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IV. CONCLUSIONS

This correspondence addresses the problem of locating the di-
rections of arrival of a set of coherent and correlated signals using
multiple sensor elements in arbitrary noise field. It is shown here
that by making use of a symmetric array, it is possible to perform
a preprocessing on the array output correlations to generate a set
of new quantities that are functionally similar to the actual corre-
lations in an incoherent environment. A Hermitian Toeplitz matrix
generated from these ‘‘correlation-type’’ quantities is then used to
estimate all actual arrival angles. Finally, a resolution threshold
for two arbitrarily correlated, equipowered sources is derived in
terms of their angular separation and this is compared to similar
results in uncorrelated and coherent scenes [7], [8].
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A Comparison of Two Quantized State Adaptive
Algorithms

W. A. SETHARES anp C. RICHARD JOHNSON, JR.

Abstract—Quantized State (QS) adaptive algorithms reduce the nu-
merical complexity and dynamic range requirements of Least Mean
Squares (LMS) adaptation by replacing multiplications with shifts, bit
comparisons, or table lookups. This correspondence provides a theo-
retical foundation with which to distinguish two primary QS algorithm
forms and to predict which algorithm is most appropriate in a given
context. An extended Lyapunov approach is used to derive a persis-
tence of excitation (PE) condition which guarantees linear stability of
the Quantized Error (QE) form. Averaging theory is then used to de-
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rive a persistence of excitation condition which guarantees exponential
stability of the Quantized Regressor (QReg) form. Failure to meet this
latter condition (which is not equivalent to the spectral richness PE
condition for LMS) can result in exponential instability. The QE and
QReg algorithms are then compared in terms of conditions for stabil-
ity, convergence properties of the prediction and parameter errors,
convergence rates, and steady state errors. The major results are gath-
ered together in a table for easy reference.

I. INTRODUCTION

Recent interest in Quantized State adaptive algorithms [1]-[8]
has been sparked by the use of adaptive filters in high speed data
communications [9] and in speech processing [10] where the high
data rate requires a computationally simple algorithm with large
dynamic range. Two candidate algorithms are the Quantized Re-
gressor (QReg) and Quantized Error (QE) algorithms [11]. Since
the numerical requirements of these two Quantized State algorithm
forms are identical, they are direct competitors in any given adap-
tive application that requires fast processing of the data stream.
The choice of which algorithm to use will depend on other factors
such as the characteristics of the expected input sequence, the de-
sired steady state performance, and the desired convergence prop-
erties. This correspondence compares these two algorithm forms
extensively, and provides guidelines to help choose the proper al-
gorithm for a given application.

In order to formally introduce the QS algorithms, it is helpful to
have the LMS adaptive algorithm [12] firmly in mind. Consider the
following adaptive filtering task. The output y(k) of an FIR (tapped
delay line) filter defined by

y(k+1)=§)I bu(k — i + 1) = X[o* (1.1)
with 6* = (b, b,, -+ -, b,) T and with the regressor sequence X,
= (u(k),u(k — 1), -+ ,u(k — n + 1)) 7 is to be estimated by

Pk + 1) = E. bi(k)u(k — i + 1) = X[, (1.2)
where 8, = (B,(k), by(k), - - -, b,(k))7, and each u (k) is bounded
by some value 8. The error between the output y(k) and the esti-

mated output y(k), called the prediction error, is used to update
the parameter estimates ;. The traditional LMS algorithm is

By = B + pX,[y(k) — $(k)] (1.3)
where p << 2/f” is a small positive stepsize. Note that the pre-
diction error can be expressed in terms of the parameter error 6, =
0% — 8, as

e = y(k) = 9(k) = X{0* — X[b, = X[ 6,
so that (1.3) can be rewritten
Ber = (I - V’XkaT)aIr (1.5)

The Quantized Regressor (QReg) algorithm quantizes each entry
of the regressor vector, replacing (1.3) with

Bt = b + pO(X) [ y(k) — $(K)] (1.6)

while the Quantized Error (QE) algorithm quantizes the scalar error
sequence and updates the parameters by

Bear = b + wXQ([¥(k) = $(K)]). (1.7)
In (1.6) and (1.7), Q(-) represents some quantization function: a
bounded, discrete valued, element by element, monotonic nonde-
creasing function which does not change the sign of the argument.
The maximum quantized value is called the range of the quantizer,
and is typically determined by the number of bits used in the quan-
tization. Some typical quantization functions are rounding or trun-

(1.4)
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cating to the nearest 1/g, rounding or truncating to the nearest
power of two, and the sign (or signum) operator. For arbitrary
quantizers, the QReg and QE updates are no simpler to implement
than LMS, but for certain quantizers (such as the sign and power
of two quantizers), the products pQ(X,)e; and uX,Q(e;) can be
computed using simple bit shifts instead of floating point multipli-
cations, offering a substantial simplification in numerical complex-
ity.

Section II shows that the QE algorithm, like LMS, has an inter-
pretation as a gradient procedure on an appropriate error surface in
the parameter space. The QE algorithm minimizes a simple func-
tion of the error that is not the mean squared error. QReg does not
appear to have such an interpretation. Neither algorithm is Lya-
punov stable. Section III shows, instead, that the prediction error
of QE is mean absolute convergent for any input sequence, while
the behavior of the prediction error of QReg is heavily dependent
on the characteristics of the input sequence.

Persistence of excitation conditions (conditions on the input se-
quence that cause robust convergence) are stated for both algo-
rithms in Section IV. These conditions are not identical. The most
striking observation is that the class of input signals for which QReg
converges is strictly smaller than the class of input signals which
cause QE and LMS to converge. This observation has implications
beyond the immediate algorithms of interest, showing that persis-
tence of excitation conditions are an algorithm dependent concept.
Section V compares the convergence rates, which give a rough idea
of the relative ‘‘degree of robustness’” of the two algorithms.

II. COMPARISON: GRADIENT PROCEDURE

LMS can be interpreted as a gradient procedure in the parameter
error space with the instantaneous error function Jyys(e;) = 1/2
e? [13]. At each timestep k, the parameter update for LMS moves
in the direction of the negative gradient dJyys(ey)/df, = ~X, e,
a distance proportional to the stepsize x. The LMS algorithm is
one special case of the general gradient algorithm

R R dl(e)
Bevr = B — d(e*
k

where J represents some nonnegative function that defines the in-
stantaneous error surface.

Given a particular quantization function Q, the first step is to
determine the appropriate function J(+) of the error which, when
differentiated, gives rise to that quantizer. That is, find a function
J(+) such that

(2.1)

dJ(e;)
dey

This is solved by integrating Q(e,) with respect to e;. For exam-
ple, suppose that Q(+) is the dual sign (DS) quantizer of [5]

= Q(a). (2.2)

_/msgn(x) 1< |x|
Q) = (sgn (x) |x] =1 23)
where m > 1. Then
_ m|x| = (m — 1) |x] > 1
Jps(x) = <|x| x| = 1 (24)

fulfills (2.2) where the constant (m — 1) was added to make J()
continuous. The gradient of Jps with respect to the parameter es-

timate 8, is
dJDS(ek) _ dJps(ex) & =0 k) dek

T, de,

except at the points of dlscontmulty of Q( ) where Jpg is nondif-
ferentiable. The parameter update form corresponding to this ap-
proximation of the negative gradient direction of Jpg is [insert (2.5)
into (2.1)] precisely the QE parameter update (1.7). This deriva-
tion could have been carried out for almost any quantizer. The error
function for the special case Q(+) = sgn (-) was derived in [14].

= —Q(e)X: (2.5)

The error function for the QE algorithm was easily derived, since
the update term is in the form Q(e) de, which is easy to integrate.
A similar analysis for the QReg algorithm, on the other hand, would
require that the update term Q(de)e be ‘‘integrated.’” Since it is
not clear what such an integration means, the algorithm does not
appear to be any type of gradient procedure.

III. COMPARISON: LYAPUNOV STABILITY AND CONVERGENCE OF
THE PREDICTION ERROR

Think of Lyapunov stability this way. There is a balloon inflated
about the desired value §*. Some nonnegative function of the pa-
rameter error defines the radius of the balloon. Lyapunov stability
means that air can leak out of the balloon (implying that the param-
eter error decreases) but none can ever enter. The sum squared
parameter error 6 0, is a Lyapunov function for the LMS algo-
rithm. It is a standard result [13] that 8], ,8,,, < 0, if uXTx, <
2, which can be guaranteed by choosing the stepsize sufficiently
small.

Iterating the Lyapunov function  times shows that the prediction
€ITOT is mean square convergent, i.e.,

1 1
lim = 2. ¢ - 0.

1o b i=1

(3.1)

This does not show that e; itself converges, but it does show that
¢; must be small on the average. Does this analysis extend to the
QS algorithms? Unfortunately, not always.

The QReg algorithm is not Lyapunov stable. The example of the
next section shows that celtam mguts inflate the error balloon in-
definitely. Since ¢; = X7 8, and 87§, — o, ¢; cannot be guaranteed
convergent in any reasonable sense.

The QE algorithms are somewhat better behaved. The change in
the sum squared parameter error V, = 81 6, is

Vier = Vi = 0k+10k+l - 9k ok- (3.2)

Usin_g (1.7) and the definition of 8, as the difference between 6*
and 6, this can be rewritten

Vier = Vi = =2uX[0,0(ex) + p’X[%.0%e).  (3.3)

Since Q(-) never reverses the sign of its argument, X/ 6,0 (e,) is
nonnegative. Thus, V,,, < V, whenever

»XiX QX (X{8,) =< 2X[8,Q(X]8,). (3.4)

Paradoxically, when the algorithm functions well (by driving 8,
toward zero), it violates (3.4) and can increase the summed squared
parameter error. Thus, convergence to zero is generically impos-
sible. Metaphoncally, when the balloon deflates smaller than some
radius 8, air enters as easily as it leaves. Even when 8, is large,
however, (3.4) can be violated if 6, happens to be nearly orthogonal
to X;, showing that the QE algorithm is not Lyapunov stable (at
least with this candidate Lyapunov function).

Even if the behavior of &, cannot be explicitly guaranteed, the
prediction error can be guaranteed to converge in a certain average
sense.

Theorem I: The prediction error ¢, of the QE algorithm (1.7) is
mean absolute convergent to a § ball, that is,

hm—z \e|

t—oo T i=1

(3.5)

Proof: See the Appendix.

In (3.5), the size of 6 (given in the proof) is dependent on the
stepsize u, the maximum value of the input, and the maximum and
minimum (nonzero) values assumed by the quantization function.
The theorem shows that, on the average, the prediction error of the
QE algorithm remains smaller than 6.

IV. CoMPARISON: PERSISTENCE OF EXCITATION CONDITIONS

The Lyapunov stability and prediction error convergence results
of the previous section (which placed no constraints on the input/
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regressor sequence) are not necessarily robust to measurement
noises, slight mismodeling errors, or slow time variation of the
desired parameterization. This was illustrated by the parameter drift
examples of [15] and the numerical instabilities demonstrated in
[19]. QE and QReg are susceptible to both problems. In the im-
agery of the previous section, disturbances pump small puffs of air
into the balloon over several steps. If the algorithm does not have
a ‘‘safety valve’’ to release this extra air, then the balloon may
continue to inflate forever. What does such a safety valve look like?

For nonzero inputs, the LMS transition matrix / — u X, X[ from
(1.5) is a contraction in one direction of R", the direction of the
nonzero eigenvector. If there is a fixed time span ¢ such that the
transition matrix contracts at least a fixed amount « in every direc-
tion every ¢ steps, then the ‘‘average’’ transition matrix [/ — (u /1)
L4+=1 X, XT] is uniformly a contraction, and || 8,]*> = 878, will
converge exponentially to zero. Recall that a system with state Z;
is said to be exponentially stable about its equilibrium Z* if there
isay e (0, 1) and a finite N such that | Z* — Z|| < N| Z,[|v*
for every k. Equivalently, Z, is said to converge exponentially to
Z*. Thus, a uniform contraction condition on the average transition
matrix provides an exponential safety valve. With no disturbances,
the balloon contracts to a single point as time evolves. With dis-
turbances, the contraction is eventually halted by the continuous
addition of tiny puffs of disturbance.

More formally, the regressor sequence X, is said to be persis-
tently exciting for LMS (PE for LMS) if there are positive a, 3,
and ¢ such that
k+1—-1

1
- Zk XX > al
=

BI> M, = forevery k.  (4.1)
The PE theorem for LMS is then as follows.

Theorem 2: Consider the LMS algorithm (1.3) and the associ-
ated error equation (1.5). If X, is PE for LMS, then there is a u*
such that || 8, || — O exponentially for every u € (0, p*).

Proof: This is proven in slightly modified form in [13], [16],
and [19]. JAWAAN

Similarly, the evolution of the parameter estimate error for the
QReg algorithm is described by

Oxsr = (1 - I"Q(Xk)xkr)ek- (4.2)
While the one step transition matrix for LMS is / — x XX, the one
step transition matrix for QReg is / — pQ(X)XT. Since the sta-
bility properties of LMS depend on the average of the outer product
of XX, it is reasonable to conjecture that the behavior of the Quan-
tized Re;ressor algorithm should depend on the average value of
QX)X

The most straightforward results are obtained when the X, se-

quence is ¢ periodic. Let
t
M =1 2 QX)X (4.3)
If Re N\;(M,) > Ofori = 1,2, - - -, n, then the regressor vector
X, will be said to be persistently exciting for the QReg algorithm
(PE for QReg). The PE theorem for the QReg algorithm is as fol-
lows.

Theorem 3: Consider the quantized regressor algorithm (1.6) and
the associated error equation (4.2). If X, is a t-periodic sequence
that is PE for QReg, then there exists a u* such that (4.2) is ex-
ponentially stable for every p € (0, u*). If X, is not persistently
exciting, and Re \;(M,) < O for some i, then there exists a u*
such that for every u € (0, u*), (4.2) is unstable.

Proof: A modest modification of theorem 1 of [17], replacing
the sgn operator by the more general quantization operator Q.
AANA

Theorem 3 can be used to find examples of input/regressor se-
quences that ensure exponential stability of the QReg algorithm,
providing an exponential safety valve against small disturbances
analogous to the exponential stability of LMS. The second part of
the theorem shows that certain other regressor sequences cause un-
bounded parameter estimates.

Example: Let Q(-) round to the nearest integer with range M
> 29 + 1, and consider the three periodic input 25 + 0.6, —y —
0.4, —m — 0.4, - - -, where n > 1 is an integer. The excitation
matrix is

My =4 2 Q(X)XT = (3 + 21 + 1)1

=1
- %(57]2 + 27 + 0.4) 134,

where 15,3 is the 3 X 3 matrix of all 1’s. This has an eigenvalue
at —0.066 and two eigenvalues at 35> + 25 + 0.33. Since the
negative eigenvalue is independent of #, this input causes instabil-
ity of the QReg algorithm. This same input, when applied to the
LMS algorithm, is persistently exciting since M; calculated from
(4.1) has all positive eigenvalues. Inputs that stabilize LMS may
therefore destabilize QReg.

This example uses an integer valued quantizer. Is the divergence
due to the coarseness of the quantizer? The good news is that given
any regressor sequence X;, it is always possible to quantize fine
enough to stabilize the QReg algorithm. The bad news is that given
any quantizer, no matter how fine, it is always possible to find a
regressor X, that causes M, of (4.3) to have an eigenvalue with
negative real part. This regressor will cause instability of the QReg
algorithm. Details and caveats may be found in [18].

There is no way to write a simple transition matrix for the QE
algorithm due to the discontinuity of Q(-). Hence, the averaging
approach of theorems 2 and 3 is inapplicable. Instead, an extended
Lyapunov approach is fruitful. Consider (3.4), and imagine that 8,
is some fixed vector ¢. Then, providing that the X, regularly span
7", all the X; cannot be orthogonal to . Thus, some steps will
deflate the balloon even if others tend to inflate it.

A system with state Z, is said to be linearly convergent with
window ¢ to a ball 6 about Z* if there exist w, 6, and ¢t > 0 such
that | Z* — Z,,, || = 1Z* — Z, || — w whenever | Z* - Z,|| > &.
This requires that the norm decrease over every ¢ steps, but does
not require that the norm decrease at every timestep.

Theorem 4: Consider the QE algorithm (1.7). If X, is persis-
tently excited as in (4.1) (PE for LMS), then there exist 6 > 0 and
a p* such that 6, is linearly convergent to a & ball about 8* of
magnitude [0, ] whenever p € (0, p*).

Proof: See the Appendix. AANA

Essentially, the PE condition for a given algorithm guarantees
that the parameter estimates will converge to a small region about
the desired parameterization, and that this convergence is ‘‘ro-
bust’’ to small nonidealities such as measurement noise, small non-
linearities, mismodeling, and slow parameter variation. The ‘‘ro-
bustness’” of LMS and QReg is a consequence of the exponential
stability, while the robustness of QE is a consequence of the linear
stability to a ball.

Both LMS and QE are persistently excited by the same condition
(4.1), while QReg is persistently excited when the inputs fulfill
(4.3). It is not hard to show that any sequence that is PE for QReg
is also PE for LMS (and hence for QE) but that the reverse impli-
cation is false. It is thus strictly more difficult to persistently excite
the QReg algorithm than to persistently excite the QE algorithm.
Said yet another way, the class of input/regressor sequences that
make QE ‘‘work™’ is strictly larger than the class of signals that
cause QReg to ‘‘work.”’

This is probably the most striking difference between the QE and
the QReg algorithms. Successful application of the QReg algorithm
requires that the inputs satisfy the PE for QReg condition, while
successful application of the QE algorithm requires no more knowl-
edge than that the LMS algorithm will ‘‘work.”’ There is thus no
loss in terms of stability for quantizing the error, while quantiza-
tion of the regressor introduces the danger of instability.

In the ideal setting with no disturbances, the error systems for
LMS and QReg can converge to zero, while the QE algorithm con-
verges (at best) to a small ball about the desired parameterization.
Thus, in “‘steady state,’’ the parameter estimates of LMS and QReg
actually achieve 6* while the parameter estimates of QE rattle in a
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6 neighborhood about 8*. Thus, assuming that both are persistently
excited, the ultimate performance of the QReg algorithm in terms
of prediction and parameter errors is superior to the ultimate per-
formance of the QE in the noise free case. This advantage is not
as clear when nonidealities are introduced, but is likely retained for
sufficiently small nonidealities.

The PE conditions for QReg and QE force a reevaluation of what
is meant by persistence of excitation. No longer does PE mean just
the summed outer product of the regressor sequence (since PE for
QReg involves the quantization function), nor is it simply ‘‘the
condition’’ that implies exponential asymptotic stability of the ho-
mogeneous error system (since PE for QE converges linearly to a
nonzero ball). PE is thus an algorithm dependent concept and not
an intrinsic property of a vector sequence.

V. CoMPARISON: CONVERGENCE RATES

When the algorithms are persistently excited, the parameter es-
timates of LMS and QReg converge exponentially, while the pa-
rameter estimates of QE converge linearly. Is there a way to quan-
tify the rates at which the algorithms converge?

First, consider LMS. From (1.5), the 7 step transition is

gkﬂ =(- l”Ml)ak + o(u) (s.1)

where M, is defined as in (4.1). The largest eigenvalue of (I —
putM,) is 1 — pta, and the smallest eigenvalue is 1 — uz8, where
« and B are defined in (4.1). When X, is ¢ periodic, there are unique
eigenvectors V,, and Vg corresponding to the maximum and mini-
mum eigenvalues. In the direction of V, (the ‘‘slow’’ direction),
the parameter estimate errors contract by a factor of approximately
1 — uta every t iterations. In the direction of Vj (the ‘‘fast’” di-
rection), the parameter estimate errors contract by a factor of ap-
proximately 1 — pt8 every ¢ iterations. When X is not periodic,
the directions of maximum and minimum contraction vary with
time. Since (1 — ufa) can be approximated by (1 — pa)’ + o(n),
the actual convergence of the parameter estimate error vector is
approximately bounded between the rates of the fastest and slowest
eigendirections

1Bll(1 = u8)" + o) = 3] = (2 ~ we)* + o(n)

(5.2)
which becomes more accurate for smaller . In simulations (for
instance, in {13]), the faster rate tends to dominate the initial iter-
ations while the convergence of the tail is better approximated by
the slower rate.

An analogous derivation can be carried out for the exponential
convergence of the QReg algorithm. Iterating (4.2) ¢ steps and av-
eraging as in theorem 3 shows that (5.1) is valid where M, is now
defined as in (4.3). Using the appropriate o and 8 bounds on the
real parts of the eigenvalues of M,, the motion of the parameter
estimate error can be approximated exactly as in (5.2). Again, the
exponential contraction of the parameter estimate errors lies ap-
proximately in the range (1 — pa) and (1 — pB). This is roughly
equivalent to a range e ** to e *#, which shows that the rate is
approximately proportional to g« in the slow direction, and pro-
portional to uf3 in the fast direction.

In contrast to the LMS and QReg algorithms, the QE algorithm
converges linearly. For the simple case Q(-) = sgn (-) (the signed
error algorithm), the ¢ step transition can be bounded by

8, B, — 078, = —2usVar + pC = —w (5.3)

as in the proof of theorem 4, equation (A.9), which is valid as long
as || (7,( | > 8. In(5.3), & is the size of the final convergent ball, u
is the stepsize, C is a constant proportional to t28%, and « and 8
are the degrees of excitation from (4.1). Thus, the convergence rate
over ¢ iterations is proportional to u s/&, and the average decrease
of the squared norm at each timestep is p Vo /Vr. These approxi-
mations assume that u is small enough so that x>C is inconsequen-
tial. Thus, doubling the degree of excitation increases the linear
convergence by only v2. Doubling the stepsize doubles the rate,
although it also doubles the size of the final convergent ball. An

input that causes convergence at a rate w over ¢ steps converges at
a rate 2w if the same input is simply grouped differently and called
a 2t periodic sequence. Yet the rate (5.3) implies that the 27 group-
ing would converge at a rate of ﬁw, showing that (5.3) is a con-
servative estimate of the convergence rate.

For large parameter estimate errors, the exponential rate of LMS
and QReg offers rapid convergence while for small errors, the lin-
ear rate of QE is faster than the exponential. This can be seen
graphically from the gradient error function. The slope of the
Jims(er) = el curve, for instance, is steeper than Jpg (¢;) for large
e;, but is shallower for small ¢;.

The convergence of both QReg and QE is robust to small dis-
turbances when they are persistently excited. What is the effect of
such disturbances? The introduction of an additive disturbance in
the prediction error (which corresponds to measurement noise,
small nonlinearities, or slight mismodeling) implies that the pre-
diction error and parameter errors cannot converge to zero. Instead,
they converge to some ball about zero. There is thus no longer a
qualitative difference in the steady state behavior between QReg
and QE since neither of the algorithms converges to a single point
in the nonideal (or noisy) case.

The size of this ball about the origin is dependent on the rate of
contraction. The ‘‘degree of robustness’’ of LMS and QReg are
easy to compare since they both contract at an exponential rate
proportional to the smallest eigenvalue of the appropriate excita-
tion matrix. The QE algorithm, on the other hand, contracts lin-
early at a rate proportional to V. Although fast convergence is
clearly desirable initially (for large errors), it is often advantageous
to move slowly when near the desired parameterization, to “‘aver-
age out’’ spurious signals. Fast convergence for small errors im-
plies that the algorithm reacts quickly to small disturbances, which
tends to increase the variance of the parameter estimates. Thus,
QReg will tend to reject small noises better than QE, while QE will
tend to react better in high noise situations. The QReg algorithm
might therefore be preferable to the QE algorithm (assuming PE
for QReg) when it is expected to operate in an environment with a
high signal-to-noise ratio, while the QE might be preferable in a
high noise environment.

VI. CoNcLusiON: MORE COMPARISONS

LMS and two Quantized State algorithm forms were compared
in terms of numerical complexity; the QReg and QE algorithms
were found to be of equivalent complexity, and both were simpler
(for appropriate quantizers) than LMS since they replace the mul-
tiplications of LMS with bit shifts. The algorithms were then com-
pared in terms of conditions for stability, properties of the conver-
gence of the prediction errors, and convergence rates of the
parameter estimates.

LMS and QE can be interpreted in terms of a gradient descent
procedure while QReg cannot. The LMS prediction error is mean
square convergent while the QE prediction error is mean absolute
convergent. Persistence of excitation conditions were then found
for all three algorithms, and it was shown that it is strictly more
difficult to persistently excite QReg than LMS or QE, which have
identical conditions. When the algorithms are persistently excited,
the convergence rate of LMS and QReg is exponential to the de-
sired parameterization §*, while the QE is linearly convergent to a
& ball about 6*. Approximate convergence rates were then derived.
The exponential rates for LMS and QReg are proportional to po
while the linear rate of QE is proportional to u V. When the QReg
algorithm is not persistently excited, there is the danger of diver-
gence. More a priori knowledge of the characteristics of the input
sequence is therefore required in order to successfully implement
the QReg algorithm than to successfully implement QE. The trade-
off is that the convergence of QE may be slower for large errors,
and that the parameter variance may be larger for small distur-
bances. These comparisons are summed up in the accompanying
table.

Several issues are raised.

1) In most applications (for instance, [9] and [10]), both QReg
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Least Mean Squares—LMS

Quantized Regressor—QReg

Quantized Error—QE

Algorithm form Bevr = b + uX e

9l<+1 = ék + 1 Q(X,) e

BH. = 91: + 1 X QCe)

Numerical Complexity n multiplies

Q = power of two

Q = power of two

n adds n + 1 shifts n + 1 shifts

1 shift n adds n adds
Lyapunov Stable? Yes No ?
Gradient Procedure? Yes No Yes

Convergence of Prediction Error mean square convergent

not guaranteed

mean absolute convergent

PE Condition Amin (EXXT) > o

Re Mi(EZ Q(X)XT) > avi

Amin (CXXT) > @

if PE - - -
parameter convergence to 6%

9*

a 6 ball about *

convergence rate exponential rate

proportional to po

exponential rate
proportional to uo

linear rate w
proportional to g and Va

notes

possible divergence if PE
condition not met

formulas relating
8, w, u, and

and QE tend to behave well, although occasional failures have been
noted, especially during quiescent periods when signal power is
low. Is there a way to translate the system theoretic warnings of
this correspondence into practical guidelines for the use of quan-
tized adaptive algorithms? We believe so, especially in the choice
of stepsize, quantization fineness, and degree of PE.

2) In applications of QReg, one would not expect a ¢-periodic
destabilizing sequence to occur regularly. More likely, such se-
quences would appear amidst other, stabilizing inputs, and cause
‘‘glitches’’ of misbehavior. Is there a way of detecting or guarding
against such input dependent misbehavior?

3) Is there a fixed quantizer for which divergence of the QReg
algorithm is impossible? We suspect not. Is there, then, a way to
quantize dynamically that will ensure stability?

4) The PE for QReg condition is not equivalent to the standard
PE for LMS condition. The implications (in terms of rate of con-
vergence, and convergence to a ball rather than a point in the ideal
case) for PE for QE are not equivalent to the implications of the
standard PE for LMS condition. Consolidating our understanding
of the ‘‘true nature’’ of persistence of excitation in light new PE
conditions such as these is likely to be a nontrivial task.

APPENDIX

Proof of Theorem 1: lterating (3.3) from k = 0 to k = ¢ yields

—1 t—1
VimVo=-m X eQ(e)+ 2

i=1 =
i¢]j:Q(e))=0] i#[j:Q(e)=0]

X/X,Q%(e;)

(A.1)

where the sums are taken over all i such that Q(e;) # 0. These i
can be excluded since V., ="V, if Q(e;) = 0. The range of the
quantizer is M and the maximum value of XX, is n8? (recall that
B = |u(i)| for every i). Let g be the smallest nonzero value as-
sumed by the discrete valued quantizer. Since e;Q(e;) > 0 for
every i in the sum, and since | Q(e;)| > g > 0 for these i, V, can
be bounded above by

t—1

V, < >

i=1
i#1):0() =0]

[nu8*M* — 2uqle;|] + Vo.  (A2)

But ¥, is a sum of squares and hence must be nonnegative. There-
fore, (3.5) holds with & = nuB°M?/24. ANAA

Proof of Theorem 4: Suppose first that the quantizer does not
have a dead zone, that is, forevery z # 0, M > Q(z) > q. Equa-
tion (3.3) shows that the one step difference can be bounded

Vis1 = Vi = W’M?X[X, — 2M‘I|Xkr§k'- (A.3)
The t-step difference can be bounded similarly as
Vier = Vi < MY (X{X, + X[ X + 00 + XD X))
= 2pq[|X{0] + | X001 O] + -+
+ 1 XE s 1Brimn|] (A4)

where ¢ is chosen to be the 1 of (4.1) over which the X;’s span &®".
Since |@ — b| = |a| — |b],

|X{+|§k+|| = |XZ+1(9I: — pX; sgn (ek))|~ (A.5)
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Similarly, each of the terms | X T, j9k+j| can be underbounded by
the difference between | X[, 8, | and 5 L) Zo X7, X, ,,. Hence, the
t-step difference can be overbounded by

Viro = Ve < 2pq[|X086| + | X016

+ oo+ | XTL 206 ]] + PMAC (A.6)

where C = L2} £/2¢ X[, X, Note that C is not dependent on
6, and can be overbounded (liberally) by £ sup; | X, 1. Let s, =
Lf217'| X78,|, and suppose that

6] > &  for somes > 0. (A.7)
Then
k+r—1 2 k+r—1
i-{ 2 ] = 5 ogay
k+r—1
= (}[{ Ek X,X,T} 5, = at|l(§k“2 = atd®’, (A.8)

and hence, s, = § s/a, where « is the degree of excitation. Thus,
(A.6) may be rewritten
V, = —2uqdNar + u*M*C.

Vier — (A9)

For small enough p, the right-hand side of (A.9) can be made neg-
ative, and there is an @ > 0 such that V,,, — V, <= — w, which
holds for every positive u less than u* = (26q~/¢; - w)/M?C.
This implies that 18,1l decreases linearly until (A.7) is violated.
From (1.6), the maximum motion of the parameter estimates in one
timestep is [.LM“ X ||. Thus, once || ék || enters the 6 ball, it can never
leave the ball of radius 6 + uM || X ||. The restriction on the pres-
ence of a dead zone can now be removed by deleting the terms in
(A.3)-(A.6) that map to zero, since they have no influence on the
value of V. Details are carried out in [18]. AAA
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Source Location Bias in the Coherently Focused
High-Resolution Broad-Band Beamformer

D. N. SWINGLER anp J. KROLIK

Abstract—A simple expression for the source location (angle of ar-
rival) bias is developed for Wang and Kaveh’s focused broad-band
beamformer. It is shown to depend on the source temporal frequency
spectrum only through its centroidal frequency. The bias is zero if the
angle of arrival is aligned with the primary steering angle (i.e., focus-
ing angle) or, more interestingly, if the source centroidal frequency
equals the focusing frequency.
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