Specifying spectra for musical scales

William A. Sethares®
Department of Electrical and Computer Engineering, University of Wisconsin, Madison,
Wisconsin 53706-1691

(Received 5 July 1996; accepted for publication 3 June 1997

The sensory consonance and dissonance of musical intervals is dependent on the spectrum of the
tones. The dissonance curve gives a measure of this perception over a range of intervals, and a
musical scale is said to belatedto a sound with a given spectrum if minima of the dissonance
curve occur at the scale steps. While it is straightforward to calculate the dissonance curve for a
given sound, it is not obvious how to find related spectra for a given scale. This paper introduces a
“symbolic method” for constructing related spectra that is applicable to scales built from a small
number of successive intervals. The method is applied to specify related spectra for several different
tetrachordal scales, including the well-known Pythagorean scale. Mathematical properties of the
symbolic system are investigated, and the strengths and weaknesses of the approach are discussed.
© 1997 Acoustical Society of Amerid&0001-496@07)05509-4

PACS numbers: 43.75.Bc, 43.75.Q4/J9

INTRODUCTION turn closely related to Helmhol*'beat theory” of disso-

The motion from consonance to dissonance and baCEance in which the beating between higher harmonics causes
a roughness that is perceived as dissonance.

again is a standard feature of most Western music, and sev- . .
Nonharmonic sounds can have dissonance curves that

eral attempts have been made to explain, define, and quantl%fer dramatically from Fig. 1, indicating that intervals with

the terms “consonance” and “dissonance.” For example,

Tenney provides a historical overview that identifies five the most SEnsory consonance depend str.ongly on the str_uc-

separate uses of the terms, and a longstanding debate SEH[e of.the Pa”'a'ﬁ of the sound. A drqmatlc example O.f th,',s

rounds the “reductionist” explanations of Plomp and Lefelt IS prowded in the Tongs and tuning W'th_ stretched pgmals

and Terhard?, and the proponents of “cultural condition- SEl€ction of gh,e Auditory Demonstrations  recording by
Houtsmaet al.” in which stretched sounds appear more con-

ing” such as Cazdef.One of the most successful of the - .
reductionist approaches is called tonakensorydissonance, S°nant when played in the corresponding stretched octaves
“real” octaves. To talk about this kind

in which the sensory dissonance between pairs of sine wavd@an when played in _
is determined from psychoacoustic experiments. The sensof}f efféct more generally, a spectrum and a scale are said to

dissonance of more complex sounds is then defined to be tH¢ relatedif the dissonance curve has minima at the scale
sum of the dissonances between all simultaneously soundirgfePs- Thus Fig. 1 shows that the Just Intonation scale and
sine wave partials. Because sensory dissonance depends l@fmonic sounds are related. It is easy to find the related
the partials, sounds with different spectra may function dif-scale for a given spectrum simply by drawing the dissonance
ferently. For instance, an interval may be quite consonangurve. But the inverse problem of finding a spectrum that is
when played with one sound, but quite dissonant when perelated to a given scale is not as straightforward. This paper
formed with another. focuses on certain classes of scalsach as tetrachordal
The dissonance curi@g(r) is a function that describes scale$ which are defined by only a few different successive
how the sensory dissonance of a sound with spectFum intervals, and presents an algorithm for constructing families
varies when played at different intervats Figure 1, for of spectra related to these scales.
instance, shows a plot of the dissonance curve for a sound This is important because related spectra can provide the
with six harmonic partials over a range of intervals slightly composer and/or performer with additional flexibility in
larger than an octave. The minima of this curve occur at theerms of controlling the consonance and dissonance of a
simple integer ratios of the Just Intonation scale, reinforcinggiven piece. For example, the Pythagorean tuning is often
the familiar notion that the most consondleast dissonaht  criticized because its major third is sharp compared to the
intervals for sounds with harmonic spectra are those withequal tempered third, which is itself sharper than the just
small integer ratios. The top axis shows the steps of theéhird. This excessive sharpness is heard as a roughness or
12-tone equal tempered scale, which can be viewed as apeating, and is especially noticeable in slow, sustained pas-
proximating many of these just ratios. Techniques for drawsages. Using a related spectrum that is specifically crafted for
ing dissonance curves are described in detail in Ref. 5 and gse in the Pythagorean tuning, however, can ameliorate
computer program is given in Ref. 6. These are based on amych of this roughness. The composer or performer thus has
explicit parametrization of the perceptual data gathered byhe option of exploiting a smoother, more consonant third
Plomp and Leveft (and replicated in Ref.)7 These are in than is available when using unrelated spectra.
The next section reviews previous approaches to the
dElectronic mail: sethares@ece.wisc.edu spectrum selection problem, and recalls the principle of co-
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FIG. 1. Dissonance curve for a spectrum with fundamental at 500 Hz anc l
six harmonic partials has minima at 1.0, 1.14, 1.2, 1.25, 1.33, 1.5, 1.67, 1.7¢ 4/3 498 .
and 2.0, which are shown by the tick marks on the frequency axis. Observ a
that many of these coincide exactly with steps of the Just Intonation scale
and coincide approximately with 12-tet scale steps, which are shown abov P
for comparison. < a
T . . a
inciding partials, which can be used to transform the problen

gp P 243/128 —

into simpler form. A symbolic system is then introduced —
along with a method of constructing related spectra. Sever: | _—
examples are given in detail, and related spectra are four 21 1200

for a Pythagorean scale and for a diatonic tetrachordal scal
A simple pair of examples then shows that it is not always
possible to find such related spectra. The symbolic system isG. 2. Pythagorean major scale has intenais9/8 between all major
investigated in the Appendix, where several mathematicageconds anb=256/243 between all minor seconds. It is laid out here in the
properties are revealed. “key” of C.

coinciding partials. This property of coinciding partials is the
key to solving the spectrum selection problem in certain situ-

The problem of finding spectra for a specified scale wagtions. The simplest case is for equal temperaments.
stated in Ref. 5 in terms of a constrained optimization prob-a_ Spectra for equal temperaments

lem that can sometimes be solved via iterative techniques . . )
such as the genetic algorithfhor simulated annealint- The ratio between successive scale steps in the 12-tone

Though these approaches are very general, the problem @§lual-temperedabbreviated 12-tgtscale is the 12th root of
high dimensionalon the order of the number of partials in 2, 1\?5, or about 1.0595. Similarlyn-tet has a ratio of

the desired spectrumthe algorithms run slowlyovernight, =72 between successive steps. Consider spectra for which
or worse, and they are not guaranteed to find optimal solu-syccessive partials are ratios of powerssoEach partial of
tions (except “asymptotically’). Moreover, even when a gych a spectrum, when transposed into the same octave as

good spectrum is found for a given scale, the technique givege fundamental, lies on a note of the scale. Such a spectrum
no insight into the solution of other closely related spectrumg (.4 ¢o beinducedby the m-tet scale

selection problems. There must be a better way. . .
: . Induced spectra are good candidate solutions to the
Several general properties of dissonance curves are

given in Ref. 6. The fourth of these is the key to simplifying spectrum selection problem since the ratio between any pair
the spectrum selection problem: of partials in an induced spectrum $§ for some integek.

By the property of coinciding partials, the dissonance curve
will tend to have minima precisely at steps of the scale. Thus
such spectra will have low dissonance at scale steps, and
many of the scale steps will be minima.

This insight can be exploited in two ways. First, it can
be used to reduce the search space of the optimization rou-
tine. Instead of searching over all frequencies in a bounded
sponding to such intervals typically “look like” the region, the search need only be conducted over. induced
minima that occur at the simple integer ratios in Fig. 1. ThesSPectra. More straightforwardly, the spectrum selection prob-
other half of the potential minima are caused by more widely®m for equal tempered scales can be solved by careful
spaced partials that do not interact in a significant way. Fofhoice of induced spectra. In Ref. 5, this method was used to
instance, in Fig. 1, only the very shallow minimum at 1.78 isfind spectra related to 10-tet, and other equal temperaments
of this kind. Most musical tones are quite complex, withare equally straightforward. Unfortunately, it is not so clear
numerous partials, and the majority of minima are caused bhow to proceed when confronted with nonequal tunings.

I. GENERAL TECHNIQUES

Property of Coinciding PartialsUp to half of the
2n(n—1) minima of a dissonance curve occur at
interval ratiosr for whichr =f;/f; , wheref; andf;
are partials of-.

In essence, whenever thith partial of the lower tone coin-
cides with theith partial of the upper tone, there is a poten-
tial minimum of the dissonance curve. The minima corre-
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C D E F G A B c A. Basic definitions

} | | | } | | } A desired scal& can be specified either in terms of a set

r S t r s t of intervals &;,51,S;,...,5m) With respect to some funda-
| | o8 | | mental frequency or by the successive ratios=s;/s;_;.
4:3 tetrachord 4:3 tetrachord So S S2 S3 ver Sn—1 Sm

| | N NSNS LN
2:1 octave For instance, for the Pythagorean diatonic scale of Fig. 2,

FIG. 3. Tetrachordal scales divide the octave into two 4:3 tetrachords sepa- S= (1,9/8,81/64,4/3,3/2,27/16,243/128,2/1
rated by an interval of 9:8. The tetrachords are each divided into three o ) ]
intervals to form a seven note scale, which is labeled in the key of C.  andr; is eithera=9/8 orb=256/243 for alli. The intervals

s; e S are called thescale intervals
A spectrumF is defined by a set of partials with fre-

B. Pythagorean scales and the tetrachord quencies atf(;,f,,...,f,). The property of coinciding par-
tials suggests that related spectra can be constructed by en-

uring that the ratios of the partials are equal to scale steps.

he following definitions distinguish the situation where all
ratios of all partials are equal to some scale step, from the
situation where all scale steps occur as a ratio of some pair of
gartials.
Definition: If for eachi and | there is ak such that

To see why spectrum selection is more difficult for non-
equal tunings, consider the Pythagorean diatonic scal
which is shown in Fig. 2 mapped to the “key” of C. This
scale is creatéd from a series of pure 3/2 fifthgranslated
back into the original octave whenever necesgaand all
seven of the fifths are pure. An interesting structural featur

is that there are only two successive intervals, a “Wholef /f—s. then th ¢ is called | tarv to th
step” of a=9/8 and a “half step” ofb=256/243. This [ i =Sk, then the spectrum IS called complementary 1o the

whole step is 4 cents larger than the equal tempered versioﬁ, " . .
b g d P Definition: If for eachk there is at least one pair ofand

while the half step is 10 cents smaller than in 12-tet. _ - _
In attempting to mimic the “induced spectrum” idea of J _such thats,=f; /f;, then the spectrum is calletbmplete
with respect to the scale.

the previous section, it is natural to attempt to place the It ¢ s both let d | i th
partials at scale steps. Unfortunately, the intervals between aspectrum 1S both complete and compiementary, then

scale steps are not necessarily scale steps themselves. FaP calledperfectwith respect to the given scale. Of course,

0 )
instance, if one partial occurred at the seventfy ( scales and spectra need not be perfect in order to sound good
=243/128) and the other at the fourthi;€4/3), then a

or to be playable, and many scales have no perfect spectra at
minimum of the dissonance curve might occurratf; /f; all. Nonetheless, when perfect spectra exist, they are ideal
=a3=729/512, which is not a scale step. Similarly, the ratio

candidates.
between a partial at 4/3 and another at 81/64 is 256/243
=b, which again is not a scale step. B. An example

The Pythagorean scaled%ong example of a large class of - g gimplest nonequal scales are those with only a small
scales based on “tetrachords’which were advocated by &, mper of different successive ratios. For example, one scale

ngmber of ancient theorists such as Archytas, Aris,toxe”usigenerated by two intervats andb has scale intervals
Didymus, Eratosthenes, and PtolefiyA tetrachord is an

interval of a pure fourtha ratio of 4/3 that is divided into so=1, s;=a, s,=ab, s;=a’b, s,=a’h?

three subintervals. Combining two tetrachords around a cen-
tral interval of 9/8 forms a seven tone scale spanning the
octave. For instance, Fig. 3 shows two tetrachords divideavherea andb are any two numbers such thath®=2. For
into intervalsr, s, t andr’,s’,t’. Whenr=r’, s=s’, and this scale,

t=t’, the scale is called an equal-tetrachordal scale. The
Pythagorean scale is the special equal-tetrachordal scale
where r=r'=s=s'=9/8. A modern treatment of tetra- 10 See how it might be possible to build up a perfect spec-

chords and tetrachordal scales is available in Ref. 15. trum for this scale, suppose that the first partial is selected
arbitrarily atf,. Thenf, must be

af,, abf;, a?bf,, a?b?f,, ab?f,, or 2f; (2

since any other interval will causk, /f, to be outside the
Il. A SYMBOLIC SYSTEM scale intervals. Suppose, for instance, thata®bf, is se-
lected. Thenf; must be chosen so thét/f, andf;/f, are
This section presents a symbolic system that uses theoth scale intervals. The former condition implies ttigt
desired scale to define an operation that generates “stringsthust be one of the intervals {2) while the latter restrict$s
representing spectra, i.e., sets of partials. Admissible stringsven further. For instancef;=a3%b?f, is possible since
have all ratios between all partials equal to some interval ira®b?f,/a’bf,=ab is one of the scale intervals if1). But
the scale, and thus are likely to be related spectra, via thé;=a%b%f, is not possible sinca®b®f,/a’bf,=ab? is not
property of coinciding partials. one of the scale intervals. Clearly, building complementary

@

ss=a’b?, and sg=a3b3=2,

r,=a, r,=b, rz=a, ry=b, rg=a, andrg=hb.
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TABLE |. @-table for the scale defined iil). TABLE Ill. &-table for the Pythagorean scale defined4pn

® (0,0 (1,0 1,1 2,9 (2,2 (3,2 ® 0,0 (1,0 (2,0 2,9 (3,1 4,9 (5,9
(0,0 (0,0 (1,0 1,1 2,1 (2,2 (3,2 0,0 0,0 (1,0 (2,0 2, (3,1 4,9 (5,
(1,0 (1,0 * 2,1 * (3,2 * (1,0 1,0 (2,0 * (3,1 4,7 (5,9 *
(1,1 (1,1 2,9 (2,2 3.2 0,0 (1,0 (2,0 (2,0 * * 4,9 (5,1 * *
2,9 (2,9 * (3,2 * 1,0 * 2,9 (2,1 (3,1 4, * 0,0 (1,0 (2,0

(2,2 (2,2 (3,2 (0,0 1,0 1,9 2,9 (3. 30 4,9 (5,9 0,0 1,0 (2,0
(3,2 (3,2 * 1,0 * 2,1 * 4,1 4,1 (5, * 1,0 (2,0 * *
(5.9 5,9 * * (2,0 * * *

spectra for nonequal scales requires more care than in the .
equal tempered case where partials can always be chosenle Construction of spectra

be scalg steps. For some scales, no complementgry spectra The @-Table | was constructed from the scale steps

may exist. For some, no complete spectra may exist. given in Eq.(1); other scales define analogous tables. This
section shows how to use suehtables to construct spectra
related to a given scale.

C. Symbolic computation of related spectra Let S be a set of scale intervals with unit of repetition or

) . ) “octave” s*. Let T=[S,s*+S5,2s* +S,3s*+S,...] be a
This process of building spectra rapidly becomes comnatenation o8 and all its octaves(The symbol “+" is
plex. A symbolic table called the-table (pronounced “Oh- ;sed here in the sense of vector additidBach element of

plus-table”) simplifies and organizes the choices of possibleg _ g represents an equivalence classns* of elements in
partials at each step. The easiest way to introduce this is t9

continue with the example of the previous section.

Let the scalar intervals ifl) be written (1,0), (1,1),
(2,2, (2,2, (3,2, and (3,3, where the first number is the S=[(0,0,(1,0,(1,1,(2,2,(2,2,(3,2]
exponent ofa and the second is the exponentofSince the ) .
scale is generated by a repeating pattern, i.e., it is assumed‘f‘ﬁth octaves” =(3,3). Then
repeat at each octav@,S) is equated Witk(0,0)._ Ba_sing_ 'Fhe s*+5=[(3,3,(4,3,(4,4,(5,4,(5,5),(6,5],
scale on the octave is not necessary, but it simplifies the
discussion. Thed-Table | represents the relationships be- 2s*+S=[(6,6),(7,6),(7,7),(8,7),(8,8),(9,8],
tween all the scale intervals. The table shows, for instance, ] ]
that the intervah2b combined with the intervadb gives the ~ tC-, andT is a concatenation of these.
scale intervak®h?, which is notated (2,8 (1,1)=(3,2). The procedure for constructing spectra can now be

The asterisk indicates that the given product is not perStated. . _
missible since it would result in intervals that are not scalar ~ Symbolic Spectrum Construction: _
intervals. Thusa’b=(2,1) cannot bep-added toa=(1,0) (1) Chooset; T and lets, e S be the corresponding
since together they form the intervafb which is not an epresentative of its equivalence class. .
interval of the scale. Observe that the “octave” has been (2 Fori=23,..., choose;eT with correspondings,
exploited whenever the product is greater than 2. For in€ S SO that there are; ; _; with
stance, (1,19 (3,2)=(4,3). When reduced back into the oc-
tave, (4,3 becomed1,0) as indicated in the table, expressing
the fact thata*b®/a®b3=ab®. At first glance this may ap- for j=1,2,...;— 1.
pear to be some kind of algebraic structure such as a group or The result of this procedure is a string pfwhich de-

a monad-® However, algebraic structures require closure fines a set of partials. By construction, the spectrum built
i.e., that operations on members of the set give answers th&iom these partials is complementary to the given scale. If, in
remain within the set. The presence of the asterisks indicatesddition, all of the scale steps appear among eithestbe

Example: For the scale of the previous section,

Si:S]‘@ri,i,j (3)

that @ does not define a closed operator. ther, then the spectrum is complete, and hence perfect.
TABLE Il. A perfect spectrum for the scald). TABLE IV. A perfect spectrum for the Pythagorean scéle
i 1 2 3 4 5 6 7 k i 1 2 3 4 5 6 7 k
t; 33 G5 6O (99 (109 (11,10 (1312 t; (5,2 (83 (1049 (12,4 (145 (155 (17,6
Si 00 22 OO0 @32 1,0 2,9 1,0 Si 0,0 (39 0,0 2,0 4,2 (5,9 2,0
Ik 22 @119 G2 @9 1.9 2,2 1 Ik 3 29 (2,0 (2,9 (1,0 2,9 1
0,0 @10 1,0 2,2 0,0 2 0,0 4,9 4,2 (3,2 3,0 2
32 (293 2,9 1,9 3 (2,0 (1,0 (5.9 0,0 3
1,0 3,2 1,0 4 4, (2,0 2,0 4
2,9 2,0 5 (5.9 4,9 5
(1,0 6 (2,0 6
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octave Spectra can be assembled by following the procedure for
— symbolic spectrum construction, and one such spectrum is

12-tet scale steps: fourth  fifth

T T

3 given in Table IV. Observe that all of trsg andr; , are scale

§ steps, and that all seven scale steps are present among the

% and ther; . Hence this spectrum is perfect for the Pythagor-

5 ean scaldé4). Assuming the standard values fbandb, this

0 spectrum has its partials at
i 9/8 81/64 4/3 3/2  27/16 243/128 21 81 27
frequency ratio f, 2f, 3f, 4f,E=5.0625,Z=6.75f,
)

FIG. 4. Disson{ince_curve for the spgctrum specially de;_igned for play in the E’% 7.594 and 8_1: 10.125.
Pythagorean diatonic scale has minima at all the specified scale steps. Two 32 ! 8

extra “broad” minima are not caused by coinciding partials. ) . . o
The first several partials are harmonic, and this is the “clos-

est” perfect Pythagorean spectrum to harmonicity. For ex-
ample, there are no suitable partials between (E25)and

Equation(3) expresses the desire to have all of the in-(14,5)=6.75, and thus no way to closely approximate the
tervals between all of the partials be scale intervals. A set o$ixth harmonic partial 6. It is easy to check thatl3,4 and
s; are given(which are defined by previous choices of the (14,4 are not scale steps, and that (13:%B,1) forms the
t;). Solving this requires finding a singte such that Eq(3)  intervalab with (12,4. Sinceab is not a scale ste{13,9
is well defined for allj up toi—1. This can be done by cannot occur in a complementary spectrufkiowever,
searching all the columrs; for an elemens; in common. If ~ (13,5)=6 can be used if12,4) is replaced by (11,45 9/2.
found, then the corresponding valuergf _; is given in the  This would then sacrifice the accuracy of the fifth harmonic
leftmost column. Whether this step is solvable for a particudn order to increase the accuracy of the sixth. Trade-offs such
lar i,j pair depends on the structure of the table and on thas this are commoh.
particular choices already made for previogis Solution The dissonance curve for the Pythagorean spect&m
techniques fo(3) are discussed at length in the Appendix. is shown in Fig. 4, under the assumption that the amplitude

It is probably easiest to understand the procedure bpf theith partial is 0.9 As expected from the principle of
working through an example. One spectrum related to the€oinciding partials, this curve has minima that align with the
scale(1) is given in Table Il. This shows the choicetof the  scale steps. Thus there are significant minima at the just
corresponding scale steps (which are thet; reduced back fourth and fifths, and at the Pythagorean third 81/64 and the
into the octave and ther; , that complete Eq(3). Since all ~ Pythagorean sixth 27/16, rather than at the just thirds and
thes; andr; , are scale steps, this spectrum is complemensixths as in the harmonic dissonance curve from Fig. 1. This
tary. Since all scale steps can be found amongsttue r; ,,  spectrum will not exhibit rough beating when its thirds or
the spectrum is complete. Hence the spectrum of Table Il isixths are played in long sustained passages in the Pythagor-
perfect for this scale. To translate the table into frequenciegan tuning. There are also two extra minimum which are
for the partials, recall that the elememtexpress the powers very shallow and broad, and are not due to coinciding par-
of a andb times an unspecified fundamentalThus the first  tials. The exact location and depth of these minima changes
partial isf,=ab>f, the second i$,=ab°f, etc. significantly as the amplitude of the partials are changed. As
is usual for such extra minima, they are only barely distin-
guishable from the surrounding regions of the curve. Thus
perfect spectra, as constructed by the symbolic procedure, do

The Pythagorean diatonic scale of Fig. 2 is constructedjive dissonance curves with minima that correspond closely
from two intervalsa andb in the ordera,a,b,a,a,a,b. Thus  with scale steps of the desired scale.
the scale steps are given by

Ill. PERFECT SPECTRA FOR PYTHAGOREAN SCALES

IV. SPECTRUM FOR A DIATONIC TETRACHORD

1 a a> a’b a’b
(0,00 (1,00 (2,00 (2,1) (3,1) A more general diatonic tetrachordal scale is constructed
from three interval®, b, andc in the ordera,a,b,c,a,a,b.
The scale steps are given by
a’b a’b q a’h?=2 2 )
41 5,9 Y (52=000. @ 1 a ab b abe
(0,0,00 (1,0,00 (1,1,0 (2,1,0 (2,1,)
Typically, a®b is a pure fourth. Along with the condition that
a°b?=2, this uniquely specifiea=9/8 andb=256/243, and
so the scale contains two equal tetrachords separated by the a’bc  a’b’c and a’b*c=2
standard interval 9/8. The-table for this Pythagorean scale (3,1, (3,2,) (4,2,1=(0,0,0).
is shown in Table Ill. These exact values are not necessary
for the construction of the perfect spectra that follow, and it 6)
is not necessary that5,2 be an exact octave; any As before,a’b is a pure fourth that defines the tetrachord.
“pseudo-octave™’ or interval of repetition will do. The new intervakt is typically given by the interval remain-
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TABLE V. @-table for the tetrachordal scale defined(@).

® (0,0,0 (1,00 (1,1,0 (21,0 (2,1, (3,1, (3.2,1
(0,0,0 (0,0,0 (1,0,0 1,10 (2,1,0 (2,1, (3,1, (3.2,1
(1,0,0 (1,0,0 * (2,1,0 * (3,10 * (0,0,0
(1,10 (1,10 (21,0 * * (3,2, (0,0,0 *
(2,1,0 (2,1,0 * * * (0,0,0 (1,0,0 (1,10
2,1, 21,9 (3.1, (3.2 (0,0,0 * * *
(3,1, (3,11 * 0,0,0 (1,0,0 * * (2,1,

(3.2, (3.2 (0,00 (1,1,0 * 2,19

ing when two tetrachords are joined, and se9/8. There V. WHEN PERFECTION IS IMPOSSIBLE

are no standard values farand b. Rather, many different

combinations have been explored over the years. The The above examples may lull the unsuspecting into a
@-table for this diatonic tetrachordal scale is given in Tablebelief that perfect spectra are possible for any scale. Unfor-
V. As before, it is not necessary thé4,2,1) be an exact tunately, this is not so. Consider first a simple scale built
octave, though it must define the intervals at which the scal§om three arbitrary intervalsa, b, and c in the order
repeats. a,b,c,a. The scale steps are

Spectra can be constructed by following the symbolic
spectrum construction procedure, and one such spectrum is 5
given in Table VI. Observe that all of tre andr;  are scale 1 a ab abc and . 2 bc=2
steps and that all seven scale steps are present amosg thé 0.0,0 (1,0,0 (1,1,0 (1,1,1) (2,1,=(0,0,01°
or r; . Hence this spectrum is perfect for the specified tet- )
rachordal scalé6).

In order to draw the dissonance curve, it is necessary tés suggested by the notatiof2,1,1) serves as the basic unit
pick particular values for the parameteas b, andc. As  of repetition which would likely be the octave. Thki-table
mentioned above;=9/8 is the usual difference between two for this scale is given in Table VII.
tetrachords and the octave. Somewhat arbitrarily, bet The difficulty with this scale is that the elemefit 1,0
=10/9, which, combined with the condition thatb=4/3  cannot be combined with any other. The symbolic construc-
(i.e., forms a tetrachoydimplies thata=/6/5. With these tion procedure requires at each step thatsHee expressible
values, the spectrum defined in Table VI is as a@-sum of s; and somer; . But it is clear that the

operation does not alloWl,1,0 as a product with any ele-
ment[other than the identity0,0,0] due to the column of

f, 2f, 3f, 4f, 6.57, 8f, 12f, and 186, asterisks. In other words, if the intervdl,1,0 ever appears

as a partial in the spectrum or as one of the, then the
and the resulting dissonance curve is given in Fig. 5 whegonstruction process must halt since no more complementary
the amplitude of théth partial is 0.8 Minima occur at all ~ partials can be added. In this particular example, it is pos-
scale steps except the first, the inter@al While this may sible to create a perfect spectrum by having the element
seem like a flaw, it is really quite normal for very small (1,1,0 appear only as the very last partial. However, such a
intervals(like the major secondto fail to be consonant; the strategy will not work if there are two columns of asterisks.
Pythagorean spectrum of the previous section was quite An extreme example for which no perfect spectrum is
atypical in this respect. Again, although a few broad minimapossible is a scale defined by four different intenal®, c,
occur, they are fairly undistinguished from the surroundingandd taken in alphabetical order. The scale steps are
intervals. Thus the symbolic method of spectrum construc-
tion has again found a spectrum that is well suited to the

desired scale.
12-tet scale steps: fourth fifth octave

TABLE VI. A perfect spectrum for the tetrachordal scé.

i 1 2 3 4 5 6 7 k

dissonance
—t

t 420 (632 842 (1153 (126,3 (14,74 (16,84

s (000 (219 (000 (31) (000 (212 (0,00 0 ’ . — !
e 211 210 (G1) (110 2110 (210 1 1 ab a2 a2bc. aSbc adb%c 2
(000 (1,00 (000 (322 (000 2 frequency ratio
@1 210 @219 (@10 3
(0,00 (0,00 (000 4 FIG. 5. The dissonance curve for the spectrum related to the diatonic tetra-
214,y 2,10 5 chord with a>=6/5, b=10/9, andc=9/8, has minima at all scale steps
(0,00 6 except for the first. The broad minima at 1.16, 1.41, and 1.71 are not caused

by coinciding patrtials.
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1 a ab abc abcd=2
(0,000 (1,000 (1,1,00 (1,1,1,0 2'9(1.1,1,9=(0,0,0,0 ®

As suggested by the notatioft,, 1,1, serves as the basic amplitudes of the partials of a perfect spectrum, care must
unit of repetition which would likely be the octave. The also be taken to avoid masking one partial by another.
@®-table for this scale is given in Table VIII.

Partials of a complementary spectrum for this scale cam. Almost perfect spectra
only have intervals that are multiples of the octd#el,1,] . . . .
due to the preponderance of disallowed asterisk entries in the As the number of different intervals in a desired scale

©-table. The only possible complementary spectrum idncreases, it becomes more difficult to find perfect spectra;

(0,0,0,0f, (1,1,1,1f, (2.2,2,2), etc., which is clearly not the @-tables become less fuli.e., have more disallowed

complete, and hence not perfect. Thus a given scale may &sterlsk entrigsand fewer solutions to Eq3) exist. There

may not have perfect spectra, depending on the number arfi® Tteyeral S|;nplteh rTOd'f'Cat'(ﬁnS t(t) ';]hed ;)trogﬁdur_e: that mlay
placement of the asterisk entries in the table. resuft in spectra that are well maiched to the given scale,

even when perfection is impossible. One simple modification
is to allow the spectrum to be incomplete. Since very small
VI. DISCUSSIONS AND CONCLUSIONS intervals are unlikely to be consonant with any reasonable
A. Related versus perfect spectra amplitudes of the partials, they may be safely removed from
consideration. A second simplifying strategy is to relax the

IDO _r;ﬁttr(]:onfuts_e the]:c idea ?f a spetl:t;um rglated tlo a glVer?equirement of complementarity, while it is certainly impor-
scae Wi € notion of a perfeatomplete and complemen- tant that prominent scale steps occur at minima, it is not

tary) spectrum for the scale. The former is based directly Orbbviously harmful if some extra minima exist. Indeed, if an
a psychoacoustic measure of the perceived sensory disss '

f th d. while the latter i truction b Xtra minimum occurs in the dissonance curve but never
nance of the sound, while the ‘atier IS a construction base ppears in the music, then its existence is transparent to the
on the coincidence of partials within the spectrum. The latte istener
is best \/_lewed as an apprQX|mat|on and simplification of the A third method of relaxing the procedure can be applied
former, in the sense that it leads to a tractable system f%he

; determinai i th incinle of coincidi never the scale is specified only over an oct@aveover
ng;c rum determination via the principle ot coinciding par-qq, o pseudo-octayein which case the completeness and

. . . complementarity need only hold over each octave. For in-
Some scale intervals that appear in the spectfuen,

stance, a partial; might be chosen even though it forms a
among thes; or ther;  of Tables II, IV, or Vl) may not be  yiq0ed interval with a previous partigl, providing the
minima of the dissonance curve. For instance, the tetrat'wo are more than an octave apart. Thus judicious relaxation
. . %Bf various elements of the procedure may allow specification
f|rs§ scale step even though the spgctrum IS complete. Alteréf useful spectra even when perfect spectra are not possible.
natively, some minima may occur in the dissonance curve
that are not explicitly ratios of partials. Three such minima
occur in Fig. 5; they are the broad kind of minima that are
due to wide spacing between certain pairs of partials. From a mathematical point of view, the symbolic spec-

The notion of a perfect spectrum shows starkly that therum selection procedure raises a number of interesting is-
most important feature of related spectra and scales are tlseies. Thed operation defined here is not any kind of stan-
coincidence of partials of a tone, a result that would not havelard mathematical operator because of the disallowed
surprised Helmholtz. Perhaps the crucial difference is thaasterisk entries. Though they do not form any recognizable
related spectra take explicit account of the amplitudes of thalgebraic structureg tables do have several features that
partials, whereas perfect spectra do not. In fact, by manipuwould be familiar to an algebraist. For instance, the tables
lating the amplitudes of the partials, it is possible to makehave an identity element, the operatienis commutative,
various minima appear or disappear. For instance, it is posand it is associative when it is well defined. These are used in
sible to “fix” the problem that the tetrachordal spectrum is the Appendix to derive a set of properties that can be used to
missing its first scale step by increasing the amplitudes of streamline the symbolic spectrum construction procedure.
the partials that are separated by the ratid\lternatively, it ®-tables clearly have a significant amount of structure.
is often possible to remove a minimum from the dissonancé-or instance, anyp-table can be viewed as a subset of the
curve of a perfect spectrum by decreasing the amplitudes afommutative group of integem vectors ¢,05,...,01)
the partials separated by that interval. Moreover, while avhere theith entry is taken mod;, from which certain
minimum due to coinciding partials may be extinguished byelements have been removed. Can this structure be ex-
manipulating the amplitudes, its locatiofthe interval it ploited? Another obvious question concerns the possibility of
forms) remains essentially fixed. In contrast, the broad typedecomposingd-tables in the same kind of ways that arbi-
minima that are not due to coinciding partials move continu-trary groups are decomposed into normal subgroups. Might
ously as the amplitudes vary; they are not a fixed feature ofuch a decomposition allow the building up of spectra for
the dissonance curve of a perfect spectrum. In choosing tharger scales in terms of spectra for simpler scales?

C. The mathematician’s view
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TABLE VII. @-table for the scale defined if7). TABLE VIII. @-table for the simple scale defined (8).

® (0,0,0 (1,0,0 1,1,0 1,1,9 ® (0,0,0,0 (1,0,0,0 (1,1,0,0 1,1,1,0
(0,0,0 (0,0,0 (1,0,0 1,1,0 11,9 (0,0,0,0 (0,0,0,0 (1,0,0,0 (1,1,0,0 1,1,1,0
(1,0,0 (1,0,0 * * (0,0,0 (1,0,0,0 (1,0,0,0 * * *
1,1,0 1,1,0 * * * (1,1,0,0 (1,1,0,0 * * *
1,19 1,1, (0,0,0 * * 1,1,1,0 (1,1,1,0 * * *
D. The composer’s view fect and harmonic versions. On investigation, it became clear

From the musical point of view, perfect spectra raise glhat this is because there are no sustained major thirds in the

number of issues. For instance, a given nonequal scalghorale; the “held” chords are all inversions that avoid close
sounds different in each key because the set of intervals iOSition major thirds. Hence the piece avoids resolving to
slightly different. How would the use of perfect spectra in- th0Se chords that would sound most aggressive in the
fluence the ability to modulate through various keys? Certaiff Ythagorean tuning.

chords will become more or less consonant when played

with perfect spectra than wher_l playe-_d with harmonic.spectrq:_ Nonharmonic sounds

What patterns ofnonharmonic motion are best suited to

perfect spectra and their chords? Will perfect spectra be use- EXploiting nonharmonic sounds is a tOI?J:{?t of consider-
ful for some part of the standard repertoire, or will they beable interest to the computer music communifty; and the

only useful for new compositions that directly exploit their notion of perfect spectra helps to specify classes of poten-
strengthgand avoid their weaknes39@s tially useful nonharmonic sounds. Perfect spectra stipulate

the frequencies of the partials, but leave the amplitudes free.
Since spectrum is just one aspect of timbre, many different
timbres may share a given spectrum. For instance, brassy
Preliminary experiments with perfect spectra are encourtimbres arise(at least in pait from a rise in the spectral
aging. A simple “organ” sound with eight harmonic partials energy in the higher partials, while flute timbres are depen-
was generated via additive synthesis. A second organlikdent on a breathy puff in the attadlor an overview of the
sound which is perfect for the Pythagorean scale was genephysical correlates of timbre, see Ref.)2Bor spectra such
ated with partials specified i(5). All parameters except for as the Pythagorean, with partials that are detuned only a few
the frequencies of the partials were identical. Both soungercent from harmonic, it is likely that analogous increases
pleasant, if somewhat bland and “electronic.” The in the energy of the higher partials will tend to be heard as
Pythagorean spectrum, though nonharmonic, gives a definiteumpetlike, while breathy puffs of air in the attack will tend
sense of pitch, and is well fused. It also has a slightlyto cause the sound to appear flutelike. Thus each perfect
“brighter” sound, probably because the highest partials oc-spectrum defines a whole class of timbres which may sound
cur at somewhat higher frequencies than in the harmonias different from each other as a trumpet from a flute.
version. The Bach chorale “Aus Meine Herzens Grunde” Finally, the method does not give any indication of how
was recorded as a standard MIDI file and comparisons wersuch sounds might be generated or created. One obvious way
made between the piece when playeddn 12-tet with the is via additive synthesis. Another is via the technique of
harmonic spectrum(2) Pythagorean tuningin G) with the  “spectral mapping®* which directly manipulates the par-
harmonic spectrum(3) Pythagorean tuningin G) with the tials of a sampled sound. A much more difficult question is
Pythagorean spectrum, aitd) 12-tet with the Pythagorean how acoustic instruments might be given the kinds of devia-
spectrum. The differences between the four versions arons from harmonicity that are specified by perfect spectra.
subtle, but clear. For instance, there are several sustained
major thirds between the alto and soprano lines, as in mea-
sur]es 4, 10, 13, and 16. In 12-tet, beats can be readily pe.ﬁPPENDIX: PROPERTIES OF &
ceived between these two voices. The beats are even more Given any set of scale interva the @-table derived
pronounced in the Pythagorean tuning due to the stretchingom S has the following characteristics.
of the thirds. However, when the perfect spectrum is played  |dentity: The “octave” or unit of repetitions* acts as
in its related scale, the beats disappear, and the clarity of thgn identity element, i.e.,
chord increases. The fourth case is only marginally distin-
guishable from the first two, emphasizing that the Pythagor-
ean spectrum itself is not overly bizarre. Commutativity:The @-table is symmetric, i.e.,
It is certainly not true that all music will sound greatly
improved (or even much differeftwhen employing perfect
spectra. For instance, the stylistically similar Bach choraldf one side of(Al) is undefinedis “equal” to *), then so is
“Als der Gutige Gott” (as was used in Ref. 9 to demonstratethe other. Commutativity ofp follows directly from the
the effect of stretched spectrdoes not show the same ef- commutativity of products of powers of real numbers.
fect. With this piece, there is almost no noticeable difference  Associativity:The & operator is associative whenever it
(other than the brightness of the spectjuretween the per- is well defined. Thus

E. Informal experiments

-TABLES

s*®s=sds*=s VseS

$19S,=5,®S; Vs;,5,€S. (A1)
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(31@52)@53251@(52@53) VSl,Sz,Sge S (AZ)
provided that both sides ¢A\2) exist.

It is indeed possible for one side G&2) to exist but not
the other.

Example:The tetrachordal scal®) has®-Table V. Ob-
serve that((2,1,1)®(1,0,0)®(2,1,0) is well defined and
equals(1,0,0, but that (2,1,1% ((1,0,0®(2,1,0)) does not
exist because (1,0,8)(2,1,0) is disallowed. To further em-

Example:In Table V, the identitys* =(0,0,0) appears
in every column. Thus it is always possible to choose a par-
tial t; with the equivalence class® at any step.

Suppose, on the other hand, that an elensan® ap-
pears nowhere in the-table other than in the column and
row of the identity. Thers cannot be used to define one of
the s; sinces¢ S, for any k and so for anys;#s*, s;=s
+r has no solution. Althougk cannot occur among the,
it is still possible that it might appear among thg . Indeed,

phasize how unusual this construction is, observe that bif Will need to in order to find a complete spectrum.

commutativity, (2,1,1%(1,0,0)=(1,0,0»(2,1,1). Substi-
tuting this in the above calculation givé€l,0,0)®(2,1,1))

®(2,1,0) which is indeed equal to (1,08§(2,1,1)

®(2,1,0)), since both sides arg,0,0.

The remaining properties ob-tables concern “solu-
tions” to the equation
Si:SJ@ri‘i,j (AS)
that arises in the symbolic spectrum construction procedur

Recall that in the procedure, a setsfare given(which are
defined by previous choices of tiig. The goal is to find a
singles; such that Eq(A3) is well defined for allj up toi
—1. The properties of>-tables can help pinpoint viable so-
lutions to (A3).

Theorem A.1: Suppose thag; € S have been chosen for
all j<k. Let § be the set of all non- entries in thes;
column of the®-table. Then for alli=k, s; must be an
element of N §;.

i<k

Proof: First consider the cade= k=2, with s; specified.
Then (A3) requires choice o6, such thats,=s,®r ; for
somer, ;. Suchry, will exist exactly whens,eS,. Fori

>2, 5j=$,@r;;_; must be solvable, which again requires
thats; € S;. The general casg=s;®r; ;_; is similarly solv-
able exactly whers; € ;. Since this is true for every<k,
Sje N SJ .

i<k

(S

Example: The elements=(2,1) appears nowhere in
@-table Ill defined by the Pythagorean scale. The spectrum
was made complete by ensuring trsatippears among the
ri x of Table IV.

Another property of®-tables is that elements are ar-
ranged in “stripes” from southwest to northeast. For in-
stance, in Table lll, a stripe d#,1) elements connects the
4,1 entry with the 1,4 entry. Similarly, a stripe (8,1) ele-
ments connect the 3,1 with the 1,3 entries, although the stripe
is broken up by &. The fact that suckpossibly interrupted
Stripes must exist is the content of the next theorem.

Given am note scales, the entries of the corresponding
@-table can be labeled as a matfi; ,} for j=1,2,...m and
k=1,2,..m. Let P; denote théth stripe of the®-table, that
is, Pi={a, } for all j andk with j+k=i+1.

Example:For the Pythagoream-table,

P]_:{(0,0)}, P2={(1,0),(1,O)},
P3:{(2’0)’(2!O)!(210)}1
P4:{(211)1* ¥ 1(271)}1

P,={(3,,(3,1),*,(3,1,(3,1),}, etc.

Theorem A.2: For eachi, all non* elements of the
stripe P; are identical.

Proof: By construction, the elemenss ands;, ;€ S are
integer vectors, and they may be ordered so that

Si+1:Si+eJ"iVi, (A4)

Thus when building spectra according to the procedure,

the set/*=nN S, defines the allowable partials at théh
j<k

step. Clearly,”* can never grow larger since*>.o/**1vk,

and it may well become smaller &sncreases. This demon-

wheree; ; is a unit vector with zeroes everywhere except for
a single 1 in thgth entry. Let3(s;) represent the sum of the
entries ins;=(07y,075,...,0p), i.e, X(s)=2F_,0y, and let

2* represent the sum of the entries in the element that forms

strates that the order in which the partials are chosen is cruihe unit of repetition. Because thi operation adds powers
cial in determining whether a perfect spectrum is realizableof the generating intervals,

The easiest way to appreciate how the theorem A.1 sim-

plifies (and limitg the selection problem is by example.

Example:In Table I, onces;=(3,2) for somd, then for
all k>i, s, must be(3,2), (1,0, or (2,1).

Example:In Table Ill, onces;=(2,0) has been chosen,
then for allk>i, s, must be eithe2,0), (4,2, or (5,1). In
particular, nos, can be the identity0,0).

Corollary A.1: Suppose that an elemesit S appears in
every column of thes-table. Then for any choice of;, j
<i, (A3) is always solvable witls;=S.

Proof: Since S is in every column of the tables
e §V; and hencese N S; for anyk. O

j<k

In other words, for anyse S, there is always aeS
such thas=sar, and sos is always permissible.
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3(sj@s)=2(s)+2(s) (modX*) (A5)

whenevers; @'s, is well defined. Because of the ordering, the
entries in the stripd®; can be written

Sj®Sk, Sj-1DSk+1, Sj-2DSkt2

for all positivej andk with j+k=i+1. Hence
2(Sj®S) =2(Sj-19S+1) =" (A6)

whenever these are defined. Frgmd), %(s;)=2(sy) im-

plies that sj=s,. Hence (A6) shows thats;®s=s;_;

®s 1=+ whenever the terms are defined, and hence all

well-defined elements of the stripe are identical. O
This is useful because stripes define whether a given

choice for thet; (and hences;) is likely to lead to complete
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spectra. Suppose thatis a candidate fos; at theith step.  spectra for equal temperaments, whaséables have no dis-
Whethers will “work” for all previous s; (i.e., whethers  allowed* entries. In fact, full®-tables form a commutative
=s;@r has solutions for alk;) depends on whethé& ap-  group, which may explain why the equal tempered case is
pears in all the correspondin§ . Theorem A.2 pinpoints relatively easy to solve.
exactly wherés must appear, at the intersection of the col- All of the above properties were stated in terms of the
umn S; and the stripe containing. Thus the procedure can columns of the®-table. By commutativity, the properties
be implemented without conducting a searchd@among all  could have been stated in terms of the corresponding rows.
possible columns.

A special case is when a column is “full,” i.e., when it

contains not entries 1J. TenneyA History of ‘Consonance’ and ‘DissonancéExcelsior, New
e . York, 1988.
Theorem A.3: Let St be a full column correspondlng to 2R. Plomp and W. J. M. Levelt, “Tonal consonance and critical band-

s;e S. Thens;=s;@r; is solvable for alls; e S. width,” J. Acoust. Soc. Am38, 548—560(1965.
Proof: Since there aren entries in the columrs; and 3E. Terhardt, “Pitch, consonance, and harmony,” J. Acoust. Soc. 28n.
there arem differents; , it is only necessary to show that no ,1061-10691974.

. . . . . “N. Cazden, “The definition of consonance and dissonance,” Int. Rev.
entries appear twice. Using the orderii#g}) of the previous  acgthetics Soc. Musit1, 123—168(1980).

prOOf, Sf has elements SW. A. Sethares, “Local consonance and the relationship between timbre
and scale,” J. Acoust. Soc. An94, 1218-12281993.
S$1©St, S®PS¢,...,.5D S, (A7) SW. A. Sethares, “Relating tuning and timbre,” Exp. Musical Instrui,
. . . No. 2(1993.
Whl(?h _are well defined by assumptlor_l. Now proceed by CON-7A Kameoka and M. Kuriyagawa, “Consonance theory part I: consonance
tradiction, and suppose that thiéa andjth elements ofA7) of dyads,” J. Acoust. Soc. Am45, 1452—14591969; Also, “Conso-
are the same, i_esi@sf:sj@sf . Then nance theory part Il: consonance of complex tones and its calculation
method,” J. Acoust. Soc. Am45, 1460—14691969.
2(si@sp)=2(sj®s) (modx*) 8H. Helmholtz,On the Sensations of ToriBover, New York, 195}
. . . . 9A. J. M. Houtsma, T. D. Rossing, and W. M. Wagenadxsditory Dem-
(whereX andX* were defined in the previous proofThis onstrations(Philips compact disc No. 1126-061 and te¢coustical So-
implies that ciety of America, Woodbury, NY, 1987
105, Goldberg,Genetic Algorithms in Search, Optimization, and Machine
2(s)+2(sp)=2 (sp+ 2(sf) (modX*) Learning (Addison-Wesley, New York, 1989

) ) . . 113, Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
which implies thatE(si):2(sj) (modX*). By the same lated annealing,” Scienc220, 4598(1983.

argument as in the proof of theorem A.2, this implies that'?T. D. Rossing,The Science of Soun@ddison-Wesley, Reading, MA,

si=s;. But eachs; appears exactly once itA7), which ~ ,199- o _
. . e D. B. Doty, Just Intonation PrimerJust Intonation Network, San Fran-
gives the desired contradiction.

. . . cisco, CA, 1993

Thus when a column is full, it must contain every ele-143 M. Barbour, Tuning and TemperametMichigan State College, East
ment. In this case, EA3) puts no restrictions on the choice 15Lansing, 981 _
of S; . Let {Sj} be all the elements o that have full col- J. Chalmers, JrDivisions of the Tetrachor@Frog Peak Music, Hanover,

NH, 1993.
umns. Then ab-subtable can be formed by thefg} that  1eg Langilgebra(Addison_Wesley’ Reading, MA, 1965
has no illegak entries. For example, recall Table | which is Y. H. Slaymaker, “Chords from tones having stretched partials,” J.
generated by the scald). The elementq0,0), (1,1), and Acoust. Soc. Am47, 1469-1571(1968. o
(2,2) have full columns and hence can be used to form a fullls\(’l’égg"os' “Tuning: at the crossroads,” Comput. MusicSring, 29-43
®-subtable. It is easy to generate perfect spectra for such fulby, 'y ‘viathews and J. R. Pierce, “The Bohlen-Pierce scale, Cirrent
@-subtables because EEA3) puts no restrictions on the  Directions in Computer Music Researadited by M. V. Mathews and J.
choice of partials for a complementary spectrum. Whether R. Pierce(MIT, Cambridge, MA, 1991

these extend to all elements of the scale, however, depends: M. Green,An Introduction to the Psychology of Hearirigcademic,
. ! ’ ) ew York, 1989, 3rd ed.
heavily on the structure of the nonfull part of the table. Find-21yy A sethares, “Consonance-based spectral mappings,” Comput. Music

ing spectra for full subtables is exactly the same as finding J. (to appear in January 1998
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