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ABSTRACT (insertions and deletions) in homologous periodic segeenc
A novel approach is presented to the detection of timeLatent periodicities [5] occur when the repeating unit i$ no
varying periodicities in symbolic sequences. Various syma fixed sequence but may change in a patterned way: for in-
bolic sequences like DNA can be modelled as stochastigtance, a sequence in which thea element is always either
processes that exhibit time-varying cyclostationaritheT A or G. An observed latent period of nucleotides in a DNA
coding part of the DNA, for instance, exhibits statisticalsequence may be (A/C)(T/G)(T/A)(GIT)(CIG/A)(GIA), i.e.
periodicity with period three. The complexity-regulaze the first nucleotide of a period may be A or C followed by
maximum-likelihood estimates are developed in this paped T or G and so on.
for the statistical period of symbolic sequences. The time- Symbolic random variables take values on a set called the
varying periodicities are discovered by using sliding win-alphabetwhose elements are callexsymbols A symbolic
dows. A cumulative sum test is also presented to detect theequence is defined as a sequence of symbolic random
change points. The formulation in this paper avoids any kindariables. Most current approaches to detecting periodic-
of numerical mapping for the symbolic DNA sequences andties transform the symbolic sequences into a numerical
does not impose any algebraic structure. sequence [6].which defines an algebra on the alphabet. But
this imposes a mathematical structure that is not present in
the problem. For instance, the mapping of DNA elements
(T=0, C=1, A= 2, G= 3), suggested in [7], puts a total
order on the set; the complex representation=(A + j,
. INTRODUCTION G=—1+j, C=—1—j, T=1-) used in [8], [6] implies
YMBOLIC sequences are time series defined on dhat the euclidean distance between A and C is greater than
inite set with no algebra. In DNA sequences, eco-the distance between A and T. A good survey of various
nomic indicator data, and other nominal time series, théiumerical representations for DNA sequences is presented
only mathematical structure is the set membership [1]. Arn [9]. Most of these techniques are primarily aimed at
interesting and important behaviour such symbolic seqenc the detection of homological periodicities [10], [8], [11]
may exhibit isperiodicity and finding such periodicities is Artifacts of such mappings are reported in [11].
fundamental to the understanding and determination of the In contrast, the formulation in this paper implies no
structure of the sequences. In genomic signal processing)athematical structure on the alphabet and presents aajener
locating hidden periodicities in DNA sequences is impdrtanapproach to the detection of the three classes of perigicit
since repetitions in DNA have been shown to be correlateéh a maximum likelihood framework. Each symbol of the
with several structural and functional roles [2]. For exéenp sequence is assumed to be generated by an information
a base (symbol) periodicity @fl is associated witia-helical ~ source with some underlying probability mass function(pmf
formation for synthesized protein molecules [2] and a basdhe sequence is generated by drawing symbols from these
periodicity of 3 is identified with exons, the protein coding sources in a cyclic manner. Thus, periodicities in the syimbo
region of the DNA. Such investigations also find applicasion are represented by repetitions of the pmfs, referred to as
in diagnosis of genetic disorders (like Huntington’s dsea statistical periodicityor strict sense cyclostationarityl'he
[3]), DNA forensics and reconstructing evolution histosy.[ number of sources is equal to the latent period in the
Symbolic periodicities can be classified into homologoussequence.
eroded, and latent Homologous periodicities occur when The problem of detecting latent periodicities in sym-
short fragments are repeated in tandem. Eroded periadiciti bolic sequences is formulated mathematically in the next
[5] result when some of the symbols in a homologoussection. The maximum likelihood estimate of the period
periodic sequence are replaced or altered so that the tandemere developed in [12]. The estimates are improved in this
repeats are imperfect. These may also be observatals  paper by incorporating a complexity term with the likelildoo

Index Terms— Symbolic periodicity, finding exons, cy-
clostationarity.



function in section Ill. This penalized maximum likelihood were presented in [12]. However, as seen from the
estimator is justified by the application of the minimum experimental results on simulated sequences and real gene
description length (MDL) principle to the model selection data, the estimates tend to overfit the data. To address the
problem. In section IV the MDL estimates are computedproblem of over-fitting, a penalized maximum likelihood

in sliding windows over various simulated and real DNA estmator is suggested in section lll. The estimator is ddriv
sequences. The series of estimates characterizes the timmsing the refined minimum description length (MDL)

varying behaviour of the sequences. principle. The penalization then corresponds to assuming
the universal prior on the parameters and refined MDL
Il. STATISTICAL PERIODICITY estimator is essentially the MAP estimator with respect to

A given symbolic sequenc® = D; D, ... can be denoted the universal prior.

by the mappingD : N — X, from the natural numbers
to an alphabett. For DNA sequencesY = {A,G,C, T}
where the symbols denote nucleotides Adenine, Guanine, IIl. PENALIZED MAXIMUM LIKELIHOOD
Thymine and Cytosine respectively. Lét denote a prob- ESTIMATOR
ability distribution on X and X denote the corresponding  The fundamental idea or the intuition behind MDL is that
random variable or information source. L&t denote the more regular the data is, the easier it is to compress and thus
n-fold cartesian product ot andz™ € X" denote a random learn [13]. LetD denote the data and &), 42 ... be
sequence of length. A probabilistic sources defined as a a list of candidate models or hypotheses, wheté) —=
sequence of probability distributiod&"), P(?) ... oncorre- {Q|Q is anM x k column-stochastic matrx for k =
sponding sequence of alphabét$, X2,... such thatforall 1,..., N,. DefineH = UL, H*). Then the best explanation
n, and for allz™ € X", Pt (a™) =37, P"tD(a™,y).  of the dataD is the hypothesig! € H that minimizes the

If a symbolic sequenceD is generated by repeatedly description length
picking subsequences from a probabilistic souréé) and . *)
concatenating them, then the statistical periodicity Iof L(D|H) = L(H™) + L(D|Qy) 2

is 7. In other words, the sequend® is generated byl \herer,(7(*)) is the length, in bits, of the description of the
|nformat|0n sources depoted as,..., X7, in a cyclic hypothesisH (*) andL(D|Q,(V,’“L)) is the length, in bits, of the
fashion. The random variablg, takes values on the alphabet description of the data when encoded by the best maximum

X according to an associated probability mass funct|0r||ikelihood hypothesisQ,E,lk,_) e H®). The term L(D|H) is

]]j“(j;t ge;?;?tes t;e); forsy;pbol 1'” X‘ )ﬁlthh%rr()eb\?amitg sometimes referred to as thchastic complexityf the data

[ - i = J = L,..., . k)Y i .
N o0 given the model whereas(H*)) is called theparametric

the cardinality of the alphabet (which is four for the DNA complexity Clearly, the MDL model selection involves the

sequences). i o :

The number of complete statistical periods/inare M = tra_?ﬁeoge?:itrmefgr:ffgrg(s; )Ofir:'ttﬁgiﬂfgmg:xégae reD-
|N/T |, where|z | denotes the largest integer that is smaller ML P » 'ep
than or equal ter. Definei, — 14+((i—1) mod T), where resents the &c))delength of the data when encoded vyl'th.the
(z mod y) denotes the remainder after division oby y. hypothesisQ,, . Assuming the hypotheses are probabilistic,
Then for1 < i < N, the symbolD;, i.e. thei" symbol in the Shannon-Fano code is optimal in terms of the expected

the sequence, is generated by the random variabte . codelength. ThusL(D\Q,(\,’fL)) = —log P(D|Q'(V]|€L))’ where
7 P(D|Q,(\,,’€L)) is the probability of observing) conditioned

The random variableé(;T for iy = 1,...,7 are assumed i k) .

to be independent. Thearameters Py, ..., Py, andT are  ©N the hypothesid(D|Qyy)- The codelength is therefore
unknown. Define® = [T, P,, ..., Pr]. The search space for the negative-log-likelihood of having observed the data
parametefT is the setB — {1,..., Ny}, for someN, < N As presented in [12], thgj, i, )'" element of the matriQy,
and for the pmfsQ = [Py,...,P7] the search space is the 'S 9Ven as

subsetQ C [0,1]I¥1*7 of column stochastic matrices (for R | M R

QeQ Qjel1]andy* Q=1fori=1,....,7). Qu.(.i) = i > UD iy, = Xib k=1, k
Let o = B x Q denote the search space for the param@ter m=1 3
Given the data, the maximum aposteriori (MAP) estimate of )

wherel{-} is the indicator function. The MLE for the prob-
ability mass functions of the random variables is intuitive
Omap = argmax P(O|D) = argmaxP(D|O)P(0), (1)  Simply stated, given the peridd segment the data sequence
Ocp Ocp in non-overlapping contiguous subsequences of lerigth
using the Bayes rule and the fact th&®(D) =  The pmf of them! information source is given by the
= P(D|©)P(©)d®O is a constant. Under the uniform relative frequencies of each symbol. So, for instance, df th
prior assumption the estimates for the unknown parametets/pothesized statistical period in a gene sequendetien

parameter© is



the MLE of the pmf of the2" information source is given
by the relative frequencies of nucleotides in the subsezpien
comprises of every third symbol, starting with the second.

For the first term in equation (2), the following code
may be adopted. First encodeusing [log k] 1’s followed
by a 0 which is followed by anotheflog k] bits for the
binary representation df. Note that this a prefix code and
takes2[log k] + 1 bits. The parameters a € H*) are
described byt = Mk frequencies or probabilities that are
determined by the counts in the sf,1,...,[&]}, thus
taking &' log([4£] + 1) bits. The total codelength for the
code is therefore

L(H)+L(D|H) = 2[log k|+1+Mk log[%] —log P(D|H)
(4)

for H ¢ H®. Its clear from the equation above that
the MDL principle yields a penalized maximum likelihood

Minimum description length

Surface plot of Minimum description length along the sequence for various periodicity hypothesis
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estimate. The code used here israversal codeand implies

a universal prior on the hypothesis. Fig. 1. Description length (in bits) for the ML estimate in

H*) plotted against perio& along the sequence.
IV. TIME VARYING PERIODICITIES

The penalized MLE is applied to various simulated sym-
polic sequences an_d_r_eal gene sequences. In order to thFacrtger the window size, the better the estimates since the
tlmg-varylng per|0d|cmes_ ina §e_quenpeMsymb0Is, the averaging in the empirical estimator is over more data. On
estimates are computed in a sliding window of side< N

with an overlan offf svmbols between successive windows the other hand, smaller windows give better resolutionesinc
. P Y : ‘the estimates along the sequence depend only on the input
Figure 1 shows results for a simulat8d00-symbols long

DNA sequence that has latent periodicity of periodor S)érgrbfelzt;ﬂj t;:rgage?:é%:botmOC?%'”AZOtgﬂtsp:ﬁgleg:evvé?
subsequences with indicés- 2000 and6001 — 8000 and is P g gep y

. . close to each other. For instance, if the random part of the
completely random in the middle. Thus there are tlange - . , .
S : .. sequence in figure 1 is much smaller than the window size,
points in the sequence. The latent period of the periodi

. Ghe change points may go undetected. A multi-resolution
part_ of the sequence is ('A.‘/CT)(T/G)(T/A)(G/T)(C/G/A)(G/’A) multi-scale technique is therefore preferred where variou
i.e. it was generated by six information sourcas, ..., Xg

i X . . sizes for the sliding window are used. A coarse search is
with X; generating A or C each with equal probabilify; fi . . .

. . o irst performed followed by a fine search in the regions of
generating A,G or C each with probabiliy/3 and so on. interest
The window size was chosen to 60 symbols and the ’
overlap wass75 symbols. The description length (Z-axis) is
plotted for the ML hypothesis corresponding to each perioc
(Y-axis) along the sequence (X-axis). Note that both chang
points are detected in the surface plot. Also the six-pésiod
behaviour is very evident from the plot as are the harmonics
i.e. the integer multiples of the true period.

The algorithm was also tested with chromosome 20 of th
human genome [14]. Th&748 base-pair(bp) long sequence
(from bp 22,553,000-22,562,747) contaih305 long (bp
22,557,488-22,558,792) protein coding regierdp) flanked
by non-coding partsirftrons) on both sides. The contour
plot in Figure 2 shows a latent periodicity of period three
beginning at sliding window number 60 which corresponds 4 . : o
to bp number 22,557,42M =750, H = 75). The period-3 20 40 60 80 100 120
behaviour of protein coding genes is expected since amin_ Sliding Window Number
acids are coded by trinucleotide units callsations[6].

The window sizeM determines the usual trade-off be- Fig. 2. Contour plot of description length (in bits) for the ML
tween the resolution and the accuracy of the estimates. THstimate int{(*) plotted against period along the sequence.




Near the change points, the periodicity profile graduallyand functional roles is an important aspect of genomic $igna
changes, whereas in other parts the profile remains comrocessing. The investigation is challenging at least irt pa
stant except for some small fluctuations due to the noisgue to the lack of an algebraic structure. The approach
data. Thus a uniformly most powerful (UMP) test mayused here models the symbolic sequence as a nonstationary
be constructed based on the positive inflection rate overandom process on a finite alphabet. The time-varying nature
multiple successive windows. If the maximum likelihood of symbolic sequences is studied and a uniformly most
period reported i then the alternate composite hypothesispowerful test is constructed for detecting the transition
is that the period is no longeP. The formulation is very points.
similar to the change-point problem in statistics. The test
proposed here is similar to the cumulative sum approaches. VI]. REFERENCES
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where|A — Byt = Zi,j(aij — b;;)? is the total deviation
between matricesA and B, 61, is a threshold andl’ is

the number of successive windows over which the test
is conducted. The test statist@ip) for period P is the
minimum total deviation between ML estimates for the
pmfs in windowt and previous’ Windows.(agp) is plotted

in figure 3 for the simulated latent periodic sequence used
in figure 1. The jump in®§6) att = 9 corresponds to the
change-point at bp numbar +8 x H = 1950, giving much
better resolution. The resolution can be further improved
upon by decreasingd, keeping M constant. Note that
@%6) is consistently large over the transition regions with
lobe-width equal tal/.

0.081
0.07
0.06
0.05r

0.04

Total deviation

0.03r

0.02

0.01r




