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Abstract

One of the key issues in decentralized beamforming is the need to phase-
align the carriers of all the sensors in the network. Recent work in this area
has shown the viability of certain methods that incorporate single-bit feed-
back from a beacon. This paper analyzes the behavior of the method (show-
ing conditions for convergence in distributionand also giving a concrete way
to calculate the final distribution of the convergent ball) and then generalizes
the method in three ways. First, by incorporating both negative and posi-
tive feedback it is possible to double the convergence rate of the algorithm
without adversely effecting the final variance. Second, a way of reducing
the amount of energy required (by reducing the number of transmissions
needed for convergence) is shown; its convergence and final variance can
also be conveniently described. Finally, a wideband analog is proposed that
operates in a decentralized manner to align the time delay (rather than the
phase) between sensors.
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1 Introduction

A collection of sensors are scattered in unknown locations. The sensors wish to

cooperatively transmit a common message signal as efficiently as possible using

a beamforming method in order to be energy efficient. Significant gains occur

when exploiting distributed beamforming [7, 9] because of the improved signal-

to-noise ratio at the receiver: while the received signal magnitude increases with

the number of transmitters � , the SNR increases with � �. Since the total amount

of power transmitted increases linearly in � , this represents an � -fold increase in

energy efficiency. A key issue in the use of distributed beamforming systems [1]

is that the phases of the carriers must be synchronized throughout the network.

A recently proposed scheme [11] accomplishes this phase synchronization us-

ing single-bit feedback from a base station. Each sensor broadcasts within each

timeslot, perturbing the phase of its carrier slightly from the previous timestep.

The base station replies with a signal that indicates whether the received signal

is more (or less) coherent than the previous time. The sensors respond in the ob-

vious way: if the signal is improved they keep the new phase while if the signal

worsened they revert to their old phase. This scheme is shown, under certain con-

ditions in [12], to asymptotically achieve perfect phase coherence in the noise-free

case. However, even tiny disturbances (which may arise physically from thermal

noise, from unmodeled dynamics, or from interference with other nearby commu-

nications systems) cause convergence to a ball about the correct answer (and not

to the correct answer itself). Analysis in the present paper is able to concretely

describe both the rate of convergence and the distribution of this convergent ball.

This paper begins by showing in Sect. 2 how the single-bit feedback mech-

anism for phase alignment can be written as a “small stepsize” �-dependent al-
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gorithm with a discontinuous update term [4, 10]. The discontinuity arises be-

cause the sensors either accept or reject the most recent phase change based on

the single-bit feedback. Sect. 3 applies the analytical techniques of [5] and [6] to

examine the convergence of the algorithm in terms of a related ordinary differ-

ential equation (ODE). An extension of these results, detailed in the Appendix,

allows derivation of the asymptotic variance. This concretely describes the final

distribution of the algorithm about its equilibrium.

The method of [11, 12] either updates or freezes the estimated phases at each

timestep. Sect. 4 observes that it may be possible to do better than to freeze the

updates: if adding a small number makes things worse, then most likely subtract-

ing a small number would improve things. This is an old idea [3, 8] in signal

processing, and a “signed” algorithm for the decentralized phase alignment prob-

lem that uses both positive and negative feedback is described and analyzed: it is

shown to converge twice as fast as the original, with the same final distribution.

One key requirement in a sensor network system is energy efficiency. Sect. 5

proposes the �-percent method in which only a subset of the sensors transmit at

each timestep. Analysis shows that the savings in the number of transmissions

(and hence in the energy) can be significant. Since the subset is chosen randomly

at each epoch, there is no need to coordinate the sensors, and the method remains

decentralized.

Finally, the above methods are inherently limited to aligning the phases of

narrowband transmissions with a carrier of known frequency. Sect. 6 proposes and

analyzes an analogous algorithm that operates with wideband signals by aligning

the received signal in time. The method remains decentralized and incorporates

only single-bit feedback from the beacon.
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2 Algorithm Statement

Let ����� be the phase of the carrier signal at sensor/transmitter � at timestep � and

let �� be the phase difference due to the (unknown) distance between the base

station and sensor �. At each timeslot, each sensor randomly perturbs its phase by

a small amount ����� . Further suppose that the received signal at the base station

at iteration � is corrupted by a Gaussian noise �� with mean zero and variance 	�
� .

The algorithm described above can be written

������� � ����� � ������������
��

��� ����
���������������	���

��
��� ����

���������� (1)

for � � �
 �
 � � � 
 � where ��
� is an indicator function taking on value one if

� is true and is zero otherwise. The sum of cosines terms represent the received

carrier wave and take on maxima when the �� are phase-aligned. Thus the indicator

function is unity if the perturbed phases ����� � ����� are better aligned than the

unperturbed phases, and is zero otherwise. The goal of the algorithm is to drive

the �� terms to a value at which the sum is maximum, which occurs when all of

the terms are maximized, i.e., when ��� is equal to ��.

For the purpose of analysis, it is more convenient to rewrite the algorithm in

“error system” form by letting ���� � ����� � �� . Subtracting �� from both sides

of (1) gives

������ � ���� � ������������
��

��� ���������������	���
��

��� ����������� (2)

Suppose that the i.i.d. perturbation random variables ������ are chosen to have

a symmetric distribution (about zero) with finite variance 	 �
� . Then for small �

(keeping just the first terms in the Taylor series), ��������� �����	 can be approx-
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imated by ��������	� ����� �
������	. The algorithm is then

������ � ���� � �������	����
��� ���� �
���������� (3)

where �� is normal with mean zero and variance �	�
� �

�.

In order to investigate the behavior of the algorithm, observe that convergence

of �� to zero is equivalent to convergence of the phase estimates ��� to their un-

known values ��. The analysis requires some technical machinery, which is de-

scribed fully in Appendix A. The basis of the analytical approach is to find an

ordinary differential equation (ODE) that accurately mimics the behavior of the

algorithm for small values of �. Studying the ODE then gives information re-

garding the behavior of the algorithm. For example, if the ODE is stable, the

algorithm is convergent (at least in distribution). If the ODE is unstable, the al-

gorithm is divergent. The approach grows out of results in [4] and [5], which are

themselves based on the techniques of [6]. The approach is conceptually simi-

lar to stochastic approximation but its assumptions (and hence conclusions) are

somewhat different. First, the stepsize � in (3) is fixed, unlike in stochastic ap-

proximations where the stepsize is required to converge to zero [10]. Thus the

algorithms do not necessarily converge to a fixed vector; rather, they converge in

distribution. Moreover, the analysis is capable of delivering concrete values for

the convergent distribution; as far as we know, this is not possible with other meth-

ods. Second, no continuity assumptions need to be made on the update terms; this

is crucial because of the discontinuity caused by the indicator function in (3), and

is also more general than other methods that require differentiability of the update

term.
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3 Convergence Analysis

This section applies the weak convergence analysis of Appendix A to the algo-

rithm (3). If � is of reasonable size (� � � is used in many of the simulations),

the Central Limit Theorem shows that

��
� � �

�
���� ���

���� �
������	 � �

where � is a zero mean normal random variable with variance
��� �� �
������������

��

where �� �
��������	��� �
�

���� ��� �
�
������	. To calculate the limiting ODE (the

�� of (10)), it is necessary to smooth the update by taking the expectation

��������	����
��� ���� �
�����������

� �������� ��
��� 	��

��
���
��

����� ��� ���� �
�������� ��
��� ���� �
�����������

� �������� ��
��� 	����

��
������� �
�����������

� ���������� ��
��� 	����

��
��� ���� �
��������������� � ���

� �������� 	�� ��
���� �
������������

where �� � �� ��

�� is normal with zero mean and variance �

�� �	
�
��� �
��������	����

�	�� �
�	. Also,

���� 	�� ��
��� � �
�����������

� � � �� �
��
� � �

� �
������	 � 	

� �

�
� � �
������	�

���� � �	
�
	���� �
��������	����� � �	 � �	�� ��

��� � �		

�
�

�
� � �
������	�

��
�
	���� �
��������	��� � �	�� ��

�
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The last approximation for large � arises because when � is a normal ��
 	�	

random variable, � �� � � � 	 � ���	 � ���	
�
��		 for small positive �.

Thus,

��������	����
��� ���� �
�����������

� �����
�

�
� � �
������	�

��
�
	���� �
��������	��� � �	�� ��

�

� � 	�� �
������	�
��
�
	���� �
��������	��� � �	�� �

�
�

Thus the limiting differential equation (11) is

�����	

��
� � 	�� �
������		�

��
�
	���� �
���������		��� � �	�� �

�
� (4)

A straightforward linearization argument shows that this ODE is stable about zero.

Simulations in Sect. 7 show that the ODE accurately tracks the trajectories of the

algorithm.

Once the algorithm has converged, it is important to be able to characterize

the final distribution. As in the Appendix, define a random process � ��	 by

� ��	 � �� ����	 � ���	� �
� �

�

� ��	��


where ���	 is a Wiener process with variance 	�
��, ���	 is another Wiener pro-

cess independent of� with variance 	�
��, then � ��	 is an Orstein-Uhlenbeck pro-

cess (an asymptotically stationary Gaussian process) with mean zero and variance

�	�� � 	
�
�	��.

Suppose that 	�� �
� � �	�� . Then � � �� ���� ��		�� ���� � �	��

�
���	�� ,

 �
 !
 "	 � ����	���� � ��	�, and � �	 � 	��� where  and � are defined

in (16)-(17). Thus 	�
� � 	���. For the variance of �, note that its terms are
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���
 # 	 � ���	 � ���
 # 	 � ��. Thus the squared values are 	��� and

	�� � 	���. The asymptotic variance is therefore given by

�
	��� � 	

�
��

��	��
�
���	�� �

� �

�
��	��
�

� (5)

Somewhat surprisingly, the asymptotic variance is independent of the size of the

phase perturbations 	�� . Sect. 7 shows that this calculated variance matches closely

to the empirical variance derived from simulations.

4 The Signed Algorithm

In the distributed phase alignment algorithm (1), the phase of each sensor is up-

dated by the perturbed value (if the feedback from the beacon says that the overall

alignment improved) or else it remains fixed. Accordingly, in many iterations, no

changes are made. Since each of the individual phase updates are scalar, it seems

reasonable that when the feedback indicates no improvement, an update in the op-

posite direction might be useful. Effectively, this replaces the indicator function

in the update with a signum function sgn��	 �

�����
����

� � $ 

 � � 

�� � � 

� The algorithm is

������� � �����������sgn������
�
��

������������������	����
�
��

������������		

for � � �
 �
 � � � 
 � . Following the logic of (1)-(3) leads to the error system which

is valid for small �

������ � ���� � �����sgn��� �
�
��

���� �
������		� (6)
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Carrying out the same calculations as in Sect. 3, the expectation of the update term

is

� �	�� �
������	�
��
�
	���� �
��������	��� � �	�� ��

� (7)

This is exactly twice the value in (4), and so the corresponding ODE for the signed

algorithm converges twice as fast as when using the indicator function.

The final variance can also be calculated as before: � � �� ���� ��		�� ���� �

��	��
�
���	�� ,  �
 !
 "	 � ��sgn���		�, and � �	 � 	�� . Thus 	�� � 	�� . For the

variance of �, note that ���
 # 	� ���	 �  �  �  which implies 	�� �  and

the asymptotic variance is

�
	��

���	��
�
���	�� �

� �

�
��	��
�




which is identical to (5). Thus, the signed algorithm converges twice as fast as (1)

yet has the same residual error variance.

5 The “� % Solution” Algorithm

One of the key requirements in a sensor network system is energy efficiency. The

energy consumed in phase alignment using the algorithms of Sects. 2 and 4 is

proportional to the number of transmissions per timestep times the number of

iterations to convergence. This section proposes a variation that can help to reduce

the total number of transmissions needed to achieve convergence.

The key observation is that when there are fewer sensors operating, the con-

vergence tends to be faster. This is because all the sensor perturbations occur in

synchrony: with fewer sensors the feedback more directly reflects the contribution

of any given sensor. This observation is exploited by having only a subset of the
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sensors operate at each timestep. If the subset is chosen randomly, then there is

no need to coordinate all the sensors, and the method remains decentralized.

Suppose that at each epoch, sensors independently transmit to the beacon with

probability % � �� using its current phase value. This transmission is then

immediately followed by another transmission of a “perturbed” phase angle. The

beacon then feeds back a single bit which specifies which of the two transmissions

had greater power. Each transmitting sensor then updates its current phase value

based on the feedback. Thus, in each transmission epoch, only %� sensors transmit

on average; but they must transmit twice.

This strategy can also be written as a small stepsize �-dependent algorithm.

Let �&���
 &���
 � � � 
 &��� be independent zero-one Bernoulli random variables

with � �&��� � �	 � %. The event �&��� � �� indicates that at time �, sensor �

will transmit. The algorithm for phase convergence at sensor � is then

������� � �������&��������������
��

��� ���� ���� ���������������	���
��

������� ���� ����������

for � � �
 �
 � � � 
 � . Assuming that the product �% is large enough to invoke a

Central Limit Theorem, it is possible to mimic the analysis given in (1)-(4) to

obtain the limiting ODE

�����	

��
� �%�� 	�� �
������		�

��
�
	��
�

���� ���&���
������		�� � �	�� ��
�� (8)

The presence of the Bernoulli random variables in the denominator makes a sim-

ple closed form solution impossible (though an infinite power series could be de-

veloped). Sect. 7 shows that the total number of transmissions (and hence the

total energy consumed in the phase alignment process) can be decreased when

following this strategy.
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In addition, it is possible to combine the idea of the signed update from Sect. 4

with the �-percent algorithm. Following the same procedure shows that this algo-

rithm has the same ODE, but multiplied by a factor of two, indicating a doubling

of the convergence rate.

The variance analysis of the �-percent algorithm is straightforward. In this

setting, directly from (8), � � �� ���� ��		�� ���� � �%	��
�
���	�� , �
 !
 "	 �

�&��	����&��	�, and � �	 � %	��� � 	
�
� . For the variance of �, observe that

its terms are ���
 # 	� ���	 � ���
 # 	 � &��. Thus the mean squared value

is %	��� � 	
�
� � 	��%

�� and the asymptotic variance is

�
	�� � 	

�
�

��
� �

�
��	��
�

�

Importantly, this is independent of % (and hence �).

6 Wideband Time Delay Algorithm

In pseudo-noise (PN) code-division spread-spectrum sensor networks, the anal-

ogous problem is to align the time delays of the PN aquisition waveform. This

section shows that the same kind of reasoning that led to the narrowband phase

alignment algorithms of Sects. 2-5 can also be applied in the more general wide-

band setting by developing a decentralized algorithm (based on single-bit feed-

back from a beacon) and the associated limiting ODE.

Assume there is a “target” timeshift ' � and let �'��� be the time delay perceived

at the beacon from the �th sensor at the �th signaling epoch. The algorithm

�'����� � �'��� � ���������
����	����������������

��
����	����������

acts to align the received signals in time. Define the time delay error at the �the
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sensor at time � as ' � �'��� � ' �. The error system for the algorithm is

'����� � '��� � ���������
���������������

��
��

���������
���

Expanding the square in the indicator function allows the algorithm to be rewritten

'����� � '��� � ���������
��� ���������

�
� �

�
�������

To compute the ODE, it is necessary to first compute the expectation of the indi-

cator term conditioned on ���� � �. Thus

� �
�
��

'������� �
�

�
����� � ����� � �	

� � �
�
� ��

�'������� �
�

�
�����	 � '���� �

�

�
�� � 	

� � �
��
� � �

�
� ��

�'������� �
�

�
������ � 	��		 �

'���� �
�
��

�

�
� � �

�
�
� � �

�

�
	�� � 	�

Since the term �'������� �
�
� ��

�
��� � 	��		 has zero mean and variance ' ����	

�
� �

��

� Var���	,

� � � �� �
��
� � �

�'���� �
�

�
��	 �

�
� � �

�

�
� 	

where �� is Gaussian with zero mean and variance
�

� �� '
�
���	

�
��

��

�
Var����
�� . When

� �� �, the above expression is approximately

� � �� � � '�����
� � �

	

where �� is normal, mean zero, and has variance
���
��

�
� �� '

�
���. Define ��' �������� ��

� �� '
�
���. Then

� � �� � � '�����
� � �

	 � � �� � � '����

	���' ������� 	
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where � is a standard normal random variable. Thus, letting ���	 denote the

cumulative distribution function of the standard normal, the limiting ODE is

�'���	

��
� ������ '���	�

	���' ��	������	�


where ��' ��	������� �
�

� �� '���	
�. For small positive �, ����	 � �� � ����.

Therefore when the argument is small, the ODE is

�'���	

��
� � '���		��

����' ��	������
�

A thermal noise component in the received signals causes the beacon to ob-

serve �'��� � ���� instead of �'���. As in the previous phase alignment algorithms �

must be chosen taking into account the size of the thermal noise. Thus, assume

that ���� � ������ where ����� has a symmetric probability density and variance �	�
� .

The limiting ODE then requires computing

� �
�
��

'������� �
�

�
����� � ���� � ����� � �	

� � �
�
� ��

�'������� �
�

�
����� � ���� �

�

�
	��� � '���� �

�

�
�� � ���� � �� � �	

�

�
	�� � 	

where ���� � �'��� � �����	������� � '�������� � �
� ���

�
����� � ������	. When � �� �,

the above expression is approximately

� � �� �
��
� � �

'����� � ������� � �����	 � 	


where �� is normal, mean zero, with variance
��������
�� ��' ��������. Assuming that the

noise expressions are Gaussian allows rewriting this as

� � �� �
��
� � �

'���� � 	
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where �� is normal, mean zero, with variance
��� ���

�������
�
������ ���������

�
�

�� . Letting �

denote a standard normal, the above expression simplifies to

� �� �
'�����

��' ���������	�� � �	�� 	 � �' ����	
�
�

� 	

and the ODE is

�'���	

��
� ������ '���	��

��' ��	��������	�� � �	�� 	 � �'���	�	��
	��

7 Simulations

This section illustrates the relationship between the trajectories of the algorithm(s)

and the behavior of the ODE(s) and shows that the calculated variances accurately

reflect the behavior of the algorithm. Fig. 1 shows the behavior of the error system

(2) in a simple configuration with � � � sensors randomly initialized in ���
 �	.
The jagged lines are the trajectories of the phase estimates while the smooth lines

show the trajectories of the ODE (4) starting from the same set of initial locations.

Observe that the phase estimates follow the ODE quite closely as they converge

to zero. Observe also that locally (near zero) the ODEs converge exponentially, as

expected from the linearization argument. When far from zero (the bottom-most

trajectories in Fig. 1) the motion appears to be slower than exponential. Recall that

convergence of the error system to a region about zero is equivalent to convergence

of the actual trajectories of the phase estimates to a region about their (unknown)

values. The final error variance can be calculated directly from the simulation; for

Fig. 1 this is ���, which compares well with the predicted error variance from

(5), which is ���.
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Figure 1: Trajectories of the error system for the decentralized phase alignment
algorithm (2) and the corresponding trajectories of the ODEs of (5).

Similarly. Fig. 2 shows trajectories of the error systems for the indicator algo-

rithm (with error system (2) and ODE (4)) and for the signed version (with error

system (6) and ODE (7)) . � � � sensors were used though only six are shown

in the figure to reduce clutter. The two algorithms were initialized at the same

values and allowed to iterate. Observe that in all cases, the signed algorithm con-

verges faster, at about twice the rate of the indicator version, as suggested by the

corresponding ODEs. Parameters for the simulation are � � ��, �	�
� � �, and

	�� � �. The final variance, calculated to be ���, agrees with the empirical value

(measured from the simulations) to four decimal places.

Fig. 3 shows the trajectories of the �-percent error system 5 and the corre-

sponding ODE (8). Again, the algorithm follows the ODE as it converges expo-

nentially towards its stable point. In these simulations the stepsize � � �� and

the standard deviation of the thermal noise was ��. The predicted final vari-
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Figure 2: Comparison of the convergence of the indicator algorithm (2) and the
signed variation (6) from identical initial conditions. As expected from the ODEs,
the signed algorithm converges with a rate twice that of the indicator algorithm.
As expected from the variance calculation, the final variances are the same.
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ance for the � � � case was �������� while the actual variance, computed over

all sensors, was ��������. The predicted final variance for the � � �� case was

�������� (the same as for � � �) while the actual variance was �������.
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Figure 3: A typical trajectory of the �% algorithm (with � � �� and � � �)
and the corresponding ODEs. Smaller � take more iterations to converge, but use
significantly fewer transmissions (and hence less energy) per iteration.

It is also necessary to verify that the convergence of the �-percent algorithm

is rapid enough that the total number of transmissions needed is less than for the

corresponding algorithm where all sensors transmit at every time step (which is

essentially the � � � case). With � � � sensors, a thermal noise with standard

deviation ��, and a stepsize of � � ��, Table 1 shows how many iterations are

needed for convergence as a function of the � value. The experiment is conducted

by setting the phase error for sensor �� at 1.0 radian, and checking how many

iterations are needed before the sensor converges ��� of the way to zero.

As might be expected, the number of iterations decreases as � increases, but so
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percent iterations to # of (double)
� convergence transmissions
5 2695 134.9
10 1670 166.6
20 1233 245.3
30 1137 338.7
40 1070 427.0
50 998 497.0
60 919 554.1
70 864 604.8
80 813 650.0
90 768 690.8
95 749 711.1
99 734 726.7

Table 1: Convergence experiment for the �-percent method of Sect. 5

do the number of transmissions. For this simulation, which is fairly typical, about

�� transmissions are needed for the � � � case. Since the algorithm requires

two transmissions in each epoch, any � that requires fewer than half this number

(i.e., ��) transmissions will be more efficient. In this case, the crossover occurs

at about � � �. The purpose here is not to try and elucidate the best parameters

to use, only to demonstrate that significant gains in energy usage, as reflected

in the number of transmissions required, are possible when using the �-percent

algorithm.

8 Conclusions

This paper has analyzed a recently proposed algorithm for the decentralized beam-

forming problem, demonstrating concrete expressions for the rate of convergence

and for the final variance of the algorithm about its converged values. Moreover,
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the algorithm has been extended and improved in three ways: adapting with both

positive and negative feedback results in an algorithm with twice the rate of con-

vergence and the same final variance, adjusting only �-percent of the sensors at

each timestep reduces the energy requirements of the algorithm, and an analogous

method suitable for use with wideband transmissions is proposed and analyzed.
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A Appendix

The general form of a discrete-time iteration process is

���� � �� � �����
 #�
 (���
 �	 (9)
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where �� is a vector of parameters, #� is a random perturbation, (��� is a (ran-

dom) input vector, and � is the algorithm stepsize. The function � represents

the update term of the algorithm and is in general discontinuous. This form (9) is

called �-dependent since the step size � appears both inside and outside the update

function � . What is the nature of the random process ��? In typical operation,

it converges to a region about some special state and then bounces randomly near

that state. This Appendix shows one way to characterize this convergence, and

demonstrates that under mild assumptions, the final distribution is normal with

parameters that can be described in terms of the distributions of the inputs and

noises.

The analysis begins by relating the behavior of the algorithm (9) for small �

to the behavior of the associated deterministic integral equation

� ��	 � �� �

� �

�

���� ��		�� (10)

or equivalently, to the associated deterministic ordinary differential equation (ODE)

�� ��	 � ���� ��		 (11)

where �� is smoothed by the distribution of the inputs (��� and the noises #�.

Speaking loosely, the ODE � ��	 of (11) represents the “averaged” behavior of

the parameters�� in (9) and this smoothed version is often differentiable even if

� itself is discontinuous.

A time scaled version of� is defined as

����	 � ������ � � �
		 (12)

where 
)� means the integer part of ). Note that �� represents the discrete it-

eration process, while ����	 represents a continuous time-scaled version. � ��	
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(with no subscript) is the ODE (11) to which����	 converges weakly. In a previ-

ous paper [5], we had analyzed in some detail the conditions necessary to guaran-

tee weak convergence of����	 to� ��	.
This appendix focuses on the final convergent distribution of �� by finding

conditions under which the error

����	 �
��
�
�����	�� ��		 (13)

converges weakly to a solution of a particular stochastic differential equation

(SDE) ��. In many interesting cases, it is possible to calculate the steady state

variance of this SDE and make concrete predictions about the residual mean

squared error of the algorithm.

The random sequence ���
 #�
 (�� is defined on some probability space ��
 *
 � 	

and takes values in �� ����, where � is the length of�� and �� and �� are

measurable state spaces on which #� and (� evolve. ���
 #�
 (�� is adapted to

a filtration ����, (usually one takes �� = the 	-algebra generated by the random

variables ���
 #�
 (�����		. Let ���	 denote the collection of probability mea-

sures on the space �. Assume the following:

C.1 �#�� is stationary, ergodic1 and there is a sequence of i.i.d. ��-valued random

variables �+��, independent of �#��, and a measurable function , � ��  �� 
�� � �� such that (��� � ,���
 #�
 +�	, and �� is independent of ��#�
 +�	�.
Define � �(��� � -���	 � � �,���
 #�
 +�	 � -���	 � .���
 #�
 -	 and as-

sume that� is integrable with respect to .�/
 !
 �	 for each �/
 !	 � ����. Let

1Stationarity and Ergodicity imply that
������

��� ������ � � � �� ��� a.s., where �� denotes
the (asymptotic) distribution of the �� ��. This convergence is the essential assumption needed
about the ���� sequence. Hence some sort of asymptotic stationarity/ergodicitycould be assumed.
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0� � ����	 denote the distribution of #� . Define

���/
 !
 �	 �

�
��

��/
 !
 "
 �	.�/
 !
 �"	� (14)

C.2 For every 1 � ��, ���/
 !
 �	 is continuous and converges uniformly on

���/� � 1��� to a continuous function ���/
 !	 on ��/� � 1�. Furthermore

for some �� $ ,

��sup���
�����
�� ���/
 #�
 ,�/
 #�
 +�	
 �	�� � 	

��sup���
�����
�� � ���/
 #�
 �	�� � 	�

Note that there are no assumptions on the autocorrelations of the inputs or distur-

bances. � is allowed to be discontinuous, provided that the expectation over . is

smooth enough to make �� continuous and the limit operation in the � step size

variable is uniform which leads to a continuous �� . Just as �� is an averaging and

limiting process for� , the distribution of #� is used to average �� over the inputs

#� , and the doubly averaged quantity

���/	 �

�
���/
 !	0� ��!	 (15)

is the key ingredient in the ODE.

The mathematical framework in which this work is imbedded is described

comprehensively in [2] and [6]. Let ��
 2	 denote a metric space with associated

Borel field ���	. 3� �
		 is the space of right continuous functions with left

limits mapping from the interval �
		 into �, and 3��
		 is assumed to be

endowed with the Skorohod topology.

Let �4�� (where � ranges over some index set) be a family of stochastic

processes with sample paths in 3��
		 and let ���� � ��3��
			 be the
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family of associated probability distributions (i.e. ���&	 � ��4� � &� for all

& � ���	). �4�� is said to be relatively compact if ���� is relatively compact

in the space of probability measures ��3��
			 endowed with the topology of

weak convergence. The symbol � denotes weak convergence while � denotes

convergence under the appropriate metric.

Theorem 1 Let����	 � ������, and for1 � ��, define '�� � inf�� � �����	� �
1�, and �

�	�
� ��	 � ���� � '�� 	 define the “stopped” process. Assume C.1,C.2,

and that���	� /� in probability as � � . Then for each 1 , �� �	�
� 
 � $ �

is relatively compact, and every limit point (as �� ) satisfies (10) for � � '� �
inf�� � �� ��	� � 1�.

The stopping time '�� measures how long it takes the time scaled process

����	 to reach 1 in magnitude. The stopped process �� �	�
� ��	� is defined to

be equal to ����	 from time zero to the stopping time ' �� and is then held con-

stant for all � $ '�� . The theorem asserts that for any 1 � ��, every possi-

ble sequence (as � � ) of the stopped process �� �	�
� ��	� contains a weakly

convergent subsequence, and that every limit of these subsequences is a process

that satisfies the ODE (10), at least up until the stopping time. If the solution

to the differential equation is unique, then the sequence actually converges in

probability (not just has a weakly convergent subsequence). The limiting quan-

tity (the solution of the ODE) is continuous. The Skorohod topology for con-

tinuous functions corresponds to uniform convergence on bounded time inter-

vals. Hence, convergence in probability means that for every 5 $ 
 6 $ ,

�
���� � �� !�
���
�� �� �	�
� ��	�� ��	� $ 6	 � . Note that if no solution of the

ODE becomes unbounded in finite time, then '�� �	 as 1 �	. In this case,

���� is relatively compact without needing to restrict attention to the stopped

processes.
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Theorem 1 is a kind of “law of large numbers” for discrete time iterative pro-

cesses such as (9). The corresponding “central limit theorem” describes the weak

convergence of the error process (13) where the scaling factor ��
�

expands �� to

compensate for the time compression of����	. The next theorem shows that the

error process �� converges to a forced ODE that is driven by the sum of two inde-

pendent, mean zero Brownian motions. The driving term� � �� accounts for the

error introduced by the smoothing with the disturbance while ��� �� accounts for

the error when averaging over the inputs.

Let

 �/
 !
 "
 �	 � ���/
 !
 "
 �	� ���/
 !
 �		���/
 !
 "
 �	� ���/
 !
 �		� (16)

be the matrix that represents the deviation of � from its smoothed version �� . If

� is square integrable with respect to .�/
 !
 �	 for each pair �/
 !	 � ��  ��,

the smoothed version of  is

� �/
 !
 �	 �

�
��

 �/
 !
 "
 �	.�/
 !
 �"	�

Suppose � �/
 !
 �	 converges as � �  to some � �/
 !	. Averaging over all

inputs yields

� �/	 �

�
� �/
 !	0� ��!	� (17)

The various  ’s play a similar role in the central limit theorem that the �’s play

in Theorem 1. In addition to C.1 and C.2, further assume:

C.3� is square integrable with respect to .�/
 !
 �	 for each pair �/
 !	 � ����.

�� is continuously differentiable as a function of /, the continuous �� �� converge
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uniformly to �� �� . � is continuos and converges uniformly to � . For all1 � ��

��sup���
�����
�� ���/
 #�
 ,�/
 #�
 +�	
 �	��� �	
��sup���
�����
�� � � �/
 #�
 �	�� �	

��sup���
�����
�� ��� ���/
 #�
 �	�� �	

Note that C.3 implies �� is locally Lipschitz (in fact continuously differentiable),

so the solution of (10) is unique and hence ����	 is well defined (on any interval

of which the solution of the ODE is bounded). For simplicity (so that it is not

necessary to stop the process outside of a compact set), assume that the solution

exists for all � � . Define

�����	 �

��������
��

�����
 #�
 (���
 �	� �����
 #�
 �		
�
�

and

����	 �

��������
��

� ���� �7�	
 #�
 �	� ���� �7�			
�
��

There are a variety of different conditions (for example, mixing conditions on

�#��) that imply ���� converges weakly to a (time inhomogeneous) Brownian

motion. We simply assume this convergence.

C.4 �� � �.

Given the assumptions C.1-C.4, the proof of the theorem follows the same logic

as that in Theorem 2.2 of [4].

Theorem 2 Assume C.1-C.4, that ���	 � /� in probability, that the solution
of (10) exists for all � � , and that ���	 � �� in probability as � � . Then
��� � �� where �� is a mean zero Brownian motion independent of � with

�� ����	 ����	�� �
� �

�

� �� ��		��
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and �� � � satisfying

� ��	 � �� � �� ��	 � ���	 �

� �

�

�� ���� ��		� ��	���
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