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Cross-Term Analysis of LNL Models

Ho-En Liao and William A. Sethares

Abstract—This brief proposes a method called cross-term analysis to
analyze the structure of the class of LN L models, those which consist
of a memoryless nonlinearity sandwiched between two linear systems.
By evaluating a family of conditional expectations, cross-term analysis
unambiguously determines the cross relations among all delay elements.
A byproduct of this methodology is a way to determine the lengths of the
two linear subsystems in the LV L model. The method is independent of
the degree of nonlinearity of the static subsystem.

1. INTRODUCTION

Identification of block-oriented models and cascade models [3] has
been widely discussed due to their special and simple formulations,
and these models are useful in a variety of fields. Volterra kernel esti-
mations [4], [5] and correlation analyses [1], [2], [6], [12] are the main
tools used to identify these two structures. Nonparametric approaches
for Hammerstein and Wiener models are proposed in [9]-[11] where
the nonlinear characteristics of the models are estimated from input
and output data.

In this brief, a method of cross-term analysis is proposed to
identify the structure of the class of LN L models (L denotes FIR
filters and N denotes a static nonlinear function) directly from
the input/output data. The cross-term analysis of this partitioned
system evaluates conditional expectations from a set of input/output
data and determines the cross-term set to each delay element as
well as the lengths of the linear filters. In direct consequence,
classification of LN (known as Wiener systems), NL (known as
Hammerstein systems) and LNL models can be made. Once this
structural determination has been made, any of the standard methods
mentioned above can be used to estimate the appropriate parameters.

In Section II, some structural properties of the class of LNL
models are discussed. The cross-term analysis based on system

 partitions is developed in Section III. In Section IV simulations are
conducted to verify the theoretical arguments. Finally, in Section V,
conclusions are made.

II. STRUCTURAL PROPERTIES OF THE CLASS OF LNL. MODELS

The class of LN L models consists of two linear dynamic parts
sandwiching a static (memoryless) nonlinear mapping. This cascaded
form is shown.in Fig. 1. The linear parts of the LNL model are
assumed to be FIR filters with lengths L and L- respectively, and the
system is denoted L; N Lo. The nonlinear mapping f(+) is assumed
to be absolutely square integrable in every closed interval [a,b] on
the real line, ie., [ |f(z)|* dz < oo, so that f(-) can be expressed
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Fig. 1.

via a polynomial expansion. Using the notation of Fig. 1, we have
Li—1

Z a;z(n —1),

=0

M
2(n) = f(w(n)) = Z aiw

w(n) =

and
Lo—1

Z biz(n —1)

where M may be infinite. The relation between z(n) and y(n) is
given by

y(n) =

Li—1  Li—1  Ly—1 g
y(n) = Z Z ZanbHakmn—k —1)
q=0 kq=0 i=0 j=1

@
It can be seen from (1) that the structure of the L; N L, model is
composed of sums of the products of delay elements. The main
purpose of this paper to determine the cross-terms to any given
delay element in the model. In addition, the lengths of the two linear
systems L; and L; can be determined.

The L, N and NL; are subclasses of the L; NL, model where
bo =1and b; = 0 forall ¢ # 0, and ap = 1 and a; = 0 for all
7 # 0 in (1), respectively. In addition, the class of LNL models is
obviously a subclass of Volterra series expansions [7]. The following
remarks come directly from the definition.

R2-1: In the class of LNL models, LNL O LN,LNL D NL
and LN N NL = {4}.

R2-2: Let z(n — k;) be a delay element in the Ly N L, model and
2(n — k;) be the cross-term with maximum time lags to @(n — k;).
Then, for fixed i,

|ki —kjl=D =1L, 1.

R2-3: Given a L1 N L; model for which L; + L. is given, i.e.,
the delay elements in the model can be predetermined. Then

) if D= 0, then the system is [V Ly;

2) if D = Ly + Ly — 2, then the system is L1 N.

III. IDENTIFICATION OF CROSS-TERMS

This section proposes a method to identify the cross-term set of
a delay element in a L; N L, model. This information can then be
combined with the results of the previous section to determine which
of the models, NL, LN, or LN L is most appropriate to describe the
given I/O characteristic. The basis for the cross-terms determination
is a partitioned representation of the nonlinear system, which is
described first.

A Volterra series expansion of arbitrary order can be partitioned
with respect to the :th delay element as

M;
y(m) = Y fil@(n —i))gik (Ci) + vi(Ti) )]

k=1
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Fig. 2. The plot of conditional expectations corresponding to 7 = 0.
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Fig. 3. The plot of conditional expectations corresponding to ¢ = 1.

where Ciy U Cia U---UCyn, = = 0 is the cross-term  set of
z(n —1). C' denotes the set of delay elements that does not contain
the delay element x(n —4). The upper bound of the summation A; is
determined by the structure of the model and z(n—%). Hence, the first
term in the right-hand side of (2) completely specifies the nonlinear
contribution of the delay element z(n — ) to the /O characteristic
of the system and the second term is uninfluenced by #(n — 4).

The establishment of the partitioned form is rather intuitive and
straightforward. For example, if a mathematical description of a
system is

y(n) = az(n)z*(n — 3)z(n — 4) + bz’ (n = 2)z° (n — 3)
+ ca(n — 5)z(n — 7) + d2?(n)

and the delay element z(n) is of interest, then the partitioned
representation of the above system with respect to z(n) can be with
Mo = 2, f(z(n)) = az(n), f2(e(n)) = da’(n),Co = {z(n -
3),z(n—4)} (thetefore, fo,1 is a function of z(n — 3) and z(n —4)
and is equal to 2% (n—3)z(n—4)), Co,2 = {#} (therefore, fo,1 is the
identity mapping), and C = {z(n—3),z(n~—2),z(n—5),z(n—7)}
(therefore vo(Co) = ba? P (n— 2% (n — 3) + cz(n — 5)z(n —7)).
Note that (01,1Ol,2) N Co {x(n - 3)}

After introducing the partitioned form based on the Volterra series
expansions, we are now well equipped to determine the cross-term
set C; of z(n — ). :

Lemma: Let x be i.i.d. and bounded in the interval [c, d] and f(-)
be a continuous function of z (not a constant) in a closed interval
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Fig. 4. The plot of conditional expectations corresponding to ¢ = 2.

TABLE 1
THE STANDARD DEVIATIONS (std) OF md; ;’s
- std il 1 2 3
0 0.1727 | 0.0160 | ¢.0178 |
1 - 0.1049 0.0064
2 - — 0.0965

[p, 4] D [c, d]. Then there exists a closed interval T € [c, d] such that
E[f(2)] # E[f(2)|z € 1.

Proof of the-above lemma follows from the mean-value theorem [8].

Proposition:

Consider the partitioned form of the system in (2) with ii.d: input
sequence z. Let I, be an arbitrary closed interval. Then there exists
a fixed closed interval I such that the value of Ely(n)|z(n —14) €
L]—Ey(n)|z(n—:)I,, z(n—j)I] is independent of I, iff z(n—j)
is not a cross-term to z(n — 7).

Proof: Note that

Ely(n)lz(n — 1) € L] ZE [fu(z(n = D)]|z(n =) € L]

: E[gi,k(ci,k)] + B[vi(C)] 3
because the input sequence is i.i.d. Moreover
Ely(n)|z(n — i) € Lo, z(n — j) € Ij]
= ZE[fk (z(n —i))|z(n — 1) € I,]
k

Elgii(Cip)l + Eoi(Co)lz(n —j) € L] (@)
when z(n — 7) is not a cross-term to z(n — i) and

=3 EBlfi(a(n —i))|z(n —i) € L]
k

Elgi1x(Cip)lz(n — j) € B] + Elvi(Ci)|z(n - j) € L]
(%)
when z(n — §) is.a cross-term to z(n — 7). Whenever z(n — j) is" -
not a cross-term, then (3)—(4) gives

Blwi(Ci)l — E[wi(Ci)|z(n = j) € L] = h(ly)
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and (1) is independent of the interval I, chosen. This proves the
necessary condition.

For sufficiency, suppose x(n — j) is a cross-term to z(n — ).
Then (3)(5) gives

Y Elfi(z(n = i))lz(n - i) € L]
k

“{E[gi x(Cix)] — Elgi,x(Ci)|a(n — j) € L]}
+ E[vi(Ci)] = E[i(CT)lx(n - j) € I] = ' (Lo, I)

The term in the braces of the above equation can be nonzero with
the appropriate choice of I, by the Lemma. Hence, when different
intervals are taken (those conditioned on z(n — )), h'(I,, Iy) is not
constant, but depends on the interval I, chosen.

The proposition above suggests a way to identify cross-term sets by
comparing the conditional expectations of different intervals provided
that the input data is ii.d. Moreover the cross-term analysis as
suggested by the Proposition is not constrained to LNL model but
is applicable to very general nonlinear systems whenever they are
representable using Volterra series expansions.

IV. SIMULATIONS

The following simulation shows an example of the determination
of cross-term sets by evaluating conditional expectations under the
assumption that L; + Ly is predetermined.

Consider the “unknown” L, N L, system with

Li: w(n) = 0.52(n) + 0.45z(n — 1);
N: z(n) = —0.6, when w(n) < 0.3
= 2w(n), when —0.3 < w(n)<0.3
= 0.6, when w(n) > 0.3;
Ly:  y(n) = 2(n) +0.622(n — 1) — 0.52(n — 2).
The conditional expectations are evaluated by averaging ten inde-
pendent experimerits. In each experiment, the input data (with length
of 5000) are i.i.d. and uniformly distributed in [-1, 1]. The intervals
I,,’s are chosen to be equally spaced in [-1, 1] with length 0.2 and
I, = [0.5,1]. Let mc; denote E[y(n)|a(n — i) € L], and let md; ;
denote the difference between (3) and (4) or (5). The results are
shown in Figs. 2, 3, 4 with « = 0, 1, 2, respectively. The standard
deviations of md;,; are also shown in Table I, from which we can
see that the standard deviations of mdo 2, mdo 3, md; 3 are all small,
while the others are large. Thus, the cross-term sets are
Co = {a(n), 2(n - 1)}
él = {x(n)7 :c(n - 1)73:(77“ - 2)}
Cy ={2(n—1),2(n — 2),z(n — 3)}
and
Cs = {z(n = 2),2(n —3)}.
Since the longest- (or shortest-) delay cross-term to any of the delay
element 2(n —¢) isa(n—i—1) (orz(n—i+1)),D=L;—1=1
by R2-2 and L2 = 3 since the longest-delay element in the model is
z(n —3),ie, Li+ Ly —2 = 3.
V. CONCLUSION

This brief represents the structural properties of the class of
LiNL; models and a way to find the cross-term sets within the

models. The lengths of the linear filters can be also determined.
The proposed cross-term analysis can be used to predetermine the
structure of an unknown model so that the parameter estimation of
the unknown model is facilitated.
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An Inequality Concerning Nonexpansive Mappings

Irwin W. Sandberg

Abstract—In recent results concerning nonexpansive maps and the
problem of iteratively solving nonlinear equations of the form Qz = yina
Hilbert space (application areas include networks and signal processing),
a certain inequality plays a central role. Here we consider the case in
which @ is continuously Fréchet differentiable and we give criteria under
which the inequality is satisfied.

I. INTRODUCTION

The problem of iteratively solving equations of the form
Qe=y O]

for a solution x, given y and an operator (), arises in several contexts
in the Circuits and Systems area. A condition that plays a central role
in several recent results is that () takes a (real or complex) Hilbert
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