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ABSTRACT
A novel approach is presented to the detection of time-

varying periodicities in symbolic sequences. Various sym-
bolic sequences like DNA can be modelled as stochastic
processes that exhibit time-varying cyclostationarity. The
coding part of the DNA, for instance, exhibits statistical
periodicity with period three. The complexity-regularized
maximum-likelihood estimates are developed in this paper
for the statistical period of symbolic sequences. The time-
varying periodicities are discovered by using sliding win-
dows. A cumulative sum test is also presented to detect the
change points. The formulation in this paper avoids any kind
of numerical mapping for the symbolic DNA sequences and
does not impose any algebraic structure.

Index Terms— Symbolic periodicity, finding exons, cy-
clostationarity.

I. INTRODUCTION

SYMBOLIC sequences are time series defined on a
finite set with no algebra. In DNA sequences, eco-

nomic indicator data, and other nominal time series, the
only mathematical structure is the set membership [1]. An
interesting and important behaviour such symbolic sequences
may exhibit isperiodicity and finding such periodicities is
fundamental to the understanding and determination of the
structure of the sequences. In genomic signal processing,
locating hidden periodicities in DNA sequences is important
since repetitions in DNA have been shown to be correlated
with several structural and functional roles [2]. For example,
a base (symbol) periodicity of21 is associated withα-helical
formation for synthesized protein molecules [2] and a base
periodicity of 3 is identified with exons, the protein coding
region of the DNA. Such investigations also find applications
in diagnosis of genetic disorders (like Huntington’s disease
[3]), DNA forensics and reconstructing evolution history [4].

Symbolic periodicities can be classified into homologous,
eroded, and latent Homologous periodicities occur when
short fragments are repeated in tandem. Eroded periodicities
[5] result when some of the symbols in a homologous
periodic sequence are replaced or altered so that the tandem
repeats are imperfect. These may also be observed asindels

(insertions and deletions) in homologous periodic sequences.
Latent periodicities [5] occur when the repeating unit is not
a fixed sequence but may change in a patterned way: for in-
stance, a sequence in which thenth element is always either
A or G. An observed latent period of nucleotides in a DNA
sequence may be (A/C)(T/G)(T/A)(G/T)(C/G/A)(G/A), i.e.
the first nucleotide of a period may be A or C followed by
a T or G and so on.

Symbolic random variables take values on a set called the
alphabet whose elements are calledsymbols. A symbolic
sequence is defined as a sequence of symbolic random
variables. Most current approaches to detecting periodic-
ities transform the symbolic sequences into a numerical
sequence [6].which defines an algebra on the alphabet. But
this imposes a mathematical structure that is not present in
the problem. For instance, the mapping of DNA elements
(T= 0, C= 1, A= 2, G= 3), suggested in [7], puts a total
order on the set; the complex representation (A= 1 + j,
G= −1 + j, C= −1− j, T= 1− j) used in [8], [6] implies
that the euclidean distance between A and C is greater than
the distance between A and T. A good survey of various
numerical representations for DNA sequences is presented
in [9]. Most of these techniques are primarily aimed at
the detection of homological periodicities [10], [8], [11].
Artifacts of such mappings are reported in [11].

In contrast, the formulation in this paper implies no
mathematical structure on the alphabet and presents a general
approach to the detection of the three classes of periodicities
in a maximum likelihood framework. Each symbol of the
sequence is assumed to be generated by an information
source with some underlying probability mass function(pmf).
The sequence is generated by drawing symbols from these
sources in a cyclic manner. Thus, periodicities in the symbols
are represented by repetitions of the pmfs, referred to as
statistical periodicityor strict sense cyclostationarity. The
number of sources is equal to the latent period in the
sequence.

The problem of detecting latent periodicities in sym-
bolic sequences is formulated mathematically in the next
section. The maximum likelihood estimate of the period
were developed in [12]. The estimates are improved in this
paper by incorporating a complexity term with the likelihood



function in section III. This penalized maximum likelihood
estimator is justified by the application of the minimum
description length (MDL) principle to the model selection
problem. In section IV the MDL estimates are computed
in sliding windows over various simulated and real DNA
sequences. The series of estimates characterizes the time-
varying behaviour of the sequences.

II. STATISTICAL PERIODICITY

A given symbolic sequenceD = D1D2 . . . can be denoted
by the mappingD : N → X , from the natural numbers
to an alphabetX . For DNA sequences,X = {A, G, C, T}
where the symbols denote nucleotides Adenine, Guanine,
Thymine and Cytosine respectively. LetP denote a prob-
ability distribution onX and X denote the corresponding
random variable or information source. LetXn denote the
n-fold cartesian product ofX andxn ∈ Xn denote a random
sequence of lengthn. A probabilistic sourceis defined as a
sequence of probability distributionsP (1), P (2), . . . on corre-
sponding sequence of alphabetsX 1,X 2, . . . such that for all
n, and for allxn ∈ Xn, P (n)(xn) =

∑
y∈X P (n+1)(xn, y).

If a symbolic sequenceD is generated by repeatedly
picking subsequences from a probabilistic sourceP (T ) and
concatenating them, then the statistical periodicity ofD
is T . In other words, the sequenceD is generated byT
information sources denoted asX1, . . . ,XT , in a cyclic
fashion. The random variableXi takes values on the alphabet
X according to an associated probability mass function
Pi; it generates thejth symbol in X with probability
Pi(j) = P(Xi = Xj) for j = 1, . . . , |X | where |X | is
the cardinality of the alphabet (which is four for the DNA
sequences).

The number of complete statistical periods inD areM =
⌊N/T ⌋, where⌊x⌋ denotes the largest integer that is smaller
than or equal tox. DefineîT = 1+((i−1) mod T ), where
(x mod y) denotes the remainder after division ofx by y.
Then for1 ≤ i ≤ N , the symbolDi, i.e. theith symbol in
the sequenceD, is generated by the random variableX

îT
.

The random variablesX
îT

for îT = 1, . . . , T are assumed
to be independent. Theparameters, P1, . . . , PT , andT are
unknown. DefineΘ = [T , P1, . . . , PT ]. The search space for
parameterT is the setB = {1, . . . , N0}, for someN0 < N
and for the pmfsQ = [P1, . . . ,PT ] the search space is the
subsetQ ⊆ [0, 1]|X |×T of column stochastic matrices (for
Q ∈ Q, Qji ∈ [0, 1] and

∑|X |
j=1 Qji = 1 for i = 1, . . . , T ).

Let ℘ = B×Q denote the search space for the parameterΘ.
Given the data, the maximum aposteriori (MAP) estimate of
parameterΘ is

ΘMAP = arg max
Θ∈℘

P(Θ|D) = arg max
Θ∈℘

P(D|Θ)P(Θ), (1)

using the Bayes rule and the fact thatP(D) =∫ ∞

−∞
P(D|Θ)P(Θ)dΘ is a constant. Under the uniform

prior assumption the estimates for the unknown parameters

were presented in [12]. However, as seen from the
experimental results on simulated sequences and real gene
data, the estimates tend to overfit the data. To address the
problem of over-fitting, a penalized maximum likelihood
estmator is suggested in section III. The estimator is derived
using the refined minimum description length (MDL)
principle. The penalization then corresponds to assuming
the universal prior on the parameters and refined MDL
estimator is essentially the MAP estimator with respect to
the universal prior.

III. PENALIZED MAXIMUM LIKELIHOOD
ESTIMATOR

The fundamental idea or the intuition behind MDL is that
more regular the data is, the easier it is to compress and thus
learn [13]. LetD denote the data and letH(1),H(2), . . . be
a list of candidate models or hypotheses, whereH(k) =
{Q|Q is anM × k column-stochastic matrix} for k =
1, . . . , N0. DefineH = ∪N0

k=1H
(k). Then the best explanation

of the dataD is the hypothesisH ∈ H that minimizes the
description length

L(D|H) = L(H(k)) + L(D|Q
(k)
ML ) (2)

whereL(H(k)) is the length, in bits, of the description of the
hypothesisH(k) andL(D|Q

(k)
ML ) is the length, in bits, of the

description of the data when encoded by the best maximum
likelihood hypothesisQ(k)

ML ∈ H(k). The termL(D|H) is
sometimes referred to as thestochastic complexityof the data
given the model whereasL(H(k)) is called theparametric
complexity. Clearly, the MDL model selection involves the
trade-off between goodness-of-fit and complexity.

The second termL(D|Q
(k)
ML ) in the two part code, rep-

resents the codelength of the data when encoded with the
hypothesisQ(k)

ML . Assuming the hypotheses are probabilistic,
the Shannon-Fano code is optimal in terms of the expected
codelength. Thus,L(D|Q

(k)
ML ) = − log P (D|Q

(k)
ML ), where

P (D|Q
(k)
ML ) is the probability of observingD conditioned

on the hypothesisL(D|Q
(k)
ML ). The codelength is therefore

the negative-log-likelihood of having observed the dataD.
As presented in [12], the(j, îk)th element of the matrixQk

ML
is given as

Qk
ML (j, îk) =

1

M

M∑

m=1

1{D(m−1)k+îk
= Xj}, îk = 1, . . . , k

(3)
where1{·} is the indicator function. The MLE for the prob-
ability mass functions of the random variables is intuitive.
Simply stated, given the periodk, segment the data sequence
in non-overlapping contiguous subsequences of lengthk.
The pmf of themth information source is given by the
relative frequencies of each symbol. So, for instance, if the
hypothesized statistical period in a gene sequence is3 then



the MLE of the pmf of the2nd information source is given
by the relative frequencies of nucleotides in the subsequence
comprises of every third symbol, starting with the second.

For the first term in equation (2), the following code
may be adopted. First encodek using ⌈log k⌉ 1′s followed
by a 0 which is followed by another⌈log k⌉ bits for the
binary representation ofk. Note that this a prefix code and
takes2⌈log k⌉ + 1 bits. The parameters ofQ ∈ H(k) are
described byk′ = Mk frequencies or probabilities that are
determined by the counts in the set{0, 1, . . . , ⌈N

k
⌉}, thus

taking k′ log(⌈N
k
⌉ + 1) bits. The total codelength for the

code is therefore

L(H)+L(D|H) = 2⌈log k⌉+1+Mk log⌈
N

k
⌉−log P (D|H)

(4)
for H ∈ H(k). Its clear from the equation above that
the MDL principle yields a penalized maximum likelihood
estimate. The code used here is auniversal codeand implies
a universal prior on the hypothesis.

IV. TIME VARYING PERIODICITIES

The penalized MLE is applied to various simulated sym-
bolic sequences and real gene sequences. In order to detect
time-varying periodicities in a sequence ofN symbols, the
estimates are computed in a sliding window of sizeM < N
with an overlap ofH symbols between successive windows.
Figure 1 shows results for a simulated8000-symbols long
DNA sequence that has latent periodicity of period6 for
subsequences with indices1− 2000 and6001− 8000 and is
completely random in the middle. Thus there are twochange
points in the sequence. The latent period of the periodic
part of the sequence is (A/C)(T/G)(T/A)(G/T)(C/G/A)(G/A),
i.e. it was generated by six information sources,X1, . . . ,X6

with X1 generating A or C each with equal probability,X5

generating A,G or C each with probability1/3 and so on.
The window size was chosen to be750 symbols and the
overlap was675 symbols. The description length (Z-axis) is
plotted for the ML hypothesis corresponding to each period
(Y-axis) along the sequence (X-axis). Note that both change
points are detected in the surface plot. Also the six-periodic
behaviour is very evident from the plot as are the harmonics,
i.e. the integer multiples of the true period.

The algorithm was also tested with chromosome 20 of the
human genome [14]. The9748 base-pair(bp) long sequence
(from bp 22,553,000-22,562,747) contains1305 long (bp
22,557,488-22,558,792) protein coding region (exon) flanked
by non-coding parts (introns) on both sides. The contour
plot in Figure 2 shows a latent periodicity of period three
beginning at sliding window number 60 which corresponds
to bp number 22,557,427 (M = 750, H = 75). The period-3
behaviour of protein coding genes is expected since amino
acids are coded by trinucleotide units calledcodons[6].

The window sizeM determines the usual trade-off be-
tween the resolution and the accuracy of the estimates. The

20
40

60
80

2
4

6
8

10
12

14

1000

1100

1200

1300

1400

1500

1600

1700

1800

Sliding Window Number

Surface plot of Minimum description length along the sequence for various periodicity hypothesis

Period

M
in

im
um

 d
es

cr
ip

tio
n 

le
ng

th

Fig. 1. Description length (in bits) for the ML estimate in
H(k) plotted against periodk along the sequence.

larger the window size, the better the estimates since the
averaging in the empirical estimator is over more data. On
the other hand, smaller windows give better resolution since
the estimates along the sequence depend only on the input
symbols in a small neighbourhood. Another problem with
poor resolution is detecting two change points that are very
close to each other. For instance, if the random part of the
sequence in figure 1 is much smaller than the window size,
the change points may go undetected. A multi-resolution
multi-scale technique is therefore preferred where various
sizes for the sliding window are used. A coarse search is
first performed followed by a fine search in the regions of
interest.
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Fig. 2. Contour plot of description length (in bits) for the ML
estimate inH(k) plotted against periodk along the sequence.



Near the change points, the periodicity profile gradually
changes, whereas in other parts the profile remains con-
stant except for some small fluctuations due to the noisy
data. Thus a uniformly most powerful (UMP) test may
be constructed based on the positive inflection rate over
multiple successive windows. If the maximum likelihood
period reported isP then the alternate composite hypothesis
is that the period is no longerP . The formulation is very
similar to the change-point problem in statistics. The test
proposed here is similar to the cumulative sum approaches.
The null hypothesis that there is no change is rejected if

Θ
(P )
t = min

m∈{1,...,T}
|Q

(P )
ML ,t − Q

(P )
ML ,t−m|tot > δTh (5)

where |A − B|tot =
∑

i,j(aij − bij)
2 is the total deviation

between matricesA and B, δTh is a threshold andT is
the number of successive windows over which the test
is conducted. The test statisticΘ(P )

t for period P is the
minimum total deviation between ML estimates for the
pmfs in windowt and previousT windows.Θ(P )

t is plotted
in figure 3 for the simulated latent periodic sequence used
in figure 1. The jump inΘ(6)

t at t = 9 corresponds to the
change-point at bp numberM +8×H = 1950, giving much
better resolution. The resolution can be further improved
upon by decreasingH, keeping M constant. Note that
Θ

(6)
t is consistently large over the transition regions with

lobe-width equal toM .
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Fig. 3. Θ
(P )
t plotted along the sliding window number for

the sequence from figure 1.Θ(6)
t is plotted in red. (M =

750,H = 150, T = 3)

V. DISCUSSION

The various parts of DNA sequences exhibit characteristic
statistical periodicities. Mapping this behaviour to structural

and functional roles is an important aspect of genomic signal
processing. The investigation is challenging at least in part
due to the lack of an algebraic structure. The approach
used here models the symbolic sequence as a nonstationary
random process on a finite alphabet. The time-varying nature
of symbolic sequences is studied and a uniformly most
powerful test is constructed for detecting the transition
points.
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