
DECOMPOSITION OF SYMBOLIC SEQUENCES VIA STATISTICAL PERIODICITY

Raman Arora and William Sethares

Department of Electrical and Computer Engineering, University of Wisconsin-Madison,
Madison, WI 53706-1691 USA. ramanarora@wisc.edu, sethares@ece.wisc.edu

ABSTRACT
Periodicities in symbolic sequences such as DNA are in-
vestigated by decomposing a maximum likelihood estimate
of the probability mass function (pmf). A linear vector
space on the collection of periodic pmfs is defined and the
operations on the space are interpreted directly in terms
of combining the draws from multiple-urn carousels. The
internal structure of the decomposed sequences mimics the
structure of the integers and a uniqueness theorem shows
how pq-periodic symbolic sequences can be decomposed
into p and q-periodic sequences when p and q are relatively
prime.

Index Terms— Cyclostationarity, symbolic periodicity.
symbolic time series, genomic signal processing

I. INTRODUCTION

SYMBOLIC sequences are time series defined on a finite
set with no algebra - the only mathematical structure is

membership in the set [1]. For example, DNA sequences
consist of elements A, G, C, and T , and there is no
way to “add” or combine these terms. Locating (hidden)
periodicities within these sequences is important because
of thier correlation with genetic anomalies [2]. There are
several different kinds of periodicities that may occur in-
cluding homologous, eroded, and latent periodicities [3].
Homologous periodicities occur when short fragments of
DNA are repeated in tandem to give periodic sequences.
Imperfect or eroded periodicities [4] contain sequences of
similar elements that may occur in strands of DNA due to
changes in (or erosion of) nucleotides. Latent periodicities
[5], [6] occur when the repeating unit is not a fixed sequence
but may change in a pattern: for instance, a sequence in
which the nth element is always either A or G.

Most current approaches to detecting periodicities trans-
form the symbolic sequences into a numerical sequence
[6], [7], [8]; these techniques are primarily aimed at the
detection of homological periodicities. A general approach
to the detection of these three classes of periodicities was
presented in [9] using a maximum likelihood formulation.
In this approach, each element in the DNA sequence is
assumed to be generated from an information source with
an underlying probability mass function (pmf). The number

of sources defines the period and the symbols are drawn
from these sources in a cyclic manner. Thus, statistical
periodicities in the symbols are represented by repetitions
of the pmfs. This can be pictured as in Fig. 1. A rotating
carousel (labeled A) contains NA urns, each with its own
distribution of balls (which are labeled A, G, C, or T ).
At each timestep, a ball is drawn from the urn and the
carousel rotates one position. The output of the process is
not periodic; rather, the distribution from which the symbols
are chosen is periodic. This is called statistical periodicity
or strict sense cyclostationarity [10].

This paper defines the random variables on a finite set of
symbols (an alphabet) and these symbols are not mapped
to numerical values. This avoids imposing an arbitrary
mathematical structure and implies that there is no algebra
on the sequences. Instead, it is possible to define composi-
tions of probability measures associated with the sequences.
This allows a description of multiple periodic sequences
analogous to the addition of periodic numerical sequences
[11]. For example, one way to compose probability measures
is to form a Bernoulli mixture of two biased coins with
probability of Heads p and q respectively. At each step, a
coin is picked randomly with probability 1/2 and flipped.
The observations can be modeled as Bernoulli random

A
B

Fig. 1. Each time a ball is removed from one of the NA

urns (indicated by the arrow), platform A rotates, bringing
a new urn into position. Similarly, carousel B contains NB

urns, each with its own collection of balls. Draws are made
by combining draws from the two aligned urns and results
in a NANB statistical periodicity.



variable on the set S = {H,T} with parameter 1
2 (p + q).

This composition of probability measures arises naturally
due to the underlying experiment and the composition does
not imply any algebraic structure on the set S.

This paper investigates a method of composition that has a
nice interpretation in terms of erosion or mutation in genes.
The corresponding experiment is illustrated in Fig. 1 where
two rotating carousels A and B contain NA and NB urns,
respectively. At each timestep, the two carousels rotate into
position and an element is drawn from each of the two
aligned urns (indicated by the brackets). If both the drawn
elements have the same label, the output assumes that label.
If the draws give balls with different labels, they are returned
to the urns. This continues until an identical pair is drawn.
The urns then rotate and the process repeats. Sect. II shows
that this method of composition gives a rich mathematical
structure in which to study statistical periodicities with
multiple hidden periodicities. Thus the figure shows how
two cyclostationary sequences with periods NA and NB may
combine to form a new sequence with period NANB .

Sect. III investigates the inverse problem: given a cyclo-
stationary symbolic sequence, how can it be decomposed
into constituent subsequences. These investigations provide
a structured way of attacking the problem of locating hidden
periodicities. While the DNA sequencing application pro-
vides motivation for this work, the underlying mathematics
is general enough to easily include any symbolic set with
any (finite) number of elements.

II. PERIODIC SUBSPACES
Let A = {a1, . . . , aM} be a finite set with cardinality

M . Let X be an A-valued random variable with probability
mass function (pmf) µX , i.e. for a ∈ A, µX(a) denotes the
probability P (X = a). Let X denote the collection of all
random variables on the alphabet A. For n, p ∈ Z+ let n̂p

denote the positive integer n mod p.
Define a symbolic (random) sequence taking values on

the set A to be a sequence of independent random variables
S : Z+ → X. The symbolic sequence S is said to be p-
statistically periodic if p ∈ Z+ is such that the random
variables Sn and Sn̂p

are identically distributed for all
n ∈ Z+. The p-statistically periodic sequence S can also
be described by an M × p column-stochastic matrix QS

whose ith column, denoted qS
i , gives the pmf of Snp+i for

all n ∈ Z+, i.e.

P (Snp+i = aj) = P (Si = aj) = QS
ji ≡ qS

i (j) (1)

where j ranges from 1 to M . Let Pp = {S ∈ X :
S is p-statistically periodic}. Then P =

⋃
p∈Z+ Pp is the set

of all statistically periodic sequences of random variables on
the alphabet A. Note that each X ∈ Pp can be uniquely
identified by an M × p column stochastic matrix QX .
Therefore Pp can also be identified as the set of all M × p
column stochastic matrices. With a slight abuse of notation,

the elements of Pp may be referred to as a random symbolic
sequence X or as the corresponding pmf QX . The law of
composition on the pmfs of the random symbolic sequences
that captures the experiment in Fig. 1 defines

⊕ : P × P → P
(X,Y ) 7→ Z

(2)

on P as follows. Let X,Y ∈ P be sequences with statistical
periodicities p and q respectively. Then Z = X ⊕ Y is the
sequence of random variables such that for all a ∈ A

P

(
Zn = a

)
= P

(
Xn̂p

= a, Yn̂q
= a

∣∣∣∣Xn̂p
= Yn̂q

)
. (3)

Again, this is a slight abuse of notation since the binary op-
eration is defined on the matrices QX ,QY but is expressed
in terms of the symbolic sequences X,Y . Recall that there
exists no algebraic structure on the set A and consequently it
makes no sense to directly combine realizations of symbolic
sequences.

Lemma 1: Let X ∈ Pp and Y ∈ Pq . Let Z = X ⊕ Y .
Then Z ∈ Pr, where r is the lowest common multiple of p
and q.

In Lemma 1, if p and q are mutually prime then Z ∈ Ppq .
If QX ,QY and QZ denote the stochastic matrices of X,Y
and Z, respectively, then by definition (3), the nth column
of the M × pq matrix QZ is

qZ
n =

1
C

 qX
n̂p

(1)qY
n̂q

(1)
...

qX
n̂p

(M)qY
n̂q

(M)

 (4)

where C =
∑M

j=1 qX
n̂p

(j)qY
n̂q

(j) is the normalization factor.
If X = Y , then Z ∈ Pp with

qZ
n (k) = (qX

n (k))2/
M∑

j=1

(qX
n (k))2,

for k = 1, . . . ,M and n = 1, . . . , p. The operation of com-
posing a symbolic sequence with itself can also be expressed
as multiplication by the scalar 2; write Z = X⊕X = 2◦X .
This definition can be extended to multiplication by any
scalar. For r ∈ R and X ∈ P define

◦ : R× P → P
(r,X) 7→ Z

(5)

so that Z = r ◦X is the random symbolic sequence with

P
(
Zn = a

)
=

P (Xn = a)r∑
b∈A P (Xn = b)r

(6)

for all a ∈ A with P (Xn = a) 6= 0. When P (Xn = a) = 0,
P (Zn = a) is defined to be 0. If X ∈ Pp, Z ∈ Pp.

Theorem 1: The set P forms an abelian group under the
binary operation ⊕ : P × P → P .

Proof: The closure of P under ⊕ follows by Lemma 1
and the operation is commutative by definition. Associativity



is easy to check: let X,Y, Z ∈ P have statistical periodicities
p, q and r respectively. Let V = X ⊕ (Y ⊕ Z) and W =
(X ⊕ Y )⊕ Z. Then

QV
ji =

QX
jip

(
QY

jiq
QZ

jir

)
∑

j QX
jip

(
QY

jiq
QZ

jir

) =

(
QX

jip
QY

jiq

)
QZ

jir∑
j

(
QX

jip
QY

jiq

)
QZ

jir

= QW
ji

for j = 1, . . . ,M and i = 1, . . . , pq. The unique identity
element, denoted E, is the 1-statistically periodic sequence
of random variable such that P (E = aj) = 1

M for all aj ∈
A. Finally, for X ∈ P if Y = (−1) ◦ X then it is easy to
verify that X ⊕ Y = E. Thus every X ∈ P has an inverse.

Corollary 1: (P,⊕, ◦) is a vector space over R.
Proof: The closure of P under ◦ follows by definition

and the identity element is 1 ∈ R since 1 ◦ X = X . The
distributive properties are easy to check: for α ∈ R, X ∈ Pp

and Y ∈ Pq , α◦(X⊕Y ) = (α◦X)⊕(α◦Y ) and for α, β ∈ R
and X ∈ Pp, (α + β) ◦ X = (α ◦ X) ⊕ (β ◦ X). Finally,
scalar multiplication is compatible with multiplication in the
field of scalars: α ◦ (β ◦X) = (αβ) ◦X.

Corollary 2: For p ∈ Z+, Pp is a subspace of P .
Note that a vector X ∈ Pp can be written as X =

[X1, . . . , Xp]′ where each Xi ∈ P1.

III. DECOMPOSING PERIODICITIES
A fundamental problem in symbolic signal processing

[6] is identifying the periodic structure of the symbolic
sources. Given a realization of the symbolic sequence, the
maximum likelihood estimates of the statistical periodicity
and the corresponding pmf were derived in [9]. This section
investigates the problem of decomposing the discovered
symbolic source into various smaller components.

Assume that an observed sequence Z ∈ Ppq was orig-
inally composed of sequences X ∈ Pp and Y ∈ Pq , i.e.
Z = X⊕Y . Then Zn = Xn̂p

⊕Yn̂q
, for n = 1, . . . , pq. The

pq equations can be expressed in matrix form as

 Z1

...
Zpq


pq×1

=

 Ip Iq
...

...
Ip Iq


︸ ︷︷ ︸

Tpq×(p+q)

◦



X1

...
Xp

Y1

...
Yq


(p+q)×1

. (7)

Lemma 2: For mutually prime p and q, the matrix T
above has rank p + q − 1. The null space of T is spanned
by the vector [−1 . . .− 1︸ ︷︷ ︸

p

1 . . . 1︸ ︷︷ ︸
q

]

Lemma 2 shows that if Z ∈ Ppq can be decomposed into
Z = X ⊕Y for some X ∈ Pp and Y ∈ Pq , then it can also
be decomposed as

(X ⊕ δp)⊕ (Y 	 δq) = Z

where Y 	 δq = Y ⊕ (−1 ◦ δq) and δr = [

r︷ ︸︸ ︷
δ, . . . , δ] for some

δ ∈ P1 and r = p, q. Thus there is a class of decompositions
of Z. In words, a pq-periodic symbolic source Z can be
decomposed into p and q−periodic components X,Y unique
up to an additive factor δ ∈ P1.
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