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SUMMARY

Echo cancellation in telephone communications can often be accomplished by using adaptive network
echo cancellers. However, under certain circumstances, these generally effective echo cancellers can cause
an undesirable bursting phenomenon. In this paper the essential driving force behind bursting is attributed
to the correlation between the signal the near-end is to transmit and the signal the near-end receives from
the far-end. This correlation and the subsequent potential for temporary destabilization arise as a result
of the feedback loop structure of the four-wire telephone circuit. A new test signal which approximately
measures this correlation is proposed for use in the double-talk detector scheme that is commonly used
to halt adaptation before a mishap such as bursting occurs.
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1. INTRODUCTION

The adaptive network echo canceller has been well established as an effective means of echo
removal in telephony networks.!™* Like many other adaptive systems, an adaptive echo-
cancelling circuit achieves desirable performance when it is adequately excited and when the
echo-cancelling circuit is capabie of closely modelling the dynamics of the echo path.

A diagram of a typical four-wire telephone circuit is shown in Figure 1, which can be
drastically simplified into the model given by Figure 2. At the near-end, the adaptive echo
canceller attempts to cancel the echo path transfer function 4 by its estimate A. For this adaptive
hybrid at the near-end, the desired excitation is the received signal 7, while the near-end signal
Uk acts as a disturbance to the prediction error sk. The occasional deleterious presence of a large
disturbance v, relative to r¢—» (also known as double-talk) is inevitable in any conversation.
As a result, the likelihood of success of an adaptive hybrid depends on the degree. of
fiecorrelation between the excitation r¢ -, and the disturbance vi. If vx introduces a component
to the noisy prediction error s that is correlated with re-,, a ‘normal’ adaptive algorithm
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Figure 1. A typical subscriber-loop telephone system
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Figure 2. A simplified model for the closed-loop adaptive echo cancellation system

will assume that this component is part of the echo leaking through the hybrid and A will be
adjusted in an effort to cancel it. This can cause the echo-cancelling system to misbehave by
shifting # away from 4.

The conventional selution to such an ill-conditioned situation is to introduce a ‘double-talk
detector’ (DTD) or ‘near-end speech detector’ in the adaptive hybrid. The idea is to freeze
parameter adaptation when the disturbance vk is strong compared with the signal rx—.'"* so
that the adaptation operates only when the disturbance to the prediction error is small.
However, if the DTD is designed to be too cautious, it frequently interrupts the adaptation so
that the adaptive filter may be unable to sufficiently reduce a substantial parameter error
| A — i1| and hence fail to achieve good echo attenuation much of the time. If the DTD is too
bold, the adaptive hybrid may be updated even when the near-end signal v is strong enough
to misadjust /4. The misadjustment manifests itseif as an erroncous value of A attempting to
keep s% small. However, in the system model of Figure 2 an excessively large estimation error
| A — #| and non-zero « can combine to destabilize the feedback circuit formed by the closed
telephony loop. In such a situation an undesirable phenomenon called bursting® can arise.
These bursts are characterized by periods of low-error stable operation interrupted by brief
periods of wild oscillation of the received and transmitted signals. Observation of such a
phenomenon in real-time benchtop experiments has been reported at Tellabs Research
Laboratory, as noted in Reference 5. In fact, it is a phenomenon that is related to bursting in
adaptive control® and to the self-stabilization behaviour of certain ADPCM schemes which
include pole—zero model predictors.” The structural property common to all three of these
problems is the adaptation of parameters within a feedback loop thereby adjusting the poles
of the feedback system. Inappropriate adaptation may lead to a destabilizing parametrization
which, if temporary but recurrent, manifests itself as bursting.

The ‘bursting behaviour of an adaptive echo canceller has been previously addressed by -
Sethares er al.’ The possible temporary instability and subsequent bursting behaviour of the
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telephone loop in Figure 2 without a DTD was shown to arise, as expected, due to a large near-
end input coupled with a very small far-end input. The analysis of Reference 5 was, however,
carried out only for DC and extremely-low-frequency sinusoidal inputs which are nearly DC.
In this paper we study the bursting problem of the configuration of Figure 2 for inputs of
sinusoidal signals. This study reveals the frequency dependence of the bursting behaviour,
which is anticipated from studies of similarly configured adaptive control systems. Given our
improved understanding of this problem, we propose a poteatiaily more effective DTD
threshold test involving the correlation rather than the power ratio of appropriate signals.
We begin by formulating the bursting problem of a simple echo cancellation system in
Section 2. Assuming sinusoidal inputs, we locate the possible equilibrium points for the average
of the parameter estimate dynamics of Figure 2 and show that their location determines the
oceurrence of bursting (Section 3). By examining conditions under which these equilibria would
lead to marginal stability of the telephone loop, we attempt to divide those operating conditions
avoiding bursting from those allowing it. Section 3 also delineates the frequency dependence
of bursting, with results confirmed by simulations. In Section 4 we propose a new double-talk
detector which can act more accurately in halting the algorithm updating. The improved ease
in selecting appropriate thresholds for a prespecified parameter error tolerance is also stressed.

2. BASIC ASSUMPTIONS AND PROBLEM FORMULATION OF BURSTING

Our study of echo cancellation in a telephony loop is based on the simple model of Figure 2,
for which the following assumptions are made.

{(a) Each echo path has only a single scaling parameter—# for the near-end hybrid and « for
the far-end hybrid (#, € R).

(b) Only the near-end hybrid is adaptive, while the far-end hybrid is not adapted (or is
adapted at a much slower rate).

(c) Both the transmission and reception paths introduce delays of n units.

These simplifications are made for the convenience of analysis. Note, however, that similar
bursting phenomena can be encountered in the more general settings where 4 and « represent
more complicated transfer functions and when adaptation is present at both ends of the line.?
The near-end and far-end signals are denoted by vx and wy respectively. The received signal
at the near-end is denoted by ri -, the transmitted signal by sx and the returning echo by e,
as shown in Figure 2. .
~ To update the parameter # of the adaptive echo canceller, the LMS algorithm?® is
Implemented, i.e.

Ek=ﬁk—1+,l.15krk—n (1)
in which y is the step size and
Sk = Uk + (€x — é) )

Is the transmitted signal. The echo is given by ex = Arx—_n, whose estimate given by the output
of the adaptive filter is éx = Ax- 17x—n. The received signal rx—, is formed as

rk——niwkwn*'ask—an (3)

Which ig just the delayed signal from the far-end hybrid. By denoting the parameter estimate
Crror as Ay = h — Ay we can rewrite (1) and (2) as

R = (1 = pri—ndhi—1 — pre—nvk (4
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If (1 — prk-=.) is a contraction and rx ., and vk are almost uncorrelated such that their Product
is small on average, then A will be expected to converge to a neighbourhood about zero whep
u is appropriately chosen. Good echo cancellation is thus achieved. Problems may arise when
ri-n is small (i.e. weakening the contraction) but rx_, and v are highly correlated such that
the (average) forcing term in (4) is large. As a result the echo path may not be well canceljeg
and misbehaviour such as bursting may occur.

To analyse the bursting phenomenon we shall use the technique of averaging analysis. Fo
the adaptive algorithm of (1) the equilibrium of the averaged system is reached when

Avgl{sire-,} =0 (5)
By assuming a very small adaptatxon step size u, when (5) is satisfied (or for that matter, Wwithin
a particular time window) the parameter estimate error is effectively invariant, i.e. Ay =~ 7. Ag
a result the average update in (4) can be written as
Avg{siri—n} = Avgf vrrs_n} + Avgl Ak 1ri_n}
zAvg{vkrk_,,}+ﬁAvg{r;2c-n] (6)
where the existence of these averages is implicitly assumed. In such a case the transmitted and
received signals are approximated respectively by

i
Tkti-n = IT.W (Wi sion+ aUksiz2n) )
1 ~
Sk+i [T (Vk+i+ AWktion) (8

Note that the denominator 1 — ahz™2" is zero at * (o) /2" and the closed-loop time- 1nvar1ar1t

system is stable if and only if |ah| < 1.
By setting the average update in (6) to zero in satisfaction of (5) we can obtain the average
equilibrium as
- Avglvgri-n)
Y= —Istkkon)
AvgirE-n) ®)
If all the average equilibria 2™ are such that |«#™| < 1, then by choosing x sufficiently small
the entire system will be stable and burstmg will not occur. If, however, all the closed-loop poles
are such that B}

|MM>I (10)

h*| =
|°‘ | |°f Avg[r%_n]

i.e. outside the stability region |z| < 1, then the averaged system is expected to experience
problems since it is likely to converge to one of the equilibria /#*. that destabilize the closed-loop
system.

The potential for bursting results from a large near-end signal v, that dominates the
prediction error ex in sx of (2). When the disturbance vy is correlated with the excitation signal
r't-n, the LMS algorithm reacts as if it is part of the echo and, in an effort to cancel the
disturbance, A is misadjusted, which causes a possibly large error /. Suppose vr and wy are
independent and both are zero-mean, then Avg{v;w;} = 0. Hence, when the disturbance vk
dominates e; (such that vk + ex = 1),

Avelri-avre)=avg[[wWi_n + a(k-20 + Vk-2n)] Uk }
=~ a AVE{(€k-2n+ Uk-22)0k } = o AVE[ UkUk—24) = R, (21) (11
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where Ry is defined as the correlation function of v,. From (4) and (11) it can be concluded
that a highly correlated near-end signal vk results in a larger forcing in (4) and hence is more
likely to cause a large parameter error h (perhaps bursting when (10) holds) by the adaptive
system.

Consequently, we would like the autocorrelation R,,(Zn) to be small in order to avoid
bursting and to reduce the parameter estimation error k. This correlation can be greatly reduced
if vx is @ wide-band signal andfor if the transmission delay # is very long. The rare occurrence
of bursting in very-long-distance telephone communications corroborates this observation. If
« is also an adaptive hybrid, then its stable performance will in turn require wx to have a wide-
band spectrum as well. It is clear from (10) and (11) that good echo cancellation at the far-end
hybrid (i.e. o = 0) can improve the performance at the near-end. Hence bursting should be
extremely rare if both hybrids have settings that offer significant echo cancellation and if both
inputs are wide-band signals.

Through the above analysis it is evident that misperformance should be expected of the near-
end adaptive echo canceller if a strong, narrow-band signal is present at the near-end while the
far-end signal is relatively weak. In the next section we analyse the occurrence of bursting when
both inputs are sinusoids (signals with the narrowest bandwidth), and in Section 4 we discuss
a common measure to prevent the misbehaviour of adaptive algorithms given such an ill-
conditioned circumstance; namely, the application of a double-talk detector.

3. BURSTING ANALYSIS UNDER SINUSOIDAL INPUTS

3.1. Averaging analysis of bursting

To understand how bursting occurs, consider the situation when the input signals vk and wg
are sinusoidal signals of different frequencies, i.e.

v = Ay cos(wik) (12)
wr = A cos(wak + ) ' {13)

where both frequencies w; # w2 are normalized with respect to the sampling frequency so that
0 < w,w; < 7. For analytical simplicity, also assume that w;fw: is rational.
As noted with (5), the adaptive algorithm of (12) achleves its average equilibrium® when

™M=

Sk+ilk+i- n"o (14)

z|—

Avg{skrk_,,} =

i

where Ne 7, is the least common multiple of 2xfw and 2#7/wz. Avg{viw;} is approximately
Zero for w; # w; and thus from (7) and (8)

N A7 cos[w {k+i—2n)+ ¢i)cos[wi(k +1)+ 1]
|1 —ahe” Jana | 2

Avglspri—nl} = %

B 5 A3 cos®[walk +i—n)+ ¢2]

= |1_aﬁ—j2nw2|2

Z |5

o A} cosnw) | h A2
2 ' ) 7 15
2 Ll—ahe_'fzn““lz-i-z [l_ahe-ﬂnwz}z (15}

n which ¢, = » (1 = afle™2™) ! and ¢» =y + 2 (1 — ahe /")~ ' Therefore in this case the

h
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solution # =A% to (14) is

1= e wA
ch*= — 1= ahi®e 772 cos(2nw;) AZI

(16)

Hence we have 2™ ¢ R and _
sgn(ah™) = — sgn[cos(2nw, )] (17)

It should be noted that (16) is a cubic equation for which there can be one or three real
solutions. From the above analysis we can get the following.

Proposition 1

If an A" given by (16) is such that |« ™| < 1, then it is unique within ah™€ (~1,1). Iy
additiorb itis a locallybstable equilibrium of the averaged system. If the step size is very sma])
and |ohe| <1, then A, starting within afy € (—1,1), will converge to and remain in the
neighbourhood of #*, '

Proof. See Appendix.

If, however, (16) only holds when | 4™ | > 1, then no stable equlibria exist for the averaged
system and we anticipate bursting. In this case there is a tendency for the slowly time-varying
poles * («hy)'"?" to move across the stability boundary | afx| = 1. As a result the signal ry will
quickly grow (at least temporarily) and bursting occurs. When ry becomes so large that the
factor 1 — urz_; is small enough to be dominant in (6), / begins to shrink. Once | ai| drops
below unity, r shrinks until 7 again begins to rise and cross the stability boundary, and so
on. This characterizes the process of bursting, much as in Reference 5. Consequently, we have
the following.

Proposition 2

If all the solutions 2" of (16) are such that |a/™| > 1, and if oy is initialized such that
| ahix| < 1, then on the average afy will either be driven across the stability boundary or move
arbitrarily close to it.

Proof. See Appendix. ' B}

Remarks

() If the average oAy moves across the stability boundary |o¢fz'k| =1, then bursting will
occur.

(ii) If the average ohx moves arbitrarily close to the stability boundary such that
1 — & < |ahi] < 1, then the averaged system is marginally stable. Owing to the intrinsic
deviations from its average by the actual algorithm, a/y will at least temporarily cross
the stability boundary, which should also cause bursting.

In summarizing Proposition 2 and the remarks following it, bursting is anticipated if all the
solutions /#* of (16) are outside the stability boundary |a#*| = 1.

It is now evident that under narrow-band inputs, | @2*| > I indeed delineates the occurrence
of bursting. We now proceed to discuss the dependence of this condition on the input signal
characteristics.
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3.2. Sufficient condition to avoid bursting

From the analysis of Section 3.1, the equilibria of the average echo cancellation system are '

characterized by the stable solution (i.e. | ah™ < 1) of
_. 1+ (ah™? = 2ak” cos(2nen)
oh” = — EIW) =%

1 + (eh™)* ~2ah” cos(2nw:)
where M = (aAif A2)? for sinusoidal inputs. Clearly the magnitude of «#™ and hence the
occurrence of bursting depend upon the magnitudes of the input signals wx and ve. The
following simple result is important.

cos(2nw) )M (18)

Proposition 3
For ah” that satisfies (16), the inequality
|1 — ah™e/22|?

‘ 1-— aﬁ*e—ﬂm,‘z COS(2(_,_,1) <1 (19)

holds for all wy, a2 €R.

Proof. See Appendix.

Thus we arrive at a sufficient condition to avoid bursting.

Corollary

For the adaptive echo cancellation system (1)—(4) with two sinusoidal inputs of different
frequencies w;, w2 and amplitudes A4, A2, suppose (of:A;/Az)2 < 1. Then it follows from (18)
and (19) that

o AN
2

Hence the average equilibria are stable and bursting can be avoided.

Look at Figure 2 carefully. The corollary indicates that if the near-end signal is small enough
so that its power after passing through the far-end echo path, (@A 1)?[2, is smaller than the
Slgﬂa! power of the far-end input, A3/2, then the overall adaptive system will remain stable and
bursting can be avoided. This agrees with the character of the result given in Reference 5 that
strong near-end inputs coupled with very weak far-end signals can cause bursting. This
observation also corroborates the use of the power ratio test in the common DTD.

3.3. The frequency dependence of bursting

I{l*Section 3.2 it has been shown that when the input signals are sinusoids and M < 1, then
iai’i | < 1 and bursting can be avoided. In any case the resulting values of average equilibrium
ah” clearly depend on the frequencies wi, w2 of the input signals. To illustrate the frequency
dFDGndence of the bursting behaviour we shall again assume sinusoidal inputs and discuss the
Situation when the amplitude condition M < 1 is violated.

I
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Proposition 4

If M > 1, then (w;, wz) pairs exist such that some solutions of (lii) satisfy laﬁ*] > 1 ang
other (wy, wz) pairs exist such that some solutions of (18) satisfy |ah*| < 1.

Proof. See Appendix.

This indicates that the occurrence of bursting for this system is input-frequency—dependem,
Given M > 1, the pair (w,w;) determines the solutions a/™® to (18) and therefore the
occurrence of bursting. Consider the case when the transmission delay is n = 1 and when only
one real solution ™ exists for (18) (e.g. M < 8). Then, on the basis of equation (18), we can
plot the contour of ({(wi,w:2):|@h™|=1) on the w,—w, plane, which separates the set
{(wi,wz):|h™| <1} for which a locally stable equilibrium exists and the e
f(wr1,w2):| k™| > 1} for which bursting tends to occur. This procedure separates ‘bursting’
from ‘non-bursting’ frequency pairs. The results for M =2,5 and 8 are given in Figures
3(a)—3(c), respectively. The shaded areas, which are labelled ‘bursting regions’ in these figures,
represent the set {(wi, w2):| k™| > 1} in which bursting occurs. The likelihood of bursting
increases with an increase in M, since if we have a bigger M, more pairs of (w;, w2) fall in the
bursting region.

10.1,0.8}
1.0 1+ 710.1.07

5.5 0.55.0.1}
: ’

——(0.65.0.1}
0.0 1 T

0.0 0.5 1.0 15 2,0 2.5 3.0 0.0 0.5 1.0 1.5 20 2.5 3.0
a. M=2 b. M=5 _

7

\

— "bursting region”

i

+(w;, ®,) — Simulated pairs

0.0 0.5 1.0 1.5 20 2.5 3.0
. ¢ M=8

Figure 3. ‘Bursting regions’ of the adaptive echo canceller for M = 2, 5 and & when the transmission line delayisn=1
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When M drops to unity, each separate shaded area contracts to merely one dot at its centre:
[(w;, ©2), cos(2w1) = cos(Zwz) = *1} Q1)

If M is less than unity, all the shaded areas simply disappear. On the other hand, if M becomes
excessively large, then the shaded area will cover almost the entire w;—wz plane, except at lines
where cos(2w1) =0. These properties graphically summarize the analysis of the preceding
sections.

From Figure 3 one can see that bursting is more likely to occur at points where | cos(2uw;)| = 1
and at the same time cos(2w;) = c05(2w;). The reason is that at these points

1+ (@h™)? = 2ah™ cosRw2)
1+ (ah™)? = 2ah™ cos(2w)

andif M > 1, | ah* | is more likely to be greater than unity and bursting is more likely to occur.

Simulation studies confirmed the above behaviour of the system. Figure 3(a) indicates
different (w1, w2) pairs for which simulations were made when both inputs were purely
sinusoidal waves. A step size of p = 0-05 and zero-parameter estimate A(0) = 0 were used and
the true echo path parameters were set as o = £ =0-1 in all simulations. For M = 1, bursting
did not occur even after tens of thousands of iterations with frequency pairs (wi, w2) =
(0-1,0-7) and (0-55,0-1). However, when M =2, which puts the previous two pairs barely
inside the shaded region, bursting occurs within a few thousand iterations as shown in Figures
4(a) and 4(b). We also simulated frequency pairs (wi, w2) = (0-1,0-8) and (0-65, 0- 1) under the
condition M = 2. Since they are both slightly outside the shaded areas, no bursting was expected
to occur and our simulation results confirmed this. But for M =5, both pairs are inside the
bursting area, and bursting occurred in our simulations as illustrated in Figures 5(a) and 5(b).
Note that, as in the examples, the bursting need not represent a catastrophic loss in system
performance but does represent a degradation of performance. Also note that in the lengthy
simulations of Figures 4(a), 4(b) and 5(b), only one of every 50 simulated samples was plotted
when the system was not close to bursting, and every sample was displayed when bursting
occurred. Therefore the increased darkness of r¢ in the neighbourhood of bursting does not
necessarily represent an intensified oscillation by the signal r.

An important effect is the length of the delays between the near-end and far-end. For

cos(2wy )| = | cos(Rui| =~ 1 (22)
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Figure 4(a). Simulation with frequency pair (0-1,0-7) shows bursting within 18 000 iterations for M =2
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connections where a delay of n samples is present in each path, (18) means that bursting is more
likely to occur near |cos(2nwi)} = 1 and cos(Znw) = cos(2nw;). In fact, a plot similar to
Figure 3 will show arrays of smaller areas of bursting centred around points

(w1, w2), cos(2nw;) = cos(2nw;) = 1} (23)

This suggests that in transmitting narrow-band signals over a telephone system with adaptive
echo cancellers, one should avoid using similar carriers (modulo x{n) for the two input signals.
When bursting does not occur owing to insufficient signal amplitude disparity, using different
carrier frequencies can reduce the parameter estimation error . This practice is known in
digital communication systems as offset clock frequency transmission.

4, A NEW DOUBLE-TALK DETECTOR

As noted earlier, double-talk detectors (DTDs) are commonly used to prevent inappropriate
adaptation that can cause excessively large parameter estimation error and possibly bursting
due to the presence of a strong near-end signal in an adaptive echo cancellation system. A DTD
turns off the adaptation by setting ¢ =0 if a test signal, ideally an indicator of when the
algorithm adaptation is seriously impaired by the near-end input, exceeds a predetermined
threshold 7.

Two factors are crucial to the effectiveness of DTDs, namely the selection of the test signal
and the determination of the threshold. The test signal should truly reflect the seriousness of
impairment caused by the near-end input on the adaptive algorithm. An inappropriately chosen
test signal can caused the DTD either to be too cautious and turn off the adaptation when the
influerice of the near-end signal is actually not so damaging, or to be too bold and continue
the adaptation even when the near-end signal may result in a large parameter estimation error
and possibly bursting. Similarly, an unwisely selected threshold T can be so low as to stop the
adaptation too frequently, in which case the echo canceller may not be able to adequately track
the time-varying characteristics of the echo path. This threshold can also be too high to stop
the adaptation before the parameter estimation error becomes undesirably large.

The conventional DTD merely tests the ratio of averaged (over some time window) powers
between the received signal rx—, and the signal ue = vx + hri-n, which is approximately vx when
vk is large and the echo leaking through the near-end hybrid is reasonably small. From —(11)
it is clear that this test signal does not determine the magnitude of the average prediction error
k and hence is not truly indicative of the necessity to halt the adaptation. For example, the
near-end signal may have substantial power but very wide bandwidth. Though it results in a
huge conventional test signal and stops the adaptation, its true influence on the convergent
parametrization of the averaged system might be insignificant because of its extremely small
al{tocorrelation R(2n). Moreover, the choice of this threshold usually has to be made through
trial and error, which is a major weakness of the conventional DTD. We shall propose, through
glle following discussion, a new DTD which provides a test signal with an easier-to-select

reshold.

4.1. A new double-talk detector

I The analysis in Section 2 suggests the use of a test signal different from the conventional one.
nstead of the ratio of average powers, the test signal should be given by

| Avg{uere-n}|
To= e} @9




E EAES

= w8 W Atvuium

230 Z. DING, C. R. JOHNSON JR. AND W. A. SETHARES

Since this ratio is the key factor in determinng the magnitude of the equilibrium for the
averaged system, it can indicate more accurately the impairing influence of the near-end inpyt
on the algorithm. To avoid bursting, the test signal can be compared against the threshoiq
O = (1 — 8)/| omax| (8 < 1) and the algorithm frozen when 77 > 6. As a result, given relatively
smooth behaviour due to a small step size g, halting the adaptation when 7| > © will result
in the ‘convergent’ average A, i.e. £”, satisfying

Averagef urrx—n}| _
£1-6
Average{rk_,) (25)

odh®] = ] |

according to (24), and bursting can then be prevented.
Generally one would like to choose the threshold © (>0) large enough to achieve rapid
convergence and good tracking ability but also small enough to maintain tolerable parameter
estimation error. Note that the performance of the near-end echo canceller as measured by the
signal-to-noise (echo) ratio (SNR) of its transmitted signal si is directly related to the parameter
error # through
___E(v}} _ E(v}} _  E{v}]
“Ellw—v)®) El(Are-1)®) A’El(re-1)")

Therefore the asymptotic performance of the echo canceller is better if the convergent prameter
error |A| is smaller. Large | /| degrades performance even though |/ | may not be large
enough to cause bursting. The new test signal 7T, has the advantage that an appropriate
threshold © can be easily determined from the allowable parameter estimation error | #|. For
instance, given a constant £ > 0, turning off the algorithin when

T1>0=c¢ Q7)

SNR

(26)

would result in {ah™| < |ae| and consequently |2*| < e. This would keep the average
prediction error |#*{ less than or equal to £ when adequately initialized, and the real-time
eror A should be at most in the neighbourhood of .

Unfortunately, the signal vz needed to construct T is not accessible at the near-end hybrid.
Thus an approximation has to be used to form the test signal. As with the conventional test
signal justification, when the echo path parameter 4 is small (i.e. 4 < 1), the signal ux is a good
estimate of vx when vy is substantial. Therefore the actual test signal we propose is

n

_ | Averagefusri-_a}| [
Average{rf_,)

Average{ veri-1} ;
Average{ri_n) +h D i 28)

Consequently a threshold of value © = 0 can only guarantee that
|A*| <O +|h| (29)

Thus, in order to keep the parameter estimate at most in the e-neighbourhood of #, our DTD
is to halt the adaptation algorithm when the test signal T, exceeds a threshold O < e.

It should be noted that using s in place of u, in T, as a better estimate of vx is inadvisable
since the adaptive system is to reduce the correlation between s¢ and ri_, no matter how big
| e/t | might be. Thus the adaptive system using such a DTD risks the possibility of extremely
poor performance and even bursting. Simulations have confirmed the possible occurrence of
such misbehaviour.

As noted earlier, the conventional DTD halts the adaptation whenever the test signal

_ _Average{uki) (30)
¢ Average{rt.i_1}
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exceeds a threshold ©. But for this test signal, the relationship between T. and the acceptable
parameter error € is not simple. It is very hard to determine a threshold 7t so that | Al is at
most in the neighbourhood of & for all possible input signals. Differences in signal power,
carrier frequency and bandwidth will affect the average parameter error k. The difficult task
of optimizing the threshold © over the set of all possible inputs is usually accomplished through
trial and error in practice.

4.2. A simple example

The following example is given to illustrate the difficulty in determining an appropriate
threshold for the conventional DTD and the potential advantage of using the newly proposed
DTD. For sinusoidal input signals given by (12) and (13), take w;=0-3, wr=0-1, n=1,
A>=0-1and ¢ =1 rad. Assume that o = # = 0-1. Given these conditions, both test signals Ty
and T. can be calculated. Figure 6(a) illustrates the conventional 7. for 4, = 0-1,0-2,...,1-0
as a function of a (fixed) prediction error #. For each A, the average equilbrium #* can be
obtained through (16); these are connected to form a dashed curve in Figure 6(a). Similarly,
Figure 6(b) displays the new T, for the same values of A and superimposes the average
equilibria curve for various A:.

From Figures 6(a) and 6(b) one can predict the average behaviour of Ay of the adaptive
system given the specific sinusoidal input signals. Without a DTD, on average Ay will move until
(16) is satisfied. In terms of Figure 6(a) or 6(b), (A, T:) or (h, Ty) will move ‘along’ a solid line
corresponding to the particular A, towards the point where this line interesects the dashed line
of average equilibria /*. When a DTD is used, Ax will move in exactly the same way as long
as the test signal is below the preset threshold; Ay stops moving shortly after the test signal
grows above the threshold or when the initialization causes the test signal to start above the
threshold.

Using Figures 6(a) and 6(b) we can decide the thresholds needed in each case to achieve
| 2| < e. Usually the threshold is chosen as large as possible to maintain good tracking ability.
Suppose, for this example, that we wish to have lﬁ | < 1. Then Figure 6(a) indicates that

. = 10 seems to be the threshold we should choose for the conventional DTD in order to keep

100

Az 0.1 j
1: A=0.1
2; Ap0.2 7
3: 4=0.3
4 Ap0.4
5: A=0.5
6: A=0.6
7: A=08

B: Ap=1.0

—
average equilibrim h

threshold A

conventional test signal T

Figure 6(a). Precalculated 7. and average equilibria of the system for different values of near-end A4 when o1 =03,
wr=0-1
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Figure 6(b). Precalculated T, and average equilibria of the system for different values of near-end 4, when w, =0-3,

Figure 6(c). Precalculated 7. and average equilibria of the system for different values of near-end A, when w, =0-5,

Figure 6(d). Precalculated T, and average equilibria of the system for different valﬁes of near-end A, when wy =05,

new test signal Tn

conventional test signal T¢

new test signal Tn
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| h*| < 1 whatever A, is present. Figure 6(b) shows that ©,=1 should be the threshold to
choose for the new DTD. In both cases the threshold is chosen as the value of the test signal
corresponding to | A%| < 1.

Notice that in practice the frequencies of the input signals are unknown and 6. = 10 may not
be a wise choice for other frequencies. For example, if we have w; =0-5 and w2 = 0-1 instead,
then redrawing Figure 6(a) for this pair of frequencies as in Figure 6(c) shows that the preferred
threshold now becomes O, = 17. Therefore, without the knowledge of the actual input signals,
a compromise threshold for the conventional DTD may have to be chosen after numerous
¢rials. On the other hand, the same value of the threshold for the new DTD, i.e. 6,=1, can
be chosen without the help of Figure 6(b) merely by following the proposed guideline that S,
be slightly smaller than ¢ = 1. Even if the signal frequencies are now w; =0-5 and wz =0-1, the
redrawing of Figure 6(b) as in Figure 6(d) shows that On =1 is still the preferred choice of the
threshold for the new DTD. This seems to give the new DTD an advaniage in practical
applications when the input signal frequencies are unknown and figures such as Figure 6(a) are
in fact unavailable.

It can be inferred from Figures 6(a) and 6(b) that the conventional DTD is more sensitive
to the value of parameter estimation initialization in comparison with the new DTD. Suppose
that to achieve | 7| < 1, ©. = 10 and ©, = 1 are chosen for the two DTDs. For 0:1 < 4, € 0-2
the #* are very small as shown in Figures 6(a) and 6(b); thus the parameter error will converge
to |#| < 1 when no DTD is used. When the conventional DTD is used, the adaptation will be
stopped once T. exceeds ©;=10. Thus, even though 0-1 < A, < 0-2, if the algorithm is
initialized such that ki, < —6-35, the test signal will be above the threshold and the algorithm
will be halted almost instantaneously so that 7 = /1o < —6-5 will be maintained. However, if
th; new DTD is used, the test signal will be below 8,=1 for 0-1 < A; € 0+2 even when
| Aig | = 10. Therefore the algorithm will not be halted for | o] < 10 and the parameter error will
converge to the desirable | 4 | < 1. Our simulations illustrated this sensitivity.

This example demonstrates an essential difference between these two DTDs. It shows that
both DTDs can help to prevent the occurrence of excessively large parameter €rror if the
respective threshold is appropriately chosen and if the parameter estimate is adequately
initialized. The appropriate threshold for the conventional DTD has to be chosen
experimentally, while the guidelines to determine an appropriate threshold for the new DTD
are more helpful, which seems to be an important advantage for using the new DTD.
Furthermore, the new DTD proposed here more accurately indicates the need to halt the
adaptation and hence exhibits less sensitivity to the initialization of the parameter estimate in
comparison with the conventional DTD. '

5. CONCLUSIONS

We have studied the bursting behaviour of a simple adaptive echo canceller under sinusoidal
signal inputs and uncovered its frequency dependence. We have derived not only an input
magnitude condition but also an input frequency condition for burstng avoidance. These results
tnay lead to a better understanding of the excitation requirements of an adaptive echo canceller
in a feedback environment. We have reaffirmed the importance of the decorrelation between
the input v, and the contemporaneous received signal rx_» as in Figure 2 for the successful (i.e.
b_Urst~free with small estimation error) functioning of the adaptive echo canceller. Wide-band
Signal inputs and substantial loop delay can provide such a decorrelation. Finally, a ‘new’
double-talk detector threshold test signal has been proposed which could lead to the
development of guidelines for the improved design of adaptive echo cancellation systems.
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APPENDIX

Proof of Proposition 1
Rewrite the updating algorithm of (1} as
A= hi_1 — pSkri—n 3D

Over a period of N samples the update becomes

N
Brsn=hg—p Z Sk+ilk+i-n (32)

i=1

If & is small enough, we can approximate
fl'k+,'=il-k, i=1,2,....,. N—1 33
If | whe| < 1, (32) can be rewritten as
ogs n = athy — pNA(ch) (34)
where from (15) and the approximation of (7), (8) we have
N
Alahy) £ - D) SkriFkeion = @ AVE{Skailksion)
i=1
__ 0Sa’Atcos@me) 0-5ahy A3
1+ (ochr)? — 2ahi cos(2nan) 1+ (@hi)? — 2ahy cos(2ne;)

Notice that A(ah) is C1 and A(wh™) =0. According to (17) we know that either oh*<0or ah®20.
Suppose that 0 < aA” < 1, then from (17) we have cos(2aw;) < 0. But then

A0)=0-5a2A4% cos(2nw,) < 0 (36)

(35)

From the assumption, A(ak) # 0 for ah € (— 1,0]. Thus, owing to its continuity, A(ah) does not change i
sign in (— 1,0} and hence from (36)

Alah) <0, vohe(—1,0] (37
Also,
KR _a?Al[cos? (2nw1) — ah cos(2nwy)] A3l — («h)?])2
— Alah) = = = >+ =3 = 3 (38)
dah [1 + (xh)? — 2(ch)cos(Znw )] [1 + (ah)® — 2ah)cos(2nw:)]

Since cos(2nw) < 0, it is immediate that
d - .
= Alah) >0, vahe[0,1) (39)
doch

A(ah) is monotonic in [0, 1) Therefore e/1™ must be the unique zero-crossing point in [0, 1) and is thus

unique in (— 1, 1). Also, «h™ is locally stable according to (39). Furthermore, for 0 < ah® < 1 we have
Alah) <0, vahe(—1,ah™
Alah) >0, vake (@h® 1)

Similarly, it can be shown for —1 < aA™ < 0 that (40) holds. If ch™ =0, then cos(2nw,) = 0 and from

(40)

]
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(38) we have
- A1 - (ah)?])2 ' - -

2 Ateh)= A2(1 — (ah) )] _>0, vahe(-1,1) @1

dach 1 + (ah)* — 2Hah)cos(2nws )]
Hence ah® =0 is locally stable, for which (40) also holds

The result of (40) shows through (34) that for |ah |<1,if —1< ahk < ah®, then _over the period

of N iterations ahy will be approximately reduced by pN Alahy), where A(cxhk) <0, and if
ah*<ah <1, then over N 1terat10ns o, will be approximately reduced by gN Aahy), where
A(akx) > 0. Thus, in elther case, ah™ is locally stable, and if | ofix| < 1, ok will be moving towards the
average equilibria ah”, eventually settling in the neighbourhood of ah*

Proof of Proposition 2

Suppose that all the solutlons to (16) have magnitudes | «#*| > 1. Consider the case cos(2nw) > 0 for
which (17) dictates that ah® < — 1. Now assume bursting has not occurred and at the time instant k

ah™< -1 <ahp <1 42)
Then using the results in the proof of Proposition 1 we have
Alah) #0, Vahe(—1,1) (43)
From the continuity of A(a/) and the fact that
A(0) =0-5a* A1 cos(2nw) > 0 49
we can conclude that for af™ < -1
Alahi) >0, vahe(—1,1) “45)

This result indicates that if & is such that | ahk| < 1, then over the period of N iterations ahx is going
to be reduced approximately by uN A(k), where A(hk) > 0. Thus ok will move towards the stability
boundary | ahl = 1. This motion will continue until A{ak) < 0. But since (45} is true, ahy will continue
moving towards the stability boundary until reaching or crossing it. Thus, assuming (42), ahx will either
move across the stability boundary and bursting thus occurs, or approach arbitrarily close to the stability
boundary without crossing it.

The proof is similar for a#™ > 1 > ahy > —1 when cos(2nw ) < 0.

Proof of Proposition 3
The proof is trivial if cos(2w,) =0, so assume cos(2w;) = 0. Let x = ah™ and let
1= xe —j2nws |2 1 + x? - 2x cos(2Znwz)

=————— c0s8(2nw,) = cos(2n 46
|1 — xe~ /22 (2nu) 1+ x* —2X cos(2nw;) il e
It then follows that
K1+ x?
KA+ XD o k=14 x> 2x cos2nur) “7)
cos(2nw;)
If cos(2nw,) > 0, then x=ah™ < 0 from (17) and X > 0 from (46). Therefore
) K(1 + x%) ) 2
K1+ x)-2xK € ——""—-2xK=1+x*—2x cos(Znwz) < 1 + x* - 2x 48
cos(2nw;)
Hence K(1 — x)? < (1 — x)* and consequently X < 1. If cos(2nw;) < 0, then x > 0 and K < 0. Therefore
) K1+ x%) 2 2
—K(Q+xH)-2xg——-2xK=1+x"—-2xcosQuan) <1+ x"+2x (49)
cos(2nw)

Thus K > — 1. It can hence be concluded that
| 1-ah™ eujanlz

|K| = | ol T cos(Rnw )| €1 (50)
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Proof of Proposition 4

If cos(2mw;) = 0, then ahi™ = 0 is the only equilibrium and bursting can be avoided no matter
is. Thus (wy, w2} pairs exist such that some solutions of (18) satisfy |ak”| < 1.
On the other hand, if cos(2nw;) # 0, for any M > 1, i.e.

what s

M=l+€, e>0 (51}

we can find an w; and w; such that
1+8
1+e+2(1+8)5[1 +(1+6)7 (52

where 0 < § < g2, which results in o™ = —(1+9) < —1 as solution to (18). Hence {w;, w:) pairs also
exist such that some solutions satisfy | a/”| > 1 and bursting may occur.

1+
cos(2nw;) = and cos(Znw;) =
1+¢
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