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Abstract —The stability of the signed regressor variant of least mean
square (LMS) adaptation is found to be heavily dependent on the char-
acteristics of the input sequence. Averaging theory is used to derive a
persistence of excitation condition which guarantees exponential stability
of the signed regressor algorithm. Failure to meet this condition (which is
not equivalent to persistent excitation for LMS) can result in exponential
instability, even with the use of leakage. This new persistence of excitation

condition is then interpreted in both deterministic and stochastic settings.
N HIGH DATA rate applications of adaptive filters

I such as speech processing, echo cancellation, and adap-
tive equalization, it is often important to maximize the
speed at which the filters operate and/or to minimize the
hardware requirements of the adaptive mechanism. One
approach is to reduce the numerical complexity in the
adaptive algorithm by coarsely quantizing certain signals.
For example, in the well-known LMS adaptive filter [21]
the coefficient update term is a scaled version of the
product of two signals. Coarse (one bit) quantization of
either of these signals converts the multiplications of LMS
into single bit operations which are faster and simpler to
implement. One such computationally simplified version
of LMS is the signed regressor (SR) algorithm.

To be specific, consider the following adaptive finite
impulse response (FIR) filtering task. With output y(k)
and input u(k), an FIR filter can be defined by

I. INTRODUCTION

n
y(k+1)=Y bu(k—i+1)=XTo*
i=1

(1.1)
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where 6* = (b, b,,---, b,)" represents the unknown
parameters of the underlying FIR process and X; =
(u(k), u(k =1), -+, u(k — n+1))7T is the regressor vector.
The output y(k +1) is to be estimated by

n
P+1)= Y b(k)u(k—i+1)=67x, (1.2)
i=1
where 6, = [b,(k), by(k), -+, b,(k)]" is the parameter
estimate vector. The error between the output y(k) and
the estimated output (k) is called the prediction error.
The traditional LMS algorithm is

bir=6,+pXe[y(K) - 9(K)]. (13)
With |u,| <M and 0<p <(2/nM?), it is easily proven
that (k) — y(k).
The use of one bit quantization on the input regressor
replaces (1.3) by the signed regressor (SR) algorithm
ék+1=ék+”5gn(Xk)[y(k)_ﬁ(k)] (14)
where p is positive and small. This update was first sug-

gested in [19]. Note that the “sgn” function applied to a
vector is an element by element operation. Thus

sgn(X,) = [sgn(u(k)),sgn(u(k —1)),
-, sgn(u(k —n+1))] T

where
1, a>1
sgn(a)={ 0, a=0
-1, a<0.

1.1. Previous Investigations

In the original examination of the SR algorithm in [19],
the parameter errors of (1.4) were shown to be mean
convergent under the assumptions that the entries of X,
are jointly Gaussian, that X, is independent of X; for
j<k, and that p is chosen small with respect to the
maximum eigenvalue of E{ XXT}. The present paper ex-
tends this result by relaxing the independence assumption
and considering other distributions.

More recent investigations in [13] and [4] focus on the
degradation of convergence rate of the SR versus standard
LMS. Unfortunately, the behavioral degradation can be
more dramatic than just a decrease in the convergence
rate. While the LMS algorithm moves the parameter esti-
mates parallel to the regressor X (which leads on the
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average, in the direction of “steepest descent” of the
squared error surface), the SR algorithm moves the param-
eter estimates parallel to the sgn( X) vector. As suggested
in [8], the danger of instantaneous misalignment between
sgn(X) and X is that the signed regressor parameter
updates might actually climb (rather than descend) the
error surface. A similar concern underlies the construction
in [11] of a three periodic sequence that causes the parame-
ter estimates of a related algorithm (the sign-sign variant)
to diverge. The present paper documents and explains
similar examples of divergence by the SR algorithm when
excited by inputs that would cause LMS to converge.

Bershad [3] argues that the alignment of sgn(X) and X
on the average is more important than occasional instanta-
neous misalignment, citing the convergence results in [19]
for Gaussian inputs. Claasen and Mecklenbrauker [9] reply
that input distributions which are not Gaussian may cause
nonconvergent behavior given the “average” geometrical
construct. Both are correct. The present paper confirms
that Gaussian inputs are stabilizing and finds (non-Gauss-
ian) distributions that cause the parameter estimate equa-
tion to be unstable.

Despite these potential problems, the SR algorithm has
been found to be useful in certain applications. Cowan and
Grant [10], for instance, constructed a hardware processor
using the signed regressor scheme to implement a 64-point
adaptive transversal filter that was used to successfully
filter speech from periodic background noise.

1.2. A New Persistence of Excitation Condition

Given the uncertainty expressed in the literature regard-
ing which inputs cause convergence and which cause mis-
behavior of the SR algorithm, this paper seeks conditions
on the input u(k) which guarantee that the parameter
estimates in (1.2), when estimated by the SR update (1.4)
will converge to the unknown parameters of the underlying
FIR process in (1.1). Moreover, this convergence must be
robust to small nonidealities such as measurement noise,
mismodeling errors and slow variations of the desired
parameterization. Typically, such conditions are called
“persistence of excitation” conditions. The best known is
the persistency of excitation condition for LMS (PE for
LMS), which involves the positivity of a summed outer
product of the regressor sequence, and which guarantees
convergence of the parameter estimates ék of (1.3) to the
desired value 6* [5]. The exponential character of this
convergence imparts a degree of robustness to sufficiently
small nonidealities [2].

This paper shows that the PE for LMS condition does
not necessarily guarantee boundedness of the parameter
estimates for the SR algorithm, but that a similar condi-
tion, involving the summed outer product of sgn(X) and
X, does guarantee that 0Ak of (1.4) converges exponentially
to #*. This new condition is called persistence of excitation
for the signed regressor algorithm (PE for SR). The bulk of
the paper examines the PE for SR condition and compares
it to the standard PE for LMS condition. For instance, any
sequence that is PE for SR is also PE for LMS, while the
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reverse implication is false. In certain cases, dissatisfaction
of the PE for SR condition will actually cause exponential
divergence of the parameter estimates § of (1.4). This
instability should not be confused with divergence that is
due to an inappropriately large stepsize, since it will occur
for any positive stepsize p less than some fixed p*. Such
divergence is impossible for LMS.

To give an idea of the difficulty of the task of dis-
tinguishing inputs which are PE for SR from inputs that
destabilize the SR algorithm, consider the following peri-
odic input sequences to the three dimensional signed re-
gressor algorithm.

Example 1: u(k) = the 4 periodic sequence {1,1,1, —3}.

Example 2: u(k) = the 5 periodic sequence {1,8,1, —5,
-5}

One of these fulfills the PE for SR condition and the
parameter estimates § of (1.4) converge to 6*. The other
fails the PE for SR condition, and § diverges to +co for
any parameter set b, i=1,2,3, and any initial estimate
(excluding an estimate which is exactly b,), no matter how
small the stepsize p is chosen. Can you guess which
example is divergent and which is convergent? (The answer
will appear at the end of Section II.) Since both are PE for
LMS, both cause exponential convergence of  of LMS
(1.3) to 6*. This divergent example also falsifies the “proof”
of convergence of the SR algorithm in, e.g., [16], which
does not involve any explicit constraints on the input other
than boundedness.

1.3. An Overview of this Paper

Section II defines PE for SR. Averaging theory is used
to prove that periodic regressor sequences which are PE
for SR cause exponential convergence of the parameter
estimates of the signed regressor algorithm. Theorem 1
also gives conditions under which the parameter estimates
diverge exponentially. The puzzle of Examples 1 and 2 is
then unraveled.

Having presented an analytical test that distinguishes
destabilizing from stabilizing inputs to the SR algorithm,
the focus shifts in Section 1II to a search for signal classes
that satisfy the PE for SR condition and those that do not.
Section III weaves a path through eight lemmas to answer
the following questions: Is it always possible to find a zero
mean 7-periodic input sequence which is PE for SR? Is it
always possible to find a zero mean r-periodic input se-
quence which causes the parameter estimates of the signed
regressor algorithm to diverge? The answer to the first
question is “yes,” for ¢ greater than the order n of the
algorithm (for n > 3). Unfortunately, the answer to the
second question is also “yes,” for >3 and n > 3. Theo-
rem 2 contains the precise statements. This result may be
discomforting. In essence, it shows that the stability and
instability properties of the signed regressor algorithm are
intimately tied to surprisingly subtle characteristics of the
input sequence. The focus is primarily on zero mean
signals since sign changes are necessary for the PE for SR
condition, since zero average signals are present in a wide
variety of adaptive filtering applications, and to place the
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deterministic analysis on an equal footing with the sto-
chastic analysis of later sections.

For LMS, the addition of a leakage factor provides an
exponential “safety net” from which the parameter esti-
mates cannot escape, even with (bounded) noises or non-
idealities such as unmodeled dynamics or small nonlineari-
ties. Perhaps the most surprising result for the signed
regressor algorithm is presented in Section IV, where it is
shown that exponential divergence of the parameter esti-
mates is possible for certain inputs, even with the use of
leakage.

Section V considers the signed regressor algorithm when
excited by stochastic inputs. A stochastic PE for SR condi-
tion is derived in terms of the expectation of the outer
product of sgn(X) and X, and Section VI shows that
several common stochastic processes fulfill this condition.
In particular, the SR algorithm is stable when excited by
colored Gaussian inputs, and when excited by any process
with independent and identically distributed moments. An
example of a stochastic process which fails the stochastic
PE for SR condition is given, and this process appears to
cause divergent parameter estimates in simulation studies.
Without doubt, the stability properties of the SR algorithm
are crucially linked to the characteristics of the input/
regressor sequence.

II. PERSISTENCY OF EXCITATION FOR
DETERMINISTIC SIGNALS

In the ideal case (with no measurement noise or unmod-
eled disturbances), the LMS algorithm gives rise to the
error system

0k+1=0k_p‘XkaT0k (2-1)

where 8, = §* — §, is the parameter error. Using the stan-
dard Lyapunov function #7¢ with suitably small g, (2.1)
can easily be shown to be Lyapunov stable. If there is a
time interval ¢ and an « such that

1 Jj+e-1
Amm{? Y X,X,T} >a>0, foreveryj
=7

then the LMS algorithm is said to be persistently excited
(PE for LMS), and the parameter estimates converge ex-
ponentially to their actual values, guaranteeing a certain
robustness even in the nonideal case [5]. Equivalently, PE
for LMS implies that (2.1) is exponentially asymptotically
stable to the equilibrium 8 = 0. In this context, exponential
stability means that there exists an a € (0,1) and an N < o0
such that ||6, || < N||8,lla* Vk.

The one step transition matrix for the error equation
associated with standard LMS (2.1) is / — u XX . For the
signed regressor algorithm (1.4), the error system is

0k+1:0k‘#58n(Xk)XkTek (22)
where 8, = 6*— @, is the parameter error vector, and the
one step transition matrix is I —psgn(X)X”. Since the
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stability properties of LMS depend on the average of the
outer product of XX7, it is reasonable to conjecture that
the behavior of the SR algorithm should depend on the
average value of sgn(X)X7, at least when the adaptive
gain p is small.

The most straightforward results are obtained when the
X, sequence (or, equivalently, the u(k) sequence) is peri-
odic. Note that it is possible to cope with the almost
periodic case by following the analysis in [1]. Accordingly,
let u(k) be a t-periodic sequence and define

Jj+e—-1

A41='? 2:

i=j

sgn( X,) X. (2.3)

Definitions: 1f ReX,(M,) >0 for i=1,2,---, n, then the
regressor vector X, will be said to be persistently exciting
for the signed regressor algorithm (PE for SR). The notation
Re A, (M,) indicates the real part of the ith eigenvalue of
the matrix M,. Since X, is composed of shifted versions of
the scalar input u,, the input sequence itself may also be
called PE for SR. The matrix M, will be called the
excitation matrix for the signed regressor algorithm. s

The idea behind persistence of excitation (for both LMS
and SR) is that it defines the class of signals for a
particular algorithm which guarantee parameter conver-
gence in the ideal case, and that this convergence is robust
to small nonidealities. Expornential convergence is one way
to guarantee robustness in the nonideal case [2].

The following theorem shows that the error system for
the signed regressor algorithm is exponentially asymptoti-
cally stable when the input is PE for SR. Since the excita-
tion matrix M, can have eigenvalues with negative real
parts, it is reasonable to conjecture that the SR algorithm
will be exponentially unstable for any stepsize when M,
has an eigenvalue with negative real parts. This conjecture
is true. This is in sharp contrast to LMS where Lyapunov
stability always holds.

Theorem 1: Consider the signed regressor algorithm
(1.4) and the associated error equation (2.2). If X, is a
t-periodic sequence that is PE for SR, that is, if Re A,(M,)
>0 for every i, then there exists a p* such that (2.2) is
exponentially asymptotically stable for every 0 < p < p*. If
X, is not persistently exciting, and Re A,(M,) < 0 for some
i, then 3p* such that for every 0 < p < p*, (2.2) is exponen-
tially unstable.

Proof: Because the input is t-periodic, the stability
properties are determined by the eigenvalues of the z-step
transition matrix for (2.2) which is given by

[+1-1

A(l+1-1,0= T1 (1-psgn(X;)XT).

By adding and subtracting utM,, where M, is the excita-
tion matrix, this can be approximated as

A(l+t-1,1)=T—ptM,+ B(I+1-1,1)
where B(-, ) is o(nt)
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and
B(l+t-1,1)

I+r—11+1t-1

=pr Y Y sgn(Xk])X,(Tlsgn(sz)XZ;
k=1 ky=ky

+ b pisgn (X, o) XD sen (X)X
The norm of the error B(-,-) (following the logic of [7])
may be bounded as
=2
IB(I+t=1,1)< ¥ t/(2+k)ip2+r2tk
k=0

||sgn(X)

2+ k
I Xy

<

(el sgn () 1 X1)°

- exp (ptllsgn (X) 1l X1))
if pt is sufficiently small. It follows that as u — 0,
N[A(+ =1, > A [T—peM,] =1- X (M,).

Accordingly, if ReX,(M,) >0 for all i, |A,[A(/+1—-1,1)]
<1 for all i when p is suitably small. If ReA,(M,) <0 for
some i, then |A,[A(/+1¢—1,1)|>1. The stability and in-
stability results then follow. VN

This theorem explains (and proves) the behavior of the
SR algorithm in the examples of the introduction. For
Example 1, the input is PE for SR since

6 -2 -2
-2 6 -2
-2 6

SR

™M-

1
M= % sn(X)XT =5

| =

1 -2

which has eigenvalues 1/2, 2, and 2. For Example 2, the
matrix M, has an eigenvalue at —0.86.

The next section presents results which help to classify
input sequences that are PE for SR, and input sequences
for which the excitation matrix has eigenvalues with nega-
tive real parts, causing instability of the SR algorithm.

i

111

The persistency of excitation condition for LMS has an
intuitively appealing meaning in terms of the number of
sinusoids present in the input. Unfortunately, no such
simple interpretation (in terms of spectral complexity) is
possible for the PE for SR condition, since an input which
consists of any number of sinusoids in conjunction with a
large dc bias (i.e., any input with no sign changes) has a
rank one excitation matrix. Another interpretation of PE
for LMS is as a spanning condition on a f-periodic regres-
sor vector sequence X,, that is, £/Z! X, X,/ > 0 if and only
if the vectors X, X;.,---, X;,, span R” for every j.
Unfortunately, no such simple interpretation on the span-
ning properties of sgn(X,) or X, is equivalent to PE for
SR. What, then, can be said about the PE for SR condi-
tion?

Lemmas 1 and 2 find that spanning conditions on
sgn(X) and X are necessary (but not sufficient) for ex-

INTERPRETATION OF DETERMINISTIC PE FOR SR
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ponential stability of the signed regressor algorithm. These
show that any sequence that is PE for SR is also PE for
LMS, while examples 3 and 4 show that the reverse
implications are, in general, false. Lemma 3 (and surround-
ing discussion) demonstrate that for the simple one- and
two-dimensional SR algorithms, the spanning property on
sgn( X) is sufficient for stability.

Lemma 4 provides a technical result (relating the eigen-
values of M, + M to the eigenvalues of M,) which is used
in Lemma 5 to show that there are r-periodic zero mean
sequences which are PE for SR whenever ¢ > n > 3, where
n is the dimension of the algorithm. Lemmas 6, 7, and 8
then establish the instability results. First, a single class of
3-periodic inputs is shown to destabilize any SR algorithm
of dimension 3 or higher. This is extended to show that for
almost any ¢ > n > 3, such destabilizing inputs exist. The
results of all the lemmas are finally gathered together in
Theorem 2, and extended to include certain nonzero mean
sequences.

3.1. Two Necessary Spanning Conditions

For t-periodic inputs, a simple condition which is neces-
sary (but not sufficient) for exponential stability of the
signed regressor algorithm is that

1 13
- Y sgn(X)sgn(X,)" >0. (3.1)

i=1
This requires that the sign of the regressor vector span R”
every period, and is a relatively easy condition to check.
Formally, we have the following.

Lemma 1: Any sequence that is PE for SR must fulfill
3.1).

Proof: Suppose that condition (3.1) does not hold.
Then there is a nonzero constant vector ¢ such that
cTsgn(X,) =0 for every i €[1, ¢]. This implies that
17 17
7 Z Sgn(x;)xlrz " Y cTsgn(X) X =0

i=1 i=1

™, =c"

where M, is the excitation matrix. Hence ¢’ is a null

vector of M,, M, is singular, and X, is not PE for SR. am
Another condition which is necessary for exponential
stability of the SR algorithm is that the regressor vector
span R" every period.
Lemma 2: Any sequence that is PE for SR is also PE
for LMS. In symbols,

t

)} sgn(x,-)X;’) >0, V)

i=1

Re)\j

1

implies that ) X, X7>0.

i=1
Proof: By contradiction. Suppose A (XXX ™y=0 for
some i. Then there exists a nonzero vector ¢ such that
¢"X, =0 Vke[l,¢] which implies (sgn(X)X")c=0
which implies that Re A,(Zsgn(X)X7) =0. NN
To see that the reverse implications do not hold (and
hence that the spanning conditions of Lemmas 1 and 2 are
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not, in general, sufficient for exponential stability), con-
sider the following simple periodic examples:

Example 3: n=2, t=2, u(k)=the two periodic se-
quence {1,/2,1} for which ZXX7> 0 but Lsgn(X) X7 and
T sgn(X)sgn(X)7 each have a zero eigenvalue.

Example 4: n=7, t=7, u(k)=the seven periodic
sequence {2,4,4,2, -1, —-10, —1} for which
Tsgn(X)sgn(X)">0 but LXX7 has a zero eigenvalue
and Ysgn(X) X" has two negative eigenvalues.

It is thus strictly more difficult to persistently excite the
signed regressor algorithm than to persistently excite LMS.

We now consider several simple cases.

3.2. One- and Two-Dimensional SR

In one dimension, the PE for SR requirement is trivially
satisfied for all nonvanishing inputs since Lsgn(X,) X/ =
Z|u;|. In two dimensions, the necessary spanning condition
of Lemma 1 on sgn(X) is also sufficient for exponential
stability of the SR algorithm.

Lemma 3: The error equation (2.2) for the two-dimen-
sional signed regressor algorithm (1.4) is exponentially
stable for any ft-periodic input sequence provided that
¥!_,sgn(X,)sgn(X;)T>0, and provided that p is suffi-
ciently small.

Proof: Direct computation shows that

t
‘ Z |ul
tM,= ) sgn(X,)X[= =
i=1

t—1

i=1

If ¥sgn(X)sgn(X)T has a zero eigenvalue, then either

(i) u, has the same sign for every i,
(ii) u; alternates in sign, or
(iii) u; is identically zero,

since any other sign pattern will cause sgn (X)),
sgn(X,), - +,sgn(X,) to span R2, Case (iii) is trivial, since
M, is the zero matrix. If either (i) or (ii) holds, then B =4
and |B|=a implying that M, has a zero eigenvalue. If
neither (i) nor (ii) hold, then for some i and j, the sign of
sgn(u;)u,,, is different from the sign of sgn(u;)u;,, and
so |B| < a. Similarly, |§|<a. M, is therefore, diagonally
dominant which implies that all eigenvalues have positive
real parts. NN

Actually, somewhat more is true. Dasgupta and Johnson
[12] found a Lyapunov function which proves that the
two-dimensional SR algorithm is never unstable. Unfor-
tunately, the stability properties of the one- and two-
dimensional algorithms do not extend to higher dimen-
sions.

3.3. Stability Results for n-Dimensional SR

The input sequences of Examples 2 and 4 cause instabil-
ity of the n=3 and n =7 dimensional SR algorithm. Is
such instability generic? Do there exist input sequences
which are PE for SR for arbitrary ¢ and n? Lemmas 4 and
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5 guarantee (by construction) that there are r-periodic
sequences which are PE for SR whenever 1 > n.

If t <n, then Lsgn(X)sgn(X)7 has a zero eigenvalue,
since at least two rows are identical. If r=n, it is also
impossible for a zero mean sequence to be PE for SR. To
see this, define 1,=[1,1,---,1]7 €R’ and suppose that
Yu, = 0 (where, as usual, the sum is taken over one period).
Then, 17X, = 0 for every j. Hence

£ (X)X [1,- £ sn(x0)(x71,) =0
(32)

and M, has a zero eigenvalue corresponding to the eigen-
vector 1,. This shows that zero mean sequences require
t > n in order to be PE for SR.

To proceed, the following technical lemma is useful. It
translates the PE for SR condition on M, to a sufficient
(but not necessary) condition on the symmetric matrix
M,+ M.

Lemma 4: If M,+ M7 >0, then ReX ;. (M,)>0.

Proof: Consider the system x= M,x which has a
candidate Lyapunov function ¥'=x"x. Then V=xTx+
%#Tx = xT(M,+ MT)x > 0. Hence every mode of M, is
unstable and so Re A(M,) > 0. The reverse implication is

M1, = {

Sgn(“i+1)ui+58n(“1)ur

t—1 ||
Y sen(u)u o)l
i=1 :=|a B
L o«
i
|

t
E Ju,
i=1

false, even with zero mean periodic X,. An example is
n=4, t=", with periodic input {-20,0.1,0.1,0.1, - 0.1,
199, -0.1}. VYN

Now suppose that the period ¢ is greater than the
dimension n of the regressor. Define the extended infor-
mation vector Z, = [u,, 4,1, *,uy_,,;]". Then

1 /¢ 1Y
R,= - Y sgn(Z,)ZT contains M, = n Y sen(X)XT
i=1 i=1
as its leading n X n square submatrix. Consider a zero
mean sequence with the following sign pattern: u, > 0, and
u; <0 for i=2,3,.+-¢. Then (1/2)(R,+ RT)€R"* can
be written directly as

t
2 Z fu,l u, +u, uytu,_, u,+u,
i=2
4
u,+u, 2 Z fu,| u, +u, u,_1+u,
1 i=2
p . .
t
utu, u tuy u ,tuy, ZZW,"
i=2

(3.3)
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where (1/2)(M,+ MT)eR" ", the leading n X n square
submatrix, is diagonally dominant and hence positive defi-
nite. Lemma 4 then implies that Re A(M,) > 0, and so any
zero mean periodic sequence with this sign pattern will be
PE for SR of any dimension up to ¢t —1. This proves the
following.

Lemma 5: Consider the n-dimensional signed regressor
algorithm (1.4).

(1) There are periodic zero mean sequences of every
period ¢ > n which are PE for SR and

(i1) There are no periodic zero mean sequences of period
t < n which are PE for SR. 20N

3.4. Instability Results for n-Dimensional SR

Statement (ii) of the previous lemma shows that short
zero mean periodic sequences may cause nonconvergent
behavior of the SR algorithm. The situation is even worse
if the zero mean assumption is relaxed. The next result
demonstrates a class of “short” destabilizing sequences.

Lemma 6: Consider the 3-periodic input sequence u,,
u,, uy with u; >0, u, <0, and u; <0. If |u,|+ |us| <|uy),
then the error system (2.2) of the n-dimensional signed
regressor algorithm (1.4) will be unstable for any n> 2,
provided p is suitably small.

Proof: Since Re),(Isgn(X)X") <0 if and only if
ReA,(sgn(cX)(cX)T) <0 for any c+#0, it suffices to
consider the normalized input sequence u; =1, u, = — a,
u; =~ b with g and b positive. In the three-dimensional
case, the eigenvalues of M, =Y sgn( X)X are the roots of
the polynomial 53 —3as?+(3a—388)+388a— B3 —8%—
o where a=1+a+b, B=—1—-a—-band §=-1+a-
b. By the Routh test, M, will have negative eigenvalues
whenever B3 + 83+ a® —388a < 0. In terms of a and b,
this is equivalent to a*®+ b®+3ab —1< 0. This cubic can
be factored as (a+b—1)(a?+b>—ab+a+b+1). The
second of these factors is positive for every positive a and
b, since it is equal to (a—b)*+ab+a+b+1. The in-
equality is then true whenever a + b —1<0. This proves
the result in three dimensions.

The n-dimensional excitation matrix M, contains M, as
its leading three-dimensional submatrix and has rank at
most 3 since the i, jth element of M, is equal to the
i(mod3), j(mod3)th element of M, where i(mod3)e€

{1,2,3}.
Let
1, ifi=j
ij= -1, if i — j = 3k for some integer k
0, otherwise

and partition M, in columns as and [C|C,|C;]. Then
(TM,T™"),,=0 for i>3 and the leading three-dimen-
sional minor of TM, T~ ! is [aC,|BC,|86C,] where

[n+2] B m+1 s [n]
o=\ | B=|5 ) =3

3
and [*] denotes the greatest integer < *. But
det[aCy|BC,|8C;] = aBddet(M;) and thus M, will have

negative determinant whenever M; has negative determi-
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nant. Thus M, has an eigenvalue with negative real part
whenever |u;| > |u,|+ |u;]. N

Lemma 1 showed that any sequence that is PE for SR
must fulfill (3.1), that is, must have Lsgn(X)sgn(X)T> 0.
This is essentially a requirement on the sign pattern of the
input. For t-periodic sequences, there are t? possible sign
patterns, but only a few of these need to be examined.
Observe:

(i) Zsgn(X)sgn(X”) and Lsgn(X)XT are even func-
tions of X. Thus an input with the sign pattern
+ + + — will have the same stability properties as
one with the pattern — — — +.

(i) X sgn(X)sgn(X)T=LP sgn(X)sgn(X)™PT and
Tsgn(X)XT=YPsgn(X)XTPT where P is the
unitary matrix:

01 0 0
0 0 1 0
P= . . - .. .
000 - 1
100 -+ 0

This shows that the stability properties of a sign pattern
are invariant under circular shifts, for instance, the sign
pattern + — — — will have the same properties as
— — + —. We will say that two sign patterns are distinct if
they cannot be equated by any combination of shifts and
multiplications by —1.

3.5. The Three-Dimensional SR

This subsection considers in detail the stability /instabil-
ity properties of the three-dimensional SR algorithm when
excited by z-periodic zero mean sequences. Lemma 5 shows
that no sequence of period less than four can be PE for
SR. There are only three distinct sign patterns of four
periodic sequences; + + +—, + —+ —,and ++——. It
is easy to check that the second and third patterns have
ReA(Tsgn(X)sgn(X)") =0, and so cannot be PE for SR
by Lemma 1. The first pattern is PE for SR, as implied by
the proof of Lemma 5. This is how Example 1 was
generated.

The situation for five periodic sequences is more com-
plicated, and at the same time more typical of the general
case. There are only three distinct sign patterns for which
Ysgn(X)sgn(X)T>0. Theseare + +++—, + ++ — —,
and + + — + —. The first is PE for SR (again by the proof
of Lemma 5). Both other patterns may have eigenvalues
with negative real part, leading to instability. For u;, u,, u,
>0 and u,,us<0 with £3_;u, =0, it is easy to calculate
that

S
(1/2) ¥ [sen(X) X7+ Xoga(X7)]

2(u1+u2+u3) u, Uyt us—u,
= u, 2(uy +uy +uy) u,
Uyt us—u, Uy 2(uy + uy + uy)
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Let a=2(u; +u,+u;) and B=u,. Then u,+us—u,=
— B —1/2a. The above matrix can be rewritten as

1 6 -1/2-8
a 5 1 8 where § = 8/a.
-1/2-6 & 1

Note that 0 <8 <1/2. For 8 <1/4, this matrix is diago-
nally dominant, and hence the input is PE for SR. Larger
8, however, can cause this matrix to have negative eigen-
values. For instance, 8 = 0.4 generates the divergent exam-
ple of the introduction. The third sign pattern can also be
reduced to a single parameter family of matrices which can
be readily examined.

To generalize this unstable example to z-periodic input
sequences (with ¢ > 5), consider the j+ k periodic zero
mean input sequence ay,da,,"--,a; by, by, -+, b, where
a;>0 and b, <0 for every i. Let a=2Xa|+L;]b]| The
excitation matrix can be written

Z a—2a;+2b,
a—2a;,—2a;,_1+2b, +2b,_,

This matrix is independent of the particular values of a,
through a,_, and b; through b,_, because of the zero
mean property. For instance, the input sequence
{1,2,2,2,1,-1/2,-25,-2,-25,—-1/2} generates the
symmetric matrix

10 a

>
2

q
M(&) =15 4
a-p a
where @=1.6, p=0.3, and ¢=1.2. M(Q) has a negative
real eigenvalue. Now the input sequence can be lengthened
by adding any number of intermediate zero mean terms
(ay through a;_, and b, through b, _,). The only effect
on the matrix M will be to increase the value of 4.

Lemma 7: There are zero mean t-periodic sequences for
every t>8 which destabilize the three dimensional SR
algorithm.

Proof: Direct computation shows that det M(a)=
(4pg — g*)a—2qp®. Since p, ¢, and a are positive,
det M(a) <0 whenever 4pg— g <0. This implies that
M(a) has at least one eigenvalue with negative real part.
Note that it is easy to choose a,, a,, a1, a; by, b,
b,_1,and b, so that M(a) is symmetric. 200

These divergent results may be generalized to the nth
order signed regressor algorithm.

Lemma 8: Consider again the j + k periodic zero mean
input sequence as above. If the n-dimensional excitation
matrix is symmetric and has a negative eigenvalue, then
either,

(i) the (n+1)-dimensional excitation matrix has a
negative eigenvalue, or

(ii) there is a j+ k +4 periodic zero mean input se-
quence for which the (n +1)-dimensional excitation
matrix is symmetric and has a negative eigenvalue.

619

Proof: The hypothesis forces the n-dimensional exci-
tation matrix to have the following Toeplitz form:

1 jt+k
M"(a)=-—— 3 sgn(X)X'
jtk /2
o a—p, a=-B, - a—B,,
a—p o 0‘_»81 E Sy )
1 . .
Y
a- «a

n—1

where a =Y |a;}+X,b, and the 8, depend on a,, -, a,_,,
A izt 5@y by b,y and by, .00, by, but do
not depend on a,,---,a, ,,, or b,---,b,_,., Let
M"*Ya) be the (n+1)-dimensional excitation matrix.

a a—2a, +2b,

a—2a,—2a,+2b,+2b,
a a—2a, +2b,

a—2a;+2b, a

Then M"(a) is the principle leading n X n submatrix of
M"Y a). Clearly, M"*!}(a) cannot be positive definite,
since all minors of a positive definite matrix must have
positive determinant. If M"*!(a) is symmetric, this estab-
lishes (i). If not, then add 4 new terms to the input
sequence, in the a,,;, a;_,, b,.;, and b,_, positions.
Pick these terms so that their sum is 0. This implies that
M"*1(a) is symmetric. Then M"(a) again has a negative
eigenvalue, and is the n dimensional leading submatrix of
M"*Y(q). This implies (ii). 200

A simple inductive argument, beginning with » = 3, and
using Lemmas 7 and 8 then shows that for every n, there
are t-periodic sequences of sufficient length which cause
instability of the SR algorithm.

3.6. Consolidation

The stability and instability results of the previous sec-
tions may now be gathered together.

Theorem 2: Consider the n dimensional signed regres-
sor algorithm (1.4) excited by ¢-periodic zero mean input
sequences with suitably small stepsize.

(i) The case n =1 is exponentially stable whenever the
input is nonvanishing.

The case n=2 is exponentially stable whenever
Tsgn(X)sgn(X)7> 0.

In general, for n>2, there exist t-periodic zero
mean sequences of any length ¢ > n which are PE
for SR, and, there exist ¢-periodic zero mean se-
quences of sufficient length which destabilize the
algorithm and lead to exponential divergence of the
parameter estimates.

Moreover, the above examples of convergence and
divergence are robust with respect to the zero mean
assumption, that is, the same results are true if the

()
(ii)

(iv)
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hypothesis that the input sequence has zero mean is
replaced by the hypothesis that the input sequence
has € mean, for sufficiently small e.

Proof: The only part of the theorem which remains
unproven is the extension to ¢ mean. In Lemma 5, an
extension to € mean will not disturb the diagonal domi-
nance, provided ne is smaller than the smallest u;. (There
may, however, be periodic ¢ mean sequences with z<n
which are persistently exciting.) In Lemma 7, introduction
of € mean will perturb the values of p and ¢ by e. For
small enough e, this will not change the sign of (4pg —
g?)a—2p?q. Similarly, in Lemma 8, perturbing the values
of B, by e will not effect the sign of the eigenvalues of
M, (a). 200

It is difficult to succinctly interpret the engineering
significance of the persistence of excitation condition for
the signed regressor algorithm. If a particular application
(for example, adaptive FIR identification) allows a free
choice of input sequences, then the deterministic condi-
tions derived here could be used to choose an input
sequence for a particular order regressor so as to guarantee
exponential convergence. In many applications, the input
sequence is not directly under user control. It is then
important to have an idea of the probability that an input
will destabilize the algorithm. Sections V and VI show that
if certain statistical properties characterize the input, then
stability can be assured.

IV. LEAKAGE

A leakage factor A is often incorporated into adaptive
algorithms in order to add robustness during quiescent
periods when the degree of persistence of excitation be-
comes small [14]. For the standard LMS, this is

ék+l =(1- A)ék +rXe,
and the parameter error equation is
Opsr= [(1" M- P'XkaT] 6, + Ag*.

Since LXXT7 is always at least positive semi-definite, the
one step transition matrix is uniformly a contraction, with
magnitude depending on A. This means that initial condi-
tion effects die away exponentially. The parameter error 8,
does not, however, tend to zero, due to the A§* term. The
limiting bias in 6, is proportional to A; this is the penalty
for guaranteeing stability in the presence of bounded mea-
surement noise and unmodeled dynamics, see [20].

For the signed regressor algorithm, the addition of a
leakage factor does not always guarantee stability. The
error equation for the SR algorithm with leakage is

1= ((I_A)I—Psgn(xk)xkr)ok+A0*- (4.1)

The stability of (4.1) (for t-periodic inputs) is determined
by the eigenvalues of the matrix R, = AI + pM, where M,
is the excitation matrix £sgn(X)X7. It is easy to imagine
that if M, has an eigenvalue with negative real part, and if
A is small compared to p, then R, may also have an
eigenvalue with negative real part. The signed regressor
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algorithm will then be exponentially unstable, despite the
addition of a leakage term.

Theorem 3: Consider the signed regressor algorithm
with leakage and the associated error system (4.1). Suppose
that a r-periodic input sequence causes the excitation
matrix M, to have an eigenvalue with negative real part (as
in part (iii) of Theorem 2). Then 3p* and a A* such
that V0 <p < p* and V0 < A < A*, (4.1) is exponentially
unstable.

Proof: The eigenvalues of R, can be shown to de-
termine the stability /instability of (4.1) by mimicking the
proof of Theorem 1. Let P be the matrix of eigenvectors
that transforms M, into Jordan form. Then R, is similar to

P Y AI+pM)P=AI+pdiag(A, A, -, N,)
=diag(A + A, -, A+pX,)

where the A, are the eigenvalues of M,. Thus whenever
A +p), <0 for some i, R, will have an eigenvalue with
negative real part. 200

V. PERSISTENCY OF EXCITATION FOR STOCHASTIC INPUTS

In the deterministic case, the appropriate persistence
of excitation condition for the signed regressor algor-
ithm was that the eigenvalues of Ysgn(X)X” have,
on the average, positive real parts. The analogous con-
dition for stochastic inputs involves the eigenvalues of
E{sgn(X)XT}. Suppose that u(k) and hence X, are
stationary random processes with finite moments up to
order m.

Definitions: 1f Re A (E{sgn(X)XT})>0 for i=
1,2,- -+, n then the regressor vector X, will be said to be
persistently exciting for the signed regressor algorithm (PE
for SR). Since X, is composed of shifted versions of the
scalar input u(k), the input sequence itself may also be
called PE for SR. The matrix E{sgn(X)X7} will be called
the excitation matrix for the signed regressor algorithm.

As in the deterministic case, persistence of excitation
implies exponential stability.

Theorem 4: The error system (2.2) for the signed regres-
sor algorithm (1.4) is exponentially stable when:

(i) the real parts of the eigenvalues of E{sgn(X)X ™
are positive,
(i) the stepsize is small enough,
(i) the input process fulfills a mixing condition (stated
precisely in (5.4) below).
Proof: Recall that the system (2.2) has the m-term

transition matrix

k+m-1

[ (I_HSgn(XI)XIT)-

Alk+m, k)= (5.1)
The assumption on the moments of X, is that there are
constants M and & <oo such that E||(Z,)|l, < M&', i=
1,2,---, m where Z, =sgn(X,) X! and the P norm is the
induced norm

|4l = max xT4"PAx
xTPx=1
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where P is defined to be the unique positive definite
solution to the Lyapunov equation E{sgn(X)X P+
PE{sgn(X)XT} = I. Henceforth, all norms in this proof
are P norms. (5.1) can be rewritten as

A(k+m,m)=1-pmE{sgn(X,) X[} +pmP, +Q,

(5.2)
where

1 m

P, = m )y E{sgn(X)XT}— Zyvioa
i=1

and

m m

Q=4 )y Z Zisj1Zi-in
i=1j=1

m m

m
_113 E Z Z Zk+/—1Zk+j»1Zk+i—1
i=1j=11=1

o (=) " Ziemer L

The proof uses three results from [6]. First, a sufficient
condition for exponential convergence of a system with
transition matrix A(k + m, k) is that there exist an m >0
and an induced norm |- || such that

E{|A(k+m, k)|} <1. (5.3)

In this context, exponential convergence means the ex-
istence of an w-dependent almost surely finite N and an
w-independent a € (0,1) for which ||6,|| < Na*.

Second, by virtue of the assumptions on the moments of
Z,, and provided pmé <1, the norm of the expected value
of Q, can be bounded by E||Q,|| < 3M(pm8)>.

The third is the following: Let B, be a stationary process
with mean E{ B}, and let f*/(X) be the spectral density of
the (i — j)th component of B,— E{B}. If fY(\) exists
and is twice differentiable at A = 0, then
1 k+m-—1

— X

m._y

E (B~ E(B))|=0(m™"2) (5.4)

uniformly in k.
To continue to proof, let B,=sgn(X,) X[ and E{B} =
E{sgn(X)XT}. Taking norms on (5.2) shows that

E||A(k+m, k)| <||I—-pmE{sgn(X)XT}|
+umO(m=22) +3M(pms)*. (5.5)

Pick an arbitrary € > 0. Choose m so that O(m™1/?) <k,
and then choose g so that pm = e. Then

El|A(k+m, k)|
<|7-€E{sgn XXT} ||+ (3M8> +1)€?
< max xT(I—€¢E{B}) P(I-€¢E{B})x

xTPx =1
+(3M8% +1)¢é?

= max x"Px — exT(E{B)"P + PE{B})x
x'Px=1

+eXx"E{ B} "PE{B}x+(3M8% +1)¢*. (5.6)
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Since 1E{B}TP+PE{B}=I, and since min, rp,_qx'x

= —————, this becomes

€
-1-— 82 +1 %
=5 +(3M8% +1+ || E{ B} )¢
Hence
€
||A(k+m,k)||<1—mm, V0 <e
1
S2MOT+ 1+ E{B) N pu(P)

The desired stability follows. A

There is a strong analogy between the stability results of
Theorem 1 for deterministic systems and Theorem 4 for
stochastic signals. It was fairly straightforward to extend
Theorem 1 to give conditions for exponential instability in
the deterministic case, but the proof of exponential insta-
bility with stochastic inputs is more subtle, and has so far
eluded us. We therefore propose the following.

Instability conjecture: Under conditions (ii) and (iii) of
Theorem 3, if some eigenvalue of the excitation matrix
E sgn XX7 has a negative real part, then the signed regres-
sor algorithm will be exponentially unstable. L0A

Condition (ii) of Theorem 4 is easy to fulfill since the
stepsize is a design parameter. Many stochastic processes,
especially those which are asymptotically decorrelated,
fulfill condition (iii). The next section gives several exam-
ples. The next section also examines the excitation matrix
E{sgn(X)X"} and shows that some random processes
fulfill condition (i) while others fulfill the hypothesis of the
instability conjecture.

VI. INTERPRETATION OF STOCHASTIC PE FOR SR

Just as it is not immediately obvious what classes of
deterministic inputs are PE for SR, it is not immediately
clear what stochastic processes fulfill the excitation condi-
tions of Theorem 4. This section demonstrates that certain
stochastic processes are PE for SR while other processes
fulfill the hypothesis of the instability conjecture. These
latter can be shown (via simulation) to be unstable.

Suppose that u, is stationary, independent, and zero
mean, with any distribution (subject only to the existence
of the mth moments, as above). Then X, is n-dependent,
and so the correlation function satisfies

R')j=E{[Bk‘E{B}]ij;[BkH_E{B}]IT/} =0

for/>n. (6.1)
This shows that
2 0
—fU(A) | == ¥ PR/e™ |
dX A=0 =00 A=0
o0 n
=-— Y [°R/=- Y 1?RY (6.2)

[=—00 I=n

which is clearly finite. Thus condition (iii} of Theorem 4
holds. Direct calculation shows that the excitation matrix
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E{sgn(X)X"} is equal to E(Ju,|)]. Hence Theorem 4
shows that for small enough p, 8, converges to zero
exponentially fast.

A somewhat more realistic situation than the i.i.d. case
is to suppose that the input u, is generated by a white
Gaussian noise source w, passed through a stable linear
filter F. The spectral density of u, is then the spectral
density of w, multiplied by the square of the frequency
response of F, and so RY is a weighted sum of decaying
exponentials. This implies that (6.2) is summable and so
condition (i) of Theorem 4 is again fulfilled. Gathering
these results together, we have

Theorem 5: Suppose that the input to the signed regres-
sor algorithm (1.4) is either

(i) generated by a white, zero mean Gaussian noise
source passed through a stable linear filter, or

sgn(s)"POs
sgn(s) Qs

sgn(s)"Os
sTPQsgn(s)

sTP" 10sgn(s) sTP"2Qsgn(s)

(ii) independent and identically distributed with finite
moments.

Then, with small enough stepsize, the signed regressor
algorithm is exponentially stable.

Proof: The only part that remains to show is that for
case (i), E{sgn(X)XT} has eigenvalues with positive real
parts. For u, and u; jointly Gaussian, and zero mean

E{sgn(u,)u;} = E{sgn(u,) E(ufu,))

Euu,
= E{sgn(uk) kzj “k} =

qu
Ul
Ful s

2
Eu;

Since u, is stationary, let a = E|u|/Eu® Then the excita-
tion matrix can be written E(sgn(X)X7)=aEXX7 It is
well known that the covariance matrix EXX7 is positive
definite when u is the output of a stable linear filter driven
by white Gaussian noise. Thus the excitation matrix has
eigenvalues with positive real parts, and Theorem 4 may be
applied. N

In the deterministic case, some periodic sequences stabi-
lize the SR algorithm and other sequences were destabiliz-
ing. This same dichotomy appears to be present in the
stochastic case. Theorem 5 demonstrated stability when
the input could be characterized by certain distributions
and correlations. Other distributions exist, however, which
cause E{sgn(X)X7T} to have eigenvalues with negative
real parts. Such distributions fulfill the conditions of the
instability conjecture.

Consider a Markov process u, with / states, taking
values s = (s,, 5,," -+, 5,). Let the one step transition prob-

sgn(s)"P20s
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abilities be defined by the matrix P as p,;= p(u,, 1=
s;lu, =s;) and let the limiting probabilities ¢ =
(41,4, - *»q,) be the eigenvector of P associated with the
eigenvalue A =1. Let Q = diag(g,), for i=1,2,---,/. The
m-state transition matrix is then P™ and the excitation
matrix can be calculated from

Esgn(u,)u, = ngn(si)sip(uk =s5,)= sgn(s)TQs

and
E sgn (g4 m) Uy

=) sgn(si)sjp(uk+m = Sty =sj)17(uj=5j)
ihJ

=sgn(s)"PmQs. (6.3)

Similarly, Efsgn{u,_,,}u,]=s"P"Qsgn(s). The excita-
tion matrix E{sgn(X)X”} thus has the Toeplitz form:

sgn(s) " P"10s

sgn(s)’ Qs

To be specific, consider a Markov process with two
states taking values s, and s,, with transition probabilities
a and B. The transition matrix P is given by

a B
P=(1—a 1—3)'

The limiting probability (the eigenvector corresponding to
M=1) is &=(B/(1—-a+B),(1-a)/A-a+B)". The
second eigenvalue is A, =a— B, with eigenvector §, =
(1, -1)T. Let A={£}¢;}). Then the m-term probability
matrix is
P™=(Adiag(A;,A,)A 1) = Adiag(1,(a—B)")A!
1
T 1-a+f

[ B+A-a)(a-p)"  B1-(a=B)")
(1-a)(1-(a=8)") (1-a)+B(a=B)"|

The excitation matrix may be calculated directly from
(6.3). It is easy to choose particular values of (s, s,,, )
for which E{sgn(X)X"} has a negative real eigen-
value. For instance, the excitation matrix generated by
(1, -0.1,0,0.8) and (1, —0.15,0.2,0.3) each have negative
cigenvalues, and in simulations these cause “divergence”
of the signed regressor algorithm (parameter estimates that
overflow the numerical capabilities of the computer) in
accordance with the instability conjecture. Other value
sets, such as (1, —0.1,0.4,0.8) have all positive eigenvalues
and hence are convergent by Theorem 5. These examples
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were computed and simulated for the n =6 dimensional
algorithm.

One situation which is easy to analyze is the case when
a=p, since then P™ =P for every m, and PQ=QPT.
Hence all the off-diagonal terms of (6.3) are equal. Then
the n-dimensional excitation matrix is (Esgn(X)XT), =
(¢ —=d)I, + dB, where c= E|u|, d = E sgn(u,)u; for k # j,
and B, =1,17. This excitation matrix has one eigenvalue
equal to dn+(c—d) and n—1 eigenvalues of (¢—d).
Thus if ¢> 0> d, the dimension » can always be chosen
large enough so that one eigenvalue is negative. If ¢ >
d > 0, then all eigenvalues are positive for any n. If s,
and s, have opposite signs, then (6.3) shows that
d=Qa—1){|s;]Ja—|s;(1 — a)}. Thus, the excitation ma-
trix has negative eigenvalues whenever

1 a>1/2 and |5| > ( s,|, or

1-a)

(i) a<1/2 and |sy| < ( 185
The SR algorithm will be stable whenever d > 0.

One common situation is when the Markov process
consists of two states with values s* and —s*. Then
d =|s*|(1—2a)? and the algorithm is stable.

When a = B, the condition for zero mean is that s;a+
§,(1—a)=0, and so d = 0. When a # B, and the process is
zero mean, the excitation matrix can be computed as

1 8 8?2 87t
) 1 ) 82
c =cD,
an—-l 8n—2 8n~3 1
518 +s,)(1—
where §=a—f and C=M—al. D, has de-
l1-a+8 "

terminant (1—82)"~! Since —1<8<1, D, is positive
definite for every n. (This may be verified by row reduc-
tion.) Thus no two state zero mean Markov process can
cause divergence of the SR algorithm.

More complex zero mean Markov processes, however,
can cause the excitation matrix to have negative eigenval-
ues. For instance, the zero mean process with states
(1, —0.1, —11) and transition probabilities

002 01 0.85
02 01 01
0.78 0.8 0.05

has a six-dimensional excitation matrix E sgn(X)XT with
negative eigenvalues.

Theorem 6: Suppose that the input to the n-dimen-
sional signed regressor algorithm (1.2) is a Markov process
on a /-dimensional state space. For /> 2, and n large
enough, there are processes with states s;,s,,--+,s, and
transition matrices P that stabilize the algorithm. Other
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states and transition probabilities cause E{sgn(X)X”} to
have eigenvalues with negative real parts.

Proof: To show the existence of Markov inputs that
generate an excitation matrix with both positive and nega-
tive eigenvalues, specialize to the case where all transition
probabilities depend on a single parameter «, i.€.,

a a a -+ a
« a a - o«

P= where =1—(1-1)a.
B B B - B

Then P™= P for every m, and the limiting probabilities
are ¢ = (a, a,- - -, 8)7. Examining (6.2) shows that the exci-
tation matrix has only two distinct entries and may be
written in the form (¢ — d)I, + dB, where B,=1,17. As in
the two state case, ¢ > 0> d implies that E{sgn(X)X7}
has eigenvalues with negative real part, while ¢>d >0
gives eigenvalues with positive real part. From (6.3),

I
c=a ) |s|+Bls)
i=1

1-11-1 -1
d=a?Y Y sga(s,)s;+aB X (sen(s;)s,
i=1j=1 j=1
+sgn(s;)s;) + B2si

and so it is easy to choose the a, B, and s, to make d
either positive or negative. It is then not too difficult to
demonstrate that the hypothesis of condition (iii) of Theo-
rem 4 are fulfilled by finite state Markov chains. N

VIL

This paper has used averaging theory to derive per-
sistence of excitation conditions for the signed regressor
algorithm which are not equivalent to the standard least
mean squares excitation conditions. These new conditions
were then interpreted in both the deterministic and sto-
chastic settings. Classes of deterministic inputs were delin-
eated for which the signed regressor algorithm is stable,
and contrasted with classes of inputs which destabilize
the algorithm. Similarly, in the stochastic case, certain
processes cause convergence of the parameter estimates
while others cause divergence. Even the use of leakage
does not guarantee bounded input/bounded output stabil-
ity of the signed regressor algorithm.

The behavior of the signed regressor algorithm is heavily
dependent on the characteristics of the input. Certain
applications, such as processing of speech (which can be
modeled as a jointly Gaussian stochastic process) may be
ideal candidates for the signed regressor algorithm. In
other applications, such as the processing of certain digital
data (which can be modeled as finite state-space Markov
chains or short almost periodic sequences) the signed
regressor algorithm may not be advisable.

CONCLUSION
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