Plomp-Levelt
theory. Conversely, the computational techniques of this
paper can be viewed as a way to apply the Plomp-Levelt
results to nonharmonic music and instrument design. Mu-
sic composed using related timbres and scales provides in-
direct support for the Plomp-Levelt consonance theory.

The results of Sec. IT show some of the generic prop-
erties of dissonance curves. The first theorem says that the
unison is always the most consonant interval for any tim-
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bre, and that dissonance always decreases as the interval
increases, at least for very large intervals. A tuba and a
piccolo may play together without fear of dissonance. The-
orems 2 and 4 show that local minima often occur at in-
tervals which are ratios of the frequencies of the partials.
The local minima corresponding to such coinciding par-
tials are good candidates for intervals of a scale while the
broad minima due to wide separation of partials tend to
vanish, at least for complex timbres. The final theorem
gives a bound on the number of points of local consonance
in terms of the complexity of the timbre.

Theorem 3 suggests that local minima of the disso-
nance curve are unlikely for intervals larger than about
half the interval d* at which maximum dissonance occurs.
Plomp and Levelt estimate that d* corresponds to a little
less than § of the critical bandwidth. Thus theorem 3 pre-
dicts that scale steps closer together than about § of the
critical bandwidth should be rare. Plomp and Levelt show
that adjacent partials in a Bach sonata fall between critical
bandwidth and about i critical bandwidth. It would be
interesting to conduct studies on the average distance be-
tween partials in nonwestern music.

The principle of local consonance suffers from the lim-
itations of the model used to calculate the dissonance
curves. It is only valid for “reasonable” frequencies and
amplitudes. Frequencies outside the range of audibility, for
instance, cannot contribute to dissonance. Even within the
audible range, there is considerable variation in the fre-
quency response of the ear. To compensate, the amplitudes
of the partials could be weighted by the inverse of the
Fletcher—-Munson curves,'® but this has not been pursued
here in order to retain the (relative) simplicity of the
model. Similarly, the amplitudes must not be loud enough
to introduce significant nonlinear distortions in the ear.!’

The problem of timbre selection for a specified set of
scale tones is posed as a multidimensional optimization
problem, and can be solved by “random search” methods.
Because the optimization must be constrained to avoid
trivial solutions, the amplitudes are specified a priori, lim-
iting the selection of timbres to a choice of frequencies.
Different timbres with different mixes of frequencies and
amplitudes may solve the optimization problem equally
well, implying that they are equivalent in terms of conso-
nance.

The principle of local consonance makes concrete pre-
dictions about the consonance of related timbres and
scales, and these must be verified by controlled listener
tests. Experiments which would validate (or falsify) the
principle might involve fixing some nonharmonic timbre,
and finding the most consonant intervals (or scales) from
the dissonance curve. Listeners could then judge the rela-
tive consonance of these intervals (or scales) when inter-
spersed among a number of other intervals (or scales).
Another type of test would be to create a large number of
nonharmonic timbres. Listeners could then be asked to
order the timbres in terms of consonance, and the ordering
compared to the predictions of the theory.

All of the timbres mentioned in this paper were gen-
erated on a personal computer and downloaded to an En-
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soniq EPS sampler, where the appropriate scale could be
easily defined in a “tuning table.” Informal listening tests
(using colleagues and friends) upheld the essential predic-
tions of the principle of local consonance. One of the most
convincing tests involved the stretched timbres of Sec.
IIT B. Two tones were generated which were identical in all
parameters except that one used 4=2.0 (a normal har-
monic timbre) and the other was stretched to 4=2.1 [as in
Fig. 7(c)]. Two scales were used, a standard 12-tone equal-
tempered scale, and a scale stretched so that the pseudo-
octave occurred at 2.1. The four possibilities were com-
pared: (1) A=2.0 timbre with standard scale, (2) 4=2.1
timbre with standard scale, (3) A4=2.0 timbre with
stretched scale, (4) A=2.1 timbre with stretched scale.

A list of adjectives was placed before the listeners
(who were not told the purpose of the test) and they were
asked to check those that applied. Overwhelmingly, cases
(1) and (4) were described as pleasing, consonant, and
musical, while (2) and (3) were described as dissonant,
ugly, unmusical, and out-of-tune. Some of the more sophis-
ticated listeners (i.e., those with significant musical train-
ing) also described (4) as out-of-tune. A similar test was
conducted with the timbres of Sec. IV C which were spe-
cially designed for ten-tone equal temperament. Again, the
related scales and timbres were judged consonant while the
unrelated scales and timbres (such as the ten-tone timbre
played in the 12-tone scale, and the 12-tone timbre played
in the ten-tone scale) were judged dissonant.

Such informal tests cannot be taken too seriously, but
they do indicate the need for more rigorous experiments.
One subtlety that arises when dealing with nonharmonic
partials is that it is important for the partials to fuse, to be
perceived holistically as a single entity rather than as a
collection of oddly placed sine waves. Fusing is greatly
helped by commonalities in the partials: Similar pitch vi-
brato, similar amplitude fluctuations, similar onset time,
and similar envelopes. Whatever the experiment, care must
be taken that the timbres fuse properly.

Another way to test the predictions of the principle of
local consonance is to investigate the relationship between
timbre and scale in other musical cultures. For instance,
the gamelon orchestras of Indonesia contain ensembles of
metalophone instruments of various sizes, materials, and
timbres. There are as many different gamelon tunings as
there are gamelon orchestras because instruments in the
Indonesian musical tradition are not tuned to a single stan-
dard reference. Rather, each instrument is tuned and tim-
brally adjusted to work in a particular orchestral context.!!
It would be an important test for the theory to measure the
spectra of the instruments of various gamelons and to com-
pare the scale predicted by the dissonance curves to the
actual scales used.

The advent of inexpensive musical synthesizers capa-
ble of realizing arbitrary sounds allows exploration of non-
harmonic acoustic spaces, and the principle of local con-
sonance provides guidelines on how to sensibly relate scale
and timbre. More ambitiously, it is easy to imagine a whole
orchestra of nonharmonic instruments capable of playing
consonant music. The computational techniques of this pa-
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per allow specification of timbres and scales for such in-
struments. An important area for further investigation is
how to engineer acoustic instruments so as to play in spec-
ified (nonharmonic) timbres and in related tunings. Ulti-
mately, the test of the theory is whether it will be used to
make music.
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APPENDIX

Proofs of the theorems follow. Throughout this Ap-
pendix, the dissonance curve (6) is written

n n

Dp(a)=Dp+ Dop+ _):1 _El d(fiaf)),

i=1 j=
where the last two (amplitude) arguments of Eq. (2) have
been abandoned since v;=1 is assumed for all / and s=1is
also assumed. When needed, the values a=3.5 and b=5.75
are used, though generally b>a >0 is enough.

Theorem 1: For any timbre F with partials at
(f1sS2resfn): (a) a*=1 is the global minimum of the
dissonance curve Dg(a); (b) lim,_  Dr(a)=Dr+ D,r.

Proof of (a): For all @, D= D,. The function (1)
has its global minimum at x=0 since b>a>(0. Thus
3037.d(fi,af;)>2Dp  whenever azl, and
I3 d(fpaf;)=2Dr for a=1. Consequently,
Dp(1)=4Dy< Dp(a) for all a5~1.

Proof of (b): Clearly, d(x)-0 as x— . Thus
d(fi,af;)-0 for all ij as a-w. Consequently,
Dp(a)— Dp+ D,p as o> 0. ]

Theorem 2: Let timbre F have partials at (f7,/) with
[a—f1>d*. Then the dissonance curve Dy(a) has a local
minimum at a*=f,/f.

Proof: Let timbre G have partials (g;,8,) =(af},af3).
Then Dyp=Dg=D,r, and any change in Dp(a) must
arise from the double sum in Eq. (A1), which contains the
terms d(f;,g;) for i=1,2 and j=12. For a*=f,/f),
(81,8:) =(f4,af;). As a is perturbed from a*, the contri-
bution from the term d(f,,g,)=d(f,,¢f,) increases,
since at o*, a*f,=/f, and so d(f5,g) =d(f4,/>)=0.
Thus the result can be demonstrated by showing that the
increase in d(f,,g,) is greater than the decrease in the
other three terms combined. The increase in d(f,,8,) is
proportional to

d’'(0)=—ae~*+be %|,_¢=b—a. (A2)

Since f,—f,>d*, the decrease in d(f,,g,) can be
bounded by the slope at the point x** on d(x) where
d’ (x**) is negative and of largest absolute value. This oc-
curs when d” (x**)=0. Since
d"(X) =a28—ax_b28—bx’

x**=2/(a—b)In(a/b). After some simplification,

(A1)

(A3)

William A. Sethares: Local consonance 1227



d’ (x**)=(a/b) P+~ (a—b)=k(a—b). (A4)

Thus the slope at x** is k times the slope at 0. For a=3,
b=6, k=34 Hence the increase in d(f,,g,) is eight times
larger than the decrease in d(f.g;). But |d(f,.g)] is
approximately equal to |d(f,.g,)|, and is greater than
|d(f1.82) |- This proves the desired result. a

Theorem 3: Let timbre F have partials (f,,f;). Then
there is a €>0 such that for |f,—f;| <€, the point
a*=f,/f is not a local minimum of Dg(a).

Proof: Define G as in theorem 2. Again, any change in
Dg(a) is a result of the four terms in the sum of (Al).
For small €>0, note that: d(f,.g;+¢€)>d(f.g)
> d(fr.g1—¢€), d(f1.8,+¢€) > d(f.8) > d(f,.8:—¢€),
d(f1,8:+€) > d(f,.8,)>d(f,.8,—¢€), and d(f,,8,+¢€)
> d(fz 81 )

On the other hand, d(f,.g,—¢€)>d(f5.8)
=d(f;,f,) =0. For small ¢, the change in all four terms is
approximately €(b—a) in magnitude. Thus the dissonance
value is decreased as G is moved € closer to F, and
a*=f,/f is not a minimum. O

Theorem 4: Let timbre F have partials (f},f5,/3)-
Then there are ¢,>0 and ¢,>0 such that whenever
fa—f1>d*+¢, and f3—f,>d*+c,, local minima of the

dissonance curve occur at a;=fy/f1, ay=fy/fi,
as=f3/f,.
Proof: Let G  have  partials (81,82:83)

=(af,af,,af3). Suppose first that f,— f,> f3— f+¢,.
Consider the candidate minimum «,. For small ¢, the most
significant terms in Dp(a+¢€) — Dp(a) are d( f,,g;) and
d(f1,8,), since all others are separated by at least d* +c,.
For €>0, d(f,.g +€)>d(f,.8), d(f3.8+¢€)
>d(f1.8,), and d(f,,g,—€)>d(f,,8). On the other
hand, d(f;.g,—¢€)<d(f3,8). But d’(0)=b—a and
d"(0)=a*—~b*<0, so the slope is decreasing.
Hence |d(f,,81—¢€)|> |d(f3,8,—€)|. Consequently,
Dp(a;+€)> Dp(a;) and Dpg(a;—e€)> Dg(a,), showing
that a, is a local minimum. The case f3— f>> f,— f1+¢;
follows identically. The proofs for a, and a; are similar.(0

Theorem 5: Let timbre F have partials (f},/5,..../ )-
Then the dissonance curve generated by F has at most
2n(n—1) local minima.
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Proof: Consider the portion of Dy(a) due to the par-
tial f interacting with a fixed partial f;. For small «,
af<f;and d(af,f;)=0. As a increases, d(af,f;) in-
creases until af=f ;» where d(af,f;)=0. As « increases
further, d(af,f;) increases to a maximum at af=d*. Fi-
nally, as a— w0, d(af,f;)—0. Thus f interacting with a
fixed f; has two maxima and one minima. Each f; can
interact with each f;, and there are n®—n distinct pairs.
Since Dp(a) consists of #(n—1) such curves added to-
gether, there are at most 2n(n— 1) maxima. Consequently,
there are at most 2n(n—1) minima.
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