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ABSTRACT

A novel approach is presented to the detection of homo-
logical, eroded, and latent periodicities in DNA sequences.
Each symbol in a DNA sequence is assumed to be gener-
ated from an information source, with an underlying prob-
ability mass function (pmf), in a cyclic manner. The num-
ber of sources can then be interpreted as the periodicity
of the sequence. The maximum likelihood estimates are
developed for the pmfs of the information sources as well
as the period of the DNA sequence. The statistical model
presented can also be utilized for building probabilistic
representations of RNA families.

1. INTRODUCTION

The structural features of DNA sequences have biologi-
cal implications [1]. One such structural feature is sym-
bolic periodicity. Finding periodicities in DNA sequences
is important to the determination and understanding of
the structure of DNA sequences in various genomes [1,
2, 3]. Homologous periodicity occurs when short frag-
ments of DNA are repeated in tandem to give periodic
sequences [4]. Most current approaches for finding pe-
riodicities transform the symbolic DNA sequence to a nu-
merical sequence [5, 6, 7]; these techniques are primarily
aimed at the detection of homological periodicities.

Some researchers have also explored detection of im-
perfect or eroded periodicities which model a sequence of
similar units repeated but with some changes. In other
words the homology between repeated units in an eroded
sequence is not perfect [4]. The imperfect periodicity may
occur in strands of DNA due to changes or erosion of nu-
cleotides.

The periodicity in DNA sequences may also me mod-
eled as latent periodicity [4], for instance an observed pe-
riod of nucleotides may be (A/C) (T/G)(T/A) (G/T) (C/G/A)
(G/A), i.e. the first nucleotide of a period may be A or C
followed by a T or G and so on. The hidden periodicities
may not be found efficiently by algorithms developed for
finding homological and eroded periodicities [2]. The la-
tent periodicity detection was studied in [8, 7] and latent
periodicities of some human genes were reported.

This paper presents a novel approach to finding latent
periodicities in DNA sequences that parallels the extrac-

tion of beat information from low level audio features in
[9]. Each symbol of the sequence is assumed to be gener-
ated by an information source with some underlying prob-
ability mass function. The number of sources is equal to
the detected period in the sequence and the symbols are
assumed to be drawn from these sources in a cyclic man-
ner. The latent periodicity is then interpreted as statistical
periodicity. The paper presents maximum likelihood esti-
mates of the pmfs and the period. Note that the symbolic
sequence is not transformed into a numerical sequence
and the method presented here is capable of finding all
three kinds of periodicities - homological, eroded and la-
tent.

2. STATISTICAL PERIODICITY

The statistical periodicity model that is employed here to
discover possibly hidden periodicities in gene sequences
does not assume that the sequence itself is periodic. In-
stead it is assumed that there is a periodicity in underlying
statistical distributions which is locked to a known peri-
odic grid.
A given gene sequenceD = [D1, . . . ,DN ] can be de-
noted by the mappingD : N → S, whereS is the al-
phabet{A,G,C, T}. Assume that the statistical period-
icity of the gene sequenceD is T . This implies there
areT information sources (or random variables) denoted
asX1, . . . ,XT . The random variableXi takes values on
the alphabetS according to an associated probability mass
function Pi; it generates thejth symbol inS with prob-
ability Pi(j) = P(Xi = Sj), j = 1, . . . , |S|. Note that
|S| denotes the cardinality of the alphabetS which for the
gene sequencing problem is four.

The number of statistical periods inD areM = ⌊N/T ⌋.
Defineî = (i mod T ). Then for1 ≤ i ≤ N , the symbol
Di, i.e. theith symbol in the gene sequenceD, is gener-
ated by the source (random variable)Xî. Thestructural
parameters, P1, . . . , PT , and thetiming parameterT are
unknown. DefineΘ = [T , P1, . . . , PT ]. The maximum
aposteriori (MAP) estimate ofΘ is given as

Θ̂ = arg max
Θ

P(Θ|D)



By Bayes rule the posterior probability is given as

P(Θ|D) =
P(D|Θ)P(Θ)

P (D)
(1)

where

P(D|Θ) =

N
∏

i=1

P(Xî = Di|Θ) (2)

is the likelihood andP(D) =
∫ ∞

−∞
P(D|Θ)P(Θ)dΘ is a

constant. Assuming a uniform prior onΘ, it is clear that

Θ̂ = arg max
Θ

P(D|Θ) (3)

i.e. the MAP is same as the maximum likelihood estimate.

3. THE MAXIMUM LIKELIHOOD ESTIMATE

In this section, the maximum likelihood estimate (MLE)
is developed for the unknown parameterΘ. The data-
sequenceD = [D1, . . . ,DN ] is represented by a sequence
of vectorsW = [w1, . . . ,wN ] where eachwi is an|S|×1
vector withwji = 1 ⇐⇒ Di = Sj . So, if theith sym-
bol in the sequenceD is C, i.e. the third symbol of the
alphabetS, then theith vectorwi in the sequenceW is
[ 0 0 1 0 ]′. Also define a|S|×T stochastic matrixA with
entriesAij = P(Xi = Sj). The columns of the matrix
A denote the pmfs of the information sources; the entry
Aij denotes the probability that theith source generates
thejth symbol of the alphabetS.

This notation simplifies the derivation of the MLE.
Note that

P(Xî = Di) =

|S|
∏

j=1

(

Aîj

)

wji

and the unknown parameterΘ = [A, T ]. The likelihood
can therefore be written as

P(W|A, T ) =
N
∏

i=1

|S|
∏

j=1

(

Aîj

)

wji

=

M
∏

k=1

T
∏

î=1

|S|
∏

j=1

(

Aîj

)

w
ji(k)

×

N−MT
∏

i=1

|S|
∏

j=1

(Aij)
wji (4)

wherei(k) = (k − 1)M + î. The log-likelihood is given
as

logP(W|A, T ) =
M
∑

k=1

T
∑

î=1

|S|
∑

j=1

wji(k) log
(

Aîj

)

+

N−MT
∑

i=1

|S|
∑

j=1

wji log (Aij) (5)
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Figure 1. Maximum log-likelihood of data plotted against
Period for a simulated symbolic sequence of length 6400
symbols with period 7: (a) Homological periodic se-
quence (b)50% eroded sequence (c)75% eroded se-
quence (d)85% eroded sequence.

For a fixedT the maximum likelihood estimate forA is
denoted

AT = arg max
A

logP(W|A, T ). (6)

From equation (5), the(i, j)th element of the matrixAT

is given as

AT
îj

=







1
M+1

∑M+1
k=1 wji(k) , î = 1, . . . , N − MT

1
M

∑M

k=1 wji(k) , î = N − MT , . . . , T
(7)

for j = 1, . . . , T .

The maximum likelihood estimate forA is plugged-in to
determine the maximum likelihood estimate for the period
T ,

T ∗ = arg max
T

logP(W|AT , T ) (8)

4. RESULTS

The method for detecting periodicities in symbolic sequences
was applied to simulated symbolic sequences and chro-
mosome XVI ofS. cerevisiae. A homological symbolic
sequence from the setS = A,G,C, T with period7 was
generated. The sequence was eroded by changing the sym-
bols at randomly chosen points in the sequence. The al-
gorithm was tested with various degrees of erosion. The
plots in figure 1 strongly support a statistical periodicity
of 7 even with85% erosion. The noise floor in the plots
increases (i.e. the heights of the peaks decreases) with the
degree of erosion. Note that aT -periodic sequence also
showspT -periodicity for any positive integerp.

Figure 2(a) shows the results with latent periodicity
of simulated symbolic sequence where a single period is
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Figure 2. (a) Log-likelihood of data plotted against period
for a simulated symbolic sequence of length 6400 symbols
with period latent periodicity 7: (b) log-likelihood versus
period for completely random symbolic sequence (c) log-
likelihood plotted against period for protein coding region
of chromosome XVI ofS. cerevisiae(d) the magnitude of
DFT of numerical sequence derived from the sequence in
part(c)

.

(A/C) (T/G)(T/A) (G/T) (C/G/A) (G/A). The sequence is
assumed to be generated by six information sources, say
X1, . . . ,X6 with X1 generatingA or C each with equal
probability; similarlyX5 generatesA,G or C each with
probability 1/3. The plot shows strong six-periodic be-
haviour. Figure 2(b) shows results with completely ran-
dom sequence, i.e. each source generating each symbol
with equal probability.

The algorithm was also tested with the protein coding
region of chromosome XVI ofS. cerevisiae(GenBank
accession number NC 001148). The 2160 base-pair(bp)
long sequence (from bp 85 - 2244) shows a latent pe-
riodicity of period three as plotted in figure 2(c). The
period-3 behaviour of protein coding genes is expected as
amino acids are coded by trinucleotide units calledcodons
[7, 10]. The symbolic sequence is transformed into a nu-
merical as in [7] and the magnitude of the DFT is plot-
ted in figure 2. The peaks at frequencies atf1 = 720,
f2 = 360 andf3 = 180 correspond to3, 6 and12-periodic
behaviour respectively.

5. IDENTIFYING NON-CODING RNAS

The central dogma of molecular biology states that DNA
is transcribed to RNA and then translated to a protein. The
genetic information therefore flows from DNA to protein
through the RNA. However, besides playing the role of
a passive intermediary messenger (mRNA), RNAs have
been known to play important non-coding function in the
process of translation (tRNA, rRNA) [11]. Since these
RNAs are not translated into proteins, these are called
non-coding RNAs (ncRNAs) also known as RNA genes.

Figure 3. (a) RNA0 has hairpin secondary structure. (b)
RNA1 is similar in structure to RNA0. It differs at two
position in the primary sequence from RNA0. (c) RNA2
structure is not hairpin, it has a structural mismatch with
RNA0. RNA2 also differs at two position in the primary
sequence from RNA0 but it must be scored lower in simi-
larity to RNA0 as compared to RNA1

.

The RNA genes were considered rare but in the last decade
many new RNA genes have been found and have been
shown to play diverse roles: chromosome replication, pro-
tein degradation and translocation, regulating gene expres-
sion and many more. Thus RNA genes may play a much
more significant role than previously thought. The num-
ber of ncRNAs in human genomes is in the order of tens
of thousands and considering the vast amount of genomic
data there is a need for computational methods for identi-
fication of ncRNAs [10].

The statistical model presented in this paper for find-
ing periodicities in symbolic sequences can be utilized
for building probabilistic representations of RNA families.
The RNA has the same primary structure as DNA, consist-
ing of a sugar-phosphate backbone with nucleotides at-
tached to it. However, in RNA the nucleotide thymine (T)
is replaced by another nucleotide uracil (U) as the base
complementary to adenine (A). So, RNA is reprented by
the string of nucleotides (or bases): A, C, G and U. RNA
exists as a single-stranded molecule since the replacement
of thymine by uracil makes RNA too bulky to form a sta-
ble double helix. However, the complementary bases (A
and U, G and C) can form a hydrogen bond and such
consecutive base pairs cause the RNA to fold onto itself
resulting in 2-D and 3-D structures called secondary and
tertiary respectively. A typical secondary structure ishair-
pin structure as shown in figure 3(a); the consecutive base
pairs that bond together get stacked onto each other to
form astemwhile the unpaired bases form aloop.

The methods employed for identification of DNA gene
sequences and proteins do not perform well at identifica-
tion of ncRNAs because many functional ncRNAs pre-



Figure 4. A given base pair in a ncRNA molecule under-
goes compensatory mutation i.e if one of the nucleotides
in a base-pair mutates, the other nucleotide also changes
to complementary nucleotide. So there is a strong corre-
lation between the two base positions indicated by N.

serve their secondary structures more than they preserve
their primary sequences [10] and these techniques have
been based on finding structural features (like periodici-
ties) in (primary) sequences. Therefore, in identification
of ncRNAs there is need for techniques that evaluate sim-
ilarity between RNA molecules and sequences based on
secondary structures also. Such techniques have shown to
be more effective in comparing and discriminating RNA
sequences [12].

The RNA sequences preserve the secondary structure
when undergoing erosion or mutation by compensatory
mutation as shown in figure 4. This causes a strong pair-
wise correlations between distant bases in the primary RNA
sequence. Unlike the techniques employed for DNA iden-
tification, the approach presented here can describe such
pairwise correlations. Consider a sequence of ncRNA mole-
cules, tandem repeats of which have undergone random
mutations as shown in figure 4. According to the statisti-
cal model presented in this paper, the sources generating
the symbols that do not bond (nucleotides in the loop of
a hairpin ncRNA) have a point-mass pmf. On the other
hand, the sources corresponding to a bonded base pair
have verysimilar pmfs (in the sense of Kullback-Leibler
divergence [13]). If the information sources with similar
pmfs are identified as the same the sequence of sources
form a palindrome; the sequence of sources correspond-
ing to ncRNA molecule in figure 4 after identifying the
bonded nucleotides with the same source isX1,X2,X3,
X4,X3,X2,X1. The statistical model presented here is
therefore capable of describing structural similarities too.
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