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ABSTRACT tion of beat information from low level audio features in

A novel approach is presented to the detection of homo-[9]- Each symbol of the sequence is assumed to be gener-

logical, eroded, and latent periodicities in DNA sequences &t€d by an information source with some underlying prob-
Each symbol in a DNA sequence is assumed to be gener_ab|I|ty mass function. The number of sources is equal to
ated from an information source, with an underlying prob- the detected period in the sequence and Fhe Sympms are
ability mass function (pmf), in a cyclic manner. The num- assumed to be drawn from these sources in a cyclic man-
ber of sources can then be interpreted as the periodicity™®"- The latent periodicity is then interpreted as stagsti
of the sequence. The maximum likelihood estimates arePeriodicity. The paper presents maximum likelihood esti-
developed for the pmfs of the information sources as well Mates of the pmfs and the period. Note that the symbolic
as the period of the DNA sequence. The statistical mode| S€qUENCe 1S not transformed into a numerical sequence

presented can also be utilized for building probabilistic 21d the method presented here is capable of finding all
representations of RNA families. three kinds of periodicities - homological, eroded and la-

tent.
1. INTRODUCTION

The structural features of DNA sequences have biologi- 2 STATISTICAL PERIODICITY
cal implications [1]. One such structural feature is sym-

bolic periodicity. Finding periodicities in DNA sequences Tpe statistical periodicity model that is employed here to

is important to the determination and understanding of giscover possibly hidden periodicities in gene sequences
the structure of DNA sequences in various genomes [1, joes not assume that the sequence itself is periodic. In-
2, 3]. Homologous periodicity occurs when short frag-  giead it is assumed that there is a periodicity in underlying

ments of DNA are repeated in tandem to give periodic giagistical distributions which is locked to a known peri-
sequences [4]. Most current approaches for finding pe- yic grid.

riodicities transform the symbolic DNA sequence to a nu- p given gene sequenc® = [Ds, ..., Dy] can be de-
merical sequence [5, 6, 7]; these techniques are primarilypoteq by the mapping : N — :S‘ wheres is the al-

aimed at the detection of homological periodicities. phabet{A4, G, C,T}. Assume that the statistical period-
Some researchers have also explored detection of im'icity of the gene sequencP is 7. This implies there

perfect or eroded periodicities which model a sequence of 3re 7 information sources (or random variables) denoted
similar units repeated but with some changes. In otherale ..., X7. The random variabl&; takes values on
words the homology between repeated units in an erodedihe giphabes according to an associated probability mass

sequence is not perfect [4]. The imperfect periodicity may f,nction P;; it generates the"” symbol inS with prob-
occur in strands of DNA due to changes or erosion of nu- ability P(j) = P(X; = S;), j = 1,...,|S|. Note that

cleotides. |S| denotes the cardinality of the alphaksetvhich for the
The per|od|C|t3_/ |n.IZ?NA sequences may also me mod- gene sequencing problem is four.
eled as latent periodicity [4], for instance an observed pe-
riod of nucleotides may be (A/C) (T/G)(T/A) (G/T) (C/IG/A)
(G/A), i.e. the first nucleotide of a period may be A or C
followed by a T or G and so on. The hidden periodicities
may not be found efficiently by algorithms developed for
finding homological and eroded periodicities [2]. The la-
tent periodicity detection was studied in [8, 7] and latent
periodicities of some human genes were reported.
This paper presents a novel approach to finding latent R
periodicities in DNA sequences that parallels the extrac- O = arg max P(©|D)

The number of statistical periodsthareM = |N/T|.
Define: = (i mod 7). Thenforl < i < N, the symbol
D;, i.e. thei’” symbol in the gene sequengk is gener-
ated by the source (random variabl€). The structural
parameters P, ..., Pr, and thetiming parameter? are
unknown. Define® = [T, Py,..., Pr]. The maximum
aposteriori (MAP) estimate @ is given as



By Bayes rule the posterior probability is given as

Poip) = PO @
where
N
P(D©) = [[P(X;=Dio) )

i=1

is the likelihood andP(D) = [*°_P(D|O)P(0)dO is a
constant. Assuming a uniform prior @ it is clear that

© = arg max P(D|O) 3)

i.e. the MAP is same as the maximum likelihood estimate.

3. THE MAXIMUM LIKELIHOOD ESTIMATE

In this section, the maximum likelihood estimate (MLE)

is developed for the unknown parameter The data-
sequenc® = [Dy, ..
of vectorsW = [wy, ..., wy] where eachw; is an|S|x 1
vector withw;; =1 < D, = S;. So, if thei!" sym-
bol in the sequenc® is C, i.e. the third symbol of the
alphabetS, then thei’” vectorw; in the sequencdV is
[0010]". Also define 85| x T stochastic matri¥d with

entriesAd;; = P(X; = S;). The columns of the matrix

., Dy]isrepresented by a sequence
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Figure 1. Maximum log-likelihood of data plotted against
Period for a simulated symbolic sequence of length 6400
symbols with period 7: (a) Homological periodic se-
guence (b)50% eroded sequence (GH% eroded se-
quence (dB5% eroded sequence.

For a fixed7 the maximum likelihood estimate fot is
denoted

AT = arg max log PIW|A, T). (6)

A denote the pmfs of the information sources; the entry From equation (5), théi, j)™* element of the matrixd”

A;; denotes the probability that th&" source generates

the j** symbol of the alphabef.

This notation simplifies the derivation of the MLE.

Note that

P(X, = D;) =

and the unknown parametér = [A, 7]. The likelihood
can therefore be written as

N |S]
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wherei®) = (k — 1)M + i. The log-likelihood is given
as

7 |S|

M
og POVIAT) = D53 wiiwlog (4;) +
k

=1j=17=1
N—-MT |S|

> wiilog(Ai;)  (5)

i=1 j=1

is given as

ﬁzgitlei(kh i=1,...,N—MT
1 M 2
A Dh=1 Witk s 1=N-MT,....,.T

(7)
forj=1,...,7.

The maximum likelihood estimate fot is plugged-in to
determine the maximum likelihood estimate for the period
T!

T* = argmaxlog PW|AT,T) (8)

4. RESULTS

The method for detecting periodicities in symbolic seqesnc
was applied to simulated symbolic sequences and chro-
mosome XVI ofS. cerevisiae A homological symbolic
sequence from the sé&t= A, G, C, T with period7 was
generated. The sequence was eroded by changing the sym-
bols at randomly chosen points in the sequence. The al-
gorithm was tested with various degrees of erosion. The
plots in figure 1 strongly support a statistical periodicity
of 7 even with85% erosion. The noise floor in the plots
increases (i.e. the heights of the peaks decreases) with the
degree of erosion. Note thatZ-periodic sequence also
showspT -periodicity for any positive integer.

Figure 2(a) shows the results with latent periodicity
of simulated symbolic sequence where a single period is
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Figure 2. (a) Log-likelihood of data plotted against period Figure 3. (a) RNAO has hairpin secondary structure. (b)
for a simulated symbolic sequence of length 6400 symbolsRNAL is similar in structure to RNAO. It differs at two
with period latent periodicity 7: (b) log-likelihood versu  position in the primary sequence from RNAO. (c) RNA2
period for completely random symbolic sequence (c) log- structure is not hairpin, it has a structural mismatch with
likelihood plotted against period for protein coding reagio RNAO. RNA2 also differs at two position in the primary
of chromosome XVI ofS. cerevisiagd) the magnitude of  sequence from RNAO but it must be scored lower in simi-
DFT of numerical sequence derived from the sequence inlarity to RNAO as compared to RNA1

part(c)

. The RNA genes were considered rare but in the last decade
(AIC) (TIG)(TIA) (GIT) (C/GIA) (GIA). The sequence is  many new RNA genes have been found and have been
assumed to be generated by six information sources, sayshown to play diverse roles: chromosome replication, pro-
Xi,..., Xe with X, generatingA or C' each with equal  tejn degradation and translocation, regulating gene expre
probability; similarly X generatesd,& or ¢ each with  sjon and many more. Thus RNA genes may play a much
probability 1/3. The plot shows strong six-periodic be-  more significant role than previously thought. The num-
haviour. Figure 2(b) shows results with completely ran- per of ncRNAs in human genomes is in the order of tens
d(_)m sequence, I.e. each source generating each symbQlf thousands and considering the vast amount of genomic
with equal probability. data there is a need for computational methods for identi-

The algorithm was also tested with the protein coding fication of ncRNAs [10].

region of chromosome XVI of5. cerevisiae(GenBank
accession number NC 001148). The 2160 base-pair(bp)

Ic_)ng sequence (from bp 85 - 2244.) shows a latent P&~ for building probabilistic representations of RNA famdie
nodpﬂy of perl'od three as plottgd n f|gurg 2(c). The The RNA has the same primary structure as DNA, consist-
per_lod-3 behawour of protel_n codlng genesis expected asing of a sugar-phosphate backbone with nucleotides at-
amino acids are cod_ed by tr|nucle_ot|de units cadt_adons tached to it. However, in RNA the nucleotide thymine (T)
[7. 1.0]' Thg symbolic sequence 1S transformed ln.to anu-ig replaced by another nucleotide uracil (U) as the base
men_call as in [7] and the magnitude of Fhe DFT is plot- complementary to adenine (A). So, RNA is reprented by
ted in figure 2. The peaks at frequenciesfat= .729' the string of nucleotides (or bases): A, C, G and U. RNA
f2 = 3.60 andfs = .180 correspond 13, 6 and12-periodic exists as a single-stranded molecule since the replacement
behaviour respectively. of thymine by uracil makes RNA too bulky to form a sta-
ble double helix. However, the complementary bases (A
and U, G and C) can form a hydrogen bond and such

The central dogma of molecular biology states that DNA consecutive base pairs cause the RNA to fold onto itself
is transcribed to RNA and then translated to a protein. Theesulting in 2-D and 3-D structures called secondary and
genetic information therefore flows from DNA to protein tertiary respectively. A typical secondary structurbas-
through the RNA. However, besides playing the role of pin structure as shown in figure 3(a); the consecutive base
a passive intermediary messenger (mRNA), RNAs have pairS that bond together get stacked onto each other to
been known to play important non-coding function in the form astemwhile the unpaired bases formaop.

process of translation (tRNA, rRNA) [11]. Since these The methods employed for identification of DNA gene
RNAs are not translated into proteins, these are calledsequences and proteins do not perform well at identifica-
non-coding RNAs (ncRNAs) also known as RNA genes. tion of ncRNAs because many functional ncRNAs pre-

The statistical model presented in this paper for find-
ing periodicities in symbolic sequences can be utilized

5. IDENTIFYING NON-CODING RNAS
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Figure 4. A given base pair in a ncRNA molecule under-
goes compensatory mutation i.e if one of the nucleotides
in a base-pair mutates, the other nucleotide also changes
to complementary nucleotide. So there is a strong corre-

lation between the two base positions indicated by N.

serve their secondary structures more than they preserve
their primary sequences [10] and these techniques have
been based on finding structural features (like periodici-
ties) in (primary) sequences. Therefore, in identification
of ncRNAs there is need for techniques that evaluate sim-
ilarity between RNA molecules and sequences based on
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(4]
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secondary structures also. Such techniques have shown to[7]

be more effective in comparing and discriminating RNA

sequences [12].

The RNA sequences preserve the secondary structure
when undergoing erosion or mutation by compensatory 8
mutation as shown in figure 4. This causes a strong pair-
wise correlations between distant bases in the primary RNA
sequence. Unlike the techniques employed for DNA iden-
tification, the approach presented here can describe such
pairwise correlations. Consider a sequence of ncRNA mole-
cules, tandem repeats of which have undergone random
mutations as shown in figure 4. According to the statisti-

Turygin, “Three-quasiperiodicity, mutual correlatu-
ions, ordering and long modulations in genomic nu-
cleotide sequences virusedgurnal of biomolecular
structure and dynamic¢sol. 12, pp. 271, 1994.

E. A. Cheever, D. B. Searls, W. Karunaratne, and
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D. Anastassiou, “Genomic signal processingsEE
Signal Processing Magazingol. 18, pp. 8-20, Jul
2001.
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icity of dna sequences of some human genBsyA
Sequencevol. 5, pp. 353, 1995.

[9] W. A. Sethares, R. D. Morris, and J. C. Sethares,

cal model presented in this paper, the sources generating1]

the symbols that do not bond (nucleotides in the loop of
a hairpin ncRNA) have a point-mass pmf. On the other
hand, the sources corresponding to a bonded base pair
have verysimilar pmfs (in the sense of Kullback-Leibler
divergence [13]). If the information sources with similar

pmfs are identified as the same the sequence of sourcefl1]

form a palindrome the sequence of sources correspond-
ing to ncRNA molecule in figure 4 after identifying the

bonded nucleotides with the same sourc«is X», X3,
X47X3; X27X1-
therefore capable of describing structural similarities. t
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