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The sensory consonance and dissonance of musical intervals is dependent on the spectrum of the
tones. The dissonance curve gives a measure of this perception over a range of intervals, and a
musical scale is said to berelated to a sound with a given spectrum if minima of the dissonance
curve occur at the scale steps. While it is straightforward to calculate the dissonance curve for a
given sound, it is not obvious how to find related spectra for a given scale. This paper introduces a
‘‘symbolic method’’ for constructing related spectra that is applicable to scales built from a small
number of successive intervals. The method is applied to specify related spectra for several different
tetrachordal scales, including the well-known Pythagorean scale. Mathematical properties of the
symbolic system are investigated, and the strengths and weaknesses of the approach are discussed.
© 1997 Acoustical Society of America.@S0001-4966~97!05509-4#
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INTRODUCTION

The motion from consonance to dissonance and b
again is a standard feature of most Western music, and
eral attempts have been made to explain, define, and qua
the terms ‘‘consonance’’ and ‘‘dissonance.’’ For examp
Tenney1 provides a historical overview that identifies fiv
separate uses of the terms, and a longstanding debate
rounds the ‘‘reductionist’’ explanations of Plomp and Leve2

and Terhardt,3 and the proponents of ‘‘cultural condition
ing’’ such as Cazden.4 One of the most successful of th
reductionist approaches is called tonal orsensorydissonance,
in which the sensory dissonance between pairs of sine w
is determined from psychoacoustic experiments. The sen
dissonance of more complex sounds is then defined to be
sum of the dissonances between all simultaneously soun
sine wave partials. Because sensory dissonance depen
the partials, sounds with different spectra may function d
ferently. For instance, an interval may be quite conson
when played with one sound, but quite dissonant when p
formed with another.

The dissonance curveDF(r ) is a function that describe
how the sensory dissonance of a sound with spectrumF
varies when played at different intervalsr . Figure 1, for
instance, shows a plot of the dissonance curve for a so
with six harmonic partials over a range of intervals sligh
larger than an octave. The minima of this curve occur at
simple integer ratios of the Just Intonation scale, reinforc
the familiar notion that the most consonant~least dissonant!
intervals for sounds with harmonic spectra are those w
small integer ratios. The top axis shows the steps of
12-tone equal tempered scale, which can be viewed as
proximating many of these just ratios. Techniques for dra
ing dissonance curves are described in detail in Ref. 5 a
computer program is given in Ref. 6. These are based o
explicit parametrization of the perceptual data gathered
Plomp and Levelt2 ~and replicated in Ref. 7!. These are in

a!Electronic mail: sethares@ece.wisc.edu
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turn closely related to Helmholtz’8 ‘‘beat theory’’ of disso-
nance in which the beating between higher harmonics ca
a roughness that is perceived as dissonance.

Nonharmonic sounds can have dissonance curves
differ dramatically from Fig. 1, indicating that intervals wit
the most sensory consonance depend strongly on the s
ture of the partials of the sound. A dramatic example of t
is provided in the ‘‘Tones and tuning with stretched partial
selection of the Auditory Demonstrations recording
Houtsmaet al.,9 in which stretched sounds appear more co
sonant when played in the corresponding stretched octa
than when played in ‘‘real’’ octaves. To talk about this kin
of effect more generally, a spectrum and a scale are sai
be related if the dissonance curve has minima at the sc
steps. Thus Fig. 1 shows that the Just Intonation scale
harmonic sounds are related. It is easy to find the rela
scale for a given spectrum simply by drawing the dissona
curve. But the inverse problem of finding a spectrum tha
related to a given scale is not as straightforward. This pa
focuses on certain classes of scales~such as tetrachorda
scales! which are defined by only a few different successi
intervals, and presents an algorithm for constructing fami
of spectra related to these scales.

This is important because related spectra can provide
composer and/or performer with additional flexibility i
terms of controlling the consonance and dissonance o
given piece. For example, the Pythagorean tuning is o
criticized because its major third is sharp compared to
equal tempered third, which is itself sharper than the j
third. This excessive sharpness is heard as a roughne
beating, and is especially noticeable in slow, sustained p
sages. Using a related spectrum that is specifically crafted
use in the Pythagorean tuning, however, can amelio
much of this roughness. The composer or performer thus
the option of exploiting a smoother, more consonant th
than is available when using unrelated spectra.

The next section reviews previous approaches to
spectrum selection problem, and recalls the principle of
2422(4)/2422/10/$10.00 © 1997 Acoustical Society of America



em
d

er
u
a
y

m
ic

a
ob
ue

m
in

lu

iv
um

a
g

-
n
re

h
el
Fo
is

ith
b

e
u-

one

ich

e as
rum

the
air

ve
us
and

n
ou-
ed
ed
b-
ful
to
nts

ar

an
1.7
er
ca
bo

e

inciding partials, which can be used to transform the probl
into simpler form. A symbolic system is then introduce
along with a method of constructing related spectra. Sev
examples are given in detail, and related spectra are fo
for a Pythagorean scale and for a diatonic tetrachordal sc
A simple pair of examples then shows that it is not alwa
possible to find such related spectra. The symbolic syste
investigated in the Appendix, where several mathemat
properties are revealed.

I. GENERAL TECHNIQUES

The problem of finding spectra for a specified scale w
stated in Ref. 5 in terms of a constrained optimization pr
lem that can sometimes be solved via iterative techniq
such as the genetic algorithm10 or simulated annealing.11

Though these approaches are very general, the proble
high dimensional~on the order of the number of partials
the desired spectrum!, the algorithms run slowly~overnight,
or worse!, and they are not guaranteed to find optimal so
tions ~except ‘‘asymptotically’’!. Moreover, even when a
good spectrum is found for a given scale, the technique g
no insight into the solution of other closely related spectr
selection problems. There must be a better way.

Several general properties of dissonance curves
given in Ref. 6. The fourth of these is the key to simplifyin
the spectrum selection problem:

Property of Coinciding Partials:Up to half of the
2n(n21) minima of a dissonance curve occur at
interval ratiosr for which r 5 f i / f j , wheref i and f j

are partials ofF.

In essence, whenever thej th partial of the lower tone coin
cides with thei th partial of the upper tone, there is a pote
tial minimum of the dissonance curve. The minima cor
sponding to such intervalsr typically ‘‘look like’’ the
minima that occur at the simple integer ratios in Fig. 1. T
other half of the potential minima are caused by more wid
spaced partials that do not interact in a significant way.
instance, in Fig. 1, only the very shallow minimum at 1.78
of this kind. Most musical tones are quite complex, w
numerous partials, and the majority of minima are caused

FIG. 1. Dissonance curve for a spectrum with fundamental at 500 Hz
six harmonic partials has minima at 1.0, 1.14, 1.2, 1.25, 1.33, 1.5, 1.67,
and 2.0, which are shown by the tick marks on the frequency axis. Obs
that many of these coincide exactly with steps of the Just Intonation s
and coincide approximately with 12-tet scale steps, which are shown a
for comparison.
2423 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
al
nd
le.
s
is

al

s
-
s

is

-

es

re

-
-

e
y
r

y

coinciding partials. This property of coinciding partials is th
key to solving the spectrum selection problem in certain sit
ations. The simplest case is for equal temperaments.

A. Spectra for equal temperaments

The ratio between successive scale steps in the 12-t
equal-tempered~abbreviated 12-tet! scale is the 12th root of

2,
12A2, or about 1.0595. Similarly,m-tet has a ratio ofs

5Am2 between successive steps. Consider spectra for wh
successive partials are ratios of powers ofs. Each partial of
such a spectrum, when transposed into the same octav
the fundamental, lies on a note of the scale. Such a spect
is said to beinducedby them-tet scale.

Induced spectra are good candidate solutions to
spectrum selection problem since the ratio between any p
of partials in an induced spectrum issk for some integerk.
By the property of coinciding partials, the dissonance cur
will tend to have minima precisely at steps of the scale. Th
such spectra will have low dissonance at scale steps,
many of the scale steps will be minima.

This insight can be exploited in two ways. First, it ca
be used to reduce the search space of the optimization r
tine. Instead of searching over all frequencies in a bound
region, the search need only be conducted over induc
spectra. More straightforwardly, the spectrum selection pro
lem for equal tempered scales can be solved by care
choice of induced spectra. In Ref. 5, this method was used
find spectra related to 10-tet, and other equal temperame
are equally straightforward. Unfortunately, it is not so cle
how to proceed when confronted with nonequal tunings.

d
8,
ve
le,
ve

FIG. 2. Pythagorean major scale has intervalsa59/8 between all major
seconds andb5256/243 between all minor seconds. It is laid out here in th
‘‘key’’ of C.
2423William A. Sethares: Specifying spectra for music
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B. Pythagorean scales and the tetrachord

To see why spectrum selection is more difficult for non
equal tunings, consider the Pythagorean diatonic sca
which is shown in Fig. 2 mapped to the ‘‘key’’ of C. This
scale is created12 from a series of pure 3/2 fifths~translated
back into the original octave whenever necessary!, and all
seven of the fifths are pure. An interesting structural featu
is that there are only two successive intervals, a ‘‘who
step’’ of a59/8 and a ‘‘half step’’ of b5256/243. This
whole step is 4 cents larger than the equal tempered vers
while the half step is 10 cents smaller than in 12-tet.

In attempting to mimic the ‘‘induced spectrum’’ idea o
the previous section, it is natural to attempt to place t
partials at scale steps. Unfortunately, the intervals betwe
scale steps are not necessarily scale steps themselves
instance, if one partial occurred at the seventh (f i

5243/128) and the other at the fourth (f i54/3), then a
minimum of the dissonance curve might occur atr 5 f i / f j

5a35729/512, which is not a scale step. Similarly, the rat
between a partial at 4/3 and another at 81/64 is 256/2
5b, which again is not a scale step.

The Pythagorean scale is one example of a large clas
scales based on ‘‘tetrachords’’13 which were advocated by a
number of ancient theorists such as Archytas, Aristoxen
Didymus, Eratosthenes, and Ptolemy.14 A tetrachord is an
interval of a pure fourth~a ratio of 4/3! that is divided into
three subintervals. Combining two tetrachords around a c
tral interval of 9/8 forms a seven tone scale spanning t
octave. For instance, Fig. 3 shows two tetrachords divid
into intervalsr , s, t and r 8,s8,t8. When r 5r 8, s5s8, and
t5t8, the scale is called an equal-tetrachordal scale. T
Pythagorean scale is the special equal-tetrachordal s
where r 5r 85s5s859/8. A modern treatment of tetra-
chords and tetrachordal scales is available in Ref. 15.

II. A SYMBOLIC SYSTEM

This section presents a symbolic system that uses
desired scale to define an operation that generates ‘‘strin
representing spectra, i.e., sets of partials. Admissible stri
have all ratios between all partials equal to some interval
the scale, and thus are likely to be related spectra, via
property of coinciding partials.

FIG. 3. Tetrachordal scales divide the octave into two 4:3 tetrachords se
rated by an interval of 9:8. The tetrachords are each divided into th
intervals to form a seven note scale, which is labeled in the key of C.
2424 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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A. Basic definitions

A desired scaleS can be specified either in terms of a s
of intervals (s0 ,s1 ,s2 ,...,sm) with respect to some funda
mental frequencyf or by the successive ratiosr i5si /si 21 .

For instance, for the Pythagorean diatonic scale of Fig. 2

S5~1,9/8,81/64,4/3,3/2,27/16,243/128,2/1!,

andr i is eithera59/8 orb5256/243 for alli . The intervals
siPS are called thescale intervals.

A spectrumF is defined by a set of partials with fre
quencies at (f 1 , f 2 ,...,f n). The property of coinciding par-
tials suggests that related spectra can be constructed by
suring that the ratios of the partials are equal to scale st
The following definitions distinguish the situation where a
ratios of all partials are equal to some scale step, from
situation where all scale steps occur as a ratio of some pa
partials.

Definition: If for each i and j there is ak such that
f i / f j5sk , then the spectrum is called complementary to
scale.

Definition: If for eachk there is at least one pair ofi and
j such thatsk5 f i / f j , then the spectrum is calledcomplete
with respect to the scale.

If a spectrum is both complete and complementary, th
it is calledperfectwith respect to the given scale. Of cours
scales and spectra need not be perfect in order to sound
or to be playable, and many scales have no perfect spect
all. Nonetheless, when perfect spectra exist, they are id
candidates.

B. An example

The simplest nonequal scales are those with only a sm
number of different successive ratios. For example, one s
generated by two intervalsa andb has scale intervals

s051, s15a, s25ab, s35a2b, s45a2b2,
~1!

s55a3b2, and s65a3b352,

wherea andb are any two numbers such thata3b352. For
this scale,

r 15a, r 25b, r 35a, r 45b, r 55a, and r 65b.

To see how it might be possible to build up a perfect sp
trum for this scale, suppose that the first partial is selec
arbitrarily at f 1 . Then f 2 must be

a f1 , ab f1 , a2b f1 , a2b2f 1 , a3b2f 1 , or 2 f 1 ~2!

since any other interval will causef 2 / f 1 to be outside the
scale intervals. Suppose, for instance, thatf 25a2b f1 is se-
lected. Thenf 3 must be chosen so thatf 3 / f 1 and f 3 / f 2 are
both scale intervals. The former condition implies thatf 3

must be one of the intervals in~2! while the latter restrictsf 3

even further. For instance,f 35a3b2f 1 is possible since
a3b2f 1 /a2b f15ab is one of the scale intervals in~1!. But
f 35a3b3f 1 is not possible sincea3b3f 1 /a2b f15ab2 is not
one of the scale intervals. Clearly, building complement

a-
e
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spectra for nonequal scales requires more care than in
equal tempered case where partials can always be chos
be scale steps. For some scales, no complementary sp
may exist. For some, no complete spectra may exist.

C. Symbolic computation of related spectra

This process of building spectra rapidly becomes co
plex. A symbolic table called the%-table~pronounced ‘‘Oh-
plus-table’’! simplifies and organizes the choices of possi
partials at each step. The easiest way to introduce this
continue with the example of the previous section.

Let the scalar intervals in~1! be written ~1,0!, ~1,1!,
~2,1!, ~2,2!, ~3,2!, and ~3,3!, where the first number is th
exponent ofa and the second is the exponent ofb. Since the
scale is generated by a repeating pattern, i.e., it is assum
repeat at each octave,~3,3! is equated with~0,0!. Basing the
scale on the octave is not necessary, but it simplifies
discussion. The%-Table I represents the relationships b
tween all the scale intervals. The table shows, for instan
that the intervala2b combined with the intervalab gives the
scale intervala3b2, which is notated (2,1)% (1,1)5(3,2).

The asterisk indicates that the given product is not p
missible since it would result in intervals that are not sca
intervals. Thusa2b5(2,1) cannot be%-added toa5(1,0)
since together they form the intervala3b which is not an
interval of the scale. Observe that the ‘‘octave’’ has be
exploited whenever the product is greater than 2. For
stance, (1,1)% (3,2)5(4,3). When reduced back into the o
tave,~4,3! becomes~1,0! as indicated in the table, expressin
the fact thata4b3/a3b35a1b0. At first glance this may ap-
pear to be some kind of algebraic structure such as a grou
a monad.16 However, algebraic structures require closu
i.e., that operations on members of the set give answers
remain within the set. The presence of the asterisks indic
that % does not define a closed operator.

TABLE I. %-table for the scale defined in~1!.

% ~0,0! ~1,0! ~1,1! ~2,1! ~2,2! ~3,2!

~0,0! ~0,0! ~1,0! ~1,1! ~2,1! ~2,2! ~3,2!
~1,0! ~1,0! * ~2,1! * ~3,2! *
~1,1! ~1,1! ~2,1! ~2,2! ~3,2! ~0,0! ~1,0!
~2,1! ~2,1! * ~3,2! * ~1,0! *
~2,2! ~2,2! ~3,2! ~0,0! ~1,0! ~1,1! ~2,1!
~3,2! ~3,2! * ~1,0! * ~2,1! *

TABLE II. A perfect spectrum for the scale~1!.

i 1 2 3 4 5 6 7 k

ti ~3,3! ~5,5! ~6,6! ~9,8! ~10,9! ~11,10! ~13,12!
si ~0,0! ~2,2! ~0,0! ~3,2! ~1,0! ~2,1! ~1,0!

r i ,k ~2,2! ~1,1! ~3,2! ~1,1! ~1,1! ~2,2! 1
~0,0! ~1,0! ~1,0! ~2,2! ~0,0! 2

~3,2! ~2,1! ~2,1! ~1,1! 3
~1,0! ~3,2! ~1,0! 4

~2,1! ~2,1! 5
~1,0! 6
2425 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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D. Construction of spectra

The %-Table I was constructed from the scale ste
given in Eq.~1!; other scalesS define analogous tables. Th
section shows how to use such%-tables to construct spectr
related to a given scale.

Let S be a set of scale intervals with unit of repetition
‘‘octave’’ s* . Let T5@S,s* 1S,2s* 1S,3s* 1S,...# be a
concatenation ofS and all its octaves.~The symbol ‘‘1’’ is
used here in the sense of vector addition.! Each element of
sPS represents an equivalence classs1ns* of elements in
T.
Example: For the scale of the previous section,

S5@~0,0!,~1,0!,~1,1!,~2,1!,~2,2!,~3,2!#

with octaves* 5(3,3). Then

s* 1S5@~3,3!,~4,3!,~4,4!,~5,4!,~5,5!,~6,5!#,

2s* 1S5@~6,6!,~7,6!,~7,7!,~8,7!,~8,8!,~9,8!#,

etc., andT is a concatenation of these.
The procedure for constructing spectra can now

stated.
Symbolic Spectrum Construction:
~1! Chooset1PT and let s1PS be the corresponding

representative of its equivalence class.
~2! For i 52,3,..., chooset iPT with correspondingsi

PS so that there arer i ,i 2 j with

si5sj % r i ,i 2 j ~3!

for j 51,2,...,i 21.
The result of this procedure is a string oft i which de-

fines a set of partials. By construction, the spectrum b
from these partials is complementary to the given scale. If
addition, all of the scale steps appear among either thes or
the r , then the spectrum is complete, and hence perfect.

TABLE III. %-table for the Pythagorean scale defined in~4!.

% ~0,0! ~1,0! ~2,0! ~2,1! ~3,1! ~4,1! ~5,1!

~0,0! ~0,0! ~1,0! ~2,0! ~2,1! ~3,1! ~4,1! ~5,1!
~1,0! ~1,0! ~2,0! * ~3,1! ~4,1! ~5,1! *
~2,0! ~2,0! * * ~4,1! ~5,1! * *
~2,1! ~2,1! ~3,1! ~4,1! * ~0,0! ~1,0! ~2,0!
~3,1! ~3,1! ~4,1! ~5,1! ~0,0! ~1,0! ~2,0! *
~4,1! ~4,1! ~5,1! * ~1,0! ~2,0! * *
~5,1! ~5,1! * * ~2,0! * * *

TABLE IV. A perfect spectrum for the Pythagorean scale~4!.

i 1 2 3 4 5 6 7 k

ti ~5,2! ~8,3! ~10,4! ~12,4! ~14,5! ~15,5! ~17,6!
si ~0,0! ~3,1! ~0,0! ~2,0! ~4,1! ~5,1! ~2,0!

r i ,k ~3,1! ~2,1! ~2,0! ~2,1! ~1,0! ~2,1! 1
~0,0! ~4,1! ~4,1! ~3,1! ~3,1! 2

~2,0! ~1,0! ~5,1! ~0,0! 3
~4,1! ~2,0! ~2,0! 4

~5,1! ~4,1! 5
~2,0! 6
2425William A. Sethares: Specifying spectra for music
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Equation~3! expresses the desire to have all of the
tervals between all of the partials be scale intervals. A se
sj are given~which are defined by previous choices of t
t j !. Solving this requires finding a singlesi such that Eq.~3!
is well defined for all j up to i 21. This can be done by
searching all the columnssj for an elementsi in common. If
found, then the corresponding value ofr i ,i 2 j is given in the
leftmost column. Whether this step is solvable for a parti
lar i , j pair depends on the structure of the table and on
particular choices already made for previoussi . Solution
techniques for~3! are discussed at length in the Appendix

It is probably easiest to understand the procedure
working through an example. One spectrum related to
scale~1! is given in Table II. This shows the choice oft i , the
corresponding scale stepssi ~which are thet i reduced back
into the octave!, and ther i ,k that complete Eq.~3!. Since all
the si and r i ,k are scale steps, this spectrum is complem
tary. Since all scale steps can be found among thesi or r i ,k ,
the spectrum is complete. Hence the spectrum of Table
perfect for this scale. To translate the table into frequenc
for the partials, recall that the elementst i express the power
of a andb times an unspecified fundamentalf . Thus the first
partial is f 15a3b3f , the second isf 25a5b5f , etc.

III. PERFECT SPECTRA FOR PYTHAGOREAN SCALES

The Pythagorean diatonic scale of Fig. 2 is construc
from two intervalsa andb in the ordera,a,b,a,a,a,b. Thus
the scale steps are given by

1 a a2 a2b a3b

~0,0! ~1,0! ~2,0! ~2,1! ~3,1!

a4b a5b
and

a5b252

~4,1! ~5,1! ~5,2!5~0,0!. ~4!

Typically, a2b is a pure fourth. Along with the condition tha
a5b252, this uniquely specifiesa59/8 andb5256/243, and
so the scale contains two equal tetrachords separated b
standard interval 9/8. The%-table for this Pythagorean sca
is shown in Table III. These exact values are not neces
for the construction of the perfect spectra that follow, and
is not necessary that~5,2! be an exact octave; an
‘‘pseudo-octave’’17 or interval of repetition will do.

FIG. 4. Dissonance curve for the spectrum specially designed for play in
Pythagorean diatonic scale has minima at all the specified scale steps
extra ‘‘broad’’ minima are not caused by coinciding partials.
2426 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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Spectra can be assembled by following the procedure
symbolic spectrum construction, and one such spectrum
given in Table IV. Observe that all of thesi andr i ,k are scale
steps, and that all seven scale steps are present amongsi

and ther i ,k . Hence this spectrum is perfect for the Pythag
ean scale~4!. Assuming the standard values fora andb, this
spectrum has its partials at

f , 2 f , 3f , 4f ,
81

16
55.0625f ,

27

4
56.75f ,

~5!
243

32
'7.594f , and

81

8
510.125f .

The first several partials are harmonic, and this is the ‘‘cl
est’’ perfect Pythagorean spectrum to harmonicity. For
ample, there are no suitable partials between (12,4)'5 and
(14,5)56.75, and thus no way to closely approximate t
sixth harmonic partial 6f . It is easy to check that~13,4! and
~14,4! are not scale steps, and that (13,5)5(3,1) forms the
interval ab with ~12,4!. Sinceab is not a scale step,~13,5!
cannot occur in a complementary spectrum.@However,
(13,5)56 can be used if~12,4! is replaced by (11,4)59/2.
This would then sacrifice the accuracy of the fifth harmo
in order to increase the accuracy of the sixth. Trade-offs s
as this are common.#

The dissonance curve for the Pythagorean spectrum~5!
is shown in Fig. 4, under the assumption that the amplitu
of the i th partial is 0.9i . As expected from the principle o
coinciding partials, this curve has minima that align with t
scale steps. Thus there are significant minima at the
fourth and fifths, and at the Pythagorean third 81/64 and
Pythagorean sixth 27/16, rather than at the just thirds
sixths as in the harmonic dissonance curve from Fig. 1. T
spectrum will not exhibit rough beating when its thirds
sixths are played in long sustained passages in the Pytha
ean tuning. There are also two extra minimum which a
very shallow and broad, and are not due to coinciding p
tials. The exact location and depth of these minima chan
significantly as the amplitude of the partials are changed.
is usual for such extra minima, they are only barely dist
guishable from the surrounding regions of the curve. Th
perfect spectra, as constructed by the symbolic procedure
give dissonance curves with minima that correspond clos
with scale steps of the desired scale.

IV. SPECTRUM FOR A DIATONIC TETRACHORD

A more general diatonic tetrachordal scale is construc
from three intervalsa, b, andc in the ordera,a,b,c,a,a,b.
The scale steps are given by

1 a ab a2b a2bc

~0,0,0! ~1,0,0! ~1,1,0! ~2,1,0! ~2,1,1!

a3bc a3b2c
and

a4b2c52

~3,1,1! ~3,2,1! ~4,2,1!5~0,0,0!.

~6!

As before,a2b is a pure fourth that defines the tetrachor
The new intervalc is typically given by the interval remain

e
wo
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TABLE V. %-table for the tetrachordal scale defined in~6!.

% ~0,0,0! ~1,0,0! ~1,1,0! ~2,1,0! ~2,1,1! ~3,1,1! ~3,2,1!

~0,0,0! ~0,0,0! ~1,0,0! ~1,1,0! ~2,1,0! ~2,1,1! ~3,1,1! ~3,2,1!
~1,0,0! ~1,0,0! * ~2,1,0! * ~3,1,1! * ~0,0,0!
~1,1,0! ~1,1,0! ~2,1,0! * * ~3,2,1! ~0,0,0! *
~2,1,0! ~2,1,0! * * * ~0,0,0! ~1,0,0! ~1,1,0!
~2,1,1! ~2,1,1! ~3,1,1! ~3,2,1! ~0,0,0! * * *
~3,1,1! ~3,1,1! * ~0,0,0! ~1,0,0! * * ~2,1,1!
~3,2,1! ~3,2,1! ~0,0,0! * ~1,1,0! * ~2,1,1! *
t
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ing when two tetrachords are joined, and soc59/8. There
are no standard values fora and b. Rather, many differen
combinations have been explored over the years.
%-table for this diatonic tetrachordal scale is given in Ta
V. As before, it is not necessary that~4,2,1! be an exact
octave, though it must define the intervals at which the sc
repeats.

Spectra can be constructed by following the symbo
spectrum construction procedure, and one such spectru
given in Table VI. Observe that all of thesi andr i ,k are scale
steps and that all seven scale steps are present amongsi

or r i ,k . Hence this spectrum is perfect for the specified t
rachordal scale~6!.

In order to draw the dissonance curve, it is necessar
pick particular values for the parametersa, b, and c. As
mentioned above,c59/8 is the usual difference between tw
tetrachords and the octave. Somewhat arbitrarily, leb
510/9, which, combined with the condition thata2b54/3
~i.e., forms a tetrachord! implies thata5A6/5. With these
values, the spectrum defined in Table VI is

f , 2 f , 3f , 4f , 6.57f , 8f , 12 f , and 16f ,

and the resulting dissonance curve is given in Fig. 5 wh
the amplitude of thei th partial is 0.9i . Minima occur at all
scale steps except the first, the intervala. While this may
seem like a flaw, it is really quite normal for very sma
intervals~like the major second! to fail to be consonant; the
Pythagorean spectrum of the previous section was q
atypical in this respect. Again, although a few broad mini
occur, they are fairly undistinguished from the surround
intervals. Thus the symbolic method of spectrum constr
tion has again found a spectrum that is well suited to
desired scale.

TABLE VI. A perfect spectrum for the tetrachordal scale~6!.

i 1 2 3 4 5 6 7 k

ti ~4,2,1! ~6,3,2! ~8,4,2! ~11,5,3! ~12,6,3! ~14,7,4! ~16,8,4!
si ~0,0,0! ~2,1,1! ~0,0,0! ~3,1,1! ~0,0,0! ~2,1,1! ~0,0,0!

r i ,k ~2,1,1! ~2,1,0! ~3,1,1! ~1,1,0! ~2,1,1! ~2,1,0! 1
~0,0,0! ~1,0,0! ~0,0,0! ~3,2,1! ~0,0,0! 2

~3,1,1! ~2,1,0! ~2,1,1! ~1,1,0! 3
~0,0,0! ~0,0,0! ~0,0,0! 4

~2,1,1! ~2,1,0! 5
~0,0,0! 6
oc. Am., Vol. 102, No. 4, October 1997
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V. WHEN PERFECTION IS IMPOSSIBLE

The above examples may lull the unsuspecting into
belief that perfect spectra are possible for any scale. Unf
tunately, this is not so. Consider first a simple scale bu
from three arbitrary intervalsa, b, and c in the order
a,b,c,a. The scale steps are

1
~0,0,0!

a
~1,0,0!

ab
~1,1,0!

abc
~1,1,1!

and
a2bc52

~2,1,1!5~0,0,0!
.

~7!

As suggested by the notation,~2,1,1! serves as the basic uni
of repetition which would likely be the octave. The%-table
for this scale is given in Table VII.

The difficulty with this scale is that the element~1,1,0!
cannot be combined with any other. The symbolic constru
tion procedure requires at each step that thesi be expressible
as a %-sum of sj and somer i ,k . But it is clear that the
operation does not allow~1,1,0! as a product with any ele-
ment @other than the identity~0,0,0!# due to the column of
asterisks. In other words, if the interval~1,1,0! ever appears
as a partial in the spectrum or as one of ther i ,k , then the
construction process must halt since no more complemen
partials can be added. In this particular example, it is po
sible to create a perfect spectrum by having the elem
~1,1,0! appear only as the very last partial. However, such
strategy will not work if there are two columns of asterisk

An extreme example for which no perfect spectrum
possible is a scale defined by four different intervalsa, b, c,
andd taken in alphabetical order. The scale steps are

FIG. 5. The dissonance curve for the spectrum related to the diatonic te
chord with a256/5, b510/9, andc59/8, has minima at all scale steps
except for the first. The broad minima at 1.16, 1.41, and 1.71 are not cau
by coinciding partials.
2427William A. Sethares: Specifying spectra for music



1
~0,0,0,0!

a
~1,0,0,0!

ab
~1,1,0,0!

abc
~1,1,1,0! and

abcd52
~1,1,1,1!5~0,0,0,0!. ~8!
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As suggested by the notation,~1,1,1,1! serves as the basi
unit of repetition which would likely be the octave. Th
%-table for this scale is given in Table VIII.

Partials of a complementary spectrum for this scale
only have intervals that are multiples of the octave~1,1,1,1!
due to the preponderance of disallowed asterisk entries in
%-table. The only possible complementary spectrum
(0,0,0,0)f , (1,1,1,1)f , (2,2,2,2)f , etc., which is clearly not
complete, and hence not perfect. Thus a given scale ma
may not have perfect spectra, depending on the number
placement of the asterisk entries in the table.

VI. DISCUSSIONS AND CONCLUSIONS

A. Related versus perfect spectra

Do not confuse the idea of a spectrum related to a gi
scale with the notion of a perfect~complete and complemen
tary! spectrum for the scale. The former is based directly
a psychoacoustic measure of the perceived sensory d
nance of the sound, while the latter is a construction ba
on the coincidence of partials within the spectrum. The la
is best viewed as an approximation and simplification of
former, in the sense that it leads to a tractable system
spectrum determination via the principle of coinciding p
tials.

Some scale intervals that appear in the spectrum~i.e.,
among thesi or the r i ,k of Tables II, IV, or VI! may not be
minima of the dissonance curve. For instance, the te
chordal spectrum of Sec. IV does not have a minimum at
first scale step even though the spectrum is complete. A
natively, some minima may occur in the dissonance cu
that are not explicitly ratios of partials. Three such minim
occur in Fig. 5; they are the broad kind of minima that a
due to wide spacing between certain pairs of partials.

The notion of a perfect spectrum shows starkly that
most important feature of related spectra and scales are
coincidence of partials of a tone, a result that would not h
surprised Helmholtz. Perhaps the crucial difference is t
related spectra take explicit account of the amplitudes of
partials, whereas perfect spectra do not. In fact, by man
lating the amplitudes of the partials, it is possible to ma
various minima appear or disappear. For instance, it is p
sible to ‘‘fix’’ the problem that the tetrachordal spectrum
missing its first scale stepa by increasing the amplitudes o
the partials that are separated by the ratioa. Alternatively, it
is often possible to remove a minimum from the dissona
curve of a perfect spectrum by decreasing the amplitude
the partials separated by that interval. Moreover, while
minimum due to coinciding partials may be extinguished
manipulating the amplitudes, its location~the interval it
forms! remains essentially fixed. In contrast, the broad ty
minima that are not due to coinciding partials move contin
ously as the amplitudes vary; they are not a fixed feature
the dissonance curve of a perfect spectrum. In choosing
2428 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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amplitudes of the partials of a perfect spectrum, care m
also be taken to avoid masking one partial by another.

B. Almost perfect spectra

As the number of different intervals in a desired sca
increases, it becomes more difficult to find perfect spec
the %-tables become less full~i.e., have more disallowed
asterisk entries! and fewer solutions to Eq.~3! exist. There
are several simple modifications to the procedure that m
result in spectra that are well matched to the given sc
even when perfection is impossible. One simple modificat
is to allow the spectrum to be incomplete. Since very sm
intervals are unlikely to be consonant with any reasona
amplitudes of the partials, they may be safely removed fr
consideration. A second simplifying strategy is to relax t
requirement of complementarity, while it is certainly impo
tant that prominent scale steps occur at minima, it is
obviously harmful if some extra minima exist. Indeed, if a
extra minimum occurs in the dissonance curve but ne
appears in the music, then its existence is transparent to
listener.

A third method of relaxing the procedure can be appl
whenever the scale is specified only over an octave~or over
some pseudo-octave!, in which case the completeness a
complementarity need only hold over each octave. For
stance, a partialt i might be chosen even though it forms
disallowed interval with a previous partialt j , providing the
two are more than an octave apart. Thus judicious relaxa
of various elements of the procedure may allow specificat
of useful spectra even when perfect spectra are not poss

C. The mathematician’s view

From a mathematical point of view, the symbolic spe
trum selection procedure raises a number of interesting
sues. The% operation defined here is not any kind of sta
dard mathematical operator because of the disallow
asterisk entries. Though they do not form any recogniza
algebraic structure,% tables do have several features th
would be familiar to an algebraist. For instance, the tab
have an identity element, the operation% is commutative,
and it is associative when it is well defined. These are use
the Appendix to derive a set of properties that can be use
streamline the symbolic spectrum construction procedure

%-tables clearly have a significant amount of structu
For instance, any%-table can be viewed as a subset of t
commutative group of integerm vectors (s1 ,s2 ,...,sm)
where thei th entry is taken modni , from which certain
elements have been removed. Can this structure be
ploited? Another obvious question concerns the possibility
decomposing%-tables in the same kind of ways that arb
trary groups are decomposed into normal subgroups. M
such a decomposition allow the building up of spectra
larger scales in terms of spectra for simpler scales?
2428William A. Sethares: Specifying spectra for music
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D. The composer’s view

From the musical point of view, perfect spectra raise
number of issues. For instance, a given nonequal s
sounds different in each key because the set of interva
slightly different. How would the use of perfect spectra i
fluence the ability to modulate through various keys? Cer
chords will become more or less consonant when pla
with perfect spectra than when played with harmonic spec
What patterns of~non!harmonic motion are best suited
perfect spectra and their chords? Will perfect spectra be
ful for some part of the standard repertoire, or will they
only useful for new compositions that directly exploit the
strengths~and avoid their weaknesses!?

E. Informal experiments

Preliminary experiments with perfect spectra are enco
aging. A simple ‘‘organ’’ sound with eight harmonic partia
was generated via additive synthesis. A second organ
sound which is perfect for the Pythagorean scale was ge
ated with partials specified in~5!. All parameters except fo
the frequencies of the partials were identical. Both sou
pleasant, if somewhat bland and ‘‘electronic.’’ Th
Pythagorean spectrum, though nonharmonic, gives a defi
sense of pitch, and is well fused. It also has a sligh
‘‘brighter’’ sound, probably because the highest partials
cur at somewhat higher frequencies than in the harmo
version. The Bach chorale ‘‘Aus Meine Herzens Grund
was recorded as a standard MIDI file and comparisons w
made between the piece when played in~1! 12-tet with the
harmonic spectrum,~2! Pythagorean tuning~in G! with the
harmonic spectrum,~3! Pythagorean tuning~in G! with the
Pythagorean spectrum, and~4! 12-tet with the Pythagorea
spectrum. The differences between the four versions
subtle, but clear. For instance, there are several susta
major thirds between the alto and soprano lines, as in m
sures 4, 10, 13, and 16. In 12-tet, beats can be readily
ceived between these two voices. The beats are even m
pronounced in the Pythagorean tuning due to the stretc
of the thirds. However, when the perfect spectrum is pla
in its related scale, the beats disappear, and the clarity o
chord increases. The fourth case is only marginally dis
guishable from the first two, emphasizing that the Pythag
ean spectrum itself is not overly bizarre.

It is certainly not true that all music will sound great
improved~or even much different! when employing perfec
spectra. For instance, the stylistically similar Bach chor
‘‘Als der Gütige Gott’’ ~as was used in Ref. 9 to demonstra
the effect of stretched spectra! does not show the same e
fect. With this piece, there is almost no noticeable differen
~other than the brightness of the spectrum! between the per-

TABLE VII. %-table for the scale defined in~7!.

% ~0,0,0! ~1,0,0! ~1,1,0! ~1,1,1!

~0,0,0! ~0,0,0! ~1,0,0! ~1,1,0! ~1,1,1!
~1,0,0! ~1,0,0! * * ~0,0,0!
~1,1,0! ~1,1,0! * * *
~1,1,1! ~1,1,1! ~0,0,0! * *
2429 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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fect and harmonic versions. On investigation, it became c
that this is because there are no sustained major thirds in
chorale; the ‘‘held’’ chords are all inversions that avoid clo
position major thirds. Hence the piece avoids resolving
those chords that would sound most aggressive in
Pythagorean tuning.

F. Nonharmonic sounds

Exploiting nonharmonic sounds is a topic of conside
able interest to the computer music community,18,19 and the
notion of perfect spectra helps to specify classes of po
tially useful nonharmonic sounds. Perfect spectra stipu
the frequencies of the partials, but leave the amplitudes f
Since spectrum is just one aspect of timbre, many differ
timbres may share a given spectrum. For instance, bra
timbres arise~at least in part! from a rise in the spectra
energy in the higher partials, while flute timbres are dep
dent on a breathy puff in the attack.~For an overview of the
physical correlates of timbre, see Ref. 20.! For spectra such
as the Pythagorean, with partials that are detuned only a
percent from harmonic, it is likely that analogous increas
in the energy of the higher partials will tend to be heard
trumpetlike, while breathy puffs of air in the attack will ten
to cause the sound to appear flutelike. Thus each per
spectrum defines a whole class of timbres which may so
as different from each other as a trumpet from a flute.

Finally, the method does not give any indication of ho
such sounds might be generated or created. One obvious
is via additive synthesis. Another is via the technique
‘‘spectral mapping’’21 which directly manipulates the par
tials of a sampled sound. A much more difficult question
how acoustic instruments might be given the kinds of dev
tions from harmonicity that are specified by perfect spec

APPENDIX: PROPERTIES OF %-TABLES

Given any set of scale intervalsS, the %-table derived
from S has the following characteristics.

Identity: The ‘‘octave’’ or unit of repetitions* acts as
an identity element, i.e.,

s* % s5s% s* 5s ;sPS.

Commutativity:The %-table is symmetric, i.e.,

s1% s25s2% s1 ;s1 ,s2PS. ~A1!

If one side of~A1! is undefined~is ‘‘equal’’ to * !, then so is
the other. Commutativity of% follows directly from the
commutativity of products of powers of real numbers.

Associativity:The % operator is associative whenever
is well defined. Thus

TABLE VIII. %-table for the simple scale defined in~8!.

% ~0,0,0,0! ~1,0,0,0! ~1,1,0,0! ~1,1,1,0!

~0,0,0,0! ~0,0,0,0! ~1,0,0,0! ~1,1,0,0! ~1,1,1,0!
~1,0,0,0! ~1,0,0,0! * * *
~1,1,0,0! ~1,1,0,0! * * *
~1,1,1,0! ~1,1,1,0! * * *
2429William A. Sethares: Specifying spectra for music
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~s1% s2! % s35s1% ~s2% s3! ;s1 ,s2 ,s3PS ~A2!

provided that both sides of~A2! exist.
It is indeed possible for one side of~A2! to exist but not

the other.
Example:The tetrachordal scale~6! has%-Table V. Ob-

serve that„(2,1,1)% (1,0,0)…% (2,1,0) is well defined and
equals~1,0,0!, but that (2,1,1)% „(1,0,0)% (2,1,0)… does not
exist because (1,0,0)% (2,1,0) is disallowed. To further em
phasize how unusual this construction is, observe that
commutativity, (2,1,1)% (1,0,0)5(1,0,0)% (2,1,1). Substi-
tuting this in the above calculation gives„(1,0,0)% (2,1,1)…
% (2,1,0) which is indeed equal to (1,0,0)% „(2,1,1)
% (2,1,0)…, since both sides are~1,0,0!.

The remaining properties of%-tables concern ‘‘solu-
tions’’ to the equation

si5sj % r i ,i 2 j ~A3!

that arises in the symbolic spectrum construction proced
Recall that in the procedure, a set ofsj are given~which are
defined by previous choices of thet j !. The goal is to find a
singlesi such that Eq.~A3! is well defined for allj up to i
21. The properties of%-tables can help pinpoint viable so
lutions to ~A3!.

Theorem A.1: Suppose thatsjPS have been chosen fo
all j ,k. Let Sj be the set of all non-* entries in thesj

column of the %-table. Then for alli>k, si must be an
element of ù

j ,k
Sj .

Proof: First consider the casei 5k52, with s1 specified.
Then ~A3! requires choice ofs2 such thats25s1% r 1,1 for
somer 1,1. Suchr 1,1 will exist exactly whens2PS1. For i
.2, si5s1% r i ,i 2 j must be solvable, which again require
thatsiPS1. The general casesi5sj % r i ,i 2 j is similarly solv-
able exactly whensiPSj . Since this is true for everyj ,k,
siP ù

j ,k
Sj . h

Thus when building spectra according to the procedu
the setS k5 ù

j ,k
Sj defines the allowable partials at thekth

step. Clearly,S k can never grow larger sinceS k.S k11;k,
and it may well become smaller ask increases. This demon
strates that the order in which the partials are chosen is
cial in determining whether a perfect spectrum is realizab

The easiest way to appreciate how the theorem A.1 s
plifies ~and limits! the selection problem is by example.

Example:In Table I, oncesi5(3,2) for somei , then for
all k. i , sk must be~3,2!, ~1,0!, or ~2,1!.

Example:In Table III, oncesi5(2,0) has been chosen
then for all k. i , sk must be either~2,0!, ~4,1!, or ~5,1!. In
particular, nosk can be the identity~0,0!.

Corollary A.1: Suppose that an elementŝPS appears in
every column of the%-table. Then for any choice ofsj , j
, i , ~A3! is always solvable withsi5 ŝ.

Proof: Since ŝ is in every column of the table,ŝ
PSj; j and henceŝP ù

j ,k
Sj for any k. h

In other words, for anysPS, there is always ar PS
such thatŝ5s% r , and soŝ is always permissible.
2430 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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Example:In Table V, the identitys* 5(0,0,0) appears
in every column. Thus it is always possible to choose a p
tial t i with the equivalence classs* at any step.

Suppose, on the other hand, that an elements̄PS ap-
pears nowhere in the%-table other than in the column an
row of the identity. Thens̄ cannot be used to define one
the si since s̄¹Sk for any k and so for anysiÞs* , si5 s̄
1r has no solution. Althoughs̄ cannot occur among thesi ,
it is still possible that it might appear among ther i ,k . Indeed,
it will need to in order to find a complete spectrum.

Example: The elements̄5(2,1) appears nowhere in
%-table III defined by the Pythagorean scale. The spectr
was made complete by ensuring thats̄ appears among the
r i ,k of Table IV.

Another property of%-tables is that elements are a
ranged in ‘‘stripes’’ from southwest to northeast. For i
stance, in Table III, a stripe of~4,1! elements connects th
4,1 entry with the 1,4 entry. Similarly, a stripe of~3,1! ele-
ments connect the 3,1 with the 1,3 entries, although the st
is broken up by a* . The fact that such~possibly interrupted!
stripes must exist is the content of the next theorem.

Given am note scaleS, the entries of the correspondin
%-table can be labeled as a matrix$aj ,k% for j 51,2,...,m and
k51,2,...,m. Let Pi denote thei th stripe of the%-table, that
is, Pi5$aj ,k% for all j andk with j 1k5 i 11.

Example:For the Pythagorean%-table,

P15$~0,0!%, P25$~1,0!,~1,0!%,

P35$~2,0!,~2,0!,~2,0!%,

P45$~2,1!,* ,* ,~2,1!%,

P45$~3,1!,~3,1!,* ,~3,1!,~3,1!,%, etc.

Theorem A.2: For eachi , all non-* elements of the
stripePi are identical.

Proof: By construction, the elementssi andsi 11PS are
integer vectors, and they may be ordered so that

si 115si1ej ,i; i , ~A4!

whereej ,i is a unit vector with zeroes everywhere except
a single 1 in thej th entry. LetS(si) represent the sum of th
entries insi5(s1 ,s2 ,...,sp), i.e., S(si)5S j 51

p s j , and let
S* represent the sum of the entries in the element that fo
the unit of repetition. Because the% operation adds power
of the generating intervals,

S~sj % sk!5S~sj !1S~sk! ~mod S* ! ~A5!

wheneversj % sk is well defined. Because of the ordering, th
entries in the stripePi can be written

sj % sk , sj 21% sk11 , sj 22% sk12•••

for all positive j andk with j 1k5 i 11. Hence

S~sj % sk!5S~sj 21% sk11!5••• ~A6!

whenever these are defined. From~A4!, S(sj )5S(sk) im-
plies that sj5sk . Hence ~A6! shows that sj % sk5sj 21

% sk115••• whenever the terms are defined, and hence
well-defined elements of the stripe are identical. h

This is useful because stripes define whether a gi
choice for thet i ~and hencesi! is likely to lead to complete
2430William A. Sethares: Specifying spectra for music
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spectra. Suppose thats̃ is a candidate forsi at the i th step.
Whethers̃ will ‘‘work’’ for all previous sj ~i.e., whethers̃
5sj % r has solutions for allsj ! depends on whethers̃ ap-
pears in all the correspondingSj . Theorem A.2 pinpoints
exactly wheres̃ must appear, at the intersection of the c
umn Sj and the stripe containings̃. Thus the procedure ca
be implemented without conducting a search fors̃ among all
possible columns.

A special case is when a column is ‘‘full,’’ i.e., when
contains no* entries.

Theorem A.3: Let Sf be a full column corresponding t
sfPS. Thensi5sf % r i is solvable for allsiPS.

Proof: Since there arem entries in the columnSf and
there arem differentsi , it is only necessary to show that n
entries appear twice. Using the ordering~A4! of the previous
proof, Sf has elements

s1% sf , s2% sf ,...,sm% sf , ~A7!

which are well defined by assumption. Now proceed by c
tradiction, and suppose that thei th and j th elements of~A7!
are the same, i.e.,si % sf5sj % sf . Then

S~si % sf !5S~sj % sf ! ~mod S* !

~whereS andS* were defined in the previous proof!. This
implies that

S~si !1S~sf !5S~sj !1S~sf ! ~mod S* !

which implies thatS(si)5S(sj ) (modS* ). By the same
argument as in the proof of theorem A.2, this implies th
si5sj . But eachsi appears exactly once in~A7!, which
gives the desired contradiction. h

Thus when a column is full, it must contain every el
ment. In this case, Eq.~A3! puts no restrictions on the choic
of si . Let $sj% be all the elements ofS that have full col-
umns. Then a%-subtable can be formed by these$sj% that
has no illegal* entries. For example, recall Table I which
generated by the scale~1!. The elements~0,0!, ~1,1!, and
~2,2! have full columns and hence can be used to form a
%-subtable. It is easy to generate perfect spectra for such
%-subtables because Eq.~A3! puts no restrictions on the
choice of partials for a complementary spectrum. Whet
these extend to all elements of the scale, however, dep
heavily on the structure of the nonfull part of the table. Fin
ing spectra for full subtables is exactly the same as find
2431 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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spectra for equal temperaments, whose%-tables have no dis-
allowed* entries. In fact, full%-tables form a commutative
group, which may explain why the equal tempered case
relatively easy to solve.

All of the above properties were stated in terms of t
columns of the%-table. By commutativity, the propertie
could have been stated in terms of the corresponding ro
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