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Abstract

One of thekey issuesin decentralized beamforming isthe need to phase-
align the carriers of al the sensorsin the network. Recent work in this area
has shown the viability of certain methods that incorporate single-bit feed-
back from a beacon. This paper analyzes the behavior of the method (show-
ing conditionsfor convergencein distributionand al so giving aconcrete way
to calculate thefinal distribution of the convergent ball) and then generalizes
the method in three ways. First, by incorporating both negative and posi-
tive feedback it is possible to double the convergence rate of the algorithm
without adversely effecting the final variance. Second, a way of reducing
the amount of energy required (by reducing the number of transmissions
needed for convergence) is shown; its convergence and final variance can
also be conveniently described. Finally, a wideband analog is proposed that
operates in a decentralized manner to align the time delay (rather than the
phase) between sensors.
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1 Introduction

A collection of sensors are scattered in unknown locations. The sensors wish to
cooperatively transmit a common message signal as efficiently as possible using
a beamforming method in order to be energy efficient. Significant gains occur
when exploiting distributed beamforming [7, 9] because of the improved signal-
to-noise ratio at the receiver: while the received signal magnitude increases with
the number of transmitters .J, the SNR increases with /2. Since the total amount
of power transmitted increases linearly in .J, this represents an .J-fold increase in
energy efficiency. A key issue in the use of distributed beamforming systems [1]
is that the phases of the carriers must be synchronized throughout the network.

A recently proposed scheme [11] accomplishes this phase synchronization us-
ing single-bit feedback from a base station. Each sensor broadcasts within each
timeslot, perturbing the phase of its carrier dightly from the previous timestep.
The base station replies with a signal that indicates whether the received signal
is more (or less) coherent than the previous time. The sensors respond in the ob-
vious way: if the signal is improved they keep the new phase while if the signal
worsened they revert to their old phase. This scheme is shown, under certain con-
ditionsin [12], to asymptotically achieve perfect phase coherencein the noise-free
case. However, even tiny disturbances (which may arise physically from thermal
noise, from unmodel ed dynamics, or from interference with other nearby commu-
nications systems) cause convergence to a ball about the correct answer (and not
to the correct answer itself). Analysis in the present paper is able to concretely
describe both the rate of convergence and the distribution of this convergent ball.

This paper begins by showing in Sect. 2 how the single-bit feedback mech-

anism for phase alignment can be written as a “small stepsize” ;-dependent al-
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gorithm with a discontinuous update term [4, 10]. The discontinuity arises be-
cause the sensors either accept or reject the most recent phase change based on
the single-bit feedback. Sect. 3 applies the analytical techniques of [5] and [6] to
examine the convergence of the algorithm in terms of a related ordinary differ-
ential equation (ODE). An extension of these results, detailed in the Appendix,
allows derivation of the asymptotic variance. This concretely describes the fina
distribution of the algorithm about its equilibrium.

The method of [11, 12] either updates or freezes the estimated phases at each
timestep. Sect. 4 observes that it may be possible to do better than to freeze the
updates: if adding a small number makes things worse, then most likely subtract-
ing a small number would improve things. This is an old idea [3, 8] in signa
processing, and a“signed” algorithm for the decentralized phase alignment prob-
lem that uses both positive and negative feedback is described and analyzed: it is
shown to converge twice as fast as the original, with the same final distribution.

One key requirement in a sensor network system is energy efficiency. Sect. 5
proposes the p-percent method in which only a subset of the sensors transmit at
each timestep. Analysis shows that the savings in the number of transmissions
(and hence in the energy) can be significant. Since the subset is chosen randomly
at each epoch, there is no need to coordinate the sensors, and the method remains
decentralized.

Finally, the above methods are inherently limited to aligning the phases of
narrowband transmissions with a carrier of known frequency. Sect. 6 proposesand
analyzes an analogous algorithm that operates with wideband signals by aligning
the received signal in time. The method remains decentralized and incorporates

only single-bit feedback from the beacon.



2 Algorithm Statement

Let qb]n be the phase of the carrier signal at sensor/transmitter ; at timestep » and
let o; be the phase difference due to the (unknown) distance between the base
station and sensor ;. At each timeslot, each sensor randomly perturbsits phase by
asmall amount v, ,,. Further suppose that the received signa at the base station
at iteration n is corrupted by a Gaussian noise ¢,, with mean zero and variance o?.

The agorithm described above can be written

A~

qu,n-l—l = Qb],n —I_ /’LFijn]‘{g,H_l-I—ETJ:l COS((IBr,n‘FM’VT,n—Olr)>gn+zrjzl Cos(ér,n—ar)} (1)

for j = 1,2,...,J where 14, is an indicator function taking on value one if
A istrue and is zero otherwise. The sum of cosines terms represent the received
carrier wave and take on maximawhen the ¢ are phase-aligned. Thus theindicator
function is unity if the perturbed phases q%m + u~,, are better aligned than the
unperturbed phases, and is zero otherwise. The goal of the algorithmis to drive
the qb terms to a value at which the sum is maximum, which occurs when all of
the terms are maximized, i.e., when ¢, is equal to «,..

For the purpose of analysis, it is more convenient to rewrite the algorithm in
“error system” form by letting ¢;,, = ¢;,, — «;. Subtracting «; from both sides
of (1) gives

qu’n-l—l = ¢]7n —I_ M7j7n1{gn+l+z7{=1 COS(¢r,n+N/7r,n)>gn+E7{:1 COS((br,n)}' (2)

Suppose that the i.i.d. perturbation random variables {~,,} are chosen to have
a symmetric distribution (about zero) with finite variance o2. Then for small 1

(keeping just the first termsin the Taylor series), cos(¢,., + p-.») can be approx-



imated by cos(¢,.n) — pyrn sin(¢,,, ). The dgorithmisthen

qu,n-l-l = qb]}n + M7j7n1{§+zrjzl Yrn sin(ér n ) <0} (3)

where g is normal with mean zero and variance 207 /1.2

In order to investigate the behavior of the algorithm, observe that convergence
of ¢, to zero is equivaent to convergence of the phase estimates &, to their un-
known values «,.. The analysis requires some technical machinery, which is de-
scribed fully in Appendix A. The basis of the analytical approach is to find an
ordinary differential equation (ODE) that accurately mimics the behavior of the
algorithm for small values of ;. Studying the ODE then gives information re-
garding the behavior of the algorithm. For example, if the ODE is stable, the
algorithm is convergent (at least in distribution). If the ODE is unstable, the al-
gorithm is divergent. The approach grows out of resultsin [4] and [5], which are
themselves based on the techniques of [6]. The approach is conceptually simi-
lar to stochastic approximation but its assumptions (and hence conclusions) are
somewhat different. First, the stepsize 1 in (3) is fixed, unlike in stochastic ap-
proximations where the stepsize is required to converge to zero [10]. Thus the
algorithms do not necessarily converge to afixed vector; rather, they convergein
distribution. Moreover, the analysis is capable of delivering concrete values for
the convergent distribution; asfar aswe know, thisisnot possible with other meth-
ods. Second, no continuity assumptions need to be made on the update terms; this
iscrucia because of the discontinuity caused by the indicator functionin (3), and
is a'so more general than other methods that require differentiability of the update

term.



3 Convergence Analysis

This section applies the weak convergence analysis of Appendix A to the algo-
rithm (3). If .J is of reasonable size (J/ = 10 isused in many of the simulations),
the Central Limit Theorem shows that

1
vdJ—1

J
Z Yo SI0(Pr ) R 7

r=1(r#j)

2 : 2
where Z is a zero mean normal random variable with variance 2= (@nu)IE

where || sin(¢,/()I[* = 371, sin*(6r.). To calculate the limiting ODE (the

r=1

H of (10)), it is necessary to smooth the update by taking the expectation

E[Py]’n 1{§+E7{:1 Yron Sin(¢r,n)<0}]

= E[’ijl{ \/J1T1§+\/% Erjzl,r;é] Yr,n sin(@r n )+ \/%ijn Sin(¢],n)<0}]
£l

%

ijnl{\/%g-}Z{— \/%'yjyn sin(¢]7n)<0}]

= EWE[’ijl{WlTlgq-Zq-ﬁ%n sin(¢J7n)<0}|7j,n =7]]

- EW[FYE[l{Z—l— ﬁwsin(¢ﬁn)<0}]]

where 7 = 7+ isnormal with zero mean and variance 515 (2| sin(¢,/(j))|[*+
207 /1?). Also,

E[l{ZJr \/}Tl'ysin(¢],n)<0}]

= P+ ey sin(80) <0)
~ L v sin(;.)
2 2r(T =)ol sin(bn) [P/ = 1)+ 202/ (12(] = 1)

L ’YSin(qu,n)
2 Ve o2 lsin(u)1? + 202 17
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The last approximation for large .J arises because when ® isanorma N(0,0?)
random variable, P(® + = < 0) ~ (1/2) — (z/(ov/2m)) for small positive z.
Thus,

EDianl (g7, nmsin(érn)<ol}
1 Y Sin(qu,n)
[7[5 B 2 3 2 2 2]
V2, Jo2 | sin( ) I + 202 /1
B o2 sin (0,
V2 [o2] | sin(6n) |12 + 207 12
Thus the limiting differential equation (11) is
dei(t) o sin(¢;(t))

N

A straightforward linearization argument shows that this ODE is stabl e about zero.

(4)

Simulationsin Sect. 7 show that the ODE accurately tracks the trajectories of the
algorithm.
Once the algorithm has converged, it is important to be able to characterize

the final distribution. Asin the Appendix, define arandom process V'(¢) by
t
V(t) =vo+ M(t)+ L(t) — 0/ V(s)ds,
0

where M (t) is a Wiener process with variance o3,¢, L(t) is another Wiener pro-
cess independent of M with variance o#¢, then V' (¢) isan Orstein-Uhlenbeck pro-
cess (an asymptotically stationary Gaussian process) with mean zero and variance
(07 +03y)/20.

Suppose that o7 /> = 7. Then 0 = 0, H1(W (s))|w(ym0 = —0?/\/A757,
G(0,y,u) = (Ylgg<op — 7/2)% and G(0) = o2/4 where G and (i are defined

in (16)-(17). Thus o}, = o2/4. For the variance of L, note that its terms are
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H(0,Y) — H(0) = H(0,Y) = ~/2. Thus the squared values are 02/4 and

o} = o2 /4. The asymptotic variance s therefore given by

03/4—%03/4 \/7‘[‘5'752‘ 5)

o2/ /aner] | 2

Somewhat surprisingly, the asymptotic variance is independent of the size of the

phase perturbations . Sect. 7 showsthat this cal cul ated variance matches closely

to the empirical variance derived from simulations.

4 The Signed Algorithm

In the distributed phase alignment algorithm (1), the phase of each sensor is up-
dated by the perturbed value (if the feedback from the beacon says that the overall

alignment improved) or else it remains fixed. Accordingly, in many iterations, no
changes are made. Since each of the individual phase updates are scalar, it seems
reasonabl e that when the feedback indicates no improvement, an update in the op-

posite direction might be useful. Effectively, this replaces the indicator function

1 >0
in the update with a signum function sgn(z) = 0 x =0 .Theagorithmis
-1 =<0
J
qu,n—l—l Qb] n+M7] n%n In+1 —I'Z COS r n+M7r n ar Z COS _ar

r=1 r=1
forj =1,2,...,J. Following thelogic of (1)-(3) leads to the error system which

isvalidfor small p

J
i1 = Gjn — M’Yj,nsgn(g + Z Yrn Sin(¢f’,ﬂ))' (6)

r=1



Carrying out the same calculations as in Sect. 3, the expectation of the update term
is
B 203 sin(¢;..)
V2 [o2]|sin(6n) |12 + 207/ 12

Thisisexactly twicethevaluein (4), and so the corresponding ODE for the signed

(7)

algorithm converges twice as fast as when using the indicator function.

Thefinal variance can also be cal cul ated as before: § = 6w[3](W(s))|W(S):0 =
—202/\/4n57, G(0,y,u) = (ysgn(§))?, and G(0) = o2. Thus a3, = o2. For the
variance of L, notethat H(0,Y) — H(0) =0 — 0 = 0 whichimplieso? = 0 and
the asymptotic varianceis

o fmat
Mz[zag/\/zm&,?] S

whichisidentical to (5). Thus, the signed algorithm converges twice as fast as (1)

yet has the same residual error variance.

5 The"p % Solution” Algorithm

One of the key requirementsin a sensor network system is energy efficiency. The
energy consumed in phase alignment using the algorithms of Sects. 2 and 4 is
proportiona to the number of transmissions per timestep times the number of
iterationsto convergence. This section proposes avariation that can help to reduce
the total number of transmissions needed to achieve convergence.

The key observation is that when there are fewer sensors operating, the con-
vergence tends to be faster. This is because all the sensor perturbations occur in
synchrony: with fewer sensors the feedback more directly reflects the contribution

of any given sensor. This observation is exploited by having only a subset of the



sensors operate at each timestep. If the subset is chosen randomly, then there is
no need to coordinate all the sensors, and the method remains decentralized.

Suppose that at each epoch, sensors independently transmit to the beacon with
probability p = p/100 using its current phase value. This transmission is then
immediately followed by another transmission of a“perturbed” phase angle. The
beacon then feeds back a single bit which specifies which of the two transmissions
had greater power. Each transmitting sensor then updates its current phase value
based on thefeedback. Thus, in each transmission epoch, only p.J sensors transmit
on average; but they must transmit twice.

This strategy can also be written as a small stepsize ;-dependent algorithm.
Let {B1,., B2, ..., By, } be independent zero-one Bernoulli random variables
with P(B;, = 1) = p. Theevent {B;,, = 1} indicates that at time n, sensor j

will transmit. The algorithm for phase convergence at sensor ; isthen

qu,n-l—l = ¢j7n+/’LBj7n7jvn1{9n+1+ErJ=1 Brn Cos(ér,nﬂ'#«’yr,n—ar)>9n+ErJ=1 Brn COS((;ST,W_O‘T)}

forj = 1,2,...,J. Assuming that the product ./p is large enough to invoke a
Central Limit Theorem, it is possible to mimic the analysis given in (1)-(4) to

obtain the l[imiting ODE
de; (1) [ o’ sin(¢;(1))

— = _pE
dt V202 S gy Belsin(én(1)))? + 207 /2

. ®

The presence of the Bernoulli random variables in the denominator makes a sim-
ple closed form solution impossible (though an infinite power series could be de-
veloped). Sect. 7 shows that the total number of transmissions (and hence the
total energy consumed in the phase alignment process) can be decreased when

following this strategy.
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In addition, it is possible to combine the idea of the signed update from Sect. 4
with the p-percent algorithm. Following the same procedure shows that this algo-
rithm has the same ODE, but multiplied by a factor of two, indicating a doubling
of the convergence rate.

The variance analysis of the p-percent algorithm is straightforward. In this
setting, directly from (8), 0 = 9, H(W (s))|w(s)=0 = —po/\/4757, G(0,y, u) =
(Bvlj<0 — Bv/2)% and G(0) = po?/4 = o3,. For thevariance of L, observe that
itstermsare /(0,Y) — H(0) = H(0,Y) = By/2. Thus the mean squared value

ispo?/4 = o} = o2p®/4 and the asymptotic varianceis

2 2 =2
M0L+UM \TO

20 H™5

Importantly, thisis independent of p (and hence p).

6 Wideband Time Delay Algorithm

In pseudo-noise (PN) code-division spread-spectrum sensor networks, the anal-
ogous problem is to align the time delays of the PN aquisition waveform. This
section shows that the same kind of reasoning that led to the narrowband phase
alignment algorithms of Sects. 2-5 can also be applied in the more general wide-
band setting by developing a decentralized algorithm (based on single-bit feed-
back from a beacon) and the associated limiting ODE.

Assumethereisa“target” timeshift 7 and let 7; ,, be the time delay perceived
at the beacon from the jth sensor at the nth signaling epoch. The algorithm

7~—j7n—|—1 - 7~_‘77n —I_ MFY]’n 1{27{:1 (%r,n+ﬂ’7r,n _T*)2<21{:1 (7:7",77,—7'*)2}
acts to align the received signals in time. Define the time delay error at the jthe
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sensor attimen ast = 7., — 7. Theerror system for the algorithm is

Tint1 = Tim T 10 L5372 <0, ()2}

Expanding the square in the indicator function allows the algorithm to be rewritten

Tj,n-l—l - Tj,n —I_ ILLF)/]’nl{E?{:l Tr,n'Vr,n+%'7?,n<0}‘

To compute the ODE, it is necessary to first compute the expectation of the indi-
cator term conditioned on ~; ,, = ~. Thus

J
7
P(Z TrnYrn T _73,71 < Oh/jm = 7)

r=1 2
Iz Iz
:‘HE:“w%m+§ﬁﬁ+TW7+§f<o)
r#i
1 L TimY + 5 TH
= P(—— (Trnyrm + =(72, — 02 +]7 VI 02<0
(m;( nYr, 2(7, W)) \/r )
Sincetheterm (7., + (77, — 02)) has zero mean and variance 77, 02 + w E-Var(v?),
; 1 [t [t
~ P(Z wY o)V — 15 <0
(-+V7jTﬁﬁv+27)+ 5 <0)

where 7 is Gaussian with zero mean and variance .00+ “2 Var ). When

r#j o

(1 << 1, the above expression is approximately

P(Z < ——2nd )
J -1

~ R 2
where Z isnormal, mean zero, and hasvariance = >
Er;ﬁ] rnt Then

Define||7 |7, ;) =

rtj T

5 TinY TinY
P(7 < ——20 )= p(7 < ——221 )
NI oy |[7llns )
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where 7 is a standard normal random variable. Thus, letting ®(-) denote the

cumulative distribution function of the standard normal, the limiting ODE is

dT]‘ (t)

where ||r(t)||7(j) = > .2, T-(1)*. For smal positive z, ®(—z) = .5 — x/v/27.

Therefore when the argument is small, the ODE is

dr;(t) 7i(t)oy

dt— \2r||r ()]G

A thermal noise component in the received signals causes the beacon to ob-

serve 7., + ¢, instead of 7, ... Asin the previous phase alignment agorithms y
must be chosen taking into account the size of the thermal noise. Thus, assume
that g.,. = (9., where g, ,, has a symmetric probability density and variance 5;.
The limiting ODE then requires computing
J
PO " T rn + gvf,n e <00 =7)

r=1

= P(Y [t + 5920+ o — 502 4 Ty +
r#i

"

2’72 +tjn+(J—1)

7
Where tk,n - (Tk,n + ,uﬁ)/k,n)gk,n—l—l — Tk,ngk,n + %(gz7n+1 - gzm) When M << 1;
the above expression is approximately

1

P(7 +
( J—1

Tin(Y + Jimt1 — Gim) < 0),

2 2
crv—|—2crt

where Z is normal, mean zero, with variance = ||r||i/(j). Assuming that the

noise expressions are Gaussian allows rewriting this as

1

P(Z
J—1

_|_

Tiny < 0)
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||T||i/(J)(U’%’+2U?)+2T‘]27n0-?
J-1

where Z is normal, mean zero, with variance . Letting Z

denote a standard normal, the above expression simplifies to

Tl <0)
Il (02 4 207) + 272,07
and the ODE is
dri(t) _ 7i(t)y
. ¢|| B (02 + 207) + 2m;(1)%0?

7 Simulations

This section illustrates the relationship between the tragjectories of the algorithm(s)
and the behavior of the ODE(s) and shows that the cal culated variances accurately
reflect the behavior of the algorithm. Fig. 1 shows the behavior of the error system
(2) inasimple configuration with ./ = 10 sensors randomly initialized in (—m, 7).
The jagged lines are the trgjectories of the phase estimates while the smooth lines
show thetrgjectories of the ODE (4) starting from the same set of initial locations.
Observe that the phase estimates follow the ODE quite closely as they converge
to zero. Observe also that locally (near zero) the ODEs converge exponentially, as
expected from the linearization argument. When far from zero (the bottom-most
tragjectoriesin Fig. 1) themotion appearsto be slower than exponential. Recall that
convergence of the error system to aregion about zero is equivalent to convergence
of the actual trajectories of the phase estimates to a region about their (unknown)
values. Thefinal error variance can be calculated directly from the simulation; for
Fig. 1thisis0.0015, which compares well with the predicted error variance from
(5), whichis0.0014.
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final variance

error in phase angle (radians)

algorithm
trajectories
_of
-3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 x10%
iterations

Figure 1: Trajectories of the error system for the decentralized phase alignment
algorithm (2) and the corresponding trajectories of the ODES of (5).

Similarly. Fig. 2 shows trgjectories of the error systems for the indicator algo-
rithm (with error system (2) and ODE (4)) and for the signed version (with error
system (6) and ODE (7)) . J = 10 sensors were used though only six are shown
in the figure to reduce clutter. The two algorithms were initialized at the same
values and allowed to iterate. Observe that in all cases, the signed algorithm con-
verges faster, at about twice the rate of the indicator version, as suggested by the
corresponding ODESs. Parametersfor the simulation are ¢ = .0005, 57 = 10, and
o2 = 2. Thefinal variance, calculated to be .0014, agrees with the empirical value
(measured from the simulations) to four decimal places.

Fig. 3 shows the trgjectories of the p-percent error system 5 and the corre-
sponding ODE (8). Again, the algorithm follows the ODE as it converges expo-
nentially towards its stable point. In these simulations the stepsize ¢ = 0.01 and

the standard deviation of the thermal noise was 0.001. The predicted final vari-
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signed
trajectories
identical
1 indicator final
trajectories variances

indicator
trajectories

error in phase angle (radians)

trajectories

0 2 4 6 g8  x10%4
iterations

Figure 2: Comparison of the convergence of the indicator algorithm (2) and the
signed variation (6) fromidentical initial conditions. As expected from the ODEs,
the signed algorithm converges with a rate twice that of the indicator algorithm.
As expected from the variance calculation, the final variances are the same.
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ance for the p = 30 case was 8.862 £ ~* while the actual variance, computed over
all sensors, was 8.587 E~*. The predicted final variance for the p = 15 case was

8.862L~* (the same as for p = 30) while the actual variance was 9.32 54,

0.3

0.2 1 algorithm
trajectories

error in phase angle (radians)

ODE p=30

0 2000 4000 6000 8000 10000
iterations

Figure 3: A typical trgectory of the p% algorithm (with p = 15 and p = 30)
and the corresponding ODEs. Smaller p take more iterations to converge, but use
significantly fewer transmissions (and hence less energy) per iteration.

It is also necessary to verify that the convergence of the p-percent algorithm
is rapid enough that the total number of transmissions needed is less than for the
corresponding algorithm where all sensors transmit at every time step (which is
essentialy the p = 100 case). With J = 10 sensors, athermal noise with standard
deviation0.001, and astepsize of « = 0.01, Table 1 showshow many iterationsare
needed for convergence as afunction of the p value. The experiment is conducted
by setting the phase error for sensor #1 at 1.0 radian, and checking how many
iterations are needed before the sensor converges 95% of the way to zero.

As might be expected, the number of iterations decreases as p increases, but so
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percent iterationsto # of (double)

p convergence transmissions
5 2695 134.9
10 1670 166.6
20 1233 245.3
30 1137 338.7
40 1070 427.0
50 998 497.0
60 919 554.1
70 864 604.8
80 813 650.0
90 768 690.8
95 749 711.1
99 734 726.7

Table 1: Convergence experiment for the p-percent method of Sect. 5

do the number of transmissions. For this simulation, which isfairly typical, about
720 transmissions are needed for the p = 100 case. Since the agorithm requires
two transmissions in each epoch, any p that requires fewer than half this number
(i.e., 360) transmissions will be more efficient. In this case, the crossover occurs
at about p = 30. The purpose hereis not to try and elucidate the best parameters
to use, only to demonstrate that significant gains in energy usage, as reflected
in the number of transmissions required, are possible when using the p-percent

algorithm.

8 Conclusions

This paper has analyzed arecently proposed algorithm for the decentralized beam-
forming problem, demonstrating concrete expressions for the rate of convergence

and for the final variance of the algorithm about its converged values. Moreover,
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the algorithm has been extended and improved in three ways. adapting with both

positive and negative feedback results in an agorithm with twice the rate of con-

vergence and the same final variance, adjusting only p-percent of the sensors at

each timestep reduces the energy requirements of the algorithm, and an analogous

method suitable for use with wideband transmissionsis proposed and analyzed.
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A Appendix
The genera form of a discrete-time iteration processis

Wk-l-l =W —I_/“LH(Wk?}/kak-l-lv/“L) (9)
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where W, is avector of parameters, Y. isarandom perturbation, U, isa(ran-
dom) input vector, and 1 is the agorithm stepsize. The function H represents
the update term of the algorithm and isin general discontinuous. Thisform (9) is
called -dependent since the step size 1« appears both inside and outside the update
function H. What is the nature of the random process IW,.? In typical operation,
it converges to a region about some special state and then bounces randomly near
that state. This Appendix shows one way to characterize this convergence, and
demonstrates that under mild assumptions, the final distribution is normal with
parameters that can be described in terms of the distributions of the inputs and
NOi Ses.

The analysis begins by relating the behavior of the algorithm (9) for small
to the behavior of the associated deterministic integral equation

t
W(t) = Wo + / H(W (s))ds (10)

0
or equivalently, to the associated deterministic ordinary differential equation (ODE)
Wi(t) = H(W(1)) (11)

where H is smoothed by the distribution of the inputs U, and the noises Y;.
Spesking loosely, the ODE W (t) of (11) represents the “averaged” behavior of
the parameters W, in (9) and this smoothed version is often differentiable even if
H itself isdiscontinuous.

A time scaled version of W is defined as

W, (t) = Wi t € [0, 00) (12

where | z| means the integer part of =. Note that W}, represents the discrete it-

eration process, while W, (t) represents a continuous time-scaled version. W (t)
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(with no subscript) isthe ODE (11) to which W ,(¢) converges weskly. In aprevi-
ous paper [5], we had analyzed in some detail the conditions necessary to guaran-
tee weak convergence of W, (-) to W(+).

This appendix focuses on the fina convergent distribution of W, by finding

conditions under which the error
V() = —=(W,(t) = W(1)) (13)

converges weakly to a solution of a particular stochastic differential equation
(SDE) V,,. In many interesting cases, it is possible to calculate the steady state
variance of this SDE and make concrete predictions about the residual mean
squared error of the algorithm.

The random sequence { Wy, Yy, Uy } isdefined on some probability space (€2, F, P)
and takesvaluesin R? x £, x F,, where d isthelength of W) and £, and F, are
measurable state spaces on which Y, and U, evolve. {W,, Y}, U} is adapted to
afiltration {F.}, (usualy one takes F;, = the o-algebra generated by the random
variables {W;,Y;, U;}F___ ). Let P(A) denote the collection of probability mea-

sures on the space A. Assume the following:

C.1{Y}} isstationary, ergodic! and thereis asequence of i.i.d. F5-valued random
variables {v;.}, independent of {Y3}, and a measurable function ¢ : R¢ x £} x
Es — FEy suchthat Uppq = q(Wi, Y, ), and Wy isindependent of {(Yi, )}
Define P(Uyy1 € C|Fr) = Plg(Wy, Yi, ¢x) € C|Fy) = n(Wy, Y, C) and as-
sumethat 71 isintegrable with respect to n(w, y, -) for each (w, y) € R x E;. Let

LStationarity and Ergodicity imply that "1/ 15(V4) — ¢ x vy (B) as., where vy denotes
the (asymptotic) distribution of the {Y }. This convergence is the essential assumption needed
about the {Y} } sequence. Hence some sort of asymptotic stationarity/ergodicity could be assumed.
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vy € P(E,) denote the distribution of Y. Define

H(w,y, ;)= | H(w,y,u,p)n(w,y,du). (14)
by

C.2 For every K € R+, H(w,y, ;) is continuous and converges uniformly on
{{Jw| < K} x E} toacontinuous function H (w,y) on {|w| < K}. Furthermore

for some (o > 0,

E{Sup|w|§K,0<u§u0 |H(w7 1/167 Q(wv 1/167 ¢k)7 M)|} < o0,

E{Sup|w|gf(,0<u§p,0|H(w71/k7lu)|} < Q.

Note that there are no assumptions on the autocorrel ations of the inputs or distur-
bances. H isalowed to be discontinuous, provided that the expectation over 1 is
smooth enough to make £ continuous and the limit operation in the ;. step size
variable is uniform which leads to a continuous 77. Just as H is an averaging and
limiting process for H, the distribution of Y, is used to average H over theinputs

Y}, and the doubly averaged quantity

fl{w) = / H(w, )y (dy) (15)

isthe key ingredient in the ODE.

The mathematical framework in which this work is imbedded is described
comprehensively in[2] and [6]. Let (£, ) denote a metric space with associated
Borel field B(£). Dg[0, o) is the space of right continuous functions with |left
limits mapping from the interval [0, co) into £, and D [0, o) is assumed to be
endowed with the Skorohod topol ogy.

Let {X,} (where o ranges over some index set) be a family of stochastic

processes with sample paths in Dy[0,00) and let {P,} C P(Dg[0,0)) be the
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family of associated probability distributions (i.e. P,(B) = P{X, € B} for al
B € B(F)). {X,} issad to be relatively compact if { P, } is relatively compact
in the space of probability measures P(D [0, o)) endowed with the topology of
weak convergence. The symbol = denotes weak convergence while — denotes
convergence under the appropriate metric.

Theorem 1 Let W, (t) = W|y/,, andfor K € R, definer =inf{t : [W,.(¢)| >
K}, and Wﬁ((-) = W,(- A 7L) define the “ stopped” process. Assume C.1,C.2,
and that TW,(0) —s w in probability as i — 0. Then for each K, {WJ* , i > 0}
is relatively compact, and every limit point (as i — 0) satisfies (10) for ¢ < 7% =
inf{¢t : |W(t)] > K}.

The stopping time =X measures how long it takes the time scaled process
W,(t) to reach K in magnitude. The stopped process {W;*{((t)} is defined to
be equal to IV, (¢) from time zero to the stopping time r* and is then held con-
stant for al ¢ > 7. The theorem asserts that for any X' € R*, every possi-
ble sequence (as 1 — 0) of the stopped process {Wﬁ((t)} contains a weakly
convergent subsequence, and that every limit of these subsequences is a process
that satisfies the ODE (10), at least up until the stopping time. If the solution
to the differential equation is unique, then the sequence actually converges in
probability (not just has a weakly convergent subsequence). The limiting quan-
tity (the solution of the ODE) is continuous. The Skorohod topology for con-
tinuous functions corresponds to uniform convergence on bounded time inter-
vals. Hence, convergence in probability means that for every 7' > 0, ¢ > 0,
lim,, 0 P(SUPgcscrinr |W;’f((t) — W (t)] > ¢) = 0. Notethat if no solution of the
ODE becomes unbounded in finite time, then 7' — oo as k' — oo. Inthis case,
{W,} isrelatively compact without needing to restrict attention to the stopped

Processes.
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Theorem 1isakind of “law of large numbers’ for discrete time iterative pro-
cesses such as (9). The corresponding “central limit theorem” describes the weak
convergence of the error process (13) where the scaling factor ﬁ expands V,, to
compensate for the time compression of W ,(¢). The next theorem shows that the
error process V,, converges to aforced ODE that is driven by the sum of twoinde-
pendent, mean zero Brownian motions. The driving term I/ — H accounts for the
error introduced by the smoothing with the disturbance while H — H accounts for
the error when averaging over the inputs.

Let

G(wv Yy, u, M) = (H(wv Yy, u, M) _H(wv Y, M))(H(wv Yy, u, M) _H(wv Y, M))T (16)

be the matrix that represents the deviation of 4 from its smoothed version 4. If
H is square integrable with respect to 5(w, y, -) for each pair (w,y) € R? x F|,

the smoothed version of (i is

G(w,y,u)Z/E Glw,y,u, p)n(w, y, du).
Suppose G/(w,y, i) converges as u — 0 to some G/(w, y). Averaging over all
inputsyields

Gy = [ Gtugpr(ay), ar)
The various G’s play a similar role in the central limit theorem that the H's play
in Theorem 1. In addition to C.1 and C.2, further assume:
C.3 H issquareintegrablewith respect to,(w, y, -) for each pair (w, y) € R x E.

H is continuously differentiable as afunction of w, the continuous 9., converge
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uniformly to 8, H. G is continuos and converges uniformly to &. For all K € R+

E{Sup|w|§K,0<u§uo |H(w7 1/167 Q(wv 1/167 ¢k)7 M)|2} < o0
E{Sup|w|gf(,0<p,§uo |G(U), 1/167 /u)|} < 00

E{SUPy, 1<k 0<u<uo |0 H (w, Yy, )|} < oo

Note that C.3 implies His locally Lipschitz (in fact continuously differentiable),
so the solution of (10) is unique and hence V,,(¢) is well defined (on any interval
of which the solution of the ODE is bounded). For smplicity (so that it is not
necessary to stop the process outside of a compact set), assume that the solution
existsfor al ¢ > 0. Define

[t/1)-1
Mty = S (H(Wi Vi Usgrs ) — H(We Vi j))Vi
and [t/1]-1
Lty = (H(W (k). Yioo) = H(W (k) /12

There are a variety of different conditions (for example, mixing conditions on
{Y}.}) that imply {L,} converges weakly to a (time inhomogeneous) Brownian
motion. We simply assume this convergence.

C4L,= L.

Given the assumptions C.1-C.4, the proof of the theorem follows the same logic
asthat in Theorem 2.2 of [4].

Theorem 2 Assume C.1-C.4, that W,(0) — w, in probability, that the solution
of (10) exists for all ¢ > 0, and that V,(0) — vo in probability as . — 0. Then
M, = M where M is a mean zero Brownian motion independent of L with

E{M(t)M(t)"} = /0 t G(W (s))ds
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and V,, = V satisfying

V() =vo+ M(t)+ L(t) + /Ot A H(W ())V (s)ds.
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