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REPETITION AND PSEUDO-PERIODICITY

William A. Sethares

ABSTRACT. Many phenomena exhibit great regularity without being periodic.
This is modeled using the notion of \pseudo-periodic" functions and the related
\�-norm", which allow complex repetitive phenomena to be represented as a
periodic process plus a set of parameters that de�ne the deviations of the process
from true periodicity. Applications to sunspot data and to heartbeat analysis
explore practical uses and limitations of the method.

1. Introduction

A data set often will exhibit great regularity without exactly repeating. For
example, heartbeats always have the characteristic \lub-dub" pattern which oc-
curs again and again, yet each recurrence di�ers slightly from each other. Some
beats are faster, some slower, some are stronger and some weaker. Sometimes a
beat may be \skipped". Nonetheless, the overriding regularity of the heartbeat
is its most striking feature. This paper models such near repetition using the
idea of a \pseudo-periodic" function. Coupled with the \�-norm", this provides
a consistent framework with which to study and manipulate a large class of
repetitious (but nonperiodic) phenomena.

The next section introduces the notion of pseudo-periodicity, and relates it
to standard ideas of periodicity and almost-periodicity [3]. The basic idea is
that each repetition of the pseudo-periodic function can be summarized by a
pair of parameters � (which describes the amount of stretching or compression)
and � (which speci�es where the repetition begins). An inner product and its
associated norm are then used to solve a number of practical issues that arise in
the study of pseudo-periodic functions.

Section 3 develops the theory behind pseudo-periodic functions in a series
of results that demonstrate how the relevant parameters (the � 's and � 's) can
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be reliably estimated from a given data waveform. Then Section 4 applies the
method to a standard data base describing sunspot variations, and to a simu-
lated heartbeat record. The application of the method to the rhythm tracking
of musical signals is discussed, and the �nal section presents conclusions and
suggestions for further study.

2. Periodicity and pseudo-periodicity

The function s(t) is said to be periodic of period T if s(t) = s(t + T )
for all t . (By convention, T is the smallest value for which this holds.) As is
well known, any continuous periodic function can be represented in terms of its
Fourier Series, and this paper restricts attention to real periodic functions with
Fourier coe�cients that are absolutely summable. Let PT be the set of all such
T -periodic functions, which is closed under addition. With scalar multiplication
de�ned in the usual way, PT forms a linear vector space.

A more general class of functions is needed in order to study processes (such
as the waveform of a heartbeat) which are repetitious but not periodic in the
strict mathematical sense. Let S(t) be a real valued continuous function with
support in [0; T ] . Given sequences �i and �i , let

R(t) =
X
i

S(�it+ �i) :

Such a function R(t) is called pseudo-periodic, and S(t) is called the template

function for R(t) . The �i are called the stretching parameters, and represent
the lengthening or shortening of the periods. The �i are called the translation

parameters, and allow nonuniform timing of the process, for instance, an ac-
celeration or deceleration in the heartbeat rate. In a musical context, the �i
correspond to the pitch of the waveform while the �i correspond to the rhythm
in which the waveforms appear. The ith repetition of the pseudo-periodic func-
tion R(t) is designated Ri(t) = S(�it+�i) , which has support in

�
� �i

�i
; T��i

�i

�
.

Usually, �i � 1 and �i � �i�1 +
T

�i�1

, though successive repetitions may over-

lap. For the special case when �i = 1 and �i = iT 8i , R(t) is periodic with
period T , and is equal to s(t) , de�ned as the periodic extension of S(t) .

Because each repetition in R(t) is simply related to the template function
S(t) via the stretching and translation parameters, it is possible to think of R(t)
as a member of an equivalence class represented by s(t) , thus reducing the com-
plex mathematics of pseudo-periodic functions to the well understood periodic
framework. The practical problem then arises of how to �nd (or estimate) the
stretching and translation parameters for a given waveform R(t) .
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To state this concretely, let Ri(t) be the ith repetition of R(t) , and let
ri(t) be the periodic extension of Ri(t) . Again, let s(t) represent the periodic
extension of the template function S(t) . Then the problem of identifying the
stretching and translation parameters of the ith repetition can be reduced to
the problem of �nding �i and �i to minimize a measure of the di�erence between
s(�it+�i) and ri(t) , that is, to minimize ks(�it+�i)� ri(t)k . But what norm
is appropriate in this context? Since the functions are periodic (have in�nite
energy) the L2 norm cannot be applied. Moreover, although both s(t) and ri(t)
are periodic, their periods may be di�erent, and hence their sum (and di�erence)
may not be periodic. This means that the minimization problem cannot be
stated properly within the mathematics of periodic functions (those with Fourier
Series containing only harmonics of a single underlying fundamental) and has
entered the mathematics of functions with noninteger related Fourier Series.
Such functions were �rst investigated by B o h r [3], who called them almost

periodic functions. Later investigations by B e s i c o v i t c h , by W e y l , and by
W e i n e r (see [2] for a summary of this work) brought the �eld of almost periodic
functions to maturity.

In order to place this work in a modern mathematical framework, consider
the inner product

hs; ri� = lim
k!1

1

2k

kZ
�k

s(t)r(t) dt ; (1)

where s(t) and r(t) are periodic functions of periods Ts and Tr (which need
not be the same). To see that (1) actually de�nes an inner product [9], there
are four conditions that must be veri�ed: commutativity, additivity, invariance
under scalar multiplication, and positivity. The inner product (1) essentially
�nds the \average correlation" between s(t) and r(t) over all possible periods,
and induces the �-norm

ksk� =
q
hs; si� :

In the discrete time case [16], an analogous inner product was used to induce the
\periodicity norm". For the purposes of calculation, observe that if s(t) 2 PTs

then (1) is equal to the average over a single period, that is,

ksk2� =
1

Ts

TsZ
0

s2(t) dt :

Accordingly, the problem of �nding � and � to best represent the ith repetition
of the pseudo-periodic R(t) can now be stated as the problem of minimizing

J(�i; �i) =
1

2



s(�it+ �i) � ri(t)


2
�
: (2)
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This mathematical setup is reminiscent of wavelet transforms [5], [18]. The
template function plays a role analogous to that of the mother wavelet, while the
stretching parameter is analogous to the scale factor. However, wavelet scale fac-
tors are often constrained to speci�c values which insure that the wavelet basis
functions are orthogonal, while the stretching parameters assume arbitrary val-
ues and so the template functions need not be orthogonal. Hence, template func-
tions do not form a basis, rather, they form a frame [4], a more-than-complete
spanning set1. A more fundamental di�erence is that the goal of the pseudo-
periodic analysis is quite di�erent from the goal of most frame methods (such as
[8], [10], [12]), as will become clear from the applications, which show how the
pseudo-periodic analysis can directly provide information (such as the speed and
frequency of repetitions of the template within a waveform) that other meth-
ods do not. From a computational point of view, the unknown parameters of
standard orthogonal wavelet analysis enter in a linear fashion, which simpli�es
the calculations in comparison to (2), where the � and � parameters enter in a
nonlinear way.

3. Properties of the �-norm

The �rst result shows that periodic functions under the �-norm are insensitive
to stretching by � and translation by � . A similar result is, of course, untrue
for the standard L2 norm.

Theorem 3.1. For any s 2 PTs
and any �; � 2 R ,



s(t)


�
=


s(�t+ �)




�
.

P r o o f . Let s(t) = r(�t + �) . Hence r(t) 2 PTr
where Tr = �Ts . By

de�nition,



r(t)

2
�
=

1

Tr

t=T̂+TrZ
t=T̂

r2(t) dt :

Let t = ��+� , which implies that dt = �d� . Using this change of variables, the

lower limit of integration becomes � = T̂
�
� T while the upper limit becomes

� = T̂
�
+ Ts = T + Ts . Thus



r(t)

2
�
=

1

�Ts

�=T+TsZ
�=T

r2(�t+ �)� d� :

1Suitable conditions on S(t) so that it forms a frame are given by (for instance), the Stone-
Weierstrauss theorem [1], which also requires that the ith repetition be weighted c

i
S(�

i
t+�

i
).
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Canceling the � 's and substituting the de�nition of s(t) shows that this is
exactly



s(t)k� .
The next result shows that the solution to the minimization problem (2) is

the \same" whether the data is adjusted to match the template, or whether the
template is adjusted to match to the data.

Theorem 3.2.



r(�t + �) � s(t)



�
=


r(t) � s(��t + ��)




�
, where �� = 1=�

and �� = ��=� .

P r o o f . By de�nition,



r(�t + �); s(t)

�
�
= lim

k!1

1

2k

t=kZ
t=�k

r(�t + �)s(t) dt :

Using the change of variables � = �t+ � , this becomes

lim
k!1

1

2k

�=�k+�Z
�=��k+�

r(� )s
� �
�
�

�

�

�
d�=� :

Assuming � > 0, let �k = �k . Using the de�nitions of �� and �� it gives

lim
�k!1

�

2�k

�=�k+�Z
�=��k+�

r(� )s(��� + ��) d�=� :

Canceling the � 's it gives 

r(� ); s(��� + ��)

�
�
:

Hence

r(�t + �)� s(t)


2
�
=


r(�t + �)



2
�
� 2



r(�t + �); s(t)

�
�
+


s(t)k2� :

Theorem 3.1 shows that the �rst and third terms on the right hand side are
translation and stretch invariant, while the middle term follows directly from
the argument above the last formula can be rewriten into

r(t)

2

�
� 2



r(t); s(��t+ ��)

�
�
+


s(��t+ ��)



2
�
=


r(t) � s(��t+ ��)



2
�
:

Consider the problem of choosing � and � so as to minimize the cost J(�; �)
of (2), which can be expanded as

s(t) � r(�t + �)



2
�
=


s(t)

2

�
� 2



s(t); r(�t + �)

�
�
+


r(�t + �)



2
�
:
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Theorem 3.1 guarantees that both ksk� and krk� are independent of � and � ,
and hence minimizing J(�; �) is equivalent to maximizing

�J(�; �) =


s(t); r(�t + �)

�
�
: (3)

This has the form of a correlation with respect to the �-norm, and hence the
optimization is e�ectively �nding the parameters which best correlate r(�t+�)
with s(t) .

The next result shows that the set of all possible maxima of �J can be char-
acterized simply in terms of the Fourier Series coe�cients sm of s(t) 2 PTs

and
rn of r(t) 2 PTr

.

Theorem 3.3. The maxima of J(�; �) of (3) (equivalently, the minima of

J(�; �) of (2)) can occur only at discrete values of � for which `1�Ts = `2Tr
where `1 and `2 are integers. Moreover, at these values, �J =

P
k

rk`1s�k`2 .

P r o o f . Express s(t) in terms of its Fourier coe�cients

s(t) =
X
m

sme
jm!st; where !s =

2�

Ts
;

and expand r(t) as

r(t) =
X
n

�rne
jn!rt; where !r =

2�

Tr
:

Then

r(�t + �) =
X
n

�rne
jn!r(�t+�) =

X
n

�
�rne

jn!r�
�
ejn!r�t �

X
n

rne
jn!r�t :

By the de�nition of the inner product (1).

�J(�; �) = lim
k!1

1

2k

kZ
�k

s(t)r(�t + �) dt :

Substituting the Fourier coe�cients into this expression yields

�J(�; �) = lim
k!1

1

2k

kZ
�k

�X
m

smejm!st

��X
n

rne
jn!r�t

�
dt

= lim
k!1

1

2k

kZ
�k

X
m

X
n

sm rne
j(m!s+n�!r)t dt :
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Letting � = t=k , d� = dt=k , the limits of the integration are transformed from
t = �k to � = �1 we obtain

lim
k!1

1

2k

1Z
�1

X
m

X
n

sm rne
j(m!s+n�!r)k�k d� ;

and canceling the k 's yields

lim
k!1

1

2

1Z
�1

X
m

X
n

sm rne
j(m!s+n�!r)k� d� :

The bounded convergence theorem (Corollary 5.37 of [21]) can now be applied
since rn and sm are absolutely summable and since the complex exponential is
bounded by unity. Accordingly, the limit can be interchanged with the sums to
give X

m

X
n

sm rn lim
k!1

1

2

1Z
�1

ej(m!s+n�!r)k� d� :

Doing the reverse change of variables (t = k� ) gives

X
m

X
n

smrn lim
k!1

1

2k

kZ
�k

ej(m!s+n�!r)t dt :

Let ! =m!s + n�!r . Any k can be expressed uniquely as k = 2�n
!

+ � where
n is an integer and � 2 [0; 2�) . For ! 6= 0, the integral can be rewritten������

kZ
�k

ej!t dt

������ =
�������

2�n

!
+�Z

� 2�n

!
��

ej!t dt

�������
=

�������
2�n

!Z
� 2�n

!

ej!t dt +

� 2�n

!Z
� 2�n

!
��

ej!t dt +

2�n

!
+�Z

2�n

!

ej!t dt

������� :
(4)

The �rst of these three integrals is identically zero since it is the integral of a
complex sinusoid over an integral number of periods. Hence������

kZ
�k

ej!t dt

������ �
� 2�n

!Z
�2�n

!
��

��ej!t �� dt +

2�n

!
+�Z

2�n

!

��ej!t �� dt � 4� :
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The argument of each of the remaining integrals is bounded by one, and is
integrated over a region of length � , which is at most 2� . Hence (4) can be
bounded independently of k , and so

lim
k!1

1

2k

kZ
�k

ej!t dt = lim
k!1

4�

2k
= 0 :

On the other hand, for ! = 0, ej!t = 1, and

lim
k!1

1

2k

kZ
�k

ej!t dt = lim
k!1

1

2k

kZ
�k

dt = 1 :

Accordingly,

�J(�; �) =

( P
m

P
n

smrn if ! = 0 ;

0 if ! 6= 0 :
(5)

Using the de�nitions of !s and !r , ! = 0 can be rewritten as

m

n
= ��

Ts
Tr

:

Since m and n are integers, this requires that �Ts be rationally related to Tr ,
that is, there must be integers `1 and `2 such that `1�Ts = `2Tr . For such � ,X

m

X
n

smrn =
X
k

rk`1s�k`2 ;

which was the desired result.

Theorem 3.1 shows that maxima of �J occur only at isolated values of � . As
we shall see, the global maximum will typically lie at the simplest relationship
where n = m , that is, when �Ts = Tr . Before proceeding, it is worthwhile
looking at a pair of examples that show two ways that this may fail to be the
global maximum.

Example 3.1. Let s2k = 1
2jkj�1

and r3k = 1
2jkj�1

for k = �1;�2;�3; : : : and

zero otherwise. Then the global maximum will occur at � = 3Tr
2Ts

.

In this example, the period of s(t) is \really" twice the nominal Ts while the
period of r(t) is three times the nominal Tr , so it should be unsurprising that
the optimal adjusts to these values. Of course, it is possible to replace the zeroes
with values "k (justifying the assumed periods for Ts and Tr ) but this will not
change the location of the optimal for suitably small "k .
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Example 3.2. Let sk = �rk , i.e., s(t) = �r(t) . In this case, �J is negative,
and � = Tr

Ts
is a minimum, rather than a maximum.

This second example emphasizes the importance of having the template s(t)
`close to' the data waveform r(t) . To make this more concrete, suppose that the
Fourier coe�cients sk of s(t) are approximately equal to the Fourier coe�cients
�rk of �r(t) . Then �r(t) can be decomposed as �r(t) = r(t)+�(t) where �rk = rk+�k ,
the Fourier coe�cients rk of r(t) are assumed equal to the sk , and �k are the
Fourier coe�cients representing the (small) di�erence. For technical reasons,
assume that the sequence �k is absolutely summable, with

P
k

j�k j < �� .

Now consider the problem of �nding � and � to minimize

J(�; �) =
1

2



s(t) � �r(�t + �)


2
�
=

1

2



 s(t) � r(�t + �)� �(�t+ �)


2
�
: (6)

The next result shows that the answer to the minimization problem is insensitive
to such perturbations or disturbances, assuming they are su�ciently small.

Theorem 3.4. There is an �� > 0 such that the unique global minimum

of (6) is the same as the unique global minimum of J(�; �) of (2).

P r o o f . There are two parts to the proof. First we show that � = Tr
Ts

(i.e.,
`1 = `2 = 1) gives the unique global minimum of (2). Since rk = sk , the optimal
cost is zero, and it is achieved at � = Tr

Ts
. To see that it is unique, recall that

minimizing (2) is the same as maximizing �J of (3) which was translated by
Theorem 3.1 into maximizing

P
k

rk`1sk`2 . In this case

X
k

rk`1rk`2 �
1

2

X
k

rk`1rk`1 +
1

2

X
k

rk`2rk`2 (7)

�
X
k

rkrk : (8)

The inequality in (7) is a consequence of the fact that kxk22+kyk
2
2 � 2kxk2kyk2

(here we use the standard two norm kxk2 = xx� ), and so strict equality occurs
only when `1 = `2 . The inequality in (8) holds because

P
k rkrk contains all

the terms in (7), plus a sum of nonnegative terms that do not appear in (7).
When `1 = `2 6= 1, these terms cannot all be zero, since this would violate the
assumption that Tr and Ts are the (smallest possible) periods of r(t) and s(t) .
Hence, when `1 6= `2 , inequality (7) must be strict and when `1 = `2 6= 1,
inequality (7) must be strict. When `1 = `2 = 1, both (7) and (8) are equal,
which corresponds to the desired global maximum.

The second part of the proof shows that the presence of the term �(t) in (6)
does not change the value of � at which this maximum occurs. Theorem 3.1
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shows that any possible maximum must occur at � which correspond to integer
values of `1 and `2 . Therefore, consider the maximization ofX

k

rk`1(sk`2 + �k`2) :

Since sk = rk is assumed, this can be rewritten into formX
k

rk`1rk`2 +
X
k

rk`1�k`2 :

For all possible maxima with `1 6= `2 , the inequality in (7) is strict and there is
an �1 > 0 with X

k

rkrk =
X
k

rk`1rk`2 + �1 :

For all possible maxima with `1 = `2 6= 1, the inequality in (8) is strict and
there is an �2 > 0 with X

k

akak =
X
k

ak`1ak`2 + �2 :

Since
P
k

rk`1�k`2 � krk k2k�k2 , choose �� = max
�

�1
krk k2

; �2
krk k2

�
. Hence, with

this �� , `1 = `2 = 1 again de�nes the global maximum.

Thus the minimization problem is inherently robust and unbiased even in
the presence of (suitably small) noises and disturbances. Said another way, the
closer the template s(t) is to the data function r(t) , the larger the noise that
can be accommodated without degradation in the estimates of the stretching
parameters.

4. Applications

This section shows how the pseudo-periodic idea can be applied by examining
a standard record of sunspot data and a synthetic record of ECG (heartbeat)
data. Applying the method requires choosing a template function and then cal-
culating the appropriate parameters �i and �i .

4.1 Sunspot data

A record of monthly sunspot activity from the 1870's to the present is available
in [11] and on the web at [19]. This is a �tting example because the (approxi-
mately) 11-year cycle of sunspot activity is repetitious without being periodic,
and because the data has been extensively analyzed. For instance, M a r p l e 's
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book [11] compares and contrasts several di�erent methods of spectral analysis
using the sunspot data. The number of sunspots (averaged per month) is shown
in part (a) of Figure 1. Because the data is noisy, it was passed through a linear
lowpass �lter, resulting in the plot shown in (b). Since each repetition of the
sunspot activity looks like a single bump starting at zero, rising to its maximum
and then falling back down to zero, a Gaussian shaped template function was
chosen for which one period of the template (with � = 1) corresponds to 10.1
years. The �-inner product of this template with the data record was then cal-
culated for all � and over a suitable range of � , resulting in the contour plot
shown in Figure 2. The arrows point to the times (the � values) where this
measure is maximized, and the corresponding � values are tabulated here:

�i 0.94 0.92 0.82 0.92 0.84 0.94 0.90 1.08 0.74 0.86 1.04

�i 30 156 310 446 561 688 808 928 1065 1200 1314

These parameters should be interpreted to mean that (for instance) the fourth
sunspot cycle is centered at sample 446, and it corresponds to a \width" (�
value) of 0.92, which de�nes a 10:1

0:92 = 10:9 year cycle. The average value of
the � 's is 0:91 which corresponds to an 11.1 year width, and the average � is
128.4. These values are well within the normal range of variation of the methods
presented in [11]. Observe that the � 's and � 's can be used to make simple
predictions. For instance, linear extrapolation of the parameters would provide
an estimate of the extent of the next sunspot cycle.

These values were found by simply searching over all � and � within a rea-
sonable range (the endpoints for the searches are shown in the �gures). More
sophisticated methods would include using gradient (hill climbing) methods to
ascend the surface, but for the present, the �gures should be taken as a plau-
sibility argument for the use of the �-norm, rather than as a concrete proposal
for an algorithm.

4.2 Synthetic heartbeat data

A \heartbeat" signal was synthesized by beginning with the template shown in
Figure 3(b), which mimics some of the real features of heartbeat signals. The
signal was then stretched (or compressed), ampli�ed (or attenuated), spaced
irregularly, and then modi�ed with a small amount of additive noise to form
the signal shown in (a). Figure 4 depicts a mesh or surface plot of the p-inner
product of the heartbeat as a function of the � and � parameters. Since the
signal was synthetic, the actual values of the parameters could be compared to
the estimated values, which occur at the peaks of the ridges in the �gure. The
� 's were accurate to the sample, and the � 's to two decimal places.
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5. Discussions and conclusions

Perhaps the most useful aspect of the pseudo-periodic analysis is that the
sequences �i and �i can give valuable information about the underlying phe-
nomenon represented by the data. For instance, if in the heartbeat application
the �i are increasing faster than iT then the heartbeat is slowing down, while if
the �i are increasing, then the speed of each beat is increasing. More generally,
patterns within the stretching and translation sequences may be of interest, for
instance, statistical deviations from a \steady beat" represented by �i = 1 and
�i = iT may contain useful information.

There have been several recent attempts to automatically identify the metric
structure of musical pieces such as [13], [20], and [6]. In [17], we described a
method of determining rhythmic structure from digitized audio that is based
on the idea of a psychoacoustically motivated method of data reduction (which
subsamples the recording at an e�ective rate of 100 to 200 samples per sec-
ond) followed by application of a period �nding technique such as the FFT or
the periodicity transform [16]. As noted in [15], this method does not degrade
gracefully when the underlying tempo varies. In this musical context, the pseudo-
periodicity idea may be useful as a way to preprocess the data, where the Ri(t)
relate to the shape of the subsampled waveform, the �i specify how quickly
the waveshape evolves, and the �i de�ne the tempo variations. This e�ectively
transforms the (slowly varying) periodicities of the musical tempo into an un-
derlying periodic signal and provides a concrete way of talking about changes in
the \periodicity" over time. Thus the �-norm approach is not intended to apply
to musical performances at the \note" level, but at the level of rhythm events.

Using the stretching and translation parameters to map the data back to the
underlying template (i.e., back to a periodic function) allows comparisons to be
made across data sets. For example, the heartbeat of one person at one time can
be compared to another person at another time. More generally, this inverse map-
ping can be used to transform mathematical manipulations on pseudo-periodic
functions to the far simpler mathematics of periodic functions. This could be
used (for instance) to clean up data before application of frequency analysis
methods, or as a preprocessor for methods such as the Periodicity Transforms
of [16], which assume an underlying periodic process.

Template functions are not restricted to the simple form suggested here. For
instance, more complex templates might consist of two (or more) alternating
functions S1(�1i t+ �1i ) and S2(�2i t+ �2i ) , or they might contain more complex
transformations within the template, such as S(
it

2 + �it + �i) . It is not com-
pletely clear exactly which parts of the theory continue to hold for such modi�ed
templates, but they may be useful for waveforms which have greater variation
than can be readily captured in the simpler model.
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Figure 1. Number of sunspots (raw data) is presented in (a) and a (linearly)
smoothed approximation is shown in (b).

Figure 2. Contour plot of the sunspot data using a Gaussian shaped template
function. Arrows point to times of maximum p-inner product.
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Figure 3. The synthetic heartbeat data in (a) is analyzed using the template
function shown in (b).
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Figure 4. Mesh (surface) plot of the p-inner product of the synthetic heartbeat
data as a function of a (stretching) and b (time shift).

14



REPETITION AND PSEUDO-PERIODICITY

Finally, note that the discussion here has focused on the problem of �nding
the stretching and translation parameters given the data R(t) and the template
S(t) . The presumption is that the generic behavior of the phenomenon is given
by the template, while speci�c measurements are given by the data. But there is
a sense in which it ought to be possible to determine the best template function
S(t) given just the pseudo-periodic function R(t) . This will likely involve some
kind of alternating iteration between frequency estimation (or period detection)
methods and the kinds of techniques presented here. Details of such a scheme
are currently under investigation.
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