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ABSTRACT

This paper examines the structure and performance of
three control strategies for a regenerative life support
system constrained by mass balance equations. A novel
agent-based control strategy derived from economic
models of markets is compared to two standard control
strategies, proportional feedback and optimal control.
The control systems require different amounts of
knowledge about the underlying system dynamics,
utilize different amounts of information about the current
state of the system, and differ in their ability to achieve
system-wide performance goals. Simulations illustrate
the dynamic behavior of the life support system after it is
perturbed away from its equilibrium state or nominal
operating point under the three different control
strategies. The performance of these strategies is
discussed in the context of system-wide performance
goals such as efficiency and robustness.

INTRODUCTION

Part of the systems modeling research at NASA Ames
Research Center has centered on the use of advanced
control techniques to actively manage resources in
advanced life support systems (ALSs). One important
class of resources is the class of scarce, common-use
resources. Power is an example of a scarce common-use
resource—most ALS subsystems will use power to
process and/or cycle mass, and for heating and cooling.
Moreover, power in ALS systems is limited by the power
generating capacity of the power plant.

Management of ALS systems requires the integration of
diverse yet tightly coupled system elements. Because
system elements are coupled, scarce, common-use
resources pose an additional challenge for ALS
management systems. The added difficulty stems from
the fact that system performance depends on meeting

both subsystem and system-wide performance goals.
For example, reference [3] focuses on the problem of
eliminating system-wide power surges while meeting
individual subsystem life support requirements under
power constraints. The system-wide goal of eliminating
power surges may reduce the required size of the power
supply by reducing the need for excess capacity.

It is with a view towards meeting performance goals, at
both the subsystem and system levels, that we examine
three control strategies aimed at intelligent resource
allocation. The control strategies differ in their
information structure—the amount of information
necessary to calculate their controls.

At one extreme is a proportional feedback control about
individual system states. This is a completely
decentralized information control strategy in that each
system state is concerned with its own performance
without regard to that of others. When the control task is
such that independent subsystem operation can be
tolerated, decentralized control is easy to implement and
can integrate a diversity of system elements. However,
one of the drawbacks of a highly decentralized control
system is that it can be difficult to manage common-use
resources like power and to achieve system-wide
performance goals. These types of considerations
require a certain amount of coordination that is not
present in a decentralized information structure.

At the other extreme is optimal control, which uses a
global cost function to calculate feedback controls. This
approach is centralized in the sense that information
about all states is used in the calculation of each
individual control. While in theory this approach perfectly
integrates system elements to achieve a global system
performance goal, in practice it is brittle (i.e. sensitive to
uncertainty in or changes to system components) since it



requires extensive knowledge of the control object.
Furthermore, it can be computationally intensive, and it is
not necessarily easy to specify a global cost function that
captures the system performance criteria.

Market based methods fall in between these two
informational extremes. In the market based approach
examined here a decentralized control strategy, in this
case a proportional feedback around individual states, is
supplemented with one or more signals of global scope.
These signals are termed prices, and they communicate
scarcity of common-use resources. The local controls are
designed to respond to these price signals by adjusting
their demand for the resources. In this way information
about the global state of the system impacts individual
control operation. The combination of centralized and
decentralized elements make this approach more 'plastic'
(tolerant to structural changes) while at the same time
capable of addressing global performance concerns.
However, this approach often requires balancing the
costs of additional communication and computation
against the global performance that can be achieved
under a centralized information structure.

The purpose of this paper is to examine example control
systems with these three information structures and to
describe their performance characteristics. The approach
is simulation based.

SYSTEM MODEL

The systems modeling group at the NASA Ames
Research Center has developed a suite of detailed
simulation models of the BIO-Plex Advanced Life
Support Test Bed [4] Here we consider a simplified mass
balance model of the Air Revitalization System (ARS)
(see Figure 1) as our simulation testbed for analyzing the
performance of the different control systems.

The key elements of the model are the crew chamber,
which shares its atmosphere with the solids processing
system; the biomass production chamber, which
contains wheat grown with a 24 hour photoperiod and
with a constant profile of crop ages; a solid polymer
electrolysis (SPE) unit, which produces Oxygen from
water; and two buffer tanks which hold Oxygen and
Carbon Dioxide. The model tracks Oxygen and Carbon
Dioxide only and does not account for system pressure.
All flows are on a per hour basis.

STATE EQUATIONS – The underlying dynamics of the
system can be written

 ˙ ( , )x x u= f

where x  represents the vector valued state and u
represents the (vector of) inputs. Given an initial starting

Figure 1 ARS Representation

condition, the equations of state completely determine
the evolution of the system and the mass in the various
compartments of the model system at any point in time.
There are seven state variables and seven controls.

State variables:
 x x1 2,  are the crew chamber molar fractions of O2 and
CO2, respectively
x x3 4,  are the plant chamber molar fractions of O2 and

CO2, respectively
x5 is the amount (in mols) of O2 in the O2 tank

x6 is the amount (in mols) of CO2 in the CO2 tank

x7 is a moving average of light received by the crop in

PPF

Control variables:
u1  is the molar flow of O2 from the O2 tank to the crew
chamber
u2  is the molar flow of crew air to the CO2 scrubber (we
assume that the scrubber does not saturate.)
u3 is the molar flow of plant air to the O2 scrubber (we

assume that the scrubber does not saturate.)
u4  is the molar flow of CO2 from the CO2 tank to the plant
chamber
u5  is the molar flow of feces to the SPS (incinerator)

u6  is the molar flow of water to the SPE

u7  is the light level (PPF)

Parameters:
υh  is the aggregate constant rate of human O2 uptake in

mols/hr ( = 6)



Vh is the volume (in mols) of the crew chamber (34366)

Vp  is the volume (in mols) of the plant chamber (16768)

State equations:
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˙ .x x u u u5 3 3 1 60 5= − +

ẋ x u u6 2 2 4= −

˙ . .x x u7 7 70 5 0 5= − +

These equations of state (with the exception of state 7)
represent a mass balance on the system of Figure 1. The
relationship between plant chamber molar fraction of
CO2, light level and CO2 uptake, given by:
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is derived from an energy cascade model of plant
photosynthesis [5]. (add this reference)

SYSTEM EQUILIBRIA – The equilibria of the system
x ue e,  occur when ẋ 0= . Although there are many
equilibria, the requirements of human and plant
physiology, as well as considerations of system buffering

and operational margins, narrow the relevant number.
For example,  ( x u 0e e, = ) is an equilibrium, albeit not a
particularly interesting one. Consequently, choice of a
nominal operating point is a key element in system
performance. We consider the following equilibrium as
the baseline or benchmark for the mode:

xe T= [ . . . . ]0 23 0 0003 0 23 0 001 500 500 2080

ue

T

= [ . . .

. . ]

6 8299 19988 28 679 5 9964

0 015715 0 46579 2080
Eq. 2

Equilibrium states one through four reflect crew and crop
physiology, while the equilibrium buffer states are half
full. The equilibrium light level is the daily target PPF level
required by the crop. The equilibrium controls then
follow from the system equations and the constraint
ẋ 0= .

LINEARIZED EQUATIONS OF STATE – The optimal
control problem relies on linearized versions of the
above equations of state for analytical tractability. The
system dynamics are linearized about the equilibria given
by Eq. 2. The linearized system has the form:

ż Az Bv= +

where z  and v  are the states and controls with the

equilibria shifted to the origin (z x x= − e , v u u= − e )
and
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PERFORMANCE CRITERIA

System performance can be judged by many criteria.
Here we discuss two broad classes of system
performance goals: Efficiency and Robustness. We use
the term efficiency in a general context to signify
performance measures that capture resource costs.
These generally are of secondary importance.
Robustness refers to performance measures that
describe the effectiveness of strategies in maintaining
system integrity. These generally are of primary
importance. For example, power usage is of secondary
importance to crew safety.

EFFICIENCY – There are several ways in which the
problem of efficient use of ALS resources can be
formulated. For example, one way to examine the use of
common-use resources such as power is to track their
total usage. A given system is deemed more efficient
than another if the size of the common pool required
during system operation is smaller. In the case of power,
this reduces the launch cost significantly.

Efficiency can also be judged relative to a cost function
integrated over time. For example, one standard
formulation of an optimal control problem uses the cost
function:

J( ) ( )z,v v Rv z Qz= +∫ T T

t

t

dt
0

1

which penalizes deviation of the state (z x x= − e ) and
deviation of the control ( v u u= − e) from their nominal
values. The matrices Q  and R  are used to weight the
contributions of the state and control. Thus the
efficiency problem can be cast as the problem of
returning to the nominal operating point from a perturbed
state while minimizing J( )z,v . When the system
equations are linear, this is known as the Linear
Quadratic Regulator (LQR) problem.

ROBUSTNESS - Robustness can also be defined and
measured according to several criteria. One form of
robustness is structural, and pertains to the informational
structure of the designed controllers. For instance, the
Linear Quadratic Regulator which explicitly solves the
problem of minimizing J( )z,v , requires feedback from all
states. Such information intensive controls tend to be
rigid, i.e. not easily changed or modified, and thus are
not robust to changes in the control object or to
inadvertent changes in the operating point.

Another criterion for robustness (as applied to ALS)
involves the system’s response to perturbations, such as
its ability to recover from or tolerate unexpected events.
These may take many forms. A sensor failure may cause
the state to be misread, and a controller to assume
incorrect values. How does such an error propagate

through the system? For information intensive
controllers the error will appear in all the controls, while it
may appear in only a single control when using a
decentralized strategy. Another form of unexpected
event may involve persistent deviations or mis-
measurements, i.e., noisy measurements of the state.
Again, a controller will be more robust the less such
deviations impact system performance. Here we do not
examine our controllers by this robustness measure.
Rather, we use a much simpler form of robustness
criterion.

A third form of perturbation can be viewed as single,
short duration perturbations, and the job of the controller
is to return the system to its nominal operating point.
Such events  can be modeled as initial conditions that
deviate from equilibrium, and can be studied by
examining the trajectories of the system as the controls
return the state to equilibrium. The robustness
requirement is then to return the system to equilibrium
following the disturbance. This is a 'degenerate' form of
robustness known as stability.

CONTROL STRATEGIES.

PROPORTIONAL CONTROL – One common and well
understood control strategy sets the control proportional
to the error between the current and desired state.
Proportional control is a special case of
Proportional—Integral—Derivative or PID control. The
decentralized proportional controllers used here are of
the form:

u K x x u= − +p
e e( ) Eq. 3
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These coefficients were determined to achieve system
stability. This control is applied to the full nonlinear model
(Eq. 1). Note that each control attempts to move towards
the equilibrium relying on information about the local
state only. P control does not require detailed
knowledge of the system dynamics  nor does it attempt
to meet specified system-wide goals besides stability.

MARKET BASED AGENTS - The market-based
approach that we propose and develop starts with the



same basic structure and gain matrix of the P controllers
discussed above. It is decentralized in that control
decisions are made autonomously by individual software
agents that rely primarily on local information about their
own state. In addition, a market and price are introduced
to manage a common resource (power in this case) [2].

Building on previous work on allocation of power in LSSs
[3], the market-based control method proposed here
seeks to smooth out surges in power demand and to
meet power consumption constraints. Not surprisingly,
the market only involves those controls which use
power. The first four controls regulate the flow of gasses
to and from chambers and tanks and do not consume
appreciable amounts of power. Consequently, the
“agents” for these controls are identical to the
proportional controllers—they are entirely autonomous
and do not participate in any markets or have any access
to system-wide information. The last three controls run
processes that use large amounts power. Their choice of
controls is given by a function that depends both on the
distance of their state from its desired target and on the
price of power, which reflects the state of the system and
the requirements of other power-using agents. The
simplest version of individual agent control choices,
those most readily compared to proportional control,
have the following form:
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where p  is the price of power; kij  is the same gain factor

used in the proportional controllers, and M = 2  is the
price at which the process turns itself off entirely.

These functions give the agents’ choice of control.
When p = 1 the market-based agents are identical to the
proportional controllers. Other things being equal, when
the price is greater than 1 the market-based controls are
set to a lower level than their proportional counterparts,
and vice versa. To get agents’ demand for power, the
value of these controls are multiplied by the amount of
power used by each process. Summing over agents
gives an expression for the total power demanded,
which is a function of the price and the states of the
agents.

In a market, prices are jointly determined by the demand
for and the supply of a good. The specification of the
supply side of the power market plays a key role in

determining the behavior of the system and
consequently must be tailored to the desired operational
goals. For example, suppose the supply of power is fixed
and constant at all times. Setting this constant supply
equal to the demand results in:

L u L u L u S5 5 6 6 7 7+ + = Eq. 5

where L L L5 6 7, ,  are the power usage of the respective

processes and S  is the fixed supply of power. The
constraint on total power use is exogenously
determined, and  the market clearing price simply
allocates the fixed amount of power among agents. The
goal of surge management or preventing power usage
above a fixed amount can be achieved with this supply
strategy.

Another possibility is to have the supply of power also
depend on the price. When the states associated with
the power using controls are below their targets, demand
for power will be higher at every price. Consequently,
having the power supply depend positively on the price
tends to increase the use of power consuming
processes when the states are below their targets and to
decrease it when states approach or exceed the targets.
As the simulation results discussed below confirm, this
smoothes out power and control usage relative to the
proportional controls but is more responsive to
deviations of the state away from the equilibrium than a
fixed supply of power. In order for the market-based
control system to have the same equilibrium as the
proportional and optimal controls, the supply of power at
a price of 1 must equal the quantity of power required to
exactly support the equilibrium control use. For example,
a simple linear function can be used:

S p m p b m b( ) ;= + = 39634.1;  =  13211.4.     Eq. 6

Putting the two sides of the market together highlights
the connection with economic models (See Figure 2).
The intersection of the supply and demand curves
shows the power usage at the price of 1 when all states
are at their equilibrium values. Figure 3 shows a shift in
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demand that occurs when some of the states are below
their target values, increasing overall demand (and price).

The preceding discussion and graphs assume a market-
clearing price that sets supply exactly equal to demand at
each point in time. Alternatively, the price can be
expressed as a time varying process that is part of the
system dynamics, increasing when demand is greater
than supply and decreasing when demand is less than
supply. This allows for easy integration of the market with
the continuous time system dynamics, and can be less
computationally intensive. For example, price dynamics
could depend linearly on the difference between supply
and demand.

˙ . ( ( ))p L u L u L u S p= + + −001 5 5 6 6 7 7 . Eq. 7

Alternative             Performance             Goals           for              Market             Based
Controllers    —One of the advantages of the market-based
approach is its flexibility in incorporating different
operating goals involving the common resource. One
straightforward way to do this is by altering the supply
side of the market for power. The desired power usage is
then achieved indirectly through the price. For example,
we can trade off between power usage and maintaining
the desired states by contracting the supply of power so
that 2.5% less power is available at a price of 1 (Eq. 8).

S p m p b m b( ) ;= + =  40955.2;  =  10569.1.  Eq. 8

The system will converge to an operating point that uses
less power but note that it does not return to the target
state values. Instead, the system will settle down to an
alternative equilibrium balancing a new demand and a
new supply at a  new equilibrium price.

Similarly, suppose the supply of available power varies
over time due to the requirements of other users or other
parts of the system. Consider the power supply
described by Eq. 9.

S t L L Sin t Le e e( ) ( );= + = .05 52845.4 
π
6

 Eq. 9

This supply varies 10% around the equilibrium level on a
12 hour cycle. When power is relatively scarce the market
clearing price would be higher than 1 and all of the
agents would reduce their demands accordingly. When
power is relatively abundant a lower price signals agents
to increase their use of controls at that time.  

OPTIMAL CONTROL - Optimal control seeks to minimize
(or maximize) an explicit cost (or reward) function of the
system states and controls. Because ARS requires a
nominal power level, attempting to minimize use of
power does not a well-posed problem make. That is,
power can indeed be reduced, but at the expense of not
achieving equilibrium. The speed at which the system
returns to equilibrium determines its transient power
consumption. Rather than state the problem in terms of
power minimization, we examine a secondary cost as
captured in the linear quadratic regulator (LQR). The
canonical LQR optimal control problem chooses the
controls u so as to minimize  

J( ) min ( )z,v v Rv z Qz
v

= +
∞

∫ T T

t

dt
0

Eq. 10

subject to the linear dynamics

ż Az Bv= +

In other words, linear quadratic optimal control minimizes
the weighted deviation of the states and of the controls
needed to bring the system back to its nominal
(equilibrium) state. The weighting matrices Q  and R  are
chosen to be diagonal matrices with
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which assigns equal costs to percent deviations squared
in both states and controls.

The linear optimal control problem stated above is solved
via the Hamilton-Jacobi equations as in [1], and the
solution is applied to the full nonlinear system model (Eq.
1). The optimal control is a full state feedback given by:

u K x= − lqr

Note that in general each control requires knowledge of
all  the states. Moreover, detailed knowledge of system
dynamics is necessary.

Figure 3 Supply and demand shifted



INFORMATION STRUCTURE FOR
CONTROLLERS

One of the major differences between the optimal,
decentralized, and market-based approaches is the
amount of information needed to calculate the controls.
At one extreme is the optimal approach, for which each
element of the input u is a function of all the states and all
the inputs. Thus if

˙ ( , )z z u= f

represents the system dynamics, and ze , ue  represent
the equilibrium solution, the optimal controls can be
written as a function

u g z u z u= ( , , , )e e .

This follows from differentiation of the Hamiltonian, which
shows that it is possible to write the input directly as a
function of the adjoint (the Lagrange multiplier). Since
the state and adjoint are concatenated into a two point
boundary value problem (usually solved numerically,
though it can be solved in closed form when f(z,u) is
linear and when the cost function is quadratic), the
adjoint is itself a function of all the states and all the
inputs. Accordingly, g z u z u( , , , )e e  is a composition of
the two processes.

At the other informational extreme is the decentralized
controller. Rewriting the system dynamics element by
element gives

˙ ( , ), , ,...,z f z u i ni i i i= = 1 2

and a decentralized approach chooses

u g z zi i i
e= ( , )

to correct deviations from the equilibrium. The simplest
of such controllers feeds back the error between the
state and its equilibrium in a linear fashion. The only
information required for operation is the corresponding
state.

The market based approach lies between these two
extremes. A new scalar variable called p (price) is
introduced, which is (in general) a function of all the
states and inputs, and possibly of the equilibrium values.
Thus the dynamics are

˙ ( , )z z u= f

and the price is

p h e e= 1( , , , )z u z u

for a static price determination, or

˙ ( , , , )p h e e= 2 z u z u

for a first order dynamic price mechanism. The controllers
are then chosen as a function of the corresponding state
and the price, that is,

u g z pi i i= ( , ) .

Thus each controller acts independently of the rest,
except through the price variable. The decentralized
nature of the scheme has certain advantages, namely
modularity, reconfigurability, and low computational load.
The centralized aspect allows for coordination across
otherwise independent agents.

SIMULATION RESULTS

This section presents a series of simulations that
investigate the performance of the three control
schemes.

We begin by perturbing the system away from the
equilibrium given in Eq. 2 and observing the different
dynamic behavior under the different control regimes.
Figure 6, which appears at the end of the paper, shows
the evolution of all the states and controls for each of the
above control strategies starting from an initial condition
where the first state is approximately 4% below
equilibrium, x1 0 22( ) = . , and all other states are at their
equilibrium. Note that the disturbance to the first state
quickly propagates to the other states as the system
adjusts.

In this simulation and in general, the PID controllers
return the state most quickly to its equilibrium. This is
directly attributable to the choice of the feedback matrix
K . The LQR returns the slowest, because it is
minimizing its cost over an infinite time, and because its
cost includes penalties on large deviations of all of the
control signals. Although it is not obvious from the
figures, the LQR values do return to the equilibrium after
several thousand time steps. Recall that the MBAs have
the same gain matrix as the PIDs, though the actual
control values are also a function of the price. The market
dynamics tend to smooth out control use over time,
which causes the states and controls to remain further
away from their equilibrium values for longer than the
PID, although they still return faster than the LQR
trajectories.

The system dynamics with a fixed, a reduced, and a
variable supply of power are shown in Figure 7, also at
the end of the paper. The reduced power MBAs have
the same basic dynamics as the standard MBA’s of
Figure 6, but they do not return to the same equilibrium.
Rather, they converge to a new state that consumes less
power. In contrast, the fixed power MBAs return to the



same equilibrium while maintaining a specified (constant)
power usage. Such a control strategy may find use when
power consumption must equal baseload generation.
Price dynamics for the standard, reduced and fixed
MBAs are shown in Figure 5.

The variable power supply MBA’s fluctuate predictably
around their non-varying counterparts. One of the major
advantages of the market-based control structure is that
it easily incorporates changes in system specification. In
contrast, the optimal control approach is very sensitive to
these changes. The inclusion of inequality constraints
on controls, such as appear in Eqs. 4 and 5, or time
varying system elements, as in Eq. 9, not only involve re-
specifying the entire problem but also often require an
entirely new solution technique. Many reasonable
problem specifications simply cannot be solved.

Figure 4 shows power usage relative to the equilibrium
power usage. The PID uses the most power and has the
largest surge. This occurs because the P controller takes
no account of the power usage. In contrast, the standard
MBAs smooth out power usage over time because the
price mechanism forces the agents to conserve energy
usage when it is scarce (expensive). The power usage
for the LQR is close to equilibrium (and returns slowly to
the equilibrium value) since large deviations from the
state and control are punished strongly while small
deviations are not (a consequence of the quadratic form
of the cost function).

The power reduced MBAs clearly use less power. In a
steady state the power reduced MBA uses 0.89% less
power by reducing light levels for the plants by 0.86%,
reducing use of the SPE to generate oxygen by 3.5%,
and reducing use of the incinerator by 7.9%. The states
differ from xe  by the following percentages: {-0.001,
0.16, 0.008, -0.12, 0.032, 0.30, -0.86}.

Figure 5 shows the price dynamics for the three MBA
controllers. The price is higher than 1 for the entire
simulation. The constant power supply requires a higher
price to keep demand for use of controls below the fixed

capacity. The higher final price in the power reduced
case is a key component in determining the equilibrium
of both the states and the controls.

CONCLUSION

This paper examined the performance of three different
control structures for an ALS, focusing on a new market-
based approach which combines both decentralized and
centralized elements. The market based method
provides a price signal to independently acting
controllers so that constraints on power availability can be
met. In addition, the modularity and flexibility of the
market-based controllers make it easier to accommodate
changes in both agent specification and system goals.

The distributed P control cannot readily accommodate
system-wise efficiency or performance goals short of a
re-design at the level of individual control gains. This can
be time consuming and costly.

The centralized optimal control approach has similar
limitations. It can be extremely difficult to incorporate
additional constraints or alternative problem
specifications such as a system-wide cap on power
usage. Furthermore, reducing long term average power
is not possible since the state on average remains at its
equilibrium (i.e. the optimization has no choice to make).
Reductions in power require a new system equilibrium or
operating mode and recalculation of the controls.

This does not mean however, that a centralized control
approach does not have utility in ALS. Optimal control
offers a very powerful method for the realization of
precise system goals. In applications where goals are
clear and well posed, the computational and
communication load light, optimal performance of critical
necessity, and the problem or system specifications not
likely to change, a centralized scheme likely is preferable.

All three information structures, centralized,
decentralized and hybrid, offer utility under certain
circumstances. Centralized schemes are favored when
the performance goal is of a global nature, and costs of
communication and computation are low. A
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decentralized scheme is appropriate for situations in
which system components are independent and
modular, and goals tend to be local (e.g. there are no
constraints on common resources). A hybrid scheme,
such as the market-based approach combines the
modularity of decentralized approaches with limited
communication to achieve global resource allocation
goals. However, more research into the realization of
global system goals under a distributed architecture is
necessary to be able to fully exploit the market-based
approach.
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DEFINITIONS, ACRONYMS,
ABBREVIATIONS

ALS: Advanced Life Support

LLS: Life Support System

LQR: Linear Quadratic Regulator

MBA: Market-Based Agents

PID: Proportional—Integral—Derivative

PPF: Photosynthetic Photon Flux (µmols/m2)

SPE: Solid Polymer Electrolysis

SPS: Solids Processing System
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Figure 6 State response under standard equilibrium
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