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Abstract

Coordination failure, or agents’ uncertainty about the action of other agents, may be
an important source of congestion in large decentralized systems. The Fl Farolproblem
provides a simple paradigm for congestion and coordination problems that may arise
with over utilization of the Internet. This paper reviews the FEl Farol problem and
surveys previous approaches, which typically involve complex deterministic learning
algorithms that exhibit chaotic-like trajectories. This paper recasts the problem in
a stochastic framework and derives a simple adaptive strategy that has intriguing
optimization properties; a large collection of decentralized decision makers, each acting
in their own best interests and with limited knowledge, converge to a solution that
(optimally) solves a complex congestion and social coordination problem. A variation
in which agents are allowed access to full information is not nearly as successful. The
algorithm, which can be viewed as a kind of habit formation, is analyzed using a weak

convergence approach, and simulations illustrate the major results.
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1 Introduction

Standard models of congested public resources focus on the costs that an individual user im-
poses on other potential users. For example, each person who travels on a congested highway
or visits a popular web site increases the waiting time of subsequent users. Congestion arises
because individuals do not consider the effects of their actions on other users. Explicitly
charging users for these unobserved costs can eliminate the socially inefficient congestion
of a scarce, shared resource. However, this approach often utilizes equilibrium solutions in
which all agents are fully informed about the structure of the problem and the behavior of
other agents. Consequently, the relationship between agents’ behavior and the congestion
they experience is easily discerned. This reliance on information-intensive equilibrium solu-
tions limits the usefulness of these models in solving resource allocation problems in large
scale systems such as the Internet.

In contrast, this paper focuses on imperfect information and coordination failure across
agents as a source of congestion in large decentralized systems. We utilize a coordination
problem or simple congestion game, framed by W. Brian Arthur! [3], as a simplified model
of a large class of congestion and coordination problems that arise in modern engineering
and economic systems. FEl Farol is a bar in Santa Fe?. The bar is popular, but becomes
overcrowded when more than sixty people attend on any given evening. Everyone enjoys
themselves when fewer than sixty people go, but no one has a good time when the bar is
overcrowded.

How should an agent decide whether or not to go out to the bar, given that the actions of
other agents are unknown? The problem set up emphasizes the difficulty of coordinating the
actions of independent agents without a centralized mechanism. The analogy between the
El Farol problem and decentralized resource allocation is noted by Greenwald et. al. [10], as
well as in our prevous work [4], [22]. Glance and Huberman [9] and Huberman and Lukose
[13] also consider the dynamics of congestion on the Internet when externalities similar to

those found with public goods prevail. Unlike the standard public good framework, in the Fl

!The market entry game analyzed by [18] and [23] has a similar structure as does the “minority game”

analyzed by Challet and Zhang [7] and Savit et. al. [20].

ZArthur’s El Farol scenario is also known as the Santa Fe bar problem.



Farol scenario fully informed optimizing agents will not increase consumption of a publicly
available resource until it experiences an inefficient level of congestion: if agents could predict
the behavior of other agents perfectly the bar would never be crowded and all patrons would
have a good time®. The only source of congestion, at least in a deterministic framework, is
the inability of agents to coordinate their actions.

Arthur originally posed the FEl Farol problem to illustrate the aggregate dynamics of a
system composed of bounded rational agents who rely on inductive learning. Agents attempt
to predict the aggregate behavior of other agents, which simultaneously depends on all agents’
predictions. Consequently, the interaction between individual learning strategies and the
environment that agents face plays a key role in determining the dynamics of the system.
Using FEl Farol to model the Internet environment emphasizes that congestion can arise
from coordination failure across agents, as well as from absolute constraints on bandwidth.
Furthermore, in contrast to many game theoretic treatments of learning and coordination, the
level of congestion at El Farol depends on the actions of a relatively large number of individual
agents. These features make it an especially useful tool for analyzing information technology
systems which are characterized by decentralized decision making and rapid endogenous

changes in the operating environment.

1.1 Overview

In our previous treatments [4], [22] we proposed a deterministic adaptive algorithm based
on habit formation which enabled agents to solve the Kl Farol coordination problem in a
decentralized environment while avoiding the seemingly random fluctuations in aggregate
attendance that Arthur’s simulations demonstrated. Here we consider the El Farol problem
in a stochastic setting. We analyze a stochastic adaptive algorithm analogous to the one
introduced in [4], [22] and consider the dynamic and equilibrium characteristics of the system
in relation to the mixed and pure strategy equilibria of the corresponding game. We employ
some novel convergence results [5] which approximate the dynamics of the (stochastic) system

using (deterministic) ordinary differential equations, and allow a concrete description of its

3The stochastic or mixed-strategy framework may suffer from socially inefficient congestion as discussed

below.



convergence and stability properties. In addition, we demonstrate that the information

structure plays a crucial role in determining the behavior of the system.

1.2 How do agents decide to attend El Farol?

In Arthur’s simulations, agents attempt to predict how many others will attend El Farol each
time using a simple kind of deterministic inductive reasoning. If they predict attendance
will be less than sixty then they go to the bar, if they predict attendance will be greater
than sixty then they stay at home. Each agent uses a number of “rules of thumb” such as
simple averages, moving averages, linear or nonlinear filters to formulate predictions, and
then acts on the prediction that was correct most frequently in the recent past. When Arthur
simulated a bar-going society of 100 inductively rational agents, he found that the population
at the bar tended to hover near 60 though attendance varied greatly, often exceeding 70 or
dropping below 50. The time series of aggregate attendance appeared random, despite the
deterministic rules of the underlying agents.

Here we consider the Kl Farol problem in the stochastic setting. We briefly discuss the
characteristics of pure and mixed strategy equilibria of the corresponding congestion game
and then frame our adaptive learning rule in terms of a mixed strategy profile. There are
several advantages to considering the stochastic version of the adaptive learning rule: a
clearer problem statement, a simpler algorithm that is amenable to detailed analysis, and
more general results. The analysis demonstrates that the type and characteristics of the
equilibria actually observed depends crucially on the nature of the information available to
agents. In particular, we show that limiting the information available to agents leads them
to successfully coordinate on a Pareto efficient equilibrium while providing more information
leads to an inefficient outcome. Our results emphasize the critical role that information
exchange plays in alleviating congestion that arise from coordination failure.

A somewhat unusual feature of the El Farol problem statement is the discontinuous tran-
sition from uncrowded to crowded that occurs when the 61st patron arrives. While this
may seem like an unrealistic assumption for a bar, discontinuities and extreme nonlinearities
are prevalent in information technology applications. For example, when a network server

divides resources equally among users the performance of the entire system can dramati-
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cally decrease with the addition of a single user. Many routers handling data packets have
fixed queue lengths: additional packets are dropped. When data from two sources arrive
simultaneously, exceeding queue capacity, packets from both users may be dropped, leading
to long delays for both messages. The quality of audio and video data streams degrades
rapidly when packets are dropped. In general, systems which experience congestion at a
bottleneck will respond nonlinearly when traffic increases even slightly above the capacity of
the bottleneck. The preference structure of the El Farol problem mimics the discontinuous
and nonlinear responses to increases in traffic observed in information systems.

In addition, the discontinuity in agents’ response to attendance levels helps distinguish
between congestion arising from overuse of a public good and congestion arising from coor-
dination failure. When the value of attendance declines slowly in response to larger turnouts
agents will continue to attend until the value of attendance for all bar goers has been reduced
to the value of staying at home. Congestion in this case may be optimal for the individual
but nonetheless inefficient for society: everyone could be made better off by a compensation
scheme that induces some agents to stay home. The discontinuous preferences utilized in
the Kl Farol framework help minimize the importance of individually optimal but socially

inefficient congestion.

1.3 Other Approaches to El Farol

The El Farol problem has received a fair amount of attention from computer scientists and
physicists, and from researchers in the area of complex systems. Casti uses the El Farol
problem to frame his definition of a complex adaptive system as one with “a medium-sized
number of intelligent, adaptive agents interacting on the basis of local information.” (p. 10,
[6]) The dynamics of Arthur’s system are entirely deterministic (only the initial values of
agents parameters are chosen randomly) the resulting pattern of attendance appears random.
The uncertainty or apparent randomness in the system is entirely endogenous, created by
the interaction between the number of agents attending the bar and the set of prediction
rules active at any given time.

Johnson et. al. [14] consider how the variance in the El Farol problem changes in response

to the number of predictors available in the entire system and the number of predictors that



each agent selects. Zambrano [24] applies results from Bayesian game theory to show that a
system composed of Bayesian learners will converge to the set of Nash equilibria. Greenwald,
Mishra and Parikh [10] examine whether or not boundedly rational agents can learn their way
to a mixed strategy equilibrium. Note that agents in their model are not able to distinguish
the effects of their own actions on aggregate attendance, which we demonstrate is a critical
factor in determining system behavior. Challet and Zhang [7] simplify the Kl Farol problem
even further by considering a ‘minority game’ in which agents choose one of two groups
to join and receive positive payoffs when they choose the smaller group. The information
available to agents is limited even further: they only observe which group was the minority,

not the number of agents who chose that group.

2 FEl Farol as a Game

The El Farol problem is a type of congestion game, first characterized by Rosenthal [19]. In
congestion games each agent chooses a resource to utilize. The agent’s utility depends on the
number of other agents who choose to utilize the same resource. Finding a Nash equilibrium
of a congestion game is equivalent to a constrained minimization problem.

We consider the El Farol problem as a one-shot simultaneous move game. Let agents
have identical payoffs: b is the payoff an agent receives for attending a crowded bar and ¢ is
the payoff an agent receives for attending an uncrowded bar. Without loss of generality let
h, the payoft received for staying home, be zero. Let M be the total number of agents and
N be the maximum capacity of an uncrowded bar.

In a deterministic setting where agents utilize only pure (deterministic) strategies a Nash

100

60) such equi-

equilibrium occurs when exactly sixty agents choose to attend. There are (
libria. There are no symmetric pure strategy Nash equilibria. Pure strategy Nash equilibria
are Pareto efficient.

Arthur’s approach side-steps the usual game theoretic considerations by focusing on the
process of prediction in an endogeneously evolving environment rather than on the binary

choice between the strategies of attending and staying home. The only information available

to agents is attendance in each time period. It is often reasonable to assume that agents



do not and need not remove themselves from the aggregate statistics before reacting to
them. However, because the FEl Farol problem contains a knife-edge response to increased
attendance the analysis of equilibria depends crucially on how the agent accounts for his or
her own behavior.

Suppose that agents use predictive rules like those suggested by Arthur and that atten-
dance at FEl Farol for the last ten periods has been exactly 60. How should an individual
agent decide whether or not to attend in this case? Common sense suggests that agents
who have attended the bar every period should continue to attend every period. On the
other hand, agents who have not attended at all in the last ten periods should remain at
home because the addition of another agent will result in attendance of 61. The key issue
is agents’ ability to account for their own past behavior. The oft repeated conjecture about
the El Farol problem, that “no shared, or common, forecast can possibly be an accurate one;
deductive logic fails” [6] depends crucially on the assumption that agents cannot recognize
their own attendance pattern in the aggregate.

A formal treatment of the knife edge case when attendance exactly equals 60 would alter
the predictive rules to account for the agent’s own behavior: agents should attend if they
predict 59 or fewer agents other than themselves will attend and stay home if they predict 60
or more agents other than themselves will attend. In this scenario, Arthur’s formulation of
the El Farol problem has well-defined steady states in which all agents can utilize the same
successful predictive rule. The heterogeneity in agents’ actions arises from the heterogeneity
in information: each agent’s information set is unique because only the agent knows whether
or not they were among the bar attendees at any point in time. When agents do not account
for their own behavior they must draw different conclusions from the same data set in order
to produce average attendance of 60.

Moving to a stochastic framework which allows mixed-strategy equilibria requires explicit
payoffs for the different outcomes. Each agents’ mixed-strategy profile consists of a single
parameter p; which indicates the probability that agent 7 attends. Let M be the total number
of agents, N be the total observed attendance, N~¢ be the observed attendance exclusive of

agent i and N be the maximum capacity of an uncrowded bar.



A mixed-strategy equilibrium must satisfy the condition:
gPr(NT SN —-1)4bPr(N">N-1)=0 (1)

or

b
b—yg
which states that the expected return to the pure strategy of attending the bar exactly equals

Pr(NT"<N-1)=

the expected return to the pure strategy of staying home. This must hold for all agents
simultaneously. Also note that the indifference condition that determines a mixed strategy
equilibrium depends on the distribution of total attendance which in general depends on the
probabilities for individual agents, not just on the mean of the entire distribution.

For a symmetric mixed strategy equilibrium the probability that A" — 1 or fewer agents

attend is :

N_§_1 (va;;) (P =), .

N-i=0
When the symmetric mixed-strategy equilibrium is p = .6 then g ~ —0.98 0.

The symmetric mixed strategy Nash equilibrium is not Pareto optimal because agents
increase their probability of attending until the expected return to attendance exactly equals
that of staying home, 0. In addition, the randomness in agents’ choice of strategy will
generate inefficient variance in attendance. Any attendance outcome that falls short of the
maximum capacity of an uncrowded bar can be improved by increasing attendance, and vice

versa. The Pareto optimal symmetric mixed-strategy profile? can be calculated by:

N=N N=M
max Z g N Pr(N) + Z b N Pr(N). (3)
P N=0 N=N+1

This p maximizes the total expected payoff to all agents which also maximizes the expected
return to individual agents. For example, when ¢ = 1 and b ~ —0.98 the Pareto efficient
symmetric mixed-strategy profile is p & .5 and the expected payoff to an individual agent

is &~ .48. In contrast, the symmetric mixed-strategy Nash equilibrium is p &~ .6 and the

*The mixed-strategy profile that maximizes the expected return to each agent given the constraint that

the expected return be equal for all agents.



expected payoff to an individual agent is 0. In this sense the El Farol problem suffers from
inefficient congestion similar to that observed in a standard public goods framework in a
stochastic framework: in the mixed strategy (stochastic) Nash equilibrium each individual
agent’s probability of attendance is just high enough that the expected return is 0.

There are no asymmetric mixed strategy equilibria. Consider two agents with differing
probabilities of attendance and, without loss of generality, label them agents 1 and 2 with
p1 < p2. The indifference condition (1) must hold for every agent, which implies that
Pr(N-' <N —1)equal Pr(N=2 <N —1). The density function for attendance exclusive
of agent 1 can be expressed in terms of the density function for attendance exclusive of agents
1 and 2:

Pr(N7' =0)=Pr(N~"72 =0)(1 — p,)

Pr(N'=2)=Pr(N "2 =2)(1 —p2) + Pr(N"""2 =2 — 1) ps.

By expanding and combining sums the cumulative distribution that agent 1 faces can be
expressed as:

r=X-1
Pr(N7' < X) = Pr(N~'? =)+ Pr(N~"7% = X)(1 — pa).

z=0
The cumulative distribution function that agent 2 faces differs only by the term (1—ps) which
is replaced by (1 — py). Consequently, the indifference condition cannot hold simultaneously

for two agents with different probabilities.

3 A Learning Rule for Mixed-Strategies

Arthur’s inductive learning approach requires agents to explicitly predict how many others
will attend. A mixed strategy Nash equilibrium requires knowledge of the entire distribution
of attendance. Our boundedly rational adaptive learning rule does not rely on prediction of
or inference about other agents’ behavior, rather, agents adapt their probability of attending
over time based on the history of their own experiences at Kl Farol.

It is tautological that people prefer to experience good times rather than bad, to repeat

the enjoyable and to minimize the unpleasant. Though the FEl Farol situation provides a



simple setting in which good and bad are clearly defined, it is not possible to know in
advance whether a trip to the bar will be good or bad, since this depends on the actions
of everyone else. Suppose that the agent initially attends p percent of the time. Consistent
with the desire to maximize pleasure and minimize painful experiences, the agent goes more
often (increases p slightly) if the bar is uncrowded, but prefers to go less often (to decrease
p) if the bar is crowded. Over time, the agent gathers information about the state of the bar,
and ‘remembers’ this in the form of the parameter p. This learning rule can be interpreted as
a kind of habit formation or stimulus-response, and is directly analogous to certain adaptive
algorithms from the signal processing literature [12]. However, the current situation is more
complicated since the “true” value of the unknown depends explicitly on everyone’s behavior.

Suppose M agents compete for the NV spaces at El Farol. The probability that the ith
agent attends is p;. Let k be a time (iteration) counter and N(k) be the number of agents
attending at time k. Let p be a characteristic parameter that defines how much each agent
changes p; in response to new information and let p;(k) designate the instantaneous value of

p; at the time k. Let

N(k) =" aik) (4)

=1
where the x;(k) are independent Bernoulli random variables that are 1 with probability p;(k)
and zero otherwise. The evolution of the p;(k) is then defined by

0 if pi(k) = u(N(k) = N) 2i(k) <0
pik+1) = 1 if pi(k) — p(N(k) = N) (k) >1 . (5)
pi(k) — p(N(k) = N) xi(k) otherwise

The operation of the algorithm is uncomplicated. At each time k the agent flips a biased
coin, attending with probability p;(k). When the agent attends, then the parameter p;(k) is
adjusted, increasing it proportionally to N(k) — A if the bar is uncrowded and decreasing
it proportionally to N(k) — A if the bar is crowded. Since the p;(k) represent probabilities,
they must be constrained to lie within 0 and 1. When the agent does not attend x;(k) is zero
and p;(k + 1) = p;(k). Note that the stepsize does not decrease over time. The simplicity of

the scheme makes it feasible to analyze the resulting behavior, as demonstrated in section 5.
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In Arthur’s formulation of the problem, agents have access to information about at-
tendance at the bar even on evenings when they do not themselves attend. This can be

incorporated into the algorithm (5), giving the update

0 if (k) — p(N (k) — ) < 0
Pl 1) = 1 i k) — (N (K) = ) > 1 (6)
pi(k) — u(N(k) = N) otherwise

which mimics the information structure used by Arthur’s agents. As will become clear, this
information structure is a key element in the behavior of the algorithm. When agents base
their updates on only their own experiences as in (5) they utilize “partial information”. In
contrast, (6) utilizes “full information” because agents base their decisions on the full record
of attendance.

A related version of the stochastic algorithm updates according to whether the bar is

crowded or not:

0 if pi(k) — i sgn(N (k) = N) i(k) <0
pilk+1) = 1 if pi(k) — psgn(N(k) — N) z;(k) > 1
pi(k) — p sgn(N(k) — N) z;(k) otherwise

(7)
None of these updating rules rely explicitly on payoffs. The reliance of the update rules
on attendance rather than payoffs is not a crucial feature of our learning rule. An alternative
specification of the game in which the payoff for attending is (N (k) — N) and the payoff for
staying home is 0 would make the first partial information algorithm (5) depend on payoffs.
A game in which the payoffs were u for attending an uncrowded bar, —p for attending a
crowded bar and 0 for staying home would make the “signed” algorithm depend on payoffs.
Asymmetric payoffs would merely entail different stepsizes for the crowded and uncrowded
outcomes. The speed of convergence of a system with updates that depend on payoffs may
depend on the magnitude (or units of measurement) of the payoffs.
Note that when the payoff to staying home is 0 a payoff dependent updating rule as
described above will correspond to partial information. Some treatments of the El Farol

problem and of related problems like the minority game [7], [20] utilize a peculiar form of full
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information updating: agents update according to which strategy performed best regardless
of their own actions. So when 59 agents attend, for example, all 41 agents who remained
at home assume that the strategy of attending would have had a higher payoff. Of course,
had they all actually attended the bar would have been crowded. The strategy updating
in the minority game suffers from the same illusion: all agents who were in the majority
assume that they would have been in the minority if they had chosen the other group. These
updating schemes implicitly rely on agents’ ignorance of the fallacy of composition: not

everyone can attend an uncrowded bar, nor can everyone be in the minority.

4 Generic Behavior of the Algorithms

This section explores the generic behavior of the system when each of the M = 100 agents
follows the strategy defined by (5) above. Though details of the various simulations differ, a
typical case is illustrated in Figure 1. The probabilities p;(0) were initialized randomly.

Perhaps the most striking aspect of these simulations is the rapid convergence to near
the optimal value of N = 60 and the associated decline in the variance of attendance. The
outcome approaches that which would be chosen with centralized control, despite the fact
that each agent is autonomous, and makes the decision to go (or not to go) based on local
information, that is, on its own experiences.

Figure 2 shows values of the probabilities p;(k) over the course of a typical simulation run.
By the final iteration, the agents have divided themselves into two groups. The probability
parameter for 60 of the agents has risen very near 1, indicating that they attend nearly
every time. The remaining 40 agents attend less and less frequently, with their probability
parameter very near zero. This division of the population appears nowhere in the algorithm
statement; rather, it is an emergent property of the adaptive solution to the Kl Farol problem.
Despite the stochastic nature of agents of the adaptive learning rule it converges to a pure
strategy Nash equilibrium.

In contrast, Figure 3 uses the “full information” algorithm (6) to investigate the effect
of allowing the agents to update their probabilities at every iteration, whether they have

personally attended the bar or not. This reflects the information structure in Arthur’s

12



simulations. Mean attendance is approximately 60, but the variance does not decline over
time, indicating that seats in the bar often remain unfilled, and often the bar is overcrowded.
Note that the transient behavior in the initial periods is masked by the long time scale. Figure
4 should be compared to Figure 2; the probability parameters for these agents continue
to bounce randomly about some fixed value as their probabilities all increase or decrease
simultaneously in response to the same signals.

Somewhat paradoxically, agents successfully coordinate their behavior and the system
achieves a Pareto efficient outcome only when agents have access to less information. Sev-
eral authors have noted a similar phenomena in transportation routing. Mahmassani and
Jayakrishnan [17] use simulations to demonstrate that when individuals pursue a strict best
response strategy, changing their route no matter how small the improvement over their cur-
rent choice, the performance of the system as a whole degrades if more than 25% of drivers
have access to real time information about congestion. Arnott, De Palma and Lindsey ([1],

Y

[2]) show that congestion can arise because of “concentration,” or similar responses to com-

mon information, and that consequently, more information can lead to increased congestion.

5 Analysis of the Adaptive Solutions

This section analyzes the steady states and convergence behavior of the proposed algorithms
by comparing and contrasting the different algorithm forms (5) and (6). The first subsection
describes the various possible steady states. The simulations in Figures 1 and 3 suggest that
these are quite different; the analysis describes these differences in a concrete way. Section
5.3 reviews the relevant technical background on weak convergence and states the theorem
that will be used in section 5.4 to describe the convergence and stability behavior of the
algorithms about their steady states.

One simple way to understand the asymptotic behavior of the algorithms is to observe
that each p; evolves on a finite state space, a lattice with steps of size p (because the
updates are always an integer N(k) — A times the stepsize.) For algorithm (5), the zero
state is absorbing (since ;=0 is guaranteed once p; = 0). Since p; = 0 is reachable, the

algorithm can be viewed as a finite-state Markov chain with reachable absorbing states, and
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hence must converge. In contrast, for algorithm (6), p; = 0 is not an absorbing state, and

no convergence (to zero) can be expected.

5.1 Steady States of the Algorithms

The first step in the analysis of the dynamic behavior of the algorithms is to determine the
conditions under which the means of the p(k) remain fixed; that is, to determine the steady

states of the averaged system.

5.1.1 Algorithm with Partial Information

Taking the expectation of both sides of (5) gives

Edpi(k + 1)} = E{pi(k)} — pE{(N (k) = N) @i(k)},

assuming that the p;(k) are not at the boundary points 0 or 1. This expectation remains

unchanged exactly when the update portion is zero, that is, when
B{N(E) = ) a(k)} = 0.

Using (4) and the fact that E{z?(k)} = E{x;(k)} = p; (which follows directly from the

definition of x;(k) as a Bernoulli 0-1 random variable) this can be rewritten

E{(Z vi(k) = N) @i(k)} = B{(Y_ wj(k) + 1 = N) pi(k)}.

Because the term in parenthesis is independent of p;(k) this becomes

= (L=N+) E{z;(k)}) pi(k)

J#

=(1=N+)_pi(k)) pi(k). (8)

J#e
Consider any candidate steady state p* with NV ones and M — A zeroes. Let I; be the

indices of the ones and [y be the indices of the zeroes. Then there are two kinds of terms in
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(8). When ¢ € I, E]Jél p; =N —1andso

M
L=N+D p)p=1-N+N-1)p =0. (9)

J#

When ¢ € [, E]J\il p; =N, p; =0, and hence
J#e

M
L=N+> p)pi=1-N+N)0=0.
ot
Hence p* is a steady state.

Now consider any p* for which E]]\i1 p; = N that is not of the form of A" ones and M — N

zeroes. Thus 0 < p < 1 for at least one n. In this case, the relevant term in (8) is

M M
I=N+> ) ps=0—-N+> p—p)

=1
J#EN

=(L=N+N=p)p, =(1=p,) pp
This cannot be zero and hence p* is not a steady state. Hence the only steady states of
algorithm (5) are at p* consisting of V' ones and M — N zeroes. In particular, the symmetric
mixed strategy Nash equilibrium at p% = .6 for all j (for g =1, b~ —0.98) is not a steady
state of this algorithm.

5.1.2 Algorithms with Full Information

In contrast, consider a similar analysis carried out for the “full information” algorithm.

Taking the expectation of both sides of (6) gives
M
E{pi(k+ 1)} = E{pi(k)} — nE{)_z;(k) = N},
7=1
Steady states occur when E{E]Ail z;(k) — N} =0, i.e., whenever
M M M
B () = 3 B0 = 3 pilh) = A
=1 i=1 j=1

Hence any p* with E]]\i1 p; = N is a steady state of this algorithm. Note that these are not

mixed strategy equilibria of the El Farol game unless p; = .6 for every agent.

15



5.2 Derivation of the Algorithms from a Global Cost Function

To further understand the global behavior of the system we relate the algorithms utilized by
individuals to a global cost function. The algorithm can be derived as an approximation to

an instantaneous gradient descent for minimization of the cost function
1
J(k) = S(EAN(K)} = N)? (10)
where
M M M
B{N(k)} = E{) wi(k)} =) Efwk)} =) pi(k) (11)
=1 =1 =1

is the expected number of attendees at time k. The typical gradient strategy is to update

the state using

dJ(k
il 1) = i) = )5 (12)
With J(k) as in (10),
dJ (k) dE{N(k)}
= (E{N(k)} - N) ———=
api(h) (E{N(k)} = N) api (k)
From (11), the derivative is %(l(j)} = 1, and hence
dJ (k)
= FE{N(k)} — N.
)
Replacing E{N(k)} by its instantaneous value gives
dJ (k)
~ N(k)—N
dpi(k) (k)

which is an instantaneous approximation to the gradient of J(k). Substituting this into (12)

gives
pik+1) = pi(k) = p (N(k) = N). (13)

In the limited information case this update occurs only when x;(k) = 1, in the full information
case this update occurs every iteration regardless of the agent’s attendance. Adding the «
priori limits on p;(k) then gives the algorithms (5) and (6). For both algorithms F{N(k)} =

N in a steady state. However, because the limited information algorithm converges to a

16



pure strategy equilibria the actually observed costs will be 0, whereas with full information
the expected costs will be $Var[N(k)].

Similarly, the algorithm (7) based on the sign of (N(k) — A') can be derived from the
absolute value cost function J(k) = |E{N(k)} — N|. By analogy, these algorithms are
variants of the Least Mean Square (LMS) algorithms which are common in the context of
linear system identification and adaptive filtering [21]; (7) is an analog of the signed LMS
algorithm [15].

5.3 Weak Convergence

The convergence of the algorithms to these steady states can be examined by looking at the
stability properties of a related ODE. This requires considerably more technical machinery,
which is reviewed here. The basis of the analytical approach is to find an ordinary differential
equation (ODE) that accurately mimics the behavior of the algorithm for small values of .
Studying the ODE then gives valuable information regarding the behavior of the algorithm.
For example, if the ODE is stable, then the algorithm is convergent (at least in distribution).
If the ODE is unstable, then the algorithm is divergent. We follow the approach of [5], which
is based on the techniques of [8]. This approach is conceptually similar to stochastic approx-
imation theory but its assumptions (and hence conclusions) are somewhat different. First,
the stepsize p in (5) and (6) is fixed, unlike in stochastic approximations where the stepsize
is required to converge to zero [16]. Thus the algorithms do not necessarily converge to a
fixed vector; rather, they converge in distribution. Second, no continuity or differentiability
assumptions need to be made on the update terms. Hence (7) is as amenable to the method
as (5) and (6).

To be specific, consider the algorithm as a discrete time iteration process
p(k +1) = p(k) + pG(p(k), U(k + 1)) (14)

where p(k) is a vector of weights that define the probabilities, y is the stepsize, and U(k) is
a (random) input vector. The function G/(-,-) represents the update term of the algorithm,

and is in general discontinuous as in (7), though it may also be differentiable as in (5) and
(6).
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What is the nature of the random process {p(k)}? When is this process stable? How
can we characterize its convergence to steady states? These questions can be addressed by
relating the behavior of the algorithm (14) for small i to the behavior of the associated

integral equation

N

p(t) = pl0) + / Cilp(s))ds

or equivalently, to the associated deterministic ordinary differential equation (ODE)

B(t) = G(p(1)) (15)

where é() is a version of G/(-,-) that is smoothed, or averaged, over all possible inputs.
Speaking loosely, the ODE p(t) of (15) represents the “averaged” behavior of the parameters
p(k) in (14).

Suppose that (p(k), U(k)) is adapted to the filtration {Fj}, and define

Gp(k)) = E{G(p(k), U(k + 1))|F3} (16)

to be a version of (¢ that is smoothed by the distribution of the inputs U(k 4 1). This
smoothed version is often differentiable even if G itself is discontinuous. A time scaled
version of p is defined as

Pult) = preyu(t), 1 €10,00)
where [z] means the integer part of z. Note that p(k) represents the discrete iteration process,
while p,(t) represents a continuous time-scaled version. p(t) (with no subscript) is the ODE
(15) to which p,(t) converges weakly.

Let (E,r) denote a metric space with associated Borel field B(F) and let Dg[0,00) be
the space of right continuous functions with left limits mapping from the interval [0, c0) into
E. We let Cg[0, 00) denote the subspace of continuous functions, and assume that Dg[0, o0)
is endowed with the Skorohod topology.

Let {X,} (where a ranges over some index set) be a family of stochastic processes
with sample paths in Dg[0,00) and let {P,} C P(Dg[0,00)) be the family of associated
probability distributions (i.e. P,(B) = P{X, € B} for all B € B(FE)). We say that
{X,} is relatively compact if { P, } is relatively compact in the space of probability measures

P(Dg[0,00)) endowed with the topology of weak convergence. The symbol = will denote
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weak convergence, while the arrow — will denote convergence under the appropriate metric.
An excellent reference for all the mathematical terms and probabilistic constructs used in
this section is [8].

Consider the following technical assumptions:
1. {G(p(k)) :k € Z*, 1> 0} is uniformly integrable.
2 1 TR BUG(R), Ul + 1)) = G(p()))*} = 0.

Theorem 5.1 : Under assumptions 1-2, {p,} is relatively compact and every possible limit

point is a random process in C[0,00). Furthermore, every limit point of {p,} satisfies (15).

This is a special case of Theorem 1 in [5]. Both the uniform integrability (technical assump-
tion 1) and the mean convergence in assumption 2 follow directly from the boundedness of
the p(t).

The theorem asserts that the iteration (14) will behave like the ODE (15) for small
enough p. If the solution to the ODE is unique, then the sequence actually converges
in probability (not just has a weakly convergent subsequence). The solution of the ODE
is continuous, and the Skorohod topology for continuous functions corresponds exactly to
uniform convergence on bounded time intervals. Hence convergence in probability means
that for every T' > 0, ¢ > 0, lim, o P(supoc,<7 [Pu(t) — p(t)| > ¢) = 0. This is useful
because the algorithm behaves like the relevant ODE, and the ODE can often be analyzed

in a straightforward manner.

5.4 Convergence of the Algorithms

This section considers the convergence behavior of the algorithms (5) and (6) by finding the
appropriate ODE (15) and examining its stability properties.

5.4.1 Algorithm with Partial Information
The appropriate smoothed update (16) for algorithm (5) is
G(pi) = E{(N(k) = N) ai(k)}, fori=1,2,..., M.
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This can be rewritten exactly as in section 5.1.1 as

(L=N+) " pi(k)) pi(k)

J#i

and the ODE (15) is then
pi(t) (1 =N+ 30 pi(0) pi(t)
IS IR AU B IR SRR -
pum(t) (1= N+ 300 pi(0) pu(t)

The theorem of the previous section shows that the iteration (5) behaves like this ODE.
The remainder of this section shows that this ODE (and hence the algorithm with partial
information) converges to steady states p* which consist of N ones and M — N zeroes by
showing that the ODE is stable about these steady states.

Let p(t) = p(t) — p* be the “error” term. Stability of the ODE (17) about p* is equivalent
to stability of

}ﬂi)z—(l—/\/—l-z:p] -I-Zp]> ty+p;) fori=12...M (18)

J# J#
about the origin p(t) = 0.
If © € Iy (the set of indices of p* with zero entries) then E#i p; =N, p; =0, and (18)
becomes
(1—|—ij ) pi(t) i€ I (19)
JF
Thus, for small perturbations p away from steady state, these states are exponentially stable.
If ¢ € I; (the set of indices of p* with entries equal to one), then E#i pr= N—1,pr =1,
and (18) becomes

ij )+11, (20)
JF

which is not stable about p(¢) = 0, as can be seen from a linearization argument. However,

the algorithm (5) clips p(k) and hence the ODE must clip p(¢), that is, 0 < p(t) < 1is
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enforced by the algorithm statement. (This is a result of the meaning of p(t) as a probability.)
Hence pi(t) = pi(t) — p; < 0 Vi € I, which implies that > .., p;(t) < 0 once (19) has
converged. Hence the right hand side of (20) is positive for small p;(t), ﬁj(t) > 0, and
pi(t) — 0 from below (equivalently, p;(¢) — 1 from below for ¢ € I1). Formally, this requires
a decomposition into the exponentially stable states ¢ € [y and the clipped states ¢ € [;.
(See [11] for such a formalization.) The exponential stability of (19) guarantees that the Iy
states converge rapidly, after which the [; states converge. The practical upshot is that the
region of convergence about each steady state is correspondingly smaller.

Thus the ODE converges to one of the steady states p*, assuming it is initialized close
enough and the stepsize is small enough. The algorithm (5) converges similarly. Figure 5

shows a numerical simulation of this ODE (17) for the case where M = 100 and N = 60.

5.4.2 Algorithm with Full Information

The appropriate smoothed update (16) for the algorithm (6) with full information is
G(pi) = E{(N(k) = N} fori=1,2,.... M.

As in section 5.1.2, this can be rewritten
M
> pilt) =N
j=1
The relevant ODE (15) consists of M identical copies of the scalar ODE
M
1) = ~(X i)~ V), 21
j=1

which has steady states at any p* with E]]\i1 p; = N. The stability properties are easy
to describe. Given any p(0) with E]]\il p;(0) = po, all entries in (21) increase or decrease
together until E]]\il p;(t) = N. Thus the ODE converges to p* = pMOp(O). Accordingly, for
each initial condition p(0) there is a unique steady state to which the algorithm will converge.

Figure 6 shows a numerical simulation of this ODE (21) for the case where M = 100
and V' = 60. The content of the weak convergence theorem is that the actual trajectories of
algorithms (5) and (6) must on average follow the trajectories of the ODEs (17) and (21),
at least for small y. Since the steady states of the ODEs (17) and (21) are stable, these

algorithms must also converge to a steady state if initialized close enough.
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6 Discussions and Conclusions

The El Farol problem initially explored the collective dynamics of boundedly rational agents,
but we have shown that this model is also interesting as a simple model of congestion and
coordination behaviors that occur with shared resources like Internet bandwidth.

Arthur [3] believed that any solution to the FEl Farol problem would require heteroge-
neous agents, that is, agents who pursue different strategies. In contrast, we have presented
a simple adaptive solution which can be followed by all agents, and which can readily solve
a decentralized resource allocation problem. Each agent in the adaptive solution is char-
acterized by a parameter that determines how often the agent attends, and a stepsize that
determines how much to change the parameter in response to each visit to the bar.

The stochastic adaptive solution to the El Farol problem differs from previous treatments
in several ways. We allow agents to proceed stochastically, as is commonly required for
optimal game-theoretic decision making schemes. We do not require agents to make explicit
predictions of the state of the bar, and we allow them to use only the information that they
have readily available, i.e., their own experiences. This makes our model more realistic (it is
not clear how the agents in Arthur’s model learn what happened at the bar when they are
absent). Certainly in applications like the Internet, such information is not available; the
only way to know if website is crowded is log on and try to use it.

Arthur’s solution, in which each agent maintains a bank of strategies leads to patterns of
attendance that fluctuate considerably above and below the optimal. When crowded, none of
the agents enjoys themselves. When undercrowded, there is a wasted resource represented by
the empty seats at the bar. The stochastic adaptive solution, in contrast, leads to patterns
of attendance with much smaller variance, and hence much less waste. Generically, the
attendance at the bar converges to an optimal solution, one where the bar is neither under
nor over crowded.

On the other hand, changing the information structure in the algorithm so that agents
adapt their probabilities at every iteration causes the algorithm to no longer converge to such
an optimal solution, rather, the attendance patterns continue to fluctuate wildly. Thus, we

posit that the information structure is the crucial difference in our approaches. When agents
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each receive or utilize a subset of total information then the system is far better behaved than
when all act on complete information. In other words, the homogeneity of information may
be the key ingredient driving the El Farol “problem”. With more heterogeneous information,
the problem may vanish.

The adaptive solution thus provides a simple mechanism whereby a large collection of
decentralized decision makers, each acting in their own best interests and with only limited
knowledge, can solve a complex congestion and social coordination problem. Moreover,
convergence to the solution is relatively rapid (depending on the initial conditions) and
robust.

Do we believe that customers of El Faroltick off the time till they can go again, increasing
or decreasing the probability of a coin flip with each new visit? Of course not. But the
incentives are in agreement with the common sense idea that people tend to minimize bad
experiences and maximize good ones. Moreover, the global behavior of the population is
consistent with certain kinds of coordination phenomena. For instance, users of an Internet
provider can spread demand over much of the day even though everyone might prefer (all
else being equal) to log on in the middle of the afternoon. By developing certain habits (for
instance, always logging on at the same time) users send signals to others to avoid these
times. In this way, demand is smoothed.

There are many ways to generalize the adaptive solution to decentralized resource allo-
cation problems. For instance, different people have different tolerances for what constitutes
a crowd or an unacceptable delay. Each agent could also have a parameter that represents
their tolerance for congestion. Additionally, to more closely model the Internet situation,
one might incorporate time-of-day or day-of-week as a parameter in the process of logging
on. It would also be instructive to create a hybrid situation in which a number of Arthur-like

agents and a number of adaptive agents compete for spaces at the bar.
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Figure 1: When all agents use the “partial information” adaptive solution, the number of

attendees appears to converge rapidly, and then only rarely exceeds the critical A" = 60.

Figure 2: The probability parameters for each of the M = 100 agents in figure 1 as a
function of iteration number (time). An emergent property of the adaptive solution is that

the population divides itself into ‘regulars’ and ‘casuals’.

Figure 3: When all agents use the “full information” adaptive solution, the number of

attendees fluctuates wildly about the optimal N = 60.

Figure 4: The probability parameters for 15 of the M = 100 agents in figure 3 (the full
information algorithm) as a function of iteration number (time). Others exhibit similar

behavior. In contrast to the partial information case, parameters remain diverse.

Figure 5: Numerical simulation of the “partial information” ODE (17) for the case where

M =100 and N = 60.

Figure 6: Numerical simulation of the “full information” ODE (21) for the case where

M =100 and N = 60.
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