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ABSTRACT

One of the key issues in decentralized beamforming is the need to
phase-align the carriers of all the sensors in the network. Recent
work in this area has shown the viability of certain methods that in-
corporate single-bit feedback from a beacon. This paper analyzes
the behavior of the method (showing conditions for convergence in
distribution and also giving a concrete way to calculate the final dis-
tribution of the convergent ball) and then generalizes the method in
three ways. First, by incorporating both negative and positive feed-
back it is possible to double the convergence rate of the algorithm
without adversely effecting the final variance. Second, a way of re-
ducing the amount of energy required (by reducing the number of
transmissions needed for convergence) is shown; its convergence
and final variance can also be conveniently described. Finally, a
wideband analog is proposed that operates in a decentralized manner
to align the time delay (rather than the phase) between sensors.

Index Terms— Adaptive signal processing, beamforming, sen-
sor networks

1. INTRODUCTION

A collection of sensors are scattered in unknown locations. The sen-
sors wish to cooperatively transmit a common message signal as
efficiently as possible using a beamforming method in order to be
energy efficient. Significant gains occur when exploiting distributed
beamforming ([6], [8]) because of the improved signal-to-noise ratio
at the receiver: while the received signal magnitude increases with
the number of transmitters J , the SNR increases with J2. Since the
total amount of power transmitted increases linearly in J , this rep-
resents an J-fold increase in energy efficiency. A key issue in the
use of distributed beamforming systems [1] is that the phases of the
carriers must be synchronized throughout the network.

A recently proposed scheme [9] accomplishes this phase syn-
chronization using single-bit feedback from a base station. Each
sensor broadcasts within each timeslot, perturbing the phase of its
carrier slightly from the previous timestep. The base station replies
with a signal that indicates whether the received signal is more (or
less) coherent than the previous time. The sensors respond in the ob-
vious way: if the signal is improved they keep the new phase while
if the signal worsened they revert to their old phase. This scheme
is shown, under certain conditions in [10], to asymptotically achieve
perfect phase coherence in the noise-free case. However, even tiny
disturbances (which may arise physically from thermal noise, from
unmodeled dynamics, or from interference with other nearby com-
munications systems) cause convergence to a ball about the correct
answer (and not to the correct answer itself). Analysis in the present
paper is able to concretely describe both the rate of convergence and
the distribution of this convergent ball.

This paper begins by showing in Sect. 2 how the single-bit feed-
back mechanism for phase alignment can be written as a “small

stepsize” µ-dependent algorithm with a discontinuous update term
[3]. The discontinuity arises because the sensors either accept or re-
ject the most recent phase change based on the single-bit feedback.
Sect. 2 applies the analytical techniques of [4] and [5] to examine the
convergence of the algorithm in terms of a related ordinary differen-
tial equation (ODE). An extension of these results allows derivation
of the asymptotic variance. This concretely describes the final dis-
tribution of the algorithm about its equilibrium.

The method of [9], [10] either updates or freezes the estimated
phases at each timestep. Sect. 3 observes that it may be possible to
do better than to freeze the updates: if adding a small number makes
things worse, then most likely subtracting a small number would im-
prove things. This is an old idea [2], [7] in signal processing, and a
“signed” algorithm for the decentralized phase alignment problem
that uses both positive and negative feedback is described and ana-
lyzed: it is shown to converge twice as fast as the original, with the
same final distribution.

One key requirement in a sensor network system is energy effi-
ciency. Sect. 4 proposes the ρ-percent method in which only a sub-
set of the sensors transmit at each timestep. Analysis shows that the
savings in the number of transmissions (and hence in the energy) can
be significant. Since the subset is chosen randomly at each epoch,
there is no need to coordinate the sensors, and the method remains
decentralized. The methods are extended (n the full paper) to the
analysis of analogous algorithms that operate with wideband signals
by aligning the received signals in time.

2. ALGORITHM STATEMENT AND CONVERGENCE

Let φ̂j,n be the phase of the carrier signal at sensor/transmitter j at
timestep n and let αj be the phase difference due to the (unknown)
distance between the base station and sensor j. At each timeslot,
each sensor randomly perturbs its phase by a small amount µγj,n.
Further suppose that the received signal at the base station at iteration
n is corrupted by a Gaussian noise gn with mean zero and variance
σ2
t .

The algorithm described above can be written

φ̂j,n+1 = φ̂j,n + µγj,n

·1{gn+1+
PJ

r=1 cos(φ̂r,n+µγr,n−αr)>gn+
PJ

r=1 cos(φ̂r,n−αr)}(1)

for j = 1, 2, . . . , J where 1{A} is an indicator function taking on
value one if A is true and is zero otherwise. The sum of cosines
terms represent the received carrier wave and take on maxima when
the φ̂ are phase-aligned. Thus the indicator function is unity if the
perturbed phases φ̂r,n+µγr,n are better aligned than the unperturbed
phases, and is zero otherwise. The goal of the algorithm is to drive
the φ̂ terms to a value at which the sum is maximum, which occurs
when all of the terms are maximized, i.e., when φ̂r is equal to αr .

For the purpose of analysis, it is more convenient to rewrite the
algorithm in “error system” form by letting φj,n = φ̂j,n − αj . We



also suppose that the i.i.d. perturbation random variables {γj,n}
are chosen to have a symmetric distribution (about zero) with fi-
nite variance σ2

γ . Then for small µ (keeping just the first terms
in the Taylor series), cos(φr,n + µγr,n) can be approximated by
cos(φr,n)− µγr,n sin(φr,n). The algorithm is then

φj,n+1 = φj,n + µγj,n1{g̃+PJ
r=1 γr,n sin(φr,n)<0} (2)

where g̃ is normal with mean zero and variance 2σ2
t /µ

2.
In order to investigate the behavior of the algorithm, observe that

convergence of φr to zero is equivalent to convergence of the phase
estimates φ̂r to their unknown values αr . The analysis requires de-
veloping some new technical machinery. The basis of the analytical
approach is to find an ordinary differential equation (ODE) that ac-
curately mimics the behavior of the algorithm for small values of µ.
Studying the ODE then gives information regarding the behavior of
the algorithm. For example, if the ODE is stable, the algorithm is
convergent (at least in distribution). If the ODE is unstable, the al-
gorithm is divergent. The approach grows out of results in [3] and
[4], which are themselves based on the techniques of [5]. The ap-
proach is conceptually similar to stochastic approximation but its as-
sumptions (and hence conclusions) are somewhat different. First, the
stepsize µ in (2) is fixed, unlike in stochastic approximations where
the stepsize is required to converge to zero. Thus the algorithms do
not necessarily converge to a fixed vector; rather, they converge in
distribution. Moreover, the analysis is capable of delivering con-
crete values for the convergent distribution; as far as we know, this
is not possible with other methods. Second, no continuity assump-
tions need to be made on the update terms; this is crucial because of
the discontinuity caused by the indicator function in (2), and is also
more general than other methods that require differentiability of the
update term.

Using the Central Limit Theorem and the techniques of [4] it is
easy to show that the limiting differential equation is

dφj(t)

dt
= −

σ2
γ sin(φj(t))√

2π
p
σ2
γ || sin(φ/(j)(t))||2 + 2σ2

t /µ
2
. (3)

A straightforward linearization argument shows that this ODE is sta-
ble about zero. Simulations in Sect. 5 show that the ODE accurately
tracks the trajectories of the algorithm.

Once the algorithm has converged, it is important to be able to
characterize the final distribution. Using similar techniques, we can
show that the asymptotic variance is given by

VAR = µ

p
πσ̃2

t

2
. (4)

Somewhat surprisingly, the asymptotic variance is independent of
the size of the phase perturbations σ2

γ . Sect. 5 shows that this cal-
culated variance matches closely to the empirical variance derived
from simulations.

3. THE SIGNED ALGORITHM

In the distributed phase alignment algorithm (1), the phase of each
sensor is updated by the perturbed value (if the feedback from the
beacon says that the overall alignment improved) or else it remains
fixed. Accordingly, in many iterations, no changes are made. Since
each of the individual phase updates are scalar, it seems reasonable
that when the feedback indicates no improvement, an update in the

opposite direction might be useful. Effectively, this replaces the in-
dicator function in the update with a signum function. Following the
logic of (1)-(2) leads to the error system which is valid for small µ

φj,n+1 = φj,n − µγj,nsgn(g̃ +

JX
r=1

γr,n sin(φr,n)). (5)

Carrying out a similar analysis as in Sect. 2, the ODE is almost ex-
actly as before but with a factor of two in the right hand side of
(3). Thus the corresponding ODE for the signed algorithm converges
twice as fast as when using the indicator function.

The final variance can also be calculated as before and is found
to be indentical to (4). Hence, we find that the signed algorithm con-
verges twice as fast as (1) yet has the same residual error variance.

4. THE “ρ % SOLUTION” ALGORITHM

One of the key requirements in a sensor network system is energy ef-
ficiency. Suppose that at each epoch, sensors independently transmit
to the beacon with probability p = ρ/100 using its current phase
value. This transmission is then immediately followed by another
transmission of a “perturbed” phase angle. The beacon then feeds
back a single bit which specifies which of the two transmissions
had greater power. Each transmitting sensor then updates its cur-
rent phase value based on the feedback. Thus, in each transmission
epoch, only pJ sensors transmit on average; but they must transmit
twice.

This strategy can also be written as a small stepsize µ-dependent
algorithm. Let {B1,n, B2,n, . . . , BJ,n} be independent zero-one
Bernoulli random variables with P (Bj,n = 1) = p. The event
{Bj,n = 1} indicates that at time n, sensor j will transmit. It is
possible to mimic the analysis given in (1)-(3) to obtain the limiting
ODE

dφj(t)

dt
= −pE[

σ2
γ sin(φj(t))q

2π(σ2
γ

PJ
r=1(r 6=j)Br[sin(φr(t))]2 + 2σ2

t /µ
2)

].

(6)
The presence of the Bernoulli random variables in the denomina-
tor makes a simple closed form solution impossible (though an infi-
nite power series could be developed). Sect. 5 shows that the total
number of transmissions (and hence the total energy consumed in
the phase alignment process) can be decreased when following this
strategy.

In addition, it is possible to combine the idea of the signed up-
date from Sect. 3 with the ρ-percent algorithm. Following the same
procedure shows that this algorithm has the same ODE, but multi-
plied by a factor of two, indicating a doubling of the convergence
rate.

The variance analysis of the ρ-percent algorithm is straightfor-
ward and we obtain an identical expression. Importantly, this ex-
pression is independent of p (and hence ρ).

5. SIMULATIONS

This section illustrates the relationship between the trajectories of
the algorithm(s) and the behavior of the ODE(s) and shows that the
calculated variances accurately reflect the behavior of the algorithm.
Recall that convergence of the error system to a region about zero
is equivalent to convergence of the actual trajectories of the phase
estimates to a region about their (unknown) values. The final er-
ror variance can be calculated directly from the simulation. Fig. 5



shows trajectories of the error systems for the indicator algorithm
and its ODE and for the signed version and its ODE. J = 10 sen-
sors were used though only six are shown in the figure to reduce
clutter. The two algorithms were initialized at the same values and
allowed to iterate. Observe that in all cases, the signed algorithm
converges faster, at about twice the rate of the indicator version, as
suggested by the corresponding ODEs. Parameters for the simula-
tion are µ = .0005, σ̃2

t = 10, and σ2
γ = 2. The final variance,

calculated to be .0014, agrees with the empirical value (measured
from the simulations) to four decimal places.
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Fig. 5 shows the trajectories of the ρ-percent error system 4 and
the corresponding ODE (6). Again, the algorithm follows the ODE
as it converges exponentially towards its stable point. In these simu-
lations the stepsize µ = 0.01 and the standard deviation of the ther-
mal noise was 0.001. The predicted final variance for the ρ = 30
case was 8.862E−4 while the actual variance, computed over all
sensors, was 8.587E−4. The predicted final variance for the ρ = 15
case was 8.862E−4 (the same as for ρ = 30) while the actual vari-
ance was 9.32E−4.

It is also necessary to verify that the convergence of the ρ-percent
algorithm is rapid enough that the total number of transmissions
needed is less than for the corresponding algorithm where all sen-
sors transmit at every time step (which is essentially the ρ = 100
case). With J = 10 sensors, a thermal noise with standard deviation
0.001, and a stepsize of µ = 0.01. We conduct an experiment to
show how many iterations are needed for convergence as a function
of the ρ value. The experiment is conducted by setting the phase
error for sensor #1 at 1.0 radian, and checking how many iterations
are needed before the sensor converges 95% of the way to zero. As
might be expected, we find that the number of iterations decreases
as ρ increases, but so do the number of transmissions. In this ex-
periment about 720 transmissions are needed for the ρ = 100 case.
Since the algorithm requires two transmissions in each epoch, any
ρ that requires fewer than half this number (i.e., 360) transmissions
will be more efficient. In this case, the crossover point occurs at
about ρ = 30. The purpose here is not to try and elucidate the best
parameters to use, only to demonstrate that significant gains in en-
ergy usage, as reflected in the number of transmissions required, are
possible when using the ρ-percent algorithm.
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