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Quiver Diagrams and Signed Adaptive Filters

CRAIG R. ELEVITCH, WILLIAM A. SETHARES, MEMBER, IEEE, GONZALO J. REY,
AND C. RICHARD JOHNSON, JR., SENIOR MEMBER, IEEE

Abstraci—Little is known about the convergence properties of the
sign-sign variant of the well-known least mean square (LMS) adaptive
algorithm. Extrapelation from the behavior of the unsigned LMS
adaptive algorithms to the behavior of the signed versions is substan-
tially misleading. While the parameter estimates of the FIR adaptive
LMS filter are always bounded, the parameter estimates of the sign-
sign variant may diverge. In cases where the correct parameterization
of a properly chesen IIR adaptive LMS filter is locally stable, the cor-
rect parameterization of the IIR sign-sign variant may be locally un-
stable. Unlike unsigned IIR LMS, the sign-sign variant may have mul-
tiple stable limit cycles.

This paper examines a graphical technique with which to explore
the behavior of deterministic discrete time adaptive algorithms excited
by periodic inputs. The constraint to periodic inputs is convenient; the
underlying concepts used also apply to stationary inputs drawn from
finite alphabets. The resulting graph is based on plotting single period
parameter trajectories in the parameter error space and is essentially
a discrete version of flow diagrams associated with continuous time
systems. For the LMS adaptive FIR filter with the algorithm step size
sufficiently small, the motion of adapted parameters from a particular
initial value is given by the total update over the input period with the
parameterization frozen at its “‘initial value.”’ This results in the fa-
miliar elliptical hyperparaboloid surface steepest-descent interpreta-
tion. This method can be extended to the LMS adaptive IIR filter with
suitable approximations based on a small step size. A less familiar
interpretation, based on the parameter estimates following a possibly
nonsteepest-descent, pseudogradient trajectory, can be applied to the
resulting picture. For variants of LMS with signed error, the novel
feature is that single period update trajectories indicating the direc-
tions of these averaged movements can be bundled into ‘‘quiver dia-
grams’’ which accurately predict parameter trajectories, the presence
of stable limit cycles, as well as stable and unstable stationary loci, and
offer insights into the influence of the character of the input on signed
error algorithm stability.

] shot an arrow into the air.
It fell to earth, I knew not where.”’
—H. W. Longfellow

1. INTRODUCTION

IN a number of high speed communications applications
where computational resources are at a premium, the
computational requirements of even the simple, discrete-
time LMS adaptive filter [1] may be excessive. Replacing
regressor and prediction error components of the update
term by their signs reduces computing time and dynamic
range requirements by turning multiplications into bit
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shifts. Such signed versions of LMS adaptive FIR and IIR
filters are called ‘‘sign-sign’’ algorithms. An early sug-
gestion of the applicability of the sign-sign LMS algo-
rithm appears in {2] for use in channel equalization. More
recently, an international standard for 32 kbit /s adaptive
differential pulse code modulation (ADPCM) in tele-
phony [3] has been adopted that employs the sign-sign
variant in an adaptive IIR filtering task [4].

The stability and convergence properties of the sign-
sign FIR and IIR adaptive filters remain an open issue,
and the relatively well-developed understanding of un-
signed adaptive filter algorithms gives meager intuition as
to the behavior of their signed cousins. For instance, the
persistency of excitation (PE) condition for unsigned
LMS, which is a condition requiring sufficient spectral
richness in the input, guarantees convergence of the pa-
rameter estimates to the unique setting that zeros the pa-
rameter error in ideal use [5]. As shown in [6], this PE
condition does not guarantee parameter convergence with
the use of sign-sign LMS. In fact, some inputs that are
PE for unsigned LMS can lead to parameter divergence
for the sign-sign version of the same LMS algorithm. A
generic description of all inputs which guarantee param-
eter convergence at least to within a small ball about the
correct answer in ideal use of sign-sign LMS (which is
one feature of a PE condition) is as yet unknown.

This paper presents ‘‘arrow diagrams,’”” which are es-
sentially a discrete time version of continuous time flow
diagrams. As we will see, arrow diagrams complement
the frequently exploited gradient descent interpretation of
the parameter space behavior of adaptive filters, such as
LMS. The geometry of these diagrams depends on the
adaptive filter input and, thus, is strongly coupled to the
PE condition for LMS. A certain class of arrow diagrams
called ‘‘quiver diagrams’’ arises when the prediction error
part of the usual LMS update is replaced by its sign.
Quiver diagrams help clarify complicated parameter es-
timate behavior by graphically displaying the collection
of short-term average trajectory motions for the sign-sign
algorithms. Even though quiver diagrams will be derived
quantitatively, their real use is qualitative. When an input
generates a quiver diagram for which any starting point
(within a particular region) ‘‘flows’’ to the vicinity of a
setting that zeros the parameter error in ideal use, this
input is considered a candidate ‘‘PE’’ signal for the sign-
sign FIR algorithm. Sufficient diagram properties for such
parameter convergence can be translated into an algebraic
definition of classes of associated persistently exciting in-
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puts. This graphical analysis of the sign-sign LMS adap-
tive FIR filter is extended to the IIR case, but the transfer
to a definition of persistently exciting signals associated
with the latter is substantially more complicated, since the
parameter estimate update is nonlinear and the “‘PE’’ con-
dition may only be a local condition.

Another distinction between the sign-sign algorithms
and their unsigned counterparts concerns the relation be-
tween the FIR and IIR cases. Inputs which are pemstently
exciting for unsigned adaptive FIR filters are also persis-
tently exciting for unsigned adaptive IIR filters, if a par-
ticular transfer function is strictly positive real (SPR) [7].
Simulations show that inputs which are persistently ex-
citing for the sign-sign adaptive FIR filter (in terms of the
quiver diagrams and confirmed by simulations) are not
necessarily persistently exciting for the sign-sign IIR fil-
ter, even if the same SPR condition is fulfilled.

The following section introduces quiver diagrams by
first examining single period update trajectories in the pa-
rameter space for a given periodic input to unsigned LMS,
and then extends the concept to three signed variants of
LMS: signed regressor, signed error, and sign-sign. Sec-
tion IIT will construct a quiver diagram for the 2-param-
eter sign-sign LMS adaptive filter, and present simula-
tions that display how the diagram corresponds to “‘usual’’
algorithm behavior. Brief comments will be provided as
to how the simple geometrical insights given by quiver
diagrams help define algebraic conditions on the inputs
which guarantee stability of sign-sign LMS in the FIR
case. Section IV extends the quiver diagram concept to
the sign-sign adaptive IIR filter, demonstrating the rather
surprising (and unwelcome) potential for local instability
about the desired parameterization and the existence of
multiple stable limit cycles.

II. INTRODUCTION OF THE QUIVER DIAGRAM CONCEPT

Consider the mth-order single-input single-output FIR
plant in the familiar form

(2.1)

where the b;’s are plant parameters, u,’s are inputs to the
plant, and the regressor vector X, _, and plant parameter
vector 6 are defined as

E Ml\ J—Xk;l(?

Xy = [we—r, w_y, - - ’uk-m]T’
6 =[b,by . b, (2.2)
The plant output estimate is then
% e ;= X[_10, ), (2.3)
where
O = by by -, by (2.4)

The standard least mean squares (LMS) parameter update
[1] is

I>>

L = 0y + X e (LMS)
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where u is a small positive step size and ¢, = y, — ¥ is
the prediction error. The prediction error can be rewritten
as

X{_16, -
= XAT—I(B - ak—

e =y — Hi=X{_,0 -

1) = Xl{—lék—l» (2-5)

where 8, = 0 — 8, is the parameter error vector. Implicit
in this expression for ¢, is exact plant and model match-
ing, noise free measurements, etc.; in short, this paper
considers LMS only in the ideal case. Subtracting both
sides of (LMS) from 6, the parameter error system for
(LMS) can be written

ék:ék~l —#Xk—l(X[—lak—1)~ (2~6)

It will often be convenient to refer to this latter form of
(LMS).

A simplistic interpretation of (LMS) shows that the sin-
gle-step update of the § vector is parallel to X, |, with
direction (plus or minus) and scaling given by the predic-
tion error ¢;. Since X contains only delayed inputs, each
X provides a fixed (i.e., independent of the parameter es-
timate) one-dimensional space in which to move, and the
error provides a direction and magnitude to that motion.
Equation (2.5) shows that ¢; changes sign along the hy-
perplane defined by the nullspace of X, ., that is, about
any 8,_, for which Xk‘lﬁk_, = 0. Notice that this hy-
perplane passes through 8 = 0 (i.e., the correct setting)
for all X, _, under ideal conditions. It is easy to see that
for each regressor X, _;, motion of the parameter esti-
mates is always toward the nullspace of X, _ ,.

Parameter motion for the single step update A8, =
0, — 6,_, corresponding to a 2-dimensional X; _, is de-
picted in Fig. 1(a). It is evident from Fig. 1(a) (and this
can be shown formally as in [8]) that under ideal condi-
tions parameter motion given by (LMS) will never in-
crease the summed squared parameter error, assuming a
small enough step size. In fact, one can visualize from
Fig. 1(a) thal if the regressors regularly span the param-
eter space ‘-, the algorithm will “‘push’’ the parameter
estimates toward the nullspace common to all regressors,
eventually settling on the correct setting.

Before turning to single-step motion in the sign-sign
LMS case [Fig. 1(b)], consider the 7-term trajectory of
(LMS) from an initial parameter estimate setting 6; cal-
culated as

i+7-1

— K [\Z' Xk,,eA.
c =i

A, =0, -0 = (2.7)
If 7 is the period of the input, the average update can be
calculated simply by using a finite window (of length 7).
The update represented by (2.7) over a period 7 will be
called the ‘*periodic update.’” Note that to define the aver-
age over a single-step scaling of A, by 1 /7 would be nec-
essary, but has been omitted for convenience. For each
initial 6, in (2.7), a unique final 8, . can be calculated.
Connecting the initial and final points yields a vector (A,)
which represents the motion of the paramecter estimate
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Fig. 1. (a) Parameter trajectories for the one step update of (LMS). All
trajéctories are parallel to X, . (b) Parameter trajectories for sign-sign
LMS. Updating occurs parallel to sgn [ X, .1, leading to regions where
[|81l, increases.

over the 7 samples of the input. Plotted in the parameter
error space, these ‘‘trajectory snapshots’ or ‘arrows’’
give rise to an ‘‘arrow diagram.’’ The arrow diagram of
Fig. 2 for a grid of 0, candidates in the parameter error
space is based on the 2-dimensional plant and model

Vi = byug oy + by s
(2.8)

with 3-periodic input u, = {---, —1.5, =1, 3, -~ -},
and plant parameters (b;, b)) = (0.6, 1.0). The arrow
diagram of the kind shown in Fig. 2 may be thought of as
a 2-dimensional projection onto the parameter error space
of (closely approximate) instantaneous downward gra-
dient lines of the 3-dimensional error surface J(e) = avg
[ef]. The error surface given by J can be described as an
elliptical hyperparabolic ““bowl’” with a unique minimum
at the correct setting. For any 2-dimensional FIR plant in
the form of (2.8) and any 7-periodic input sequence (7 =
2), the equilevel curves of J are ellipses with axes ori-
ented along the 45° lines. Fig. 2 reflects this elliptical
bowl shape: connecting the starting points of average tra-
jectories of similar length will sketch in the level curve
ellipses, and the arrows become shorter as the bowl ‘‘flat-
tens out’” near @ = 0. The above corresponds to the stan-
dard steepest-descent interpretation of the unsigned LMS
algorithm.

yk = blkquk—l + b2L4“k*2
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Fig. 2. Arrow diagram for unsigned LMS. Each arrow represents the tra-
jectory for one period of the input u, = (-, 15 —1,3, -}
with initial condition at the base of the arrow, which is marked by an O.

In developing some insight into the sign-sign LMS
adaptive filter, it is useful to compare (LMS) to three
signed versions of (LMS): signed regressor LMS, in
which the regressor alone is replaced by its sign; signed
error LMS, in which the prediction error alone is replaced
by its sign; and the sign-sign LMS, in which both the
regressor and prediction error are replaced by their signs.
These three algorithms replace the (LMS) update of 8, _,
with

a

B, = 0,_, + psgn[Xioi]e (SR)

B = 0,y + nXi_isgn [e], (SE)
and

B = By + wsgn [Xe—i] sgn [e], (SS)

where “‘sgn [ -] is the usual signum function to be in-
terpreted as an element by element operator when applied
to a vector. Although the geometrical descriptions of
(LMS) of Figs. 1(a) and 2 are not new, they lend a fa-
miliar backdrop for similar graphical analysis of signed
variants of LMS. The first question one might ask is: how
do sign operators alter the single-step update of LMS? For
both the signed regressor and sign-sign LMS variants, the
parameter update is parallel to sgn [X; -], which may be
significantly out of alignment with X, ;. The prediction
error for both of these algorithms serves the same purpose
as in (LMS); it directs the update to move with or against
sgn [ X, _,]. That is, the nullspace of X, _, given by ¢; =
XT_,6,_, = 0 divides the space into + [signed regressor
direction] motion. Fig. 1(b) depicts motion for a single
update in the parameter estimate space for (SS). Due to
the sign operators in (SS), all updates for a single re-
gressor are of equal magnitude, colinear and opposite in
direction in the two half-spaces defined by the boundary.

As noted above, each update for unsigned LMS moves
in the direction of X, _ toward the boundary given by the
nullspace of X;_,. Since sgn [X] always has a positive
projection of X (sgn [X1'X = | XIl, = 0, X € =), the
component of the update direction for (SS) perpendicular
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to the boundary is pointed toward the boundary. How-
ever, unlike (LMS) or (SE), motion is not necessarily or-
thogonal to the nullspace of X (since, in general, X # «
sgn [ X ], where o € i¥). As with (SR) relative to unsigned
LMS [9], frequent misalignment of sgn [X] and X can
conceivably cause poor behavior in sign-sign LMS, ver-
sus the behavior of (SE) as analyzed in [10]. For both
(SR) and (SS), there exist regions in the parameter esti-
mate space for which parameter motion increases the
summed squared parameter error [see region shaded in
Fig. 1(b)]. An expression for the change in the squared
parameter error shows this:

B8y — 816 = (6 — psen [X,1X78,)° — 673,
—2ub] sgn [X,1X76, + o(4?).
(2.9)

When sgn [67 sgn [X;]] = —sgn [X[8,], i.e., when §,
lies in the shaded region of Fig. 1(b) and y is small, (2.9)
shows that the change in the squared parameter error is
positive.

The signed error algorithm update moves parallel to
Xi — 1, but is scaled only by the sign of the prediction er-
ror, i.e., +1. Here again the decision to move with or
against X _ is delineated by the nullspace of the regres-
sor. As seen in Fig. 1(b), all update arrows have the same
magnitude. In common to all of these LMS variants is that
the nullspace of each X,_, sets up a boundary along
X{_16,_, = 0 across which the direction of parameter
motion changes sign. These boundaries prove to be sig-
nificant in dissecting the behavior of signed algorithms.
Arrow diagrams for each of the three signed LMS algo-
rithms are presented in Fig. 3, for the plant given by (2.8)
and the same input as used for Fig. 2. The nullspace of
each regressor has been superimposed on these diagrams.

Notice that within certain regions for both (SE) and
(SS), all of the arrows are parallel and of the same mag-
nitude; these conic regions delineated by regressor null-
spaces will be termed ‘‘sectors.”” The periodic update
term from an initial setting 6, explains this behavior as we
now show. An expression for the periodic update for (SS)
which is analogous to that of (2.7) is

I

A, = §i+1 - éi
i+7

= T k:;H sgn [X, -] sgn [X{_,6,_,]. (2.10)

When no bour)daries are~crossgd in 7 steps, sgn [X[, 1 9,~]
= sgn [X,(T_IHJ] where 6; and 6, are any two points in the
same sector. Thus, (2.10) can be written as
i+7
A, = T, Z 1 sgn [X, ] sgn [Xltr—léi]’ (2.11)
c=i+
as if each were calculated with fixed 8; for motion not
crossing boundaries. The reasoning is identical for (SE).
Without the sign operator on the error, rewriting (2.10)
as (2.11) would not be possible. In other words, it is the
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Fig. 3. Arrow diagrams for (SR), (SE), and (SS) which are companions
to the arrow diagram for (LMS) of Fig. 2. The input is again u, = {-+,
=15, —1, 3, -+ - }. For both (SS) and (SE), the periodic trajectory
arrows are identical in large open conic regions of the space. Since ar-
rows in each region can be bundled into a single representative arrow for
the region, these diagrams are termed *‘quiver diagrams.”’

sign operator on the error which makes each update sen-
sitive only to the side of the boundary on which 8, | lies,
and insensitive to the distance to the boundary. With X
periodic, the sum of individual updates is the same over
each period of X when no boundary is crossed in that pe-
riod, explaining the bundling of arrows in the arrow dia-
grams for (SE) and (SS). By (2.11), a single periodic up-
date arrow of a sector exactly describes the motion of the
parameter estimates from any initial condition in the sec-
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tor except when a boundary is crossed. The arrow can be
said to reflect periodic behavior within a sector excluding
a *‘B-region’’ about the boundary, where the Euclidean
distance B is the maximum possible magnitude of the pe-
riodic update trajectory (8 = prm'/?). Since all of the
arrows in each sector are identical, they may be bundled
into ‘‘quivers,”’ creating the quiver diagram. From a
computational standpoint, only one arrow need be calcu-
lated per sector.

It should be pointed out that assuming a deterministic
r-periodic input in (2.11) serves only as an instrument in
forming average trajectories within sectors. Any input
whose elements are restricted to a finite alphabet yields a
finite number of regressors and thus boundaries. Within
sectors delineated by these boundaries, an average trajec-
tory (also implicit in periodic trajectories) somehow must
be determined. A variety of averaging techniques are pre-
sented in [11] and [12]. For an algorithm using the cor-
relation update form of LMS, the average trajectories will
be the same throughout each sector if a function is applied
to the prediction error which is constant throughout each
sector, such as the sign operator. Both the signed error
and sign-sign LMS algorithms give rise to quiver dia-
grams. When the sign operator is applied to the error term
in LMS, the boundaries are the nullspaces of the regres-
sors, and in each sector the average trajectory (or the sum
of the individual regressor updates as with periodic in-
puts) is the same from all initial conditions, excluding the
§-regions about the boundaries. A similarly bundled ge-
ometry also arises with piecewise constant functions of
the prediction error, such as multilevel quantization.
These and other potential extensions/applications of
quiver diagrams are mentioned in Section V of this paper.
The use of deterministic 7-periodic inputs in this paper
simplifies the discussion, but does not restrict the quali-
tative value of quiver diagrams. To be sure, quiver dia-
gram insights are considerably diminished if too many
boundaries are present. In the following section, the
building of a quiver diagram for the sign-sign LMS adap-
tive FIR filter using 7-periodic inputs will be detailed.

III. BUILDING A QUIVER DIAGRAM FOR SIGN-SIGN LMS

The periodic trajectory when no boundary crossings are
involved as given by (2.11) implies that the ordering of
the regressors has no bearing on the periodic updates rep-
resented by quiver arrows (although along the boundaries
regressor order plays a nontrivial role). For the purposes
of constructing a quiver diagram then, instead of consid-
ering the ordered periodic input stream u, = { - - -, u,
uy, Uz, * * * }, we may consider the input to be the unor-
dered regressor set X = {X, X5, X3, - * - }.

For the 2-parameter FIR plant of (2.8) with the 3-pe-
riodic input used in the example u;, = {---,-15, -1,
3, + - -}, the set of regressors is

e {02

(3.1)
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Each of these defines a boundary in the parameter error
space, and via the prediction error, the sign of the update
direction. One way to draw a quiver diagram would be to
construct the boundaries for all regressors, choose a point
within each sector, and calculate the periodic update ar-
row according to (2.11) using a fixed §;. Equivalently,
one may construct the boundaries and updates for each
regressor, and then ‘‘superimpose’’ these over one an-
other, summing the arrows graphically in each sector. This
summing of the unordered regressor effects to obtain sec-
tor arrows is seen implicitly in (2.11): from a fixed 6,
(within a sector but excluding the B-region), terms in the
last sum may be arranged in any order. The signed re-
gressors corresponding to X are

S

For each regressor in &, its nullspace and the updates of
%, are plotted in the parameter estimate space in Fig.
4(a)-(c). The “‘sum’’ of these three figures is depicted in
Fig. 4(d). Fig. 4(d) is the quiver diagram.

The arrows in the quiver diagram indicate the direction
and magnitude of motion over one period, and it is
straightforward to ““predict’’ the behavior from any initial
condition. From points well interior to a sector, the pe-
riodic trajectory will have a direction and relative mag-
nitude as shown by the arrows. Note that the arrows have
been scaled to make them clearly visible. In general, it
seems logical to suggest that upon reaching a boundary,
the estimate trajectory will either cross the boundary or
‘‘chatter’’ along the boundary. Chattering seems likely if
the arrows on either side of these boundaries share a radial
component toward the desired setting, and have opposing
projection on the perpendicular to the boundary. Simula-
tion evidence suggests that behavior along the boundaries
is as expected based on the direction of sector arrows:
parameter estimates chatter along the boundary in the di-
rection common to the arrows when both sector arrows
point toward it; estimates pass through boundaries where
arrows have the same directional component orthogonal
to the boundary. It can be proved that boundary behavior
is as expected [13] assuming only one boundary is crossed
in the input period, which is always the case in two di-
mensions except for within a region about the origin.
Thus, by the quiver diagram of Fig. 4, the algorithm will
evidently take all initial conditions to a small ball about
the correct setting, since the radial component of motion
in each sector points towards this setting. We conclude
thatu, = {---, 1.5, —1,3, -~ - } may be called per-
sistently exciting for 2-dimensional (SS).

The concept of quiver diagram sector arrows may be
used to define a class of PE inputs for (SS) in the FIR
case. Imagine such a condition based on testing that all
sector arrows from initial condition on a ball about the
correct setting have a radial component towards the cor-
rect setting. The arrows of Fig. 4, for example, satisfy
such a condition on a sufficiently large ball about the or-

(3.2)
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Fig. 4. (a)-(c) Boundaries corresponding to the regressors in & and cor-
responding update directions given by X,,.. (d) Graphical sum of (a)-
(¢) with update arrows laid end to end, and periodic update trajectories
marked in bold for each sector. This is the quiver diagram for the input
we=14---,-1.5 —1,3, - - -} is the FIR case.

igin. By the convexity of sectors (since sectors are the
intersection of half-spaces), if the sector arrow points out-
ward from the origin anywhere in the sector, it will point
outward at some sector boundary. Therefore, a contrac-
tion condition need be checked only for initial conditions
lying on the sector boundaries. Such a test is simply car-
ried out by determining whether the projections of the pe-
riodic trajectory onto the sector boundaries are inward to-
ward the origin. One can see from Fig. 4 that the
projections of each arrow onto its sector’s boundaries
point radially inward. Note that this condition is a suffi-
cient condition, since a trajectory which has a radially
outward component within one sector may point into a
sector whose trajectory points radially inward and assures
convergence. In higher dimensions, it can be shown that
sectors can be defined by a convex combination of their
‘‘edges,”” or one-dimensional boundaries [13]. Consider
an algebraic formulation of a test that all sector arrows
have a sufficient radial component that is based on pro-
jecting sector arrows onto these one-dimensional bound-
aries. One is presented in [13], which results in a suffi-
cient condition guaranteeing stability, in the sense that all
possible periodic trajectories from a large enough ball
about the correct setting have an inward radial compo-
nent.

Simulations confirm behavior based on the arrow dia-
gram (Fig. 2) for unsigned LMS, and on the quiver dia-

=

(a) 0 ®

@ initial setting

Ocorrect setting

0
unsigned LMS

@ initial setting
Ocorrect setting

sector
boundary

0 b

sign-sign LMS
Fig. 5. Parameter error space trajectories for the unsigned and sign-sign
LMS algorithm for several different initial conditions. In (b) the shaded

lines are the quiver diagram boundaries. The input is i, = {---,—15,
=1,3,---}.

gram [Fig. 4(d)] for sign-sign LMS. Plotting parameter
trajectories in the parameter space or phase plane, rather
than as time functions, offers the opportunity to plot sev-
eral trajectories from different initial conditions in a sin-
gle diagram; several such trajectories are depicted in Fig.
5. The parameter trajectories in Fig. 5 for unsigned LMS
with a small step size are almost smooth curves approach-
ing the correct parameter values, § = . In the sign-sign
LMS case, the trajectories are not smooth, but appear to
be roughly piecewise linear. The average motion of the
parameters is linear for a time, then ‘‘turns sharply’’ to a
trajectory which ‘‘slides’” along the boundary, as ex-
pected from the direction of quiver diagram arrows. The
smooth legs of the “‘spider’” diagram of Fig. 4(a) reveal
the average error surface descended by (LMS), while the
angular legs of Fig. 4(b) are the parameter motions for
(8S).

IV. EXTENSION OF QUIVER DIAGRAMS TO THE SIGN-
SiIGN LMS Apaptive IIR FILTER

Consider the IIR plant model having the form

(4.1)

n m
Y = _Ll aiYp-; t ‘Zl bju ;.
i= j=
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Replacing the a;’s and b;’s by their filter estimates at time
k—1,a, ,and bjA ' the output estimate ¥, is formed as

n

i = -Z. a, e i+ El by ;. (4.2)

i=
Since delayed output estimates appear on the right-hand
side of (4.2), this model has an infinite response (IIR),
and the associated regressor contains past inputs as well
as past output estimates

” A T
Xk—] = [ykfl': T s Yk—nm Wk—1s T T uk—m] . (43)

The appropriate definition of the parameter estimate vec-
tor is
~ T

* me] k4 (4‘4)
which gives the output estimate §, = X{_0;_,. The pre-
diction error can be shown to be a function of the inner
product of the regressor and parameter error vector fil-
tered through the unknown autoregression of the plant [8],
as

ok = [dlp e 7dnL7 b]u T

G =Y — %= 0 (4.5)

XLl

where 0, = 6 — 8, and ¢ "' indicates the time-delay op-

erator. The recursive LMS adaptive IIR filter [14] takes
the form of (LMS) with 9k and X; defined as in (4.3) and
(4.4). The sign-sign LMS adaptive IIR filter is of the same
form as in (SS).

For unsigned LMS in the IIR case, convergence to the
correct setting has been shown [7] in ideal use of inputs
which are PE for LMS in the FIR case, if, in addition,
the transfer function {1/1 — L/_,a,q '} in (4.5) is SPR.
An SPR discrete-time system transfer function is strictly
minimum phase and has a positive real part when evalu-
ated at any point on the unit circle. By rough analogy with
the unsigned case, one might hypothesize that inputs
which are PE for the sign-sign FIR filter (for which all
trajectories ultimately settle in a small region about b=
6), plus satisfaction of the standard SPR condition on the
transfer function in (4.5), would imply convergence to the
correct setting for the sign-sign IIR filter. The apparently
innocent input used above in the FIR case provides a
counterexample to this hypothesis as will be demonstrated
with quiver diagrams, and confirmed by simulations. It
is, of course, possible to find inputs which do cause con-
vergence in the IIR case considered here; one such input
isuy,=4{---,-1,1,01, - - - }.

Much of the analysis of the sign-sign FIR adaptive filter
can be extrapolated to the sign-sign IIR form. The param-
eter-estimate space is again divided into regions by hy-
persurfaces. However, in this IR case they are nonlinear
functions of the inputs and the parameter estimates, and
partition the space into regions other than conic sectors
emanating from the desired setting as in the FIR case,
making for a substantially more intricate quiver diagram.
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Consider the first-order system and model (m = n =

1)
Ve = ay—1 + by,

yk:a‘k~15yk*l -+-}A)kv|uk,| (46)

where a and b are to be estimated. Since the transfer func-
tion formed by dividing one by the autoregressive delay
polynomial of a stable first-order plant is always SPR
(i.e., Re {1/1 — ae™™} > 0 for all |a|] < 1), an
adaptive 1IR filter of the form

l\dﬂ [dk-fJ N {)A’kvl
=1 §sgn

by by Up—y
seems appropriate. Recall, by the above hypothesis, that
this algorithm should converge Io the correct setting given
the input u, = { - , — 1.5, - }, which leads
to parameter convergence in the 2 dlanMOna] FIR case.

Updates for the two estimates 4 and b can be consid-
ered separately:

sgn [e] (4.7)

Ady = psgn [ $1]sen [e] (4.8a)
Aby = psgn [ue 1] sgn [e]. (4.8b)
Update (4.8a) will be zeroed when ¥y, = 0ore = 0.

Both of these involve past values of the model output,
which is a nonlinear function of the estimated parameters.
For a small step size, the steady-state values for ¥, can be
accurately approximated by the periodic output resulting
from a given periodic input and a fixed f.. The validity of
this steady-state approximation is crucial to the analysis
of the IIR algorithm; it does not hold, for example, for
parameter estimate points outside the stable region or for
excessively large step sizes.

Notice that except for the trivial case where u;, = 0,
only the two cases where

Ji—i = 0 and ¢, ;4 = 0,

(4.9)

need be considered with u, and, thus, y;, ¥/ (from a fixed
8,), and e{ all 7-periodic where the superscript g denotes
steady-state values calculated for the purpose of drawing
the quiver diagram in the IIR case. The solutions to (4.9)
describe curves across which the sign of the update term
changes for at least one regressor in the period, and divide
the space into regions. As in the FIR case, all interior
points of a region are updated identically for each partic-
ular regressor.

The quiver diagrams are substantially more compli-
cated for the IIR filter, since the functions of the param-
eter estimates which zero the update term are nonlinear.
These curves are obtained by using (4.6) to solve for
steady-state, periodic sequences { y{} and { ¥{} ata point
in the parameter space by solving the set of simultancous
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equations
yi = ayl + buy
yi=ay{ + buy ¢ = y!
y§ = ay] + bu,
2
au;_ + au; _, + Uu; _ .
= 31_a3 Lb, (i=1,2,3).
(4.10)

The ﬁ?’s are obtained similarly, and their steady-state so-
lution is the same as in (4.10) with a replaced by 4¢.
Points for which the update is zeroed are found where

el_, =yl — 9.,

azu,-_3 + au; ., + u;_,
3 b

1—a

A 2 A
@ 5+ aqui—32 + Ui b9 =0
1 — (a9

(4.11)

and where

2
49 49
(@) u_5 +a i iy pg 0,

cq
Yi-i =

(i=1,2,3). (4.12)
Note that 57 = 0 is always a solution of (4.12), yielding
a horizontal line in the quiver diagram across which the
update of 4 changes sign. Similarly, two more vertical
lines are solutions to (4.12), also across which the sign of
the 4 update changes for the associated regressor (these
may not fall within the stable region). These lines cut the
space into regions other than conical sections originating
at the desired setting.

There are three sets of solutions to (4.11) and (4.12)
for a given 3-periodic input sequence, one for each update
in the period. These solutions, with input u, = {+ - - |
-1.5, -1, 3, -+ -} and (a, b) = (0.6, 1.0), are de-
picted in the quiver diagrams of Fig. 6 as the solid,
dashed, and dot-dashed curves. In each region, a periodic
update is shown as an arrow. These diagrams may appear
at first sight to be a shocking miasma of arrows, due to
the multitude of regions, each of which has an arrow.

This quiver diagram in Fig. 6 illustrates a remarkable
behavior for the input u, = {---, —1.5, —1,3, - - - },
namely, that the algorithm may converge to any point on
a locus in the parameter space; for this example, such a
locus is marked in bold. This locus is along a boundary
defined by the update-zeroing curve in the parameter space
where the estimate chatters back and forth across the
boundary in a local limit cycle. Such chattering corre-
sponds to the periodic update trajectory in the neighboring
regions being opposite in direction along the entire

A
b i
2.0k correct 1'3
‘\\ Y setting ‘ Zu
R VA
---- HEN
> pie o
0.0p=== ';- = I—,’F (@)
d
»
> i
-2.0 i
A H A
a 1 a

(b)

A
a

Fig. 6. Quiver diagram for two-dimensional sign-sign adaptive 1IR algo-
rithm with the input { - - -, —1.5, —1, 3, - - - }. The three boundaries
are drawn as solid, dashed, and dot-dashed curves in the figures. (a) The
true setting (a, b) = (0.6, 1.0) is one point on a locus of stationary points
as marked in bold. (b) A closeup of the correct setting. Arrows with
radial component pointing away from (a, b) indicate this setting is un-
stable. A simulated trajectory depicted as a jagged line illustrates motion
along sector arrows away from the correct setting to a setting on the locus
of stationary points.

boundary between them. Notice that the correct parame-
terization in this example is an unstable equilibrium, since
there are arrows pointing away from it, as seen in the
closeup of the region surrounding the correct setting in
Fig. 6(b). Simulations confirm this behavior. This ex-
ample shows that sign-sign adaptive IIR filters can have
multiple stable and unstable stationary points, and that the
correct setting can be an unstable stationary point.

V. CONCLUSION

Quiver diagrams offer new insight into signed algo-
rithm behavior. Beyond behavior in the ideal 2-dimen-
sional case, quiver diagrams lend insight into higher di-
mensional problems in finding, e.g., a stability-inducing
persistent excitation condition for sign-sign FIR LMS, as
outlined in Section IIl. Quiver diagrams can also be ex-
tended [15] to Quantized Error (QE) versions of LMS,
which use a finer quantizer than the one bit quantization
of the signum function. In a quiver diagram for QE al-
gorithms, a regressor yields as many boundaries in the
parameter estimate space as there are quantization levels.
An example of concepts related to quiver diagrams for
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stochastic inputs is found in [16] and [17], where quiver-
diagram-type insights are used to locate stationary points
for a decision-directed equalizer with binary transmis-
sion. A related future application might be Decision
Feedback Equalizers [18] when a signed-error-type LMS
algorithm is used.

Behavior along the quiver diagram boundaries when
multiple boundaries may be crossed remains an open the-
oretical issue. In higher dimensional cases (m > 2), mul-
tiple boundaries may be crossed where they intersect
transversally far from the origin. Higher dimensional
boundary behavior is the subject of present research.

Unfortunately, rough extrapolation of results from the
unsigned LMS adaptive FIR and IIR filters offers incor-
rect expectations of the behavior of the sign-sign ver-
sions. Quiver diagrams show that the sign-sign adaptive
IIR algorithm can converge to stable loci far from the cor-
rect setting, which cannot occur for the corresponding un-
signed algorithm. These findings may have some bearing
on the applications of sign-sign algorithms as in the
CCITT 32 kbit /s standard ADPCM algorithm for use in
telephony, which is a form of sign-sign adaptive IIR al-
gorithm with leakage. Periodic update arrows as pre-
sented here may incorporate leakage, which is a small ra-
dial component pointing toward the origin of the
parameter estimate space. Sign-sign adaptive IIR filters
with regressor or prediction error filtering, the unsigned
versions of which are discussed in [19], will have an ef-
fect on the appearance of the quiver diagram. Prediction
error filtering which ‘‘straightens’’ the update zeroing
curves can reduce the IR case to something similar to the
FIR case, which is conceptually simpler.
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