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10. Conclusion

We wish to re-emphasize the motivation that backs our promotion of chattering
systems. These systems model instantaneous oscillations, a useful tool when
encountering systems where control is by some sort of modulation of a highly
oscillating input. The applicability is even more prominent when, at the design stage,
errors and uncertainties of the oscillations are expected. Then we would like to be
able to do the analysis with a robust model. We observe that the relevant data are
the time densities of the control coefficients, and the limit case is modeled by the
chattering systems. We identified a convergence mode for the chattering systems,
with respect to which the performance of the systems and the structure of the control
policies are robust. Thus, the solutions in the chattering model can be used in the
highly oscillating case. Since the chattering systems can be analyzed in a rather
straightforward way, as is shown in the paper with both abstract and concrete
examples, we obtain a convenient tool for the analysis of rapidly oscillating systems.
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Adaptive Algorithms with Filtered Regressor
and Filtered Error*

W. A. Sethares,¥ B. D. O. Anderson,} and C. R. Johnson, Jr§

Abstract. This paper presents a unified framework for the analysis of several
discrete time adaptive parameter estimation algorithms, including RML with
nonvanishing stepsize, several ARMAX identifiers, the Landau-style output error
algorithms, and certain others for which no stability proof has yet appeared. A
‘general algorithmic form is defined, incorporating a linear time-varying regressor
filter and a linear time-varying error filter. Local convergence of the parameters in
nonideal (or noisy) environments is shown via averaging theory under suitable
assumptions of persistence of excitation, small stepsize, and passivity. The excita-
tion conditions can often be transferred to conditions on external signals, and a
small stepsize is appropriate in a wide range of applications. The required passivity
is demonstrated for several special cases of the general algorithm.

Key words. Adaptive estimation, Convergence, Averaging, Passivity.

1. Introduction

The LMS (least mean square) adaptive algorithm has been studied extensively over
the past several years, and its convergence and stability properties are well known
[B], [(WMLJ]. LMS can be viewed as an algorithm for identifying the parameters
of an unknown linear system when only its inputs and outputs can be measured.
Anerror signal, which is equal (in the ideal case) to the inner product of the regressor
and the parameter error, is used to drive the LMS parameter updates. In many
filtering, identification, and control applications, the measured error signal is a
filtered version of this inner product, plus some small nonidealities [L17, [J2]. It is
natural to attempt to compensate for this filtering in order to regain the desirable
stability properties of the LMS algorithm.

This paper examines two such methods of compensation: filtering of the error,
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and filtering of the regressor. These lead to the generic parameter update form

new old filtered filtered
parameter » = < parameter » + < stepsize version of version of
estimate estimate regressor error

in which the filters represent linear, possibly time-varying, rational operators. Many
such algorithms have been proposed, and several have been satisfactorily analyzed
(sec [L5] and Table 1 for references). This paper presents a unified approach that
proves the local stability of this entire class of algorithms in nonideal {or noisy)
situations under appropriate persistence of excitation, passivity, and small stepsize
assumptions.

Motivation

Consider s finear plant parametrized by an unknown constant vector #* which
maps a bounded scalar input u, to a scalar output y, = X[6* where Xr =
(ty, .., U_,4y ) is the regressor vector. Let 6, be an estimate of #*, and form the
estimated output $, = X/[8,. The error ¢, = y, — J, between the measured output
and the estimated output can be used to improve the estimates of the parameter
vector. Using gradient descent techniques [WMLI] or L, minimization ideas [1.6]
leads to the parameter update scheme

s = O + uXyep, -~ (1.1)

where u is a small positive stepsize. This is catled the LMS adaptive algorithm
[WMLIJ] or the equation error algorithm [M] depending on the exact structure of
9* and the specific problem for which it is utilized. For purposes of analysis, it is
more convenient to work with the parameter error update

Oerr = 0, — uX { X6, }, (1.2)

where 6, = 6* — #,. The error system (1.2) is Lyapunov stable [M], and the
equilibrium & = O is exponentially asymptotically stable (EAS) if X is persistently
spanning [B], that is, if there is a finite time window m such that for every j,

{tm X, X[ is uniformly positive definite. The exponential asymptotic stability of
(1.2) implies that @t of (1.1) is exponentially convergent to 6*.

In actual implementation (the “nonideal” case) the output y, may be corrupted
by disturbances such as measurement noise or unmodeled dynamics, The prediction
error is then

g =Y — D + Moo (L.3)

where #, represents the disturbance. The exponential character of the convergence
imparts a robustness to the algorithm and guarantees that stability is maintained
for suitably small i, [BA].

When the X, sequence is not a function of the 8, sequence, then (1.1) and (1.2) are
linear and the EAS is global; when the X, sequence is a function of the 0,, then the
EAS is, in general, only local. Local exponential stability argues strongly for good
performance of the system once it is near its operating point even when (suitably
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small) disturbances are present. Global stability, however, is of dubious value unless
also accompanied by a local exponential result since adaptive systems can be
globally stable but locally unstable [RPK], leading to bounded parameter estimates
but poor performance. This paper therefore focuses on local exponential stability.

In certain applications [J2], the measured prediction error e, is not precisely of
the form X[ #4,. Table 1 describes two model structures (a transfer function model
and an ARMAX, or autoregressive moving average with exogenous input model),
which, when combined with an appropriate identifier input—output form, yield a
prediction error that can be expressed as a transfer lunction operating on the inner
product of the regressor vector and the parameter error vector. A simple illustrative
case is when e, contains a known filtering of X0, by a fixed stable rational operator
F(g™!), that is, e, = F(g ) {XF6,}. If F(g™*) is stably invertible, then it is natural to
consider an algorithmic form which filters the prediction error, as in

Opsr = 6, — ﬂXkF_l(q_l){ek} =8 — .uXk{XF'chk}s (1.4)

to regain the known stability properties of (1.2).

An alternative approach is to recognize that, when the stepsize is small, the
dynamics of 6, are much slower than the dynamics of X,. The prediction error e,
is then approximately equal to F(g *){X7}8, where F(g™'} operates on each
component of the vector X in the same way that F(g ') acts on the scalar X6,
{see Section 2 for details). Thus

e, =Flg™){XT6,} = Flg" )} {X{ }6 + O(p). (1.5}

This development leads to an alternative algorithmic form which filters the regressor
vector X, to recapture the desirable stability properties of (1.2). This is

Besr = O — ﬂF(q_l){Xk}eks (1.6)

where F(g™'){X,} plays the same role in (1.6} that X, plays in (1.2), and the O{y)
perturbation of (1.5) plays the same role as the disturbance #, of (1.3). Thus, it is
suspected that if the vector sequence F(g™1){X,} is persistently spanning (as made
precise in Section 3), and the stepsize is suitably small, then algorithm (1.6) will be
EAS.

Both algorithms (1.4) and (1.6) attempt to recapture the desirable properties of
the LMS form (1.2) in a modified problem setting. Incorporation of a known filter
F(g™")in the prediction error is somewhat contrived, but it motivates two possible
modifications to the basic algorithm (1.2): filtering of the error and filtering of the
regressor.

A more realistic situation is when the filter F(g™!) is fixed but unknown, in which
case algorithms (1.4) and (1.6) cannot be implemented. In the output error identifica-
tion problem [L3], [J2], for instance, F(g~!) is the denominator (autoregressive)
portion of the plant 8*. Although 8% is unknown, 8., an estimate of 0%, is available,
and it is reasonable to estimate F(g™*) by F{g™, k), defined to be the denominator
(autoregressive) portion of 8,. By direct analogy with (1.4) and (1.6), it is natural to
consider the filtered error algorithm

Bes = 0, — #XkF_l(qﬁl, k}{e.} 1.7
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and the filtered regressor algorithm

Oprr = b — tﬂ.@.;ﬁ K {X,}e (1.8)

If F is close to F, u is small, and an appropriate excitation condition is fuifilled,
algorithms (1.7) and (1.8) should retain (at least locally) the basic stability properties
of (1.2). It is also easy to imagine algorithms which compensate for the presence of
F(¢™") in the prediction error by filtering both the error and the regressor vector in
an appropriate manner.

All of the above algorithms are special cases of the general algorithm form
mr.?u = Q__n - _Ewl.?.wlhu ﬁnv MNMWEAQ\H" mﬂv ,m»%w_m.mkwu A.—.@v

where L(g™', k) filters the regressor vector and M(g™%, k){X[78,} is the filtered
prediction error. This paper finds conditions on g, L, M, and X, under which (1.9)
is EAS. The general algorithm form (1.9) may be viewed as a synthesis of many
popular adaptive algorithms, such as those detailed in Table 1. For instance, using
the definitions of the leftmost column of the table and a few lines of algebra (as in
[J2]), L and M can be derived. A readable derivation of several such cases can be
found in Chapter 6 of [TJL]. An equivalent error system for adaptive control is
derived in [AB] and scveral possible algorithms, with various L and M, are
discussed.

Some adaptive schemes replace the a priori error X7 6, in (1.9) with an a posteriori
error X7 0,.,. Appendix A shows that an a posteriori version of (1.9) is implemented
as a normalized a prior algorithm. The behavior of the two schemes is virtually
identical when p is suitably small. The present analysis focuses on the small stepsize,
a priori scheme, aithough it easily extends to include the small stepsize, a posteriori
case. Equivalently, the analysis focuses on the small stepsize unnormalized scheme,
but extends to the small stepsize normalized versions.
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This paper examines the general algorithmic form (1.9), and in particular the eight
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implies the stability of (1.9). Note that in (1.9), the scalar error XT0, is filtered by
M(g™", k) while in (1.10) the regressor vector X is filtered by M{g™", k), where M
represents the operator which acts on each component of the vector in the same
way that M acts on X0, (see Section 2). Algorithm (1.10) is in & form to which
averaging theory can be applied. '

The second step (Section 4) recalls an appropriate averaging result (Theorem 1)
which gives conditions on the regressor X, and the time-varying filters & and M
under which (1.10) and hence (1.9} are exponentially asymptotically stable. This
exponential stability in the ideal case (no measurement noise or unmodeled
dynamics) implies a certain degree of robustness in the nonideal case. The third step
{Section 5) develops the machinery to translate the conditions of Sections 3 and 4,
which involve stability and passivity of time-varying operators, to conditions on
related time-invariant operators whose stability and passivity properties can be
more readily determined.

The fourth and last step (summarized in Theorem 2) is the derivation in Section
6, where several sets of sufficient conditions are given for stability of the general
algorithm form (1.9). These are then interpreted in terms of the eight algorithms of
Table 1. These cight are illustrative of a variety of possible algorithms which filter
the regressor and/or the error sequence as in (1.9), and the stability/convergence
properties of such variants can often be determined by Theorem 2. This establishes
a framework for the analysis and development of a wide variety of adaptive
algorithms. -

2. Notations and Definitions

A rational operator N(g™*, k) is defined to be the input—output mapping of a single
input, single output finite-dimensional linear system
Xy = A X, + By, 21
Ve = GXi + s

where all matrices are bounded, u, is zero for all k < 0, and X, = 0. N(g ™, k) is said
to be exponentially stable if there is a K and 0 < & < 1 such that |TT}{ 4, < Ko!
for all k. The impulse response at time [ + k of N(g™", k) to an impulse at time k is

k+I-1
Lk+ Lk = C,H{ I1 Ai} B..
i=k
Consequently, the sequence #, filtered by N(g™*, k) is expressible as
k
N Rimy = X vk D

If N(g™, k) is exponentially stable, then the impulse response decays exponentially
independent of k, that is, there is a K and 0 < § < 1 such that |Iy{l + k, k)| < Kf’

for all k. Note that N(g~%, k + I){u,} denotes the value of the image function at.

time k + I, that is, the value y,,,. The expression N{(g™", k) {u;_;} denotes the value
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of the image function at time k when the operator acts on the sequence v, where
Dy = th_j

We often wish to consider a rational operator acting on a vector U, We reserve
the bold notation to denote diagonal operators constructed as multiple copies of a
scalar operator, that is, N(g™', k) = diag[N(g~%, k), N{g™, k), ..., N(g~%, k). Thus,
N(g™’, k){U,} operates on each component of the vector U, in the same way that
N(g™', k) operates on a scalar sequence u,. With a slight abuse of notation, let
N{g ', k){UT} be the row vector obtained by filtering the jth compenent of U
by N(g 1, k). For example, M(g ™%, k) of (1.10) acts on each component of the vector
XT exactly as M{g ™%, k) of (1.9) acts on the scalar sequence X7 f,.

The time-invariant operator N(g~') can be associated with the transfer function
N(z) = d + C(zI — A)"'B. The transfer function N(z) (or equivalently, the qua-
druple {4, B, C, d} realizing N(2)) is strictly positive real (SPR) if Re N{(e’®) > 0 for
every w and if all poles of N(z2) lie in |z| < & < 1 (which is implied by, and in the
minimal case equivalent to, {4,{A4)| < « < 1{or every eigenvalue of A). If N{z)is SPR,
then there are p,, p, € (0, 1) such that N{p,z) — p, is SPR (equivalently, {p3' A4, B,
p1tC,d — p,} is SPR), since

(d—p1)+p3'Clal — p; ' A7 B = N(p2) — py.
This idea can be generalized to the time-varying case. The rational operator
N(g™', k) with associated time-varying linear system (2.1) is strictly passive if

N(g™', k) is exponentially stable, and if the following input-output inequality holds
for some p: - -

]
i=

:
yiuzp Y ouf
=m

m

for all | > m, for every input sequence {u;} with support in i > m, and for X,, =0
(i.e., zero initial conditions).

A necessary and sufficient condition for a minimal realization {4, B, C, d} to be
SPR is the existence of matrices P > 0, ¢ > 0, L, and scalars p > 0 and »n such that

ATPA —P= —LLT —Q,
BTPA 4+ nL¥ =G, 22)
n*=2d—2p — BTPB,

The positive real lemma for time-varying systems (see Appendix B of [L3]) shows
that N (g™, k) with associated time-varying linear system (2.1) is strictly passive if
there exist matrices P, > 0, @, > 0, L,, and scalars n, p > 0 with P, P71, 0, 077,
L., and n, bounded and such that

A{PkAk -~ P, = _LkLiT - O,
BTP A, + n LT = C, (2.3)
nf = de —_ 2p it BEPRB,(.

Intuitively, a passive system is one which does not generate energy. The magnitudes
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of the eigenvalues of @, provide a measure of the amount of energy dissipated at
each timestep.

3. Approximation of Filtered Error

This section shows that the exponential stability of (1.10) implies the exponential
stability of (1.9), the error equation governing the behavior of the adaptive algorithm.
This allows averaging theory to be applied to (1.10} to derive sufficient conditions
for the exponential stability of the error system, and consequently of the adaptive
system. We follow a course similar to that in [AB].

One condition that is virtually necessary for (1.9) to be stable for all bounded
regressor sequences X, is that both the regressor filier L(g %, k) and the error filter
M{q1, k) be exponentially stable. We therefore assume the exponential stability of
these time-varying operators. Later (Section 5), we examine the question of how to
guarantee the stability of these time-varying operators from the stability of the
associated frozen operators, defined from L and M at each fixed time k. In practice,
stability of the frozen operators can often be guaranteed, or can be easily verified.

Suppose M(g™*, k) is exponentially stable and let I, (I + k, k) be the impulse
response. Then there is a K and 0 < « < 1 such that |I,,(! + &, k)| < K¢' for all k.
In terms of I, the action of M (q 1 k) on the sequence XT6, is described by the
convolution sum

k
Mg R (XT8Y = 3 Lulk DXT6, 6.1

The first lemma compares (3.1) w1th the action of M(g™", k) on the sequence X,
then multiplied by 8,

Mg, k) {X(} 0, ={ 2 Dl DX } {3.2)
I=~w

and shows that the difference between (3.1) and (3.2) can be bounded in terms of the

norm of X, the exponential decay rate of the operator M, and the successive

differences of the parameter errors.

Lemma 1.

Ka
IM{g ™, X7 6 — Mg™ kX160 < IleIw( )2 sup 10— Ol (3.3)
Proof. Combining (3.1) and (3.2) gives

@B XES) — M, X0 = % Ll I)X,Tef—{ji Tl I)XF}&

Z Itk X[ Z Ohimr = Orvm)-

1=—w
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Since I,, is exponentially decaying, the norm can be bounded

"M(q—l k {XTHR} - M 71= k){XT}Bk"cn

|X" = k=l Z (GHm 1 6Hm)
<X “He— D] sup 16— il
Ko
= ||X|1 ( )2 S'llp ”6 . iflnou' u

In order to make this estimate useful, it is necessary to bound the sup term in
(3.3). Let ||LX[., denote the norm of the vector sequence L{g", k){X,}. This
guantity exists since X, is assumed to be a bounded sequence (see Section 6) and L
is exponentially stable.

Lemma 2. With quantities as above,

K
sup {16, — byl < _1;1 [LX (ol X N sup 6l (3.4)
i<k 4 i<k

Proof. Observe that

k

Mg~ {XS 6} < 1=Z,m FEaelks Do I Xl 6l o

< T—Ilelco sup 10:H -

Then (3.4) follows immediately from (1.9). [ ]
The two bounds (3.3} and (3.4) can now be combined to give

IM(g™, ) {X{0,} — Mg B {XI o € p— ILXIL I XI5 sup 16:llco

Ko
(1 — o)
which shows that the difference between Mg, k) {X[T6,} and M(g™", k) {X]}6, is
O(y). Equation (1.9} can then be rewritten as

Bery = 0, — pLig™", D{X Mg~ R{X 10 + Alg™h k) {6}, (3.5)

where A is a bounded operator with gain proportional to u®. The stepsize  can
then be chosen small enough so that the dominant part of (3.5) is

Beas = (I — pL{g ™', { X, }M(q ', B {X, )6, (3.6)

which is precisely (1.10). Thus, exponential stability of (1.10) implies exponential
stability of the adaptive system (1.9), provided the stepsize is chosen suitably small,
It is not surprising that the upper bound on p depends on L, M, and || X |l....

In the above analysis we have assumed that the action of M{g™, k) on the
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sequence X0, (and the action of Mig™, k) on XT) occurs with zero initial
conditions. More precisely, adopting a state variable representations of the form
(2.1) for M, M, and L, the analysis assumes zero state at time zero, Nonzero
initial states for (2.1) would correspond to exponentially decaying terms added to
Mg X703, Mgt Ky {XTY, and L{g ™, k) {X, }. Equation (3.6) would then be
perturbed by an additive term that was decaying exponentiaily. The basic equiva-
lence of the exponentially stability of (1.10) and (1.9) would remain valid, but the
upper bound on ¢ would also depend on the magnitude of the initial states in L
and M. Note that for fixed degree L. and M, the initial condition effects become
negligible as g — 0. The details of a rigorous analysis that includes such initial
condition effects can be carried out as in {AB] or [KAM].

4. Averaging and Persistence of Excitation

This section recalls an averaging theorem and defines generalized persistence
of excitation conditions that guarantee exponential asymptotic stability of the
adaptive error system, These ideas are then illustrated with two simple examples.
The following is well known [AB], [BI], [SV]; see [BI] for a proof.

Theorem 1. Consider the system
Kowy = — pA)X,, (4.1)

where A, e R"*" is a sequence of bounded matrices. Define the sliding average
Ailm) = (1/m) Y1, Ayyi—y. Suppose that for some positive definite matrix P there is
an integer m and an o > 0 such that for all k and for each eigenvalue 1,

A{PAm) + ATm)P} = a. (4.2)
Then there is a p* such that (4.1) is uniformly EAS for every O < p < p*.

This theorem says that difference equations with sufficiently small stepsizes are
stable whenever the averaged equation X3, = (I — ud,(m)) X3 has a certain degree
of stability, determined by o.

To analyze the adaptive system (1.10), let A, = L{g™%, k) {X,JM(g™" k){X ).
Then the sliding average is

_ |
Alm) = — 3 g™ k0= DX GMg™ k41— DX} (4.3)
i=1
In order to streamline subsequent discussion, we propose the following.

Definitions. Consider a particular algorithm with an error system of the form (1.9)
with given operators L{g™", k) and M(g™", k). Let A,(m) be defined as in (4.3) where
M(g™, k) is the vector version of M(g %, k). Then, if there existsa P > 0,an « > 0,
and an m such that (4.2) holds for every k and for every eigenvalue 4,, the regressor
sequence X, will be called persistently exciting for this algorithm. If X, fulfills (4.2)
with L and M identity operators and P = }], then X, will be said to be persistently
spanning.
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The averaging theorem can then be restated concisely. If the input to an adaptive
algorithm is persistently exciting (for that algorithm) and the stepsize is small
enough, then the error system associated with the algorithm is EAS. In general, the
class of signals that persistently excites an algorithm with filters L; and M, will
differ from the class of signals that persistently excites an algorithm with filters L,
and M,. Thus persistence of excitation conditions must always be linked to a
particular algorithm.

As a simple example, consider the “equation error” algorithm {M] which
estimates the parameters of a (linear time-invariant) transfer function. In the
notation of Table 1, X = (¥y—1s-+ s Yions Him1s ---» Upp) and ar ={d1ps-os ngs
31,,{, e 5",_k), L(q‘l, k) and Mg, k) are identlty operators. Taking P =41 in
(4.2), a condition for exponential stability of the equation error algorithm is that
there exists an « > 0 and an m > 0 such that

A; {% Zi Xk+i—LXkT+i-1} = o for all j. (44)

This is precisely the standard persistence of excitation requirement [B] and may be
interpreted as a condition on the spanning propertics of the regressor [AJ] or as a
condition on the frequency content of the input [BS].

Another example is furnished by the “output error” algorithm [J2], which
also estimates the parameters of a transfer function. For this algorithm, X; =
(Pt s s Ugo1s - o> Yxom)s B and L{g™', k) are as above, and M(g™', k) =
LA1 — A%*(g™*)) where A*(g~*) represents the fixed but unknown autoregressive part
of 6% as in Table 1. Again, taking P = I in (4.2), a condition for exponential
stability of the output error algorithm is that there exists an m and an o > 0 such that

1 - .
i {;1_ i; Xoui  M(g", k){X;T+i—1}} > for ali j. (4.5)

This condition, which is the persistence of excitation condition for the output error
algorithm, will be satisfied if X, is persistently spanning and if M(g™", k) (and hence
Mg~ 1 k)) is strictly passive. Recall that for a time-invariant operator, strict
passivity is equivalent to SPR. (This spemal case of Theorem 2 has been shown in
[AB].)

Condition (4.5) is an average positivity condition and does not require the transfer
function associated with M{g™, k) to be SPR for every frequency. Suppose that this
transfer function fails to be positive for some interval of frequencies [y, w, ]. If the
regressor X, has most of its energy outside of [, @, }, then M will still act, on the
average, as a passive operator and (4.6) will still hold, implying exponential stability
of the output error algorithm. This idea has been exploited in [RPK |. This empha-
sizes again that persistence of excitation conditions are algorithm-dependent.

These two examples are particularly simple because the operators L and M are
time invariant. In the more general case, it will be useful to relate the stability and
passivity of slowly time-varying systems to the stability and passivity of related
time-invariant systems. These will provide the last link necessary to analyze excita-
tion conditions for the more general algorithms of Table 1.



392 W. A. Sethares, B. D. O. Anderson, and C. R. Johnson, Jr.
5. Stability and Passivity of Slowly Varying Systems

The variation in 8, and in the filters L and M (which are typically parameterized
by 0) is slow compared with the variation in the input X, due to the small stepsize
u. This section exploits the slowness in three ways. First, lemma 3 relates the EAS
of a slowly time-varying system to the EAS of related “frozen” (time-invariant)
systems. Next, Lemma 4 relates the passivity of a slowly varying system to the
passivity of the frozen systems. Lemma 5 and its corollary then construct a family
of strictly passive (slowly) time-varying operators, This family includes operators
which are “near” the identity, and can be used to demonstrate that ML ™ of (4.3)
is passive for M and L which are nearly equal.

All three results depend critically on the time-scale separation (slowness of
variation). The stability and passivity of the frozen systems, which are relatively
easy to determine, are used in the next section to provide conditions for the EAS
of adaptive systems with time-varying regressor and error filters.

Lemma 3. Consider the time-varying system

Xy = A X, (5.1)
and assume that the related frozen systems
Xysy = ApXk

are exponentially stable for every integer p, uniformly in p. If | Al < oy forall p and
if sup,spol4py — Al is small enough for some finite pg, then systems (5.1) are
exponentially asymptotically stable.

Proof. This proof introduces some ideas which will be used in succeeding lemmas;
another proof of this result is given in [D]. Let P, satisfy

F,— ATP, A, =1, (5.2)
where 0 < o,f < P, < a,] for some «, and a;. This is always possible by the
discrete-time Lyapunov stability theorem and the uniformity of the theorem

hypothesis. Let V(X,, k) = X1, P, X, be a candidate Lyapunov function for (5.1).
It is clearly globally positive definite and decrescent. Also,

V(Xpsso b+ 1) = V(X k) = X{ AP AKX, — X P X,
=XI(P,— P_)X, — XTX,. (5.3
The solution of (5.2) can be obtained from
vec(P,) = [I — A7 @ A7 ]7" vec(l),

where ® represents the Kronecker product and vec(P,) indicates a single column
vector which is a concatenation of the columns of P,. The uniform positive definite-
ness of P, guarantees that A, has all its eigenvalues uniformly less than 1 in
magnitude. Since the eigenvalues of 4 ® B are 4;; where 1, are the eigenvalues of
A and y; are the eigenvalues of B, and since the determinant is the product of the
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eigenvalues,

det|f — AT®@ 4, =] ]

2 r
i=] j=

(1 = 2 A)2,(A))
i
which is bounded away from zero. Hence vec(P,) depends continuously on 4,
for p = py, and so given ¢ > 0, there is a § such that |P,, — P|l < & whenever
lAws: — ALl < 8(e} for all k > py. Thus, for £ =1, (5.3) is negative definite and
system (5.1) is exponentiaily asymptotically stable. |

The SPR of certain the time-invariant operators is relevant in securing the
stability of some adaptive algorithms [L5]. The analog for time-varying operators
is strict passivity. The next result parallels the above stability analysis, in which the
stability of a time-varying system was related to the stability of a collection of
time-invariant systems, by relating the strict passivity of a time-varying system to
the strict passivity of a family of time-invariant systems. For the algorithms of
interest, strict passivity of this family may be guaranteed or easily checked. As with
the stability result, slow time variation is crucial.

Recall (from Section 2) that if N(z) is SPR, then there are p,, p, € (0, 1) such that
{p:' A, B, p;1C, d — p,} is SPR. A collection of time-invariant operators N{g~%, p),

p=10,1,2,...,1s said to be strictly passive for every p uniformly in p if p,;, p, can
be chosen independent of p so that {p;' A, B, p;'C,,d, — p,} is SPR for all p.

Given any time-varying rational operator N{(g™!, k) we can associate with it time-
invariant operators N(g™%, p) by freezing at each time instant the defining equation
(2.1) for N(g~*, k). This leads to:

Lemma 4. Consider the discrete time-varying operator N{q ', k) and the related
frozen (time-invariant) operators N(q ', p). Assume that the quadruples {4, B,
C,. d,} of (2.1) defining N(q~*, p) are minimal. If N(q™", p) is strictly passive for every
p, uniformly in p, and if the time variation in N(g™', k) is slow enough in the sense that
H Ap+1 - Ap": "Bp+l. - Bp"s ” C111+J. - Cp|i9 "dp+1 - dp" are Suitab[y Smﬂ” uniformly in
p, then N(q™%, k) is strictly passive.

Proof. See Appendix B. [ ]

Lemma 4 shows that the property of strict passivity of an operator is robust to
slight perturbations in 4,, B,, C,, and d, of (2.1).

The next task is to develop a class of operators which are time varying and
strictly passive. Towards this end we construct a family of passive time-invariant
operators. The idea is simple; if two operators N, and N, are “similar,” then N; N;*
and N,N[! are “close” to the identity, which is passive. This will be useful in
examining persistence of excitation conditions where the two operators L and M
(of equation (1.10)) are approximately equal.

Lemma 5. Suppose that N{g™*, ) has a state variable realization defined by
{A(8), B(0), C(), (8} with the constituent matrices continuously dependent on the
parameter 8 for all 6 € ©. Suppose that for any 6 € O, the operators N(g™*, &) and
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N7Yqg™4, 0) are exponentially stable, uniformly in 8. Fix 8. Then there exists p such
that for all yy € ®, | — || < B implies that the operators N{g™*, y)\N"Y(g%, ) and
N7Yq ™%, y)N(q™L, 8) are strictly passive.

Proof. Exponential stability of the operators is guaranteed by assumption. When
y = 0, the transfer function of each operator takes the value 1 on |z} = 1. By
continuity, the transfer functions of N(g™%, y}N""(g™*, #) and N"1{¢~%, y)N{(g™%, 6)
will have strictly positive real parts for | — 8| < 8. m

This idea can be extended to time-varying operators by combining the last two
lemmas. Suppose that a rational operator N(g™*, 6,) is dependent on a parameter
8 taking the value §, at time k, ie., there exist 4, = 4(8,), B, = B(8,), C, =
C(8,), and d; = d(0,) that describe the operator. Denote the inverse operator by
N_l(q_ls Bk)

Corollary. Adopt the hypotheses of Lemma 5. Assume that the sequence 0, € ®
is slowly varying, that is, |10, — 6, < e Consider the sequence ¥, € @ with
s — Wil <& and |6, — W |l < B for all k. Then for suitably small & and B, the
operators N(g~ %, W, )N "Hq™, 8,) and N™* (g™, ¥, )N(q7%, 8,) are strictly passive.

- Proof. Combine Lemmas 4 and 5. |

Thus, it is possible to determine the stability and passivity properties of slowly
time-varying operators from stability and passivity properties of the related frozen
operators.

6. Interpretation of Excitation Conditions

The error system associated with each of the algorithms of Table 1 is in the form
of equation (1.9), where each algorithm is specified by a given pair of filters L and
M. This section gathers together the previous analyses to show that the exponential
asymptotic stability of the error system can be guaranteed if the regressor is
persistently spanning, if the filter MIL™" is strictly passive, and if the stepsize is small.
This is accomplished in two steps. Lemma 6 shows that if the filtered regressor is
persistently spanning, then it persistently excites the algorithm. Lemma 7 translates
this to a spanning condition on the unfiltered regressor. Theorem 2 presents the
main result.

In each of the algorithms of the table, L{g~!, k) is an autoregression, which implies
that L™ *(g !, k) exists and is a moving average (and therefore expenentially stable),
Define the filtered regressor vector sequence Z, = L{g™", k) { X, }. With invertibility
of L, this can be written as X, = L™ (¢7', k}{Z,} and the matrix 4, of (4.3) can be
rewritten in terms of the filtered regressor as

"Ik(m) = % i Zk+i—1M(q"1s k+i— 1){14_1(‘1_15 k+i— 1){213;&—1}}-
=1
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Theorem 1 showed that the error system (1.9} is exponentially stable when Ag(m) +
Af(m} is positive definite, that is, when the algorithm is persistently excited,
The next lemma shows that if M(g™", k){L*(g™*, k)} is strictly passive and Z, is
persistently spanning, then Z, persistently excites the algorithm and hence leads to
exponential stability of the error system (1.9).

Lemma 6. Suppose there is ana > 0 and an m > 0 such that for all j, ¥ 11" 2, ZT >

al. Suppose that N(g™*, k) = M(g™", k){L"*(g™", k)} is strictly passive. Then there is
some p > 0 such that

o _ J+m
Alm) + Al (m) = kZ ZNg™ k) {ZT}
=1
Jj+m T
+ {z ZN@g™, k{ZT } >pl  forallj.
ey

Proof. Let W be an arbitrary nonzero vector with the same dimension as Z,.
Neglecting initial conditions (which die away exponentially),

wr {Z ZN@™ B {zkf}} W W {’i’" ZNG 1 {zz"}}T W
= &

—owT {12"' ZN@™, ¥ {z,}"}} W=2 szm b NG K (),
= =

where v, = ZTW. Since N is strictly passive, there is some p > 0 such that this
expression is bounded below by

jtm J+m
20 i =20WT Y ZZIW
k=] £
which gives the desired inequality. _ [ ]

If the initial conditions are not neglected, then the lower bound is 2p Yitmpl + IC
where IC represents initial condition effects; @ must then be assumed large enough
to overcome these initial condition effects. This point is discussed in [KAM].

Lemma 6 relates the persistency of excitation condition to a spanning property
of the filtered regressor Z, and the passivity of ML™!. This can now be translated

to a condition on the regressor vector itself.

Lemma 7. Let X, =L"%q ', k){Z,} where L Y (g, k) =1+ F(g k), F is a
time-varying polynomial in ¢, and L™ is exponentially stable. If the rate of variation
of the coefficients of ¥ is slow enough, and if X, is persistently spanning, then Z,
is persistently spanning.

Proof. Tnoutline, the proof goes as follows. For F time invariant, the result follows
by combining Theorems 2.2 and 2.4 of [AJ]. The time-varying result follows by

modifying the above proof utilizing the slowness of the time variation as in the
previous lemmas. See also [AG]. [ |
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Notice that in Table 1, all of the L operators have the form (I + F(g™", k))™* as
required by the lemma. _

This result, combined with Theorem 1, shows that if M and L are exponentially
stable, if ML ! is strictly passive, and if the regressor is persistently spanning, then
the algorithm is persistently excited and hence exponentially stable. Lemma 3
showed that the exponential stability of slowly time-varying operators L{g™*, k) and
M{g™%, k) can be inferred from the exponential stability of the related frozen
operators L(g™%, p) and M(g™", p). Moreover, the strict passivity of ML™! can be
deduced from the strict passivity of Mig™", p{{L"(¢”*, p)} for all p and the
slowness of variation of the operators. Gathering these resuits together gives the
main resuit.

Theorem 2. Consider the error system
Beer = 6 — nL{g™", k) {Xk}M(qil: k){XkTek} (6.1)

associated with an adaptive algorithm with regressor filter L{g™", k) and error filter
Mg, k). If the regressor sequence X, is persistently exciting for this algorithm, the
stepsize is small, the initial error 8, is small, and the initial states of M and L are
small, then the error system is locally exponentially asymptotically stable. Persistency
of excitation of the algorithm is guaranteed if :

(1) M(q7', k) and L(q™", k) are exponentially stable.
(2) M(q~", k}y{L. ™" (g™, k)} is stricely passive.
(3} The regressor X, is persistently spanning.

In turn, condition (1) is true whenever

(1a) the frozen systems M (g™, p) and L{g™*, p) are uniformly exponentially stable
Jor all p, and
(1b) M(q™", k) and L{g™', k} are slowly varying.

Condition (2} is true whenever

(2a) M(g ™', p){L""(g ", p}} is uniformly strictly passive for all p, and
(2b) M{g ', k) and L{g™, k) are slowly varying.

It should be noted that (1) and (2) are not necessary to have persistence of
excitation, nor are (1a) and {1b) necessary to have (1), nor are (2a) and (2b) necessary
for (2). This theorem, then, provides several possible combinations of sufficient
conditions for the exponential stability of the error system (6.1): _ .

The strict passivity condition (2) is a generalization of the familiar SPR condition
that appears when L and M are time invariant. In the timc-invarij‘mt case, exponen-
tial stability can sometimes be retained even if the SPR condition is v1o}‘ated, by
restricting the frequency content of the regressor. Similarly, in the Fin_lc-varyn}gl case,
exponential stability can be maintained even if the strict passivity condition is
violated, as long as the persistence of excitation condition holds:

Although it is difficult to make sense of “frequency content” in the context of a
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time-varying system, the requirement that M and L vary slowly can be interpreted
as a time-scale separation. For small stepsizes, the dynamics of 6, M, and L are
much slower than the dynamics of the regressor, and it is reasonable to interpret
the lack of strict passivity of ML ™ using frequency domain intuition. For instance,
ML ™" may be capable of generating energy at certain frequencies, If ML dissipates
even more energy at other frequencies, or if the regressor never excites these modes,
then ML ™' may act, on the average, as a passive operator, and the persistence of
excitation condition may still be fulfilled. Thus, although ML ™! may not be passive
at every time step k for all regressors X,, if it is, on the average, strictly passive,
stability can be assured.

Theorem 2 is only a local result, that is, 6, is guaranteed to converge only if the
initial value of 6, is not too large and if the initial states of M and L are small. This
is a consequence of the linearization in Lemmas 1 and 2, and of the assumption
(used in Section 2) that X, is bounded. This boundedness is not guaranteed a priori
since X, may contain signals such as estimated outputs which can diverge if the
algorithm is unstable. If, however, the initial magnitude , is small, then the
difference between the first desired output d, and the first estimated output §, will
also be small. Exponential stability then guarantees that this difference remains
small as time evolves, which implies that , (and hence X,) remain bounded. At first
glance, this appears to be a circular argument, and if this were an attempt to
demonstrate global (in 6) stability, it would indeed be circular. The presumption
here, however, is that 6, is initialized near 0*, implying that the initial prediction
errors are small. When the algorithm is persistently excited, small errors remain
small, and hence || X, is finite. Said another way, the local exponential stability is
a local contraction [H]. Once the trajectories are within the grip of the contraction,
they cannot escape, and Theorem 2 applies. Outside of the contractive region,
nothing has been said by our analysis.

Although it would be desirable to quantify the adjectives “large” and “small” here
and in Theorem 2, such quantification is difficult, The general trends, however, are
apparent. Larger (smaller) eigenvalues of the excitation matrix (4.3) allow larger
(smaller) errors in the initial estimates, and allow the algorithm to retain stability
in environments with larger (smaller) disturbances. Smalier stepsizes (typically)
imply slower variation in the filters L and M, and tend to “average” disturbances
more effectively. The requirement on the initial states of I and M is a technical
condition with little impact on algorithm design. Some quantified results are
available for time-invariant operators in [AB].

A major reason for focusing on the exponential (as opposed to bounded input
bounded output) stability of the adaptive error system is that exponential conver-
gence guarantees a certain robustness in the presence of nonidealities such as
unmodeled dynamics or measurement noise and allows consideration of the situa-
tion in which 6% is itself varying slowly. Suppose, for instance, that 8* varies on a
timescale of 1/u* or slower. Then the analysis of the previous sections is unchanged
except for an added O(u®) perturbation which can be easily incorporated in
equation (3.5) as part of the A(g~%, k) operator. A persistently excited (and hence
exponentially stable) algorithm near its equilibrium continues to operate well in
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the presence of suitably small disturbances and is robust to slow variations in the
“true” parametrization 6*,

Perhaps the most serious limitation of Theorem 2 is that it is, in general, a
nontrivial probiem to translate the persistence of excitation condition on the
regressor vector X, and the filters L and M, to a condition on the signals which can
be manipulated in any given problem context. In certain applications such as
identification, it may be possible to directly or indirectly manipulate the regressor
vector to achieve persistence of excitation. In some applications the regressor
contains estimated quantities which approach desired quantities as 6, approaches
zero. Near the operating point, then, the spanning properties of the regressor closely
match the spanning properties of a vector of desired quantities which can often be
shown (or manipulated) to achieve a persistently spanning property.

Theorem 2 can be applied to any of the algorithms of Table L. If the regressor is
persistently excited, if the stepsize is small enough, and if the initial error || -- 0
is not large, then the parameter estimates 8, converge to {(and remain in} a small
ball about the true parametrization 6*, Conditions (1a), {1b}, (2a), and (2b) then give
several possible combinations of sufficient conditions for guaranteeing persistence
of excitation which can be applied, as appropriate, to the various algorithms,

An important observation about the local character of Theorem 2 is that for
several of the algorithms (numbers 1,4, 5, and 8), small §, implies that ML " is close
to being strictly passive. If 0, were actually zero, then the operator ML~ would be
the identity. Lemma 5 shows that for small perturbations around the equilibrium
8, = 0, ML ! remains passive.

In other algorithms (2, 3, 6, and 7), the size of 8, does not influence the passivity
of ML, Instead, a fixed filter F{g~!, k) is chosen to make ML™ passive. It is,
however, difficult to choose an appropriate filter without some a priori knowledge
of A* or C*. Some recent results in this area may be found in [DB].

Another implementation issue (especially algorithms 1 and 5} is that stability of
the regressor filter L must be maintained. This requires “projection” which monitors
the stability of L(g™", p) at each timestep p. Lemma 3 assures that if each frozen
L(g !, p} is EAS (and the stepsize is small), then the time-varying L{g™*, k) will be
EAS. The projection facility is undesirable because of its complexity and because
of potential lock-up problems. See [LS].

7. Conclusion and Extensions

In the generic parameter update form (1.9) of Section 1, convergence (on average)
of the parameter estimates occurs if the correction term is (on average} zero. With
nonvanishing stepsizes, this occurs when the average of the product of the filtered
regressor and the filtered prediction error is zero. The objective of this paper has
been to find conditions that guarantee local stability about this solution point.
This is akin to the objective (typical of adaptive filtering analysis) of proving
the boundedness of the variance of the parameter estirhate excursions about this
average (or mean) solution point. These excursions do not vanish unless there is a
parametrization that exactly zeros the filtered version of the prediction error, a
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situation which is unlikely to occur in any practical (nontdeal) setting. Thus, proof
of local stability about this solution point is one way to demonstrate desirable
performance of the adaptive algorithm.

Average convergence of the parameter estimates in LMS in (1.1} occurs when

avg[ X, X 6,1 =0, (7.1)

where “avg” represents an averaging operation similar to the expectation operator
used in the stochastic analysis of adaptive filters. A geometrical viewpoint interprets
(7.1) as an average orthogonality condition on the parameter error §, and the
regressor vector X, Equation (7.1) can also be interpreted as an implicit description
of the desired average “solution” of the adaptive algorithm.

Actually solving (7.1) is nontrivial, especially when (7.1) is nonlinear, i.e., when
the regressor is a function of 8,. The incorporation of regressor filtering L. and/or
error filtering M changes the LMS form from (1.1) to the more general adaptive
form (1.9). This can be viewed as altering (7.1) and thus changing the average
solution sought by the adaptive algorithm, This may be beneficial since different
applications may benefit from different solutions. Using the general form (1.9)
changes the solution (7.1) to

avg[Lig™, ) {X,}M{g™", k) {X{6,}] = 0. (7.2)

This suggests two areas of investigation: (i) confirmation of the attraction and
local stability properties of the solution implied by particular versions of (7.2) and
(i) connecting the various practical problems best solved by (7.2) with particular
combinations of L and M. This paper falls in the first area by dealing with the local
stability issue for a generic update term that encompasses a variety of adaptive
algorithms, including EMS [WMLJ], SHARF [LTI], Stearn’s algorithm [F], RML
[F]1, AML [§], and certain forms of recursive instrumental variables schemes [LS].

The local exponential stability of these adaptive algorithms was proven simulta-
neously by considering a generalized algorithmic framework with (time-varying)
regressor filters and {time-varying) error filters. Several possible sets of sufficient
conditions for stability were given in terms of persistence of excitaton, and the
stability and passivity of certain frozen (time-invariant) filters.

This unified algorithmic framework may also be useful to facilitate generation of
new algorithms in new application environments, and to analyze other algorithms
which can be viewed as containing filtering of the regressor and error sequences.
The basic results, for instance, retain their validity for nonlinear filters L{g ™", k) and
M{g*, k) which are Lipschitz continuous, and for error sequences which consist of
a sum of terms, each passed through a different filter. Investigation of these ideas is
underway.

In ideal circumstances, each algorithm converges (under appropriate conditions)
to the parameter value for which the prediction error is zero, and to a small ball in
nonideal environments. Though Theorem 2 demonstrates the exponential stability
of the various algorithms, it does not show that different algorithms converge to the
same average value in nonideal use. The comments regarding (7.1} indicate that
these convergent averages can be quite different, and the effect of various regressor
and error filters on the convergent bail is an important area for further study.



400 W. A. Sethares, B. D. . Anderson, and C. R. Johnson, Jr.
Appendix A

Consider two different estimates of the output y,, the a posteriori predicted output
Zesy = OF., X, and the a priori predicted output $,,; = 87 X,. Let the a posteriori
prediction error be e,4; = ¥4+, — Z,4, and let v,y be a filtered version of ¢, ;,

e = (1 + N5 k) {epn )

where N(g ', k) represents the strictly causal part of the filtering. The a posteriori
algorithm form can then be written

Berr = O + pL(G™ K {Xi}opns- (A1)

Note that z,4,, and hence e, ., and v, ,, contain f..., and so (A.1) is an implicit
equation in 6,,,. This appendix shows that the unnormalized {and noncausal) a

posteriori form (A.1) is the same as a narmalized (and implementable) a priori
update form (A.4). The development is a generalization of the approach in [J1], Let

b = v (1 + #L(qgia k) {XE}Xk)
=y F #L(qﬂ: k) {Xl'cr}kaXk- (A.2)
Using (A.1), this becomes
= Upyq F 9k+1 9 1 X

From the definitions of $,, z;, e,, and v, this is

=14+ N(g™" ) {epaa} + Zewr — Frnt
= Yers — Prerr + NG5 R) e ) (A.3)

Note that y,,; is measurable as, and P, is computable before, the parameter
updates at time k + 1 occur. Although ey, = Yiry — 051X, is not available, the
past values ¢,_;, 1 =0, 1, 2, ..., » — 1, can be constructed. Since N (g7, k) contains
no direct feedthrough, %, can be calculated before the parameter updates-at time
k + 1. Equation (A.2) shows that v,,, = 7,/(1 + pL{g %, k){XT}X,) and so the
update (A.1) is equivalent to the implementable Torm

. L(q"l, k) {X }
é -8 H k
s = S T L, R (XTTX

where D, is defined by (A.3). To relate algorithm (A.1) to (1.9), recall that the error
sequence e,,, may equal é,}]rlX . (as in LMS or the equation error algorithm), in
which case the filter M (g%, k) of (1.9) is equal to 1 + N{g™*, k). Often, however, the
problem setup dictates that the measured error sequence contains a rational filtering
ey = (1 + F(g™! k)){B ", X} as in output error or ARMAX problems. For this
case, M{g™?, k) of (1.9) is equal to (1 -+ N{(g™, K))(1 + F(g ™, k).

One potential problem with the a posteriori scheme (A.1) is evident in
the normalization term of the equivalent implementable form (A.4). Since
L{g™%, k) {XT} X, can be negative, there is the possibility of division by zero.

(A4)
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If a bound on X, is known, then choosing

1

O<p<ees—ror—
ILX o X Ml

for some positive & guarantees that the update term is always bounded. Thus a
small stepsize (where “small” is a function of the norm of the regressor and the norm
of L) is required for the general a priori and a posteriori forms. This paper
concentrates on the small stepsize a priori forms since they are mote easily
implemented, although the analysis extends to small stepsize a posteriori forms
without difficulty.

To outline this extension, consider the a posteriori versions of Lemmas 1 and 2
which bound the difference between M{g™, k) {XJ6,,,} and M(g™", KH{X{ } Berr-
The a posteriori version of (3.5) then has 8,,, on the right-hand side which can be
replaced (using Lemma 2) by 8, + A, {6} where A, is proportional to u. Stability
of (3.6) then implies stability of the a posteriori version of (1.9). The rest of the
analysis proceeds unchanged.

Appendix B, Proof of Lemma 4

Let Ny(z) = D, + C,(zl — 4,)7'B, be associated with N{g~', p}and assume that the
minimal quadruples {p;*A4,, B,, p;' C,, d, — p;} which define

N(2) = Ny(p22) — p1 = (dp — p1) + p3"Cylel — p3"4,)' B, (B.)
are SPR for all p, with all eigenvalues of A, in |z| < p,. Associated with N(z) is a
unigue minimum phase spectral factor

W2 =1+LI@ — 4,)"B, (B.2)
and a unique positive §, for which .
N(z) + R,z = W,z™) 3, W, (2). (B.3)

ig is unith since (4, B,} is reachable. From the positive real lemma [L.3] there
exists a positive definite P, such that
B, —p;2ATP,A,=L,0,LL,

PP
p'BIB A, + QLT =C, (B.4)
d, =2(d —pl) B?B.B

poprE

Note that there are many solution triples B, L,, 0, of (B.4), but only one that
is associated with the minimum phase spectral factor W,(z). Moreover, the P,
satisfying (B.4) associated with W,(z) is minimal, see [FCG].

It is shown in [AG] that the minimum phase W,(z) with W, (o) = 1 satisfying
(B.3) obeys a continuity property small L, [0, 2] adjustments in N (eﬂ“") produce
small L,[0,2n] adjustments in W(e’“’) and small adjustrients in QlJ If small

variations of N(e’) occur as a result of small variations in 4,, B,, C,, d,,, then the
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effect is to produce a small adjustment in ., as well as §,. Thus, L, and @, depend
continuously on 4, B,, C,., d,.

Because all the poles of N’p(z} lie in |z| < p,, all eigenvalues of p;'4, lie El
|z| < p, < 1. Accordingly, by reasoning similar to that used in studying (5.2), £,
depends continuously on A, B,, C,, d,. Now define

Pey = Po. K,=01? and L{= P2 QWP LY. (B.5)
Equations (B.4) then yield
P, — ATPey Ay = (1 — pr P+ (B — Poyy) + L LY,
BTP. A, + KLT =C, (B.6)
K{K, =2(d,— p,) ~ B{ P11 B,.
Since ﬁp depends continuously on 4,, B,, C,, d,, if there is some ¢ such that

Sl:p {"Ak+1 — Al 1Berr — Bell, 1 Crsn — Gill, idisy — dk"} <&

then
(1= pP+ (P — Py) =G 20.

By (2.3), this means that N(g™*, k) — p, I is passive, and consequently that N(g™7, k)
is strictly passive. .
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