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Prelude

The chords sounded smooth and nondissonantbut strange and
somewhat eerie. The effect was so different from the tempered
scale that there was no tendency to judge in-tuneness or out-
of-tuneness. It seemed like a peek into a new and unfamiliar
musical world, in which none of the old rules applied, and the
new ones, if any, were undiscovered.F. H. Slaymaker [B: 176]

To seek out new tonalities, new timbres...
To boldly listen to what no one has heard before.

Several years ago I purchased a musical synthesizer with an intriguing feature—each
note of the keyboard could be assigned to any desired pitch. This freedom to arbitrar-
ily specify the tuning removed a constraint from my music that I had never noticed or
questioned—playing in 12-tone equal temperament.1 Suddenly, new musical worlds
opened, and I eagerly explored some of the possibilities: unequal divisions of the
octave,� equal divisions, and even some tunings not based on the octave at all.

Curiously, it was much easier to play in some tunings than in others. For instance,
19-tone equal temperament (19-tet) with its 19 equal divisions of the octave is easy.
Almost any kind of sampled or synthesized instrument plays well: piano sounds, horn
samples, and synthesized flutes all mesh and flow. 16-tet is harder, but still feasible.
I had to audition hundreds of sounds, but finally found a few good sounds for my
16-tet chords. In 10-tet, though, none of the tones in the synthesizers seemed right
on sustained harmonic passages. It was hard to find pairs of notes that sounded rea-
sonable together, and triads were nearly impossible. Everything appeared somewhat
out-of-tune, even though the tuning was precisely ten tonesper octave. Somehow the
timbre, or tone quality of the sounds, seemed to be interfering.

The more I experimented with alternative tunings, the more it appeared that cer-
tain kinds of scales sound good with some timbres and not withothers. Certain kinds
of timbres sound good in some scales and not in others. This raised a host of ques-
tions: What is the relationship between the timbre of a soundand the intervals, scale,
or tuning in which the sound appears “in tune?” Can this relationship be expressed
in precise terms? Is there an underlying pattern?�

This is the way modern pianos are tuned. The seven white keys form the major scale, and
the five black keys fill in the missing tones so that the perceived distance between adjacent
notes is (roughly) equal.
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This book answers these questions by drawing on recent results in psychoacous-
tics, which allow the relationship between timbre and tuning to be explored in a clear
and unambiguous way. Think of these answers as a model of musical perception that
makes predictions about what you hear: about what kinds of timbres are appropriate
in a given musical context, and what kind of musical context is suitable for a given
timbre.

Tuning, Timbre, Spectrum, Scalebegins by explaining the relevant terms from the
psychoacoustic literature. For instance, the perception of “timbre” is closely related
to (but also distinct from) the physical notion of thespectrumof a sound. Similarly,
the perception of “in-tuneness” parallels the measurable idea ofsensory consonance.
The key idea is that consonance and dissonance are not inherent qualities of intervals,
but they are dependent on the spectrum, timbre, or tonal quality of the sound. To
demonstrate this, the first sound example on the accompanying CD plays a short
phrase where the octave has been made dissonant by devious choice of timbre, even
though other, nonoctave intervals remain consonant. In fact, almost any interval can
be made dissonant or consonant by proper sculpting of the timbre.

Dissonance curvesprovide a straightforward way to predict the most consonant
intervals for a given sound, and the set of most-consonant intervals defines a scale
related to the specified spectrum. These allow musicians and composers to design
sounds according to the needs of their music, rather than having to create music
around the sounds of a few common instruments. The spectrum/scale relationship
provides a map for the exploration of inharmonic musical worlds.

To the extent that the spectrum/scale connection is based onproperties of the
human auditory system, it is relevant to other musical cultures. Two important inde-
pendent musical traditions are the gamelan ensembles of Indonesia (known for their
metallophones and unusual five and seven-note scales) and the percussion orchestras
of classical Thai music (known for their xylophone-like idiophones and seven-tone
equal-tempered scale). In the same way that instrumental sounds with harmonic par-
tials (for instance, those caused by vibrating strings and air columns) are closely
related to the scales of the West, so the scales of the gamelans are related to the spec-
trum, or tonal quality, of the instruments used in the gamelan. Similarly, the unusual
scales of Thai classical music are related to the spectrum ofthe xylophone-likerenat.

But there’s more. The ability to measure sensory consonancein a reliable and
perceptually relevant manner has several implications forthe design of audio signal
processing devices and for musical theory and analysis. Perhaps the most exciting
of these is a new method ofadaptive tuningthat can automatically adjust the tuning
of a piece based on the timbral character of the music so as to minimize dissonance.
Of course, one might cunningly seek to maximize dissonance;the point is that the
composer or performer can now directly control this perceptually relevant parameter.

The first several chapters present the key ideas in a nonmathematical way. The
later chapters deal with the nitty-gritty issues of sound generation and manipulation,
and the text becomes denser. For readers without the background to read these sec-
tions, I would counsel the pragmatic approach of skipping the details and focusing
on the text and illustrations.
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Fortunately, given current synthesizer technology, it is not necessary to rely only
on exposition and mathematical analysis. You can actually listen to the sounds and
the tunings, and verify for yourself that the predictions ofthe model correspond
to what you hear. This is the purpose of the accompanying CD. Some tracks are
designed to fulfill the predictions of the model, and some aredesigned to violate
them; it is not hard to tell the difference. The effects are not subtle.

Madison, Wisconsin, USA William A. Sethares
August 2004





Acknowledgments

This book owes a lot to many people.
The author would like to thankTom Staleyfor extensive discussions about tun-

ing. Tom also helped write and performGlass Lake. Brian McLarenwas amazing.
He continued to feed me references, photocopies, and cartoons long after I thought I
was satiated. Fortunately, he knew better. The namesPaul Erlich, wallyesterpaulrus,
paul-stretch-music, Jon Szanto, and Gary Morrisonhave been appearing daily in
my e-mail inbox for so long that I keep thinking I know who theyare. Someday, the
galactic oversight of our never having met will be remedied.This book would be very
different withoutLarry Polansky, who recorded the first gamelan “data” that encour-
aged me to go to Indonesia and gather data at its source. WhenBasuki Rachmanto
andGunawen Widiyantobecame interested in the gamelan recording project, it be-
came feasible. Thanks to both for work that was clearly aboveand beyond my hopes,
and to the generous gamelan masters, tuners, and performersthroughout Eastern Java
who allowed me to interview and record.Ian Dobsonhas always been encouraging.
He motivated and inspired me at a very crucial moment, exactly when it was most
needed. Since he probably doesn’t realize this, please don’t tell him – he’s uppity
enough as it is.John Sankeyand I co-authored the technical paper that makes up a
large part of the chapter on musicological analysis withoutever having met face to
face. Thanks, bf250.David Reileyand Mary Luckingwere the best guinea pigs a
scientist could hope for: squeak, squeak.Steve Curtinwas helpful despite personal
turmoil, andFred Spaethwas patently helpful. The hard work ofJean-Marc Fraı̈ssé
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Variables, Abbreviations, Definitions

� � Amplitudes of sine waves or partials.
attack The beginning portion of a signal.
[B:] Reference to the bibliography, see p. 365.
cent An octave is divided into 1200 equal sounding parts called cents.

See Appendix B.
-cet Abbreviation for cent-equal-temperament. In� -cet, there are� cents

between each scale step; thus, 12-tet is the same as 100-cet.
CDC Consonance-Dissonance Concept, see [B: 192].� � � � 	 � 
 	 � � 	 � 
 �

Dissonance between the partials at frequencies
� � and

� 

with cor-

responding amplitudes� � and� 

.

[D:] Reference to the discography, see p. 377.
DFT Discrete Fourier Transform. The DFT of a waveform (sound) shows

how the sound can be decomposed into and rebuilt from sine wave
partials.� 

Intrinsic dissonance of the spectrum� .� 
 � � �
Dissonance of the spectrum� at the interval

�
.

diatonic A seven-note scale containing five whole steps and two half steps
such as the common major and minor scales.

envelope Evolution of the amplitude of a sound over time.� Name of a spectrum with partials at frequencies
� � 	 � � 	 � � � 	 � �

and
amplitudes� � 	 � � 	 � � � 	 � �

.� � Frequencies of partials.
fifth A 700-cent interval in 12-tet, or a 3:2 ratio in JI.
FFT Fast Fourier Transform, a clever implementation of the DFT.
FM Frequency Modulation, when the frequency of a sine wave is

changed, often sinusoidally.
formant Resonances that may be thought of as fixed filters through which a

variable excitation is passed.
fourth A 500-cent interval in 12-tet, or a 4:3 ratio in JI.
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GA Genetic Algorithm, an optimization technique.
harmonic Harmonic sounds have a fundamental frequency

�
and partials at

integer multiples of
�
.

Hz Hertz is a measure of frequency in cycles per second.
IAC Interapplication ports that allow audio and MIDI data tobe ex-

changed between applications.
inharmonic The partials of an inharmonic sound are not at integer multiples of a

single fundamental frequency.
JI Just Intonation, the theory of musical intervals and scales based on

small integer ratios.
JND Just Noticeable Difference, smallest change that a listener can de-

tect.
K K means� � � � � � � � . For example, a 16K FFT contains

� � � � � � � �� � � � �
samples.� � Loudness of the� th partial of a sound.

MIDI Musical Interface for Digital Instruments, a communications proto-
col for electronic musical devices.

octave Musical interval defined by the ratio 2:1.
partial The partials (overtones) of a sound are the prominent sine wave

components in the DFT representation.
periodic A function, signal, or waveform� �  �

is periodic with period! if� �  " ! � � � �  �
for all

 
.

RIW Resampling with Identity Window, a technique for spectral map-
ping.

[S:] Reference to the sound examples, see p. 381.
semitone In 12-tet, an interval of 100 cents.
signal When a sound is converted into digital form in a computer, it is

called a signal.
sine wave The “simplest” waveform is completely characterized by frequency,

amplitude, and phase.
SMF Standard MIDI File, a way of storing and exchanging MIDI data

between computer platforms.
spectral mapping Technique for manipulating the partials of a sound.
SPSA Simultaneous Perturbation Stochastic Approximation, a technique

of numerical optimization
steady state The part of a sound that can be closely approximated by a periodic

waveform.
-tet Abbreviation for tone-equal-tempered. 12-tet is the standard West-

ern keyboard tuning.
transient That portion of a sound that cannot be closely approximated by a

periodic signal.
[V:] Reference to the video examples, see p. 393.
[W:] Web references, see p. 395
waveform Synonym for signal.
whole tone In 12-tet, an interval of 200 cents.
xenharmonic Strange musical “harmonies” not possible in 12-tet.
xentonal Music with a surface appearance of tonality, but unlikeanything pos-

sible in 12-tet.�
Pronouncedoh-plus, this symbol indicates the “sum” of two inter-
vals in the symbolic method of constructing spectra.
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The Octave Is Dead . . . Long Live the Octave

1.1 A Challenge

The octave is the most consonant interval after the unison. Alow C on the piano
sounds “the same” as a high C. Scales “repeat” at octave intervals. These common-
sense notions are found wherever music is discussed:

The most basic musical interval is the octave, which occurs when the fre-
quency of any tone is doubled or halved. Two tones an octave apart create a
feeling of identity, or the duplication of a single pitch in ahigher or lower
register.1

Harry Olson2 uses “pleasant” rather than “consonant”:

An interval between two sounds is their spacing in pitch or frequency... It
has been found that the octave produces a pleasant sensation... It is an estab-
lished fact that the most pleasing combination of two tones is one in which
the frequency ratio is expressible by two integers neither of which is large.

W. A. Mathieu3 discusses the octave far more poetically:

The two sounds are the same and different. Same name, same “note” (what-
ever that is), but higher pitch. When a man sings nursery rhymes with a
child, he is singing precisely the same song, but lower than the child. They
are singing together, but singing apart. There is somethingeasy in the har-
mony of two tones an octave apart - played either separately or together - but
an octave transcendseasy. There is a way in which the tones are identical.

Arthur Benade4 observes that the similarity between notes an octave apart has been
enshrined in many of the world’s languages:�

From [B: 66].#
[B: 123].$
[B: 104].%
[B: 12].
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Musicians of all periods and all places have tended to agree that when they
hear a tone having a repetition frequency double that of another one, the two
are very nearly interchangeable. This similarity of a tone with its octave is
so striking that in most languages both tones are given the same name.

Anthony Storr5 is even more emphatic:

The octave is an acoustic fact, expressible mathematically, which is not cre-
ated by man. The composition of music requires that the octave be taken as
the most basic relationship.

Given all this, the reader may be surprised (and perhaps a bitincredulous) to hear a
tone that is distinctly dissonant when played in the interval of an octave, yet sounds
nicely consonant when played at some other, nonoctave interval. This is exactly the
demonstration provided in the first sound example6 [S: 1] and repeated in the first
video example7 [V: 1]. The demonstration consists of only a handful of notes, as
shown in Fig. 1.1.

l & h H_ ˙̇_|    |    # 
l[h H_ ˙̇_|    |    # n

f      2f    f & 2f     f       2.1f    f & 2.1f

Fig. 1.1. In sound example [S: 1] and
video example [V: 1], the timbre of the
sound is constructed so that the octave
between& and ' & is dissonant while
the nonoctave& to ' ( ) & is consonant.
Go listen to this example now.

A note is played (with a fundamental frequency
� � � * �

Hz8) followed by its oc-
tave (with fundamental at� � � + � �

Hz). Individually, they sound normal enough,
although perhaps somewhat “electronic” or bell-like in nature. But when played si-
multaneously, they clash in a startling dissonance. In the second phrase, the same
note is played, followed by a note with fundamental at� � � � � + � * Hz (which falls
just below the highly dissonant interval usually called theaugmented octave or mi-
nor 9th). Amazingly, this second, nonoctave (and even microtonal) interval appears
smooth and restful, even consonant; it has many of the characteristics usually asso-
ciated with the octave. Such an interval is called apseudo-octave.

Precise details of the construction of the sound used in thisexample are given
later. For now, it is enough to recognize that the tonal makeup of the sound was care-
fully chosenin conjunction withthe intervals used. Thus, the “trick” is to choose the
spectrum or timbre of the sound (the tone quality) to match the tuning (the intervals
desired).,

[B: 184].-
Beginning on p. 381 is a listing of all sound examples (references to sound examples are
prefaced with [S:]) along with instructions for accessing them with a computer..
Beginning on p. 393 is a listing of all video examples (references to video examples are
prefaced with [V:]) along with instructions for accessing them with a computer./
Hz stands forHertz, the unit of frequency. One Hertz equals one cycle per second.
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As will become apparent, there is a relationship between thekinds of sounds
made by Western instruments (i.e., harmonic9 sounds) and the kinds of intervals
(and hence scales) used in conventional Western tonal music. In particular, the 2:1
octave is important precisely because the first two partialsof a harmonic sound have
2:1 ratios. Other kinds of sounds are most naturally played using other intervals,
for example, the 2.1 pseudo-octave. Stranger still, there are inharmonic sounds that
suggest no natural or obvious interval of repetition. Octave-based music is only one
of a multitude of possible musics. As future chapters show, it is possible to make
almost any interval reasonably consonant, or to make it wildly dissonant, by properly
sculpting the spectrum of the sound.

Sound examples [S: 2] to [S: 5] are basically an extended version of this example,
where you can better hear the clash of the dissonances and theodd timbral character
associated with the inharmonic stretched sounds. The “same” simple piece is played
four ways:

[S: 2] Harmonic sounds in 12-tet
[S: 3] Harmonic sounds in the 2.1 stretched scale
[S: 4] 2.1 stretched timbres in the 2.1 stretched scale
[S: 5] 2.1 stretched timbres in 12-tet

where12-tet is an abbreviation for the familiar 12-tone per octave equaltempered
scale, and where thestretched scale, based on the 2.1 pseudo-octave, is designed
specially for use with the stretched timbres. When the timbres and the scales are
matched (as in [S: 2] and [S: 4]), there is contrast between consonance and disso-
nance as the chords change, and the piece has a sensible musical flow (although the
timbral qualities in [S: 4] are decidedly unusual). When thetimbres and scales do
not match (as in [S: 3] and [S: 5]), the piece is uniformly dissonant. The difference
between these two situations is not subtle, and it calls intoquestion the meaning of
basic terms like timbre, consonance, and dissonance. It calls into question the octave
as the most consonant interval, and the kinds of harmony and musical theories based
on that view. In order to make sense of these examples,Tuning, Timbre, Spectrum,
Scaleuses the notions ofsensory consonanceandsensory dissonance. These terms
are carefully defined in Chap. 3 and are contrasted with othernotions of consonance
and dissonance in Chap. 5.

1.2 A Dissonance Meter

Such shaping of spectra and scales requires that there be a convenient way to mea-
sure the dissonance of a given sound or interval. One of the key ideas underlying
the sonic manipulations inTuning, Timbre, Spectrum, Scaleis the construction of a
“dissonance meter.” Don’t worry—no soldering is required.The dissonance meter is
a computer program that inputs a sound in digital form and outputs a number pro-
portional to the (sensory) dissonance or consonance of the sound. For longer musical0

Hereharmonicis used in the technical sense of a sound with overtones composed exclu-
sively of integer multiples of some audible fundamental.
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passages with many notes, the meter can be used to measure thedissonance within
each specified time interval, for instance, within each measure or each beat. As the
challenging the octaveexample shows, the dissonance meter must be sensitive to
both the tuning (or pitch) of the sounds and to the spectrum (or timbre) of the tones.

Although such a device may seem frivolous at first glance, it has many real uses:

As an audio signal processing device:The dissonance meter is at the heart of a device
that can automatically reduce the dissonance of a sound, while leaving its character
more or less unchanged. This can also be reversed to create a sound that is more dis-
sonant than the input. Combined, this provides a way to directly control the perceived
dissonance of a sound.

Adaptive tuning of musical synthesizers:While monitoring the dissonance of the
notes commanded by a performer, the meter can be used to adjust the tuning of the
notes (microtonally) to minimize the dissonance of the passage. This is a concrete
way of designing an adaptive or dynamic tuning.

Exploration of inharmonic sounds:The dissonance meter shows which intervals are
most consonant (and which most dissonant) as a function of the spectrum of the
instrument. As thechallenging the octaveexample shows, unusual sounds can be
profitably played in unusual intervals. The dissonance meter can concretely specify
related intervals and spectra to find tunings most appropriate for a given timbre. This
is a kind of map for the exploration of inharmonic musical spaces.

Exploration of “arbitrary” musical scales:Each timbre or spectrum has a set of
intervals in which it sounds most consonant. Similarly, each set of intervals (each
musical scale) has timbres with spectra that sound most consonant in that scale. The
dissonance meter can help find timbres most appropriate for agiven tuning.

Analysis of tonal music and performance:In tonal systems with harmonic instru-
ments, the consonance and dissonance of a musical passage can often be read from
the score because intervals within a given historical period have a known and rela-
tively fixed degree of consonance and/or dissonance. But performances may vary. A
dissonance meter can be used to measure the actual dissonance of different perfor-
mances of the same piece.

Analysis of nontonal and nonwestern music and performance:Sounds played in in-
tervals radically different from those found in 12-tet haveno standard or accepted
dissonance value in standard music theory. As the dissonance meter can be applied
to any sound at any interval, it can be used to help make musical sense of passages to
which standard theories are inapplicable. For instance, itcan be used to investigate
nonwestern music such as the gamelan, and modern atonal music.

Historical musicology:Many historical composers wrote in musical scales (such as
meantone, Pythagorean, Just, etc.) that are different from12-tet, but they did not
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document their usage. By analyzing the choice of intervals,the dissonance meter can
make an educated guess at likely scales using only the extantmusic. Chapter 11, on
“Musicological Analysis,” investigates possible scales used by Domenico Scarlatti.

As an intonation monitor:Two notes in unison are very consonant. When slightly
out of tune, dissonances occur. The dissonance meter can be used to monitor the
intonation of a singer or instrumentalist, and it may be useful as a training device.

The ability to measure dissonance is a crucial component in several kinds of audio
devices and in certain methods of musical analysis. The ideathat dissonance is a
function of the timbre of the sound as well as the musical intervals also has impor-
tant implications for the understanding of nonwestern musics, modern atonal and
experimental compositions, and the design of electronic musical instruments.

1.3 New Perspectives

The dissonance curve plots how much sensory dissonance occurs at each interval,
given the spectrum (or timbre) of a sound. Many common Western orchestral (and
popular) instruments are primarily harmonic, that is, theyhave a spectrum that con-
sists of a fundamental frequency along with partials (or overtones) at integer multi-
ples of the fundamental. This spectrum can be used to draw a dissonance curve, and
the minima of this curve occur at or near many of the steps of the Western scales.
This suggests a relationship between the spectrum of the instruments and the scales
in which they are played.

Nonwestern Musics

Many different scale systems have been and still are used throughout the world. In
Indonesia, for instance, gamelans are tuned to five and seven-note scales that are
very different from 12-tet. The timbral quality of the (primarily metallophone) in-
struments is also very different from the harmonic instruments of the West. The dis-
sonance curve for these metallophones have minima that occur at or near the scale
steps used by the gamelans.10 Similarly, in Thailand, there is a classical music tradi-
tion that uses wooden xylophone-like instruments calledrenatsthat play in (approx-
imately) 7-tet. The dissonance curve for renat-like timbres have minima that occur
near many of the steps of the traditional 7-tet Thai scale, asshown in Chap. 15. Thus,
the musical scales of these nonwestern traditions are related to the inharmonic spec-
tra of the instruments, and the idea of related spectra and scales is applicable cross
culturally.� 1

See Chap. 10 “The Gamelan” for details and caveats.
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New Scales

Even in the West, the present 12-tet system is a fairly recentinnovation, and many
different scales have been used throughout history. Some systems, such as those used
in the Indonesian gamelan, do not even repeat at octave intervals. Cananypossible
set of intervals or frequencies form a viable musical scale,assuming that the listener
is willing to acclimate to the scale?

Some composers have viewed this as a musical challenge. Easley Blackwood’s
Microtonal Etudesmight jokingly be called the “Ill-Tempered Synthesizer” because
it explores all equal temperaments between 13 and 24. Thus, instead of 12 equal
divisions of the octave, these pieces divide the octave into13, 14, 15, and more equal
parts. Ivor Darreg composed in many equal temperaments,11 exclaiming

the striking and characteristic moods of many tuning-systems will become
the most powerful and compelling reason for exploring beyond 12-tone
equal temperament. It is necessary to have more than one non-twelve-tone
system before these moods can be heard and their significanceappreciated.12

Others have explored nonequal divisions of the octave13 and even various subdi-
visions of nonoctaves.14 It is clearly possible to make music in a large variety of
tunings. Such music is calledxenharmonic,15 strange “harmonies” unlike anything
possible in 12-tet.

The intervals that are most consonant for harmonic sounds are made from small
integer ratios such as the octave (2:1), the fifth (3:2), and the fourth (4:3). These sim-
ple integer ratio intervals are calledjust intervals, and they collectively form scales
known asjust intonationscales. Many of the just intervals occur close to (but not
exactly at16) steps of the 12-tet scale, which can be viewed as an acceptable approx-
imation to these just intervals. Steps of the 19-tet scale also approximate many of
the just intervals, but the 10-tet scale steps do not. This suggests why, for instance, it
is easy to play in 19-tet and hard to play in 10-tet using harmonic tones—there are
many consonant intervals in 19-tet but few in 10-tet.

New Sounds

Thechallenging the octavedemonstration shows that certain unusual intervals can be
consonant when played with certain kinds of unusual sounds.Is it possible to make
any interval consonant by properly manipulating the sound quality? For instance,
is it possible to choose the spectral character so that many of the 10-tet intervals
became consonant? Would it then be “easy” to play in 10-tet? The answer is “yes,”� �

[D: 10].� #
From [B: 36], No. 5.� $
For instance, Vallotti, Kirchenberg, and Partch.� %
For instance, Carlos [B: 23], Mathews and Pierce [B: 102], and McLaren [B: 108].� ,
Coined by Darreg [B: 36], from the Greekxenosfor strange or foreign.� -
Table 6.1 on p. 97 shows how close these approximations are.
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and part of this book is dedicated to exploring ways of manipulating the spectrum in
an appropriate manner.

Although Western music relies heavily on harmonic sounds, these are only one
of a multitude of kinds of sound. Modern synthesizers can easily generate inhar-
monic sounds and transport us into unexplored musical realms. The spectrum/scale
connection provides a guideline for exploration by specifying the intervals in which
the sounds can be played most consonantly or by specifying the sounds in which the
intervals can be played most consonantly. Thus, the methodsallow the composer to
systematically specify the amount of consonance or dissonance. The composer has a
new and powerful method of control over the music.

Consider a fixed scale in which all intervals are just. No suchscale can be modu-
lated through all the keys. No such scale can play all the consonant chords even in a
single key. (These are arithmetic impossibilities, and a concrete example is provided
on p. 153.) But using the ideas of sensory consonance, it is possible to adapt the
pitches of the notes dynamically. For harmonic tones, this is equivalent to playing in
simple integer (just) ratios, but allows modulation to any key, thus bypassing this an-
cient problem. Although previous theorists had proposed that such dynamic tunings
might be possible,17 this is the first concrete method that can be applied to any chord
in any musical setting.It is possible to have your just intonation and to modulate,
too! Moreover, the adaptive tuning method is not restricted to harmonic tones, and
so it provides a way to “automatically” play in the related scale (the scale consisting
of the most consonant intervals, given the spectral character of the sound).

New “Music Theories”

When working in an unfamiliar system, the composer cannot rely on musical intu-
ition developed through years of practice. In 10-tet, for instance, there are no inter-
vals near the familiar fifths or thirds, and it is not obvious what intervals and chords
make musical sense. The ideas of sensory consonance can be used to find the most
consonant chords, as well as the most consonant intervals (as always, sensory conso-
nance is a function of the intervals and of the spectrum/timbre of the sound), and so
it can provide a kind of sensory map for the exploration of newtunings and new tim-
bres. Chapter 14 develops a new music theory for 10-tet. The “neutral third” chord
is introduced along with the “circle of thirds” (which is somewhat analogous to the
familiar circle of fifths in 12-tet). This can be viewed as a prototype of the kinds of
theoretical constructs that are possible using the sensoryconsonance approach, and
pieces are included on the CD to demonstrate that the predictions of the model are
valid in realistic musical situations.

Unlike most theories of music, this one does not seek (primarily) to explain a
body of existing musical practice. Rather, like a good scientific theory, it makes con-
crete predictions that can be readily verified or falsified. These predictions involve
how (inharmonic) sounds combine, how spectra and scales interact, and how disso-
nance varies as a function of both interval and spectrum. Theenclosed CD provides� .

See Polansky [B: 142] and Waage [B: 202].
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examples so that you can verify for yourself that the predictions correspond to per-
ceptual reality.

Tuning and spectrum theories are independent of musical style; they are no more
“for” classical music than they are “for” jazz or pop. It would be naive to suggest
that complex musical properties such as style can be measured in terms of a simple
sensory criterion. Even in the realm of harmony (and ignoring musically essential
aspects such as melody and rhythm), sensory consonance is only part of the story. A
harmonic progression that was uniformly consonant would betedious; harmonic in-
terest arises from a complex interplay of restlessness and restfulness,18 of tension and
resolution. It is easy to increase the sensory dissonance, and hence the restlessness,
by playing more notes (try slamming your arm on the keyboard). But it is not always
as easy to increase the sensory consonance and hence the restfulness. By playing
sounds in their related scales, it is possible to obtain the greatest contrast between
consonance and dissonance for a given sound palette.

1.4 Overview

While introducing the appropriate psychoacoustic jargon,Chap. 2 (the “Science of
Sound”) draws attention to the important distinction between what we perceive and
what is really (measurably) there. Any kind of “perceptually intelligent” musical
device must exploit the measurable in order to extract information from the environ-
ment, and it must then shape the sound based on the perceptualrequirements of the
listener. Chapter 3 looks carefully at the case of two simultaneously sounding sine
waves, which is the simplest situation in which sensory dissonances occur.

Chapter 4 reviews several of the common organizing principles behind the cre-
ation of musical scales, and it builds a library of historical and modern scales that
will be used throughout the book as examples.

Chapter 5 gives an overview of the many diverse meanings thatthe words “con-
sonance” and “dissonance” have enjoyed throughout the centuries. The relatively re-
cent notion of sensory consonance is then adopted for use throughout the remainder
of the book primarily because it can be readily measured and quantified.

Chapter 6 introduces the idea of adissonance curvethat displays (for a sound
with a given spectrum) the sensory consonance and dissonance of all intervals. This
leads to the definition of arelatedspectrum and scale, a sound for which the most
consonant intervals occur at precisely the scale steps. Twocomplementary questions
are posed. Given a spectrum, what is the related scale? Givena scale, what is a related
spectrum? The second, more difficult question is addressed at length in Chap. 12, and
Chap. 7 (“A Bell, A Rock, A Crystal”) gives three detailed examples of how related
spectra and scales can be exploited in musical contexts. This is primarily interesting
from a compositional point of view.

Chapter 8 shows how the ideas of sensory consonance can be exploited to create
a method of adaptive tuning, and it provides several examples of “what to expect”� /

Alternative definitions of dissonance and consonance are discussed at length in Chap. 5.
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from such an algorithm. Chapter 9 highlights three compositions in adaptive tun-
ing and discusses compositional techniques and tradeoffs.Musical compositions and
examples are provided on the accompanying CD.

The remaining chapters can be read in any order. Chapter 10 shows how the pelog
and slendro scales of the Indonesian gamelan are correlatedwith the spectra of the
metallophones on which they are played. Similarly, Chap. 15shows how the scales
of Thai classical music are related to the spectra of the Thaiinstruments.

Chapter 11 explores applications in musicology. Thedissonance scorecan be
used to compare different performances of the same piece, orto examine the use of
consonances and dissonances in unscored and nonwestern music. An application to
historical musicology shows how the tuning preferences of Domenico Scarlatti can
be investigated using only his extant scores.

Chapter 14 explores one possible alternative musical universe, that of 10-tet.
This should only be considered a preliminary foray into whatpromises to be a huge
undertaking—codifying and systematizing music theories for non-12-tet. Although
it is probably impossible to find a “new” chord in 12-tet, it isimpossible to play
in � -tet without creating new harmonies, new chordal structures, and new kinds of
musical passages.

Chapters 12 and 13 are the most technically involved. They show how to spec-
ify spectra for a given tuning, and how to create rich and complex sounds with the
specified spectral content.

The final chapter sums up the ideas inTuning, Timbre, Spectrum, Scaleas ex-
ploiting a single perceptual measure (that of sensory consonance) and applying it to
musical theory, practice, and sound design. As we expand thepalette of timbres we
play, we will naturally begin to play in new intervals and newtunings.
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The Science of Sound

“Sound” as a physical phenomenon and “sound” as a
perceptualphenomena are not the same thing. Definitions and
results from acoustics are compared and contrasted to the
appropriate definitions and results from perception research
and psychology. Auditory perceptions such as loudness, pitch,
and timbre can often be correlated with physically measurable
properties of the sound wave.

2.1 What Is Sound?

If a tree falls in the forest and no one is near, does it make anysound?Understand-
ing the different ways that people talk about sound can help get to the heart of this
conundrum. One definition1 describes the wave nature of sound:

Vibrations transmitted through an elastic material or a solid, liquid, or gas,
with frequencies in the approximate range of 20 to 20,000 hertz.

Thus, physicists and engineers use “sound” to mean a pressure wave propagating
through the air, something that can be readily measured, digitized into a computer,
and analyzed. A second definition focuses on perceptual aspects:

The sensation stimulated in the organs of hearing by such vibrations in the
air or other medium.

Psychologists (and others) use “sound” to refer to a perception that occurs inside the
ear, something that is notoriously hard to quantify.

Does the tree falling alone in the wilderness make sound? Under the first defini-
tion, the answer is “yes” because it will inevitably cause vibrations in the air. Using
the second definition, however, the answer is “no” because there are no organs of
hearing present to be stimulated. Thus, the physicist says yes, the psychologist says
no, and the pundits proclaim a paradox. The source of the confusion is that “sound”
is used in two different senses. Drawing such distinctions is more than just a way
to resolve ancient puzzles, it is also a way to avoid similar confusions that can arise
when discussing auditory phenomena.

Physical attributes of a signal such as frequency and amplitude must be kept
distinct from perceptual correlates such as pitch and loudness.2 The physical at-
tributes are measurable properties of the signal whereas the perceptual correlates�

from the American Heritage Dictionary.#
The ear actually responds to sound pressure, which is usually measured in decibels.
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are inside the mind of the listener. To the physicist, sound is a pressure wave that
propagates through an elastic medium (i.e., the air). Molecules of air are alternately
bunched together and then spread apart in a rapid oscillation that ultimately bumps
up against the eardrum. When the eardrum wiggles, signals are sent to the brain,
causing “sound” in the psychologist’s sense.

nominal

high

low

air molecules close
together = region of
high pressure

air molecules far 
apart = region of
low pressure

rapid oscillations in 
air pressure causes 
eardrum to vibrate

tuning fork 
oscillates,
disturbing the 
nearby air

a
ir
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u

re

Fig. 2.1.Sound as a pressure wave. The peaks represent times when air molecules are clus-
tered, causing higher pressure. The valleys represent times when the air density (and hence
the pressure) is lower than nominal. The wave pushes againstthe eardrum in times of high
pressure, and pulls (like a slight vacuum) during times of low pressure, causing the drum to
vibrate. These vibrations are perceived as sound.

Sound waves can be pictured as graphs such as in Fig. 2.1, where high-pressure
regions are shown above the horizontal line, and low-pressure regions are shown
below. This particular waveshape, called asine wave, can be characterized by three
mathematical quantities: frequency, amplitude, and phase. The frequency of the wave
is the number of complete oscillations that occur in one second. Thus, a sine wave
with a frequency of 100 Hz (short for Hertz, after the German physicist Heinrich
Rudolph Hertz) oscillates 100 times each second. In the corresponding sound wave,
the air molecules bounce back and forth 100 times each second.

The human auditory system (the ear, for short) perceives thefrequency of a sine
wave as its pitch, with higher frequencies corresponding tohigher pitches. The am-
plitude of the wave is given by the difference between the highest and lowest pres-
sures attained. As the ear reacts to variations in pressure,waves with higher am-
plitudes are generally perceived as louder, whereas waves with lower amplitudes are
heard as softer. The phase of the sine wave essentially specifies when the wave starts,
with respect to some arbitrarily given starting time. In most circumstances, the ear
cannot determine the phase of a sine wave just by listening.
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Thus, a sine wave is characterized by three measurable quantities, two of which
are readily perceptible. This does not, however, answer thequestion of what a sine
wavesounds like. Indeed, no amount of talk will do. Sine waves have been variously
described as pure, tonal, clean, simple, clear, like a tuning fork, like a theremin,
electronic, and flute-like. To refresh your memory, the firstfew seconds of sound
example [S: 8] are purely sinusoidal.

2.2 What Is a Spectrum?

Individual sine waves have limited musical value. However,combinations of sine
waves can be used to describe, analyze, and synthesize almost any possible sound.
The physicist’s notion of the spectrum of a waveform correlates well with the per-
ceptual notion of the timbre of a sound.

2.2.1 Prisms, Fourier Transforms, and Ears

As sound (in the physical sense) is a wave, it has many properties that are analogous
to the wave properties of light. Think of a prism, which bendseach color through
a different angle and so decomposes sunlight into a family ofcolored beams. Each
beam contains a “pure color,” a wave of a single frequency, amplitude, and phase.3

Similarly, complex sound waves can be decomposed into a family of simple sine
waves, each of which is characterized by its frequency, amplitude, and phase. These
are called thepartials, or theovertonesof the sound, and the collection of all the
partials is called thespectrum. Figure 2.2 depicts theFourier transformin its role as
a “sound prism.”

This prism effect for sound waves is achieved by performing aspectral analysis,
which is most commonly implemented in a computer by running aprogram called
the Discrete Fourier Transform (DFT) or the more efficient Fast Fourier Transform
(FFT). Standard versions of the DFT and/or the FFT are readily available in audio
processing software and in numerical packages (such asMatlab and Mathematica)
that can manipulate sound data files.

The spectrum gives important information about the makeup of a sound. For
example, Fig. 2.3 shows a small portion of each of three sine waves:

(a) With a frequency of 100 Hz and an amplitude of 1.2 (the solid line)
(b) With a frequency of 200 Hz and an amplitude of 1.0 (plottedwith

dashes)
(c) With a frequency of 200 Hz and an amplitude of 1.0, but shifted in

phase from (b) (plotted in bold dashes)$
For light, frequency corresponds to color, and amplitude tointensity. Like the ear, the eye
is predominantly blind to the phase.
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high frequencies
= blue light

low frequencies
= red light

middle frequencies 
= yellow light

complex light wave

prism

high frequencies 
= treble

low frequencies 
= bass

middle frequencies 
= midrange

complex sound wave

Fourier 
Transform

Digitize
Waveform

in 
Computer

Fig. 2.2. Just as a prism separates light into its simple constituent elements (the colors of
the rainbow), the Fourier Transform separates sound waves into simpler sine waves in the
low (bass), middle (midrange), and high (treble) frequencies. Similarly, the auditory system
transforms a pressure wave into a spatial array that corresponds to the various frequencies
contained in the wave, as shown in Fig. 2.4.

such as might be generated by a pair of tuning forks or an electronic tuner playing the2
below middle3 and the

2
an octave below that.4 When (a) and (b) are sounded to-

gether (mathematically, the amplitudes are added togetherpoint by point), the result
is the (slightly more) complex wave shown in part (d). Similarly, (a) and (c) added
together give (e). When (d) is Fourier transformed, the result is the graph (f) that
shows frequency on the horizontal axis and the magnitude of the waves displayed on
the vertical axis. Such magnitude/frequency graphs are called thespectrum5 of the
waveform, and they show what the sound is made of. In this case, we know that the
sound is composed of two sine waves at frequencies 100 and 200, and indeed there
are two peaks in (f) corresponding to these frequencies. Moreover, we know that the
amplitude of the 100-Hz sinusoid is 204 larger than the amplitude of the 200-Hz
sine, and this is reflected in the graph by the size of the peaks. Thus, the spectrum (f)
decomposes the waveform (d) into its constituent sine wave components.

This idea of breaking up a complex sound into its sinusoidal elements is impor-
tant because the ear functions as a kind of “biological” spectrum analyzer. That is,
when sound waves impinge on the ear, we hear a sound (in the second, perceptual
sense of the word) that is a direct result of the spectrum, andit is only indirectly a re-
sult of the waveform. For example, the waveform in part (d) looks very different from
the waveform in part (e), but they sound essentially the same. Analogously, the spec-%

Actually, the 5 ’s should have frequencies of 98 and 196, but 100 and 200 make all of the
numbers easier to follow.,
This is more properly called themagnitude spectrum. Thephase spectrumis ignored in this
discussion because it does not correspond well to the human perceptual apparatus.
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Fig. 2.3.Spectrum of a sound consisting of two sine waves.

trum of waveform (d) and the spectrum of waveform (e) are identical (because they
have been built from sine waves with the same frequencies andamplitudes). Thus,
the spectral representation captures perceptual aspects of a sound that the waveform
does not. Said another way, the spectrum (f) is more meaningful to the ear than are
the waveforms (d) and (e).

A nontrivial but interesting exercise in mathematics showsthat any periodic sig-
nal can be broken apart into a sum of sine waves with frequencies that are integer
multiples of some fundamental frequency. The spectrum is thus ideal for represent-
ing periodic waveforms. But no real sound is truly periodic,if only because it must
have a beginning and an end; at best it may closely approximate a periodic signal for
a long, but finite, time. Hence, the spectrum can closely, butnot exactly, represent
a musical sound. Much of this chapter is devoted to discovering how close such a
representation can really be.

Figure 2.4 shows a drastically simplified view of the auditory system. Sound or
pressure waves, when in close proximity to the eardrum, cause it to vibrate. These os-
cillations are translated to theoval windowthrough a mechanical linkage consisting
of three small bones. The oval window is mounted at one end of the cochlea, which
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is a conical tube that is curled up like a snail shell (although it is straightened out in
the illustration). The cochlea is filled with fluid, and it is divided into two chambers
lengthwise by a thin layer of pliable tissue called the basilar membrane. The motion
of the fluid rocks the membrane. The region nearest the oval window responds pri-
marily to high frequencies, and the far end responds mostly to low frequencies. Tiny
hair-shaped neurons sit on the basilar membrane, sending messages toward the brain
when they are jostled.

membrane near window is 
narrow and stiff, responds 

to high frequencies

complex 
sound wave

eardrum vibrates

mechanical linkage
of bones

oval window

cochlea: a fluid 
filled conical tube

membrane in middle 
responds to midrange

membrane at end is 
wide and flexible, 
responds to low 
frequencies

basilar membrane 
wiggles, triggering tiny 
hair shaped neurons

Fig. 2.4. The auditory system as a biological spectrum analyzer that transforms a pressure
wave into a frequency selective spatial array.

Thus, the ear takes in a sound wave, like that in Fig. 2.3 (d) or(e), and sends a
coded representation to the brain that is similar to a spectral analysis, as in (f). The
conceptual similarities between the Fourier transform andthe auditory system show
why the idea of the spectrum of a sound is so powerful; the Fourier transform is a
mathematical tool that is closely related to our perceptualmechanism. This analogy
between the perception of timbre and the Fourier spectrum was first posited by Georg
Ohm in 1843 (see [B: 147]), and it has driven much of the acoustics research of the
past century and a half.

2.2.2 Spectral Analysis: Examples

The example in the previous section was contrived because weconstructed the signal
from two sine waves, only to “discover” that the Fourier transform contained the
frequencies of those same two sine waves. It is time to explore more realistic sounds:
the pluck of a guitar and the strike of a metal bar. In both cases, it will be possible to
give both a physical and an auditory meaning to the spectrum.

Guitar Pluck: Theory

Guitar strings are flexible and lightweight, and they are held firmly in place at both
ends, under considerable tension. When plucked, the stringvibrates in a far more
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complex and interesting way than the simple sine wave oscillations of a tuning fork
or an electronic tuner. Figure 2.5 shows the first

� 6 � second of the open
2

string
of my Martin acoustic guitar. Observe that the waveform is initially very complex,
bouncing up and down rapidly. As time passes, the oscillations die away and the
gyrations simplify. Although it may appear that almost anything could be happen-
ing, the string can vibrate freely only at certain frequencies because of its physical
constraints.
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Fig. 2.5. Waveform of a guitar pluck and its spectrum. The top figure shows the first7 8 9
second (32,000 samples) of the pluck of the G string of an acoustic guitar. The spectrum
shows the fundamental at) : ; Hz, and near integer harmonics at7 < 9 , = < : , > < > , . . . .

For sustained oscillations, a complete half cycle of the wave must fit exactly
inside the length of the string; otherwise, the string wouldhave to move up and
down where it is rigidly attached to the bridge (or nut) of theguitar. This is a tug
of war the string inevitably loses, because the bridge and nut are far more massive
than the string. Thus, all oscillations except those at certain privileged frequencies
are rapidly attenuated.

Figure 2.6 shows the fundamental and the first few modes of vibration for a
theoretically ideal string. If half a period corresponds tothe fundamental frequency�

, then a whole period at frequency� �
also fits exactly into the length of the string.

This more rapid mode of vibration is called the second partial. Similarly, a period and
a half at frequency

� �
fits exactly, and it is called the third partial. Such a spectrum,

in which all frequencies of vibration are integer multiplesof some fundamental
�
, is

calledharmonic, and the frequencies of oscillation are called thenatural modes of
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vibrationor resonant frequenciesof the string. As every partial repeats exactly within
the period of the fundamental, harmonic spectra correspondto periodic waveforms.
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Fig. 2.6. Vibrations of an ideal string and its spectrum. Because the string is fixed at both
ends, it can only sustain oscillations when a half period fitsexactly into its length. Thus, if the
fundamental occurs at frequency& , the second partial must be at' & , the third at7 & , etc., as
shown in the spectrum, which plots frequency verses magnitude.

Compare the spectrum of the real string in Fig. 2.5 with the idealized spectrum
in Fig. 2.6. Despite the complex appearance of the waveform,the guitar sound is pri-
marily harmonic. Over 20 partials are clearly visible at roughly equal distances from
each other, with frequencies at (approximately) integer multiples of the fundamental,
which in this case happens to be 196 Hz.

There are also some important differences between the real and the idealized
spectra. Although the idealized spectrum is empty between the various partials, the
real spectrum has some low level energy at almost every frequency. There are two
major sources of this: noise and artifacts. The noise might be caused by pick noise,
finger squeaks, or other aspects of the musical performance.It might be ambient au-
dio noise from the studio, or electronic noise from the recording equipment. Indeed,
the small peak below the first partial is suspiciously close to 60 Hz, the frequency of
line current in the United States.

Artifacts are best described by referring back to Fig. 2.3. Even though these were
pure sine waves generated by computer, and are essentially exact, the spectrum still
has a significant nonzero magnitude at frequencies other than those of the two sine
waves. This is because the sine waves are of finite duration, whereas an idealized
spectrum (as in Fig. 2.6) assumes an infinite duration signal. This smearing of the
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frequencies in the signal is a direct result of the periodicity assumption inherent in
the use of Fourier techniques. Artifacts and implementation details are discussed at
length in Appendix C.

Guitar Pluck: Experiment

Surely you didn’t think you could read a whole chapter calledthe “Science of Sound”
without having to experiment? You will need a guitar (preferably acoustic) and a
reasonably quiet room.

Play one of the open strings that is in the low end of your vocalrange (the? string
works well for me) and let the sound die away. Hold your mouth right up to the sound
hole, and sing “ah” loudly, at the same pitch as the string. Then listen. You will hear
the string “singing” back at you quietly. This phenomenon iscalled resonanceor
sympathetic vibration. The pushing and pulling of the air molecules of the pressure
wave set in motion by your voice excites the string, just as repetitive pushes of a
child on a playground swing causes larger and larger oscillations. When you stop
pushing, the child continues to bob up and down. Similarly, the string continues to
vibrate after you have stopped singing.

Now sing the note an octave above (if you cannot do this by ear,play at the
twelfth fret, and use this pitch to sing into the open string). Again you will hear the
string answer, this time at the octave. Now try again, singing the fifth (which can be
found at the seventh fret). This time the string responds, not at the fifth, but at the
fifth plus an octave. The string seems to have suddenly developed a will of its own,
refusing to sing the fifth, and instead jumping up an octave. If you now sing at the
octave plus fifth, the string resonates back at the octave plus fifth. But no amount of
cajoling can convince it to sing that fifth in the lower octave. Try it. What about other
notes? Making sure to damp all strings but the chosen one, sing a major second (two
frets up). Now, no matter how strongly you sing, the string refuses to answer at all.
Try other intervals. Can you get any thirds to sound?

To understand this cranky behavior, refer back to Fig. 2.6. The pitch of the string
occurs at the fundamental frequency, and it is happy to vibrate at this frequency when
you sing. Similarly, the octave is at exactly the second partial, and again the string
is willing to sound. When you sing a major second, its frequency does not line up
with any of the partials. Try pushing a playground swing at a rate at which it does
not want to go—you will work very hard for very little result.Similarly, the string
will not sustain oscillations far from its natural modes of vibration.

The explanation for the behavior of the guitar when singing the fifth is more
subtle. Resonance occurs when the driving force (your singing) occurs at or near
the frequencies of the natural modes of vibration of the string (the partials shown
in Fig. 2.6). Your voice, however, is not a pure sine wave (at least, mine sure is
not). Voices tend to be fairly rich in overtones, and the second partial of your voice
coincides with the third partial of the string. It is this coincidence of frequencies that
drives the string to resonate. By listening to the string, wehave discovered something
about your voice.
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This is similar to the way Helmholtz [B: 71] determined the spectral content of
sounds without access to computers and Fourier transforms.He placed tuning forks
or bottle resonators (instead of strings) near the sound to be analyzed. Those that
resonated corresponded to partials of the sound. In this way, he was able to build a
fairly accurate picture of the nature of sound and of the hearing process.6

Sympathetic vibrations provide a way to hear the partials ofa guitar string,7

showing that theycanvibrate in any of the modes suggested by Fig. 2.6. Butdo they
actually vibrate in these modes when played normally? The next simple experiment
demonstrates that strings tend to vibrate in many of the modes simultaneously.

Grab your guitar and pluck an open string, say the? string. Then, quickly while
the note is still sounding, touch your finger lightly to the string directly above the
twelfth fret.8 You should hear the low? die away, leaving the? an octave above
still sounding. With a little practice you can make this transition reliably. To under-
stand this octave jump, refer again to Fig. 2.6. When vibrating at the fundamental
frequency, the string makes its largest movement in the center. This point of maxi-
mum motion is called anantinodefor the vibrational mode. Touching the midpoint
of the string (at the twelfth fret) damps out this oscillation right away, because the
finger is far more massive than the string. On the other hand, the second partial has a
fixed point (called anode) right in the middle. It does not need to move up and down
at the midpoint at all, but rather has antinodes at 1/4 and 3/4of the length of the
string. Consequently, its vibrations are (more or less) unaffected by the light touch of
the finger, and it continues to sound even though the fundamental has been silenced.

The fact that the second partial persists after touching thestring shows that the
string must have been vibrating in (at least) the first and second modes. In fact,
strings usually vibrate in many modes simultaneously, and this is easy to verify by
selectively damping out various partials. For instance, bytouching the string im-
mediately above the seventh fret (1/3 of the length of the string), both the first and
second partials are immediately silenced, leaving the third partial (at a frequency of
three times the fundamental, the@ an octave and a fifth above the fundamental? ) as
the most prominent sound. The fifth fret is 1/4 of the length ofthe string. Touching
here removes the first three partials and leaves the fourth, two octaves above the fun-
damental, as the apparent pitch. To bring out the fifth harmonic, touch at either the-

Although many of the details of Helmholtz’s theories have been superseded, his book re-
mains inspirational and an excellent introduction to the science of acoustics..
For those without a guitar who are feeling left out, it is possible to hear sympathetic vi-
brations on a piano, too. For instance, press the middleA key slowly so that the hammer
does not strike the string. While holding this key down (so that the damper remains raised),
strike theA an octave below, and then lift up your finger so as to damp it out. Although
the lowerA string is now silent, middleA is now vibrating softly–the second partial of the
lower note has excited the fundamental of the middleA . Observe that playing a lowB will
not excite such resonances in the middleA string./
Hints: Just touch the string delicately. Do not press it downonto the fretboard. Also, posi-
tion the finger immediately over the fret bar, rather than over the space between the eleventh
and twelfth frets where you would normally finger a note.
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1/5 (just below the fourth fret) or at the 2/5 (near the ninth fret) points. This gives a
note just a little flat of a major third, two octaves above the fundamental.

Table 2.1 shows the first 16 partials of the? string of the guitar. The frequency
of each partial is listed, along with the nearest note of the standard 12-tone equal-
tempered scale and its frequency. The first several coincidevery closely, but the
correspondence deteriorates for higher partials. The seventh partial is noticeably flat
of the nearest scale tone, and above the ninth partial, thereis little resemblance. With
a bit of practice, it is possible to bring out the sound of manyof the lower partials.
Guitarists call this technique “playing the harmonics” of the string, although the
preferred method begins with the finger resting lightly on the string and pulls it away
as the string is plucked. As suggested by the previous discussion, it is most common
to play harmonics at the twelfth, seventh, and fifth frets, which correspond to the
second, third, and fourth partials, although others are feasible.

Table 2.1. The first 16 partials of theC string of a guitar with fundamental at 110 Hz. Many of
the partials lie near notes of the standard equal-tempered scale, but the correspondence grows
worse for higher partial numbers.

Partial Frequency Name of Frequency of
Number of Partial Nearest Note Nearest Note

1 110 C 110
2 220 C 220
3 330 D 330
4 440 C 440
5 550 A E 554
6 660 D 659
7 770 5 784
8 880 C 880
9 990 B 988
10 1100 A E 1109
11 1210 F E 1245
12 1320 D 1318
13 1430 G 1397
14 1540 5 1568
15 1650 5 E 1661
16 1760 C 1760

As any guitarist knows, the tone of the instrument depends greatly on where the
picking is done. Exciting the string in different places emphasizes different sets of
characteristic frequencies. Plucking the string in the middle tends to bring out the
fundamental and other odd-numbered harmonics (can you tellwhy?) while plucking
near the ends tends to emphasize higher harmonics. Similarly, a pickup placed in the
middle of the string tends to “hear” and amplify more of the fundamental (which has
its antinode in the middle), and a pickup placed near the end of the string emphasizes
the higher harmonics and has a sharper, more trebly tone.
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Thus, guitars both can and do vibrate in many modes simultaneously, and these
vibrations occur at frequencies dictated by the physical geometry of the string. We
have seen two different methods of experimentally finding these frequencies: excita-
tion via an external source (singing into the guitar) and selective damping (playing
the harmonics). Of course, both of these methods are somewhat primitive, but they
do show that the spectrum (a plot of the frequencies of the partials, and their mag-
nitudes) is a real thing, which corresponds well with physical reality. With the ready
availability of computers, the Fourier transform is easy touse. It is more precise, but
fundamentally it tells nothing more than could be discovered using other nonmathe-
matical (and more intuitive) ways.

A Metal Bar

It is not just strings that vibrate with characteristic frequencies. Every physical object
tends to resonate at particular frequencies. For objects other than strings, however,
these characteristic frequencies are often not harmonically related.

One of the simplest examples is a uniform metal bar as used in aglockenspiel
or a wind chime.9 When the bar is struck, it bends and vibrates, exciting the air
and making sound. Figure 2.7 shows the first 3/4 second of the waveform of a bar
and the corresponding spectrum. As usual, the waveform depicts the envelope of the
sound, indicating how the amplitude evolves over time. The spectrum shows clearly
what the sound is made of: four prominent partials and some high-frequency junk.
The partials are at 526, 1413, 2689, and 4267 Hz. Consideringthe first partial as the
fundamental at

� � * � �
Hz, this is

�
, � � � � �

, * � � � �
, and

� � � � �
, which is certainly

not a harmonic relationship; that is, the frequencies are not integer multiples of any
audible fundamental. For bars of different lengths, the value of

�
changes, but the

relationship between frequencies of the partials remains (roughly) the same.
The spectrum of the ideal string was explained physically asdue to the require-

ment that it be fixed at both ends, which implied that the period of all sustained
vibrations had to fit evenly into the length of the string. Themetal bar is free at both
ends, and hence, there is no such constraint. Instead the movement is characterized
by bending modes that specify how the bar will vibrate once itis set into motion. The
first three of these modes are depicted in Fig. 2.8, which differ significantly from the
mode shapes of the string depicted in Fig. 2.6. Theorists have been able to write
down and solve the equations that describe this kind of motion.10 For an ideal metal
bar, if the fundamental occurs at frequency

�
, the second partial will be at� � H � �

, the
third at * � � �

, and the fourth at
� � + � �

. This is close to the measured spectrum of the
bar of Fig. 2.7. The discrepancies are likely caused by smallnonuniformities in the
composition of the bar or to small deviations in the height orwidth of the bar. The0

Even though wind chimes are often built from cylindrical tubes, the primary modes of
vibration are like those of a metal bar. Vibrations of the aircolumn inside the tube are not
generally loud enough to hear.� 1
See Fletcher and Rossing’sPhysics of Musical Instrumentsfor an amazingly detailed pre-
sentation.
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Fig. 2.7.Waveform of the strike of a metal bar and the corresponding spectrum. The top figure
shows the first7 8 9 second (32,000 samples) of the waveform in time. The spectrum shows
four prominent partials.

high-frequency junk is most likely caused by impact noise, the sound of the stick
hitting the bar, which is not included in the theoretical calculations.

As with the string, it is possible to discover these partialsyourself. Find a cylin-
drical wind chime, a length of pipe, or a metal extension hosefrom a vacuum cleaner.
Hold the bar (or pipe) at roughly 2/9 of its length, tap it, andlisten closely. How many
partials can you hear? If you hold it in the middle and tap, then the fundamental is
attenuated and the pitch jumps up to the second partial—wellover an octave away
(to see why, refer again to Fig. 2.8). Now, keeping the sound of the second partial
clearly in mind, hold and strike the pipe again at the 2/9 point. You will hear the fun-
damental, of course, but if you listen carefully, you can still hear the second partial.
By selectively muting the various partials, you can bring the sound of many of the
lower partials to the fore. By listening carefully, you can then continue to hear them
even when they are mixed in with all the others.

As with the string, different characteristic frequencies can be emphasized by
striking the bar at different locations. Typically, this will not change the locations of
the partials, but it will change their relative amplitudes and, hence, the tone quality
of the instrument. Observe the technique of a conga drummer.By tapping in differ-
ent places, the drummer changes the tone dramatically. Also, by pressing a free hand
against the drumhead, certain partials can be selectively damped, again manipulating
the timbre.
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Fig. 2.8.The first three bending modes of
an ideal metal bar and its spectrum. The
size of the motion is proportional to the
amplitude of the sound, and the rate of
oscillation determines the frequency. As
usual, the spectrum shows the frequen-
cies of the partials on the horizontal axis
and their magnitude on the vertical axis.
Nodes are stationary points for particular
modes of vibration. The figures are not to
scale (the size of the motion is exagger-
ated with respect to the length and diam-
eter of the bars).

The guitar string and the metal bar are only two of a nearly infinite number of pos-
sible sound-making devices. The (approximately) harmonicvibrations of the string
are also characteristic of many other musical instruments.For instance, when air os-
cillates in a tube, its motion is constrained in much the sameway that the string is
constrained by its fixed ends. At the closed end of a tube, the flow of air must be zero,
whereas at an open end, the pressure must drop to zero.11 Thus instruments such as
the flute, clarinet, trumpet, and so on, all have spectra thatare primarily harmonic.
In contrast, most percussion instruments such as drums, marimbas, kalimbas, cym-
bals, gongs, and so on, have spectra that are inharmonic. Musical practice generally
incorporates both kinds of instruments.

Analytic vs. Holistic Listening: Tonal Fusion

Almost all musical sounds consist of a great many partials, whether they are harmon-
ically related or not. Using techniques such as selective damping and the selective
excitation of modes, it is possible (with a bit of practice) to learn to “hear out” these
partials, to directly perceive the spectrum of the sound. This kind of listening is called
analyticlistening, in contrast toholistic listening in which the partials fuse together
into one perceptual entity. When listening analytically, sounds fragment into their
constituent elements. When listening holistically, each sound is perceived as a single
unit characterized by a unique tone, color, or timbre.� �

For more information on the modes of air columns, refer to Benade’sFundamentals of
Musical Acoustics. See Brown ([B: 20] and [W: 3]) for a discussion of the inharmonicities
that may originate in nonidealized strings and air columns.
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Analytic listening is somewhat analogous to the ability of atrained musician to
reliably discern any of several different parts in a complexscore where the naive (and
more holistic) listener perceives one grand sound mass.

When presented with a mass of sound, the ear must decide how many notes,
tones, or instruments are present. Consider the closing chord of a string quartet. At
one extreme is the fully analytic ear that “hears out” a largenumber of partials. Each
partial can be attended to individually, and each has its ownattributes such as pitch
and loudness. At the other extreme is the fully holistic listener who hears the finale as
one grand tone, with all four instruments fusing into a single rich and complex sonic
texture. This is called the root orfundamental bassin the works of Rameau [B: 145].
Typical listening lies somewhere between. The partials of each instrument fuse, but
the instruments remain individually perceptible, each with its own pitch, loudness,
vibrato, and so on. What physical clues make this remarkablefeat of perception
possible?

One way to investigate this question experimentally is to generate clusters of
partials and ask listeners “how many notes” they hear.12 Various features of the pre-
sentation reliably encourage tonal fusion. For instance, if the partials:

(i) Begin at the same time (attack synchrony)
(ii) Have similar envelopes (amplitudes change similarly over time)
(iii) Are harmonically related
(iv) Have the same vibrato rate

then they are more likely to fuse into a single perceptual entity. Almost any common
feature of a subgroup of partials helps them to be perceived together. Perhaps the
viola attacks an instant early, the vibrato on the cello is a tad faster, or an aggressive
bowing technique sharpens the tone of the first violin. Any such quirks are clues that
can help the ear bind the partials of each instrument together while distinguishing
viola from violin. Familiarity with the timbral quality of an instrument is also impor-
tant when trying to segregate it from the surrounding sound mass, and there may be
instrumental “templates” acquired with repeated listening.

The fusion and fissioning of sounds is easy to hear using a set of wind chimes
with long sustain. I have a very beautiful set called the “Chimes of Partch,”13 made
of hollow metal tubes. When the clapper first strikes a tube, there is a “ding” that
initiates the sound. After several strikes and a few seconds, the individuality of the
tube’s vibrations are lost. The whole set begins to “hum” as asingle complex tone.
The vibrations have fused. When a new ding occurs, it is initially heard as separate,
but soon merges into the hum.

At the risk of belaboring the obvious, it is worth mentioningthat many of the
terms commonly used in musical discourse are essentially ambiguous. The strike of
a metal bar may be perceived as a single “note” by a holistic listener, yet as a diverse
collection of partials by an analytic listener. As the analytic listener assigns a separate� #

This is an oversimplification of the testing procedures actually used by Bregman [B: 18]
and his colleagues.� $
See [B: 91].
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pitch and loudness to each partial, the strike is heard as a “chord.” Thus, the same
sound stimulus can be legitimately described as a note or as achord.

The ability to control the tonal fusion of a sound can become crucial in composi-
tion or performance with electronic sounds of unfamiliar timbral qualities. For exam-
ple, it is important for the composer to be aware of “how many”notes are sounding.
What may appear to be a single note (in an electronic music score or on the key-
board of a synthesizer) may well fission into multiple tones for a typical listener. By
influencing the coincidence of attack, envelope, vibrato, harmonicity, and so on, the
composer can help to ensure that what is heard is the same as what was intended. By
carefully emphasizing parameters of the sound, the composer or musician can help
to encourage the listener into one or the other perceptual modes.

The spectrum corresponds well to the physical behavior of the vibrations of
strings, air columns, and bars that make up musical instruments. It also corresponds
well to the analytic listening of humans as they perceive these sound events. How-
ever, people generally listen holistically, and a whole vocabulary has grown up to
describe the tone color, sound quality, or timbre of a tone.

2.3 What Is Timbre?

If a tree falls in the forest, is there any timbre?According to the American National
Standards Institute [B: 6], the answer must be “no,” whetheror not anyone is there
to hear. They define:

Timbre is that attribute of auditory sensation in terms of which a listener
can judge two sounds similarly presented and having the sameloudness and
pitch as dissimilar.

This definition is confusing, in part because it tells what timbre isnot (i.e., loudness
and pitch) rather than what it is. Moreover, if a sound has no pitch (like the crack of
a falling tree or the scrape of shoes against dry leaves), then it cannot be “similarly
presented and have the same pitch,” and hence it has no timbreat all. Pratt and Doak
[B: 143] suggest:

Timbre is that attribute of auditory sensation whereby a listener can judge
that two sounds are dissimilar using any criterion other than pitch, loudness
and duration.

And now the tree does have timbre as it falls, although the definition still does not
specify what timbre is.

Unfortunately, many descriptions of timbral perception oversimplify. For in-
stance, a well known music dictionary [B: 75] says in its definition of timbre that:

On analysis, the difference between tone-colors of instruments are found to
correspond with differences in the harmonics represented in the sound (see
HARMONIC SERIES).
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This is simplifying almost to the point of misrepresentation. Any sound (such as a
metal bar) that does not have harmonics (partials lying at integer multiples of the
fundamental) would have no timbre. Replacing “harmonic” with “partial” or “over-
tone” suggests a definition that equates timbre with spectrum, as in this statement by
the Columbia Encyclopedia:

[Sound] Quality is determined by the overtones, the distinctive timbre of
any instrument being the result of the number and relative prominence of
the overtones it produces.

Although much of the notion of the timbre of a sound can be attributed to the number,
amplitudes, and spacing of the spectral lines in the spectrum of a sound, this cannot
be the whole story because it suggests that the envelope and attack transients do
not contribute to timbre. Perhaps the most dramatic demonstration of this is to play a
sound backward. The spectrum of a sound is the same whether itis played forward or
backward,14 and yet the sound is very different. In the CDAuditory Demonstrations
[D: 21], a Bach chorale is played forward on the piano, backward on the piano, and
then the tape is reversed. In the backward and reversed case,the music moves for-
ward, but each note of the piano is reversed. The piano takes on many of the timbral
characteristics of a reed organ, demonstrating the importance of the time envelope in
determining timbre.

2.3.1 Multidimensional Scaling

It is not possible to construct a single continuum in which all timbres can be simply
ordered as is done for loudness or for pitch.15 Timbre is thus a “multidimensional”
attribute of sound, although exactly how many “dimensions”are required is a point
of significant debate. Some proposed subjective rating scales for timbre include:

dull I J sharp
cold I J warm
soft I J hard
pureI J rich

compactI J scattered
full I J empty

staticI J dynamic
colorful I J colorless

Of course, these attributes are perceptual descriptions. To what physically measur-
able properties do they correspond? Some relate to temporaleffects (such as enve-
lope and attack) and others relate to spectral effects (suchas clustering and spacing
of partials).

The attack is a transient effect that quickly fades. The sound of a violin bow
scraping or of a guitar pick plucking helps to differentiatethe two instruments. The� %

As usual, we ignore the phase spectrum.� ,
The existence of auditory illusions such as Shephard’s everrising scale shows that the
timbre can interact with pitch to destroy this simple ordering. See [B: 41].
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initial breathy puff of a flautist, or the gliding blat of a trumpet, lends timbral char-
acter that makes them readily identifiable. An interesting experiment [B: 13] asked
a panel of musically trained judges to identify isolated instrumental sounds from
which the first half second had been removed. Some instruments, like the oboe, were
reliably identified. But many others were confused. For instance, many of the jurists
mistook the tenor saxophone for a clarinet, and a surprisingnumber thought the alto
saxophone was a french horn.

The envelope describes how the amplitude of the sound evolves over time. In
a piano, for instance, the sound dies away at roughly an exponential rate, whereas
the sustain of a wind instrument is under the direct control of the performer. Even
experienced musicians may have difficulty identifying the source of a sound when
its envelope is manipulated. To investigate this, Strong and Clark [B: 186] gener-
ated sounds with the spectrum of one instrument and the envelope of another. In
many cases (oboe, tuba, bassoon, clarinet), they found thatthe spectrum was a more
important clue to the identity of the instrument, whereas inother cases (flute), the en-
velope was of primary importance. The two factors were of comparable importance
for still other instruments (trombone, french horn).

In a series of studies16 investigating timbre, researchers generated sounds with
various kinds of modifications, and they asked subjects to rate their perceived sim-
ilarity. A “multidimensional scaling algorithm” was then used to transform the raw
judgments into a picture in which each sound is represented by a point so that closer
points correspond to more similar sounds.17 The axes of the space can be interpreted
as defining the salient features that distinguish the sounds. Attributes include:

(i) Degree of synchrony in the attack and decay of the partials
(ii) Amount of spectral fluctuation18

(iii) Presence (or absence) of high-frequency, inharmonicenergy in the at-
tack

(iv) Bandwidth of the signal19

(v) Balance of energy in low versus high partials
(vi) Existence of formants20

For example, Grey and Gordon [B: 63] exchange the spectral envelopes21 of pairs
of instrumental sounds (e.g., a french horn and a bassoon) and ask subjects to rate the
similarity and dissimilarity of the resulting hybrids. They find that listener’s judg-
ments are well represented by a three-dimensional space in which one dimension� -

See [B: 139], [B: 46], [B: 64], and [B: 63].� .
Perhaps the earliest investigation of this kind was Stevens[B: 181], who studied the “tonal
density” of sounds.� /
Change in the spectrum over time.� 0
Roughly, the frequency range in which most of the partials lie.# 1
Resonances, which may be thought of as fixed filters through which a variable excitation is
passed.# �
The envelope of a partial describes how the amplitude of the partial evolves over time.
The spectral envelope is a collection of all envelopes of allpartials. In Grey and Gordon’s
experiments, only the envelopes of the common partials are interchanged.
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corresponds to the spectral energy distribution of the sounds. Another dimension
corresponds to the spectral fluctuations of the sound, and they propose that this pro-
vides a physical correlate for the subjective quality of a “static” versus a “dynamic”
timbre. The third dimension involves the existence of high-frequency inharmonicity
during the attack, for instance, the noise-like scrape of a violin bow. They propose
that this corresponds to a subjective scale of “soft” versus“hard” or perhaps a “calm”
versus “explosive” dichotomy.

2.3.2 Analogies with Vowels

The perceptual effect of spectral modifications are often not subtle. Grey and Gor-
don [B: 63] state that “one hears the tones switch to each others vowel-like color but
maintain their original ... attack and decay.” As the spectral distribution in speech
gives vowels their particular sound, this provides anotherfruitful avenue for the de-
scription of timbre. Slawson [B: 175] develops a whole language for talking about
timbre based on the analogy with vowel tones. Beginning withthe observation that
many musical sounds can be described by formants, Slawson proposes that musical
sound colorscan be described as variable sources of excitation passed through a se-
ries of fixed filters. Structured changes in the filters can lead to perceptually sensible
changes in the sound quality, and Slawson describes these modifications in terms of
the frequencies of the first two formants. Terms such as laxness, acuteness, open-
ness, and smallness describe various kinds of motion in the two-dimensional space
defined by the center frequencies of the two formants, and correspond perceptually
to transitions between vowel sounds. For instance, openingup the sustained vowel
sound� � leads toK K and then to� K , and this corresponds physically to an increase in
frequency of the first formant.

2.3.3 Spectrum and the Synthesizer

In principle, musical synthesizers have the potential to produce any possible sound
and, hence, any possible timbre. But synthesizers must organize their sound gener-
ation capabilities so as to allow easy control over parameters of the sound that are
perceptually relevant to the musician. Although not a theory of timbral perception,
the organization of a typical synthesizer is a market-tested, practical realization that
embodies many of the perceptual dichotomies of the previoussections. Detailed dis-
cussions of synthesizer design can be found in [B: 38] or [B: 158].

Sound generation in a typical synthesizer begins with the creation of a wave-
form. This waveform may be stored in memory, or it may be generated by some
algorithm such as FM [B: 32], nonlinear waveshaping [B: 152], or any number of
other methods [B: 40]. It is then passed through a series of filters and modulators
that shape the final sound. Perhaps the most common modulatoris an envelope gen-
erator, which provides amplitude modulation of the signal.A typical implementation
such as Fig. 2.9 has a four-segment envelope with attack, decay, sustain, and release.
The attack portion dictates how quickly the amplitude of thesound rises. A rapid
attack will tend to be heard as a percussive (“sharp” or “hard”) sound, whereas a
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slow attack would be more fitting for sounds such as wind instruments which speak
more hesitantly or “softly.” The sustain portion is the steady state to which the sound
decays after a time determined by the decay parameters. In a typical sample-based
electronic musical instrument, the sustain portion consists of a (comparatively) small
segment of the waveform, called a “loop,” that is repeated over and over until the key
is released, at which time the sound dies away at a specified rate.
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Fig. 2.9. The ADSR envelope defines
a loudness contour for a synthesized
sound. The attack is triggered by the
key press. After a specified time, the
sound decays to its sustain level, which
is maintained until the key is raised.
Then the loudness dies away at a rate
determined by the release parameters.

Although the attack portion dictates some of the perceptualaspects, the steady-
state sustained segment typically lasts far longer (exceptin percussive sounds), and
it has a large perceptual impact. Depending on the underlying waveform, the sustain
may be “compact” or “scattered,” “bright” or “dull,” “colorful” or “colorless,” “dy-
namic” or “static,” or “pure” or “rich.” As most of these dichotomies are correlated
with spectral properties of the wave, the design of a typicalsynthesizer can be viewed
as supporting a spectral view of timbre, albeit tempered with envelopes, filters,22 and
modulators.

2.3.4 Timbral Roundup

There are several approaches to timbral perception, including multidimensional scal-
ing, analogies with vowels, and a pragmatic synthesis approach. Of course, there are
many other possible ways to talk about sounds. For instance,Schafer [B: 162] in
Canada23 distinguishes four broad categories by which sounds may be classified:
physical properties, perceived attributes, function or meaning, and emotional or af-
fective properties. Similarly, Erickson [B: 50] classifiesand categorizes using terms
such as “sound masses,” “grains,” “rustle noise,” and so on,and exposes a wide range
of musical techniques based on such sonic phenomena.

This book takes a restricted and comparatively simplistic approach to timbre. Al-
though recognizing that temporal effects such as the attackand decay are important,
we focus on the steady-state portion of the sound where timbre is more or less syn-
onymous with stationary spectrum. Although admitting thatthe timbre of a sound
can carry both meaning and emotion, we restrict ourselves toa set of measurable# #

One could similarly argue that the presence of resonant filters to shape the synthesized
sound is a justification of the formant-based vowel analogy of timbre.# $
Not to be confused with Schaeffer [B: 161] in France who attempts a complete classifica-
tion of sound.



2.4 Frequency and Pitch 31

quantities that can be readily correlated with the perceptions of consonance and dis-
sonance. These are largely pragmatic simplifications. By focusing on the spectral
aspects of sound, it is possible to generate whole families of sounds with similar
spectral properties. For instance, all harmonic instruments can be viewed as belong-
ing to one “family” of sounds. Similarly, each inharmonic collection of partials has
a family of different sounds created by varying the temporalfeatures. As we will see
and hear, each family of sounds has a unique tuning in which itcan be played most
consonantly.

Using the spectrum as a measure of timbre is like trying to make musical sounds
stand still long enough to analyze them. But music does not remain still for long, and
there is a danger of reading too much into static measurements. I have tried to avoid
this problem by constantly referring back to sound examplesand, where possible, to
musical examples.

2.4 Frequency and Pitch

Conventional wisdom says that the perceived pitch is proportional to the logarithm
of the frequency of a signal. For pure sine waves, this is approximately true.24 For
most instrumental sounds such as strings and wind instruments, it is easy to iden-
tify a fundamental, and again the pitch is easy to determine.But for more complex
tones, such as bells, chimes, percussive and other inharmonic sounds, the situation is
remarkably unclear.

2.4.1 Pitch of Harmonic Sounds

Pythagoras of Samos25 is credited with first observing that the pitch of a string is di-
rectly related to its length. When the length is halved (a ratio of 1:2), the pitch jumps
up an octave. Similarly, musical intervals such as the fifth and fourth correspond to
string lengths with simple ratios26: 2:3 for the musical fifth, and 3:4 for the fourth.
Pythagoras and his followers proceeded to describe the whole universe in terms of
simple harmonic relationships, from the harmony of individuals in society to the har-
mony of the spheres above. Although most of the details of Pythagoras’ model of the
world have been superseded, his vision of a world that can be described via concrete
logical and mathematical relationships is alive and well.

The perceived pitch of Pythagoras’ string is proportional to the frequency at
which it vibrates. Moreover, musically useful pitch relationships such as octaves and
fifths are not defined by differences in frequency, but ratherby ratios of frequencies.# %

The mel scale, which defines the psychoacoustical relationship between pitch and fre-
quency, deviates from an exact logarithmic function especially in the lower registers.# ,
The same guy who brought you the formula for the hypotenuse ofa right triangle.# -
Whether a musical interval is written asL :M or asM :L is immaterial because one describes
the lower pitch relative to the upper, whereas the other describes the upper pitch relative to
the lower.
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Thus, an octave, defined as a frequency ratio of 2:1, is perceived (more or less) the
same, whether it is high (say,� � � �

to
� � � �

Hz) or low (� * �
to

� � * Hz). Such ratios
are called musicalintervals.

The American National Standards Institute definespitchas:

that attribute of auditory sensation in terms of which sounds may be ordered
on a scale extending from low to high.

Because sine waves have unambiguous pitches (everyone orders them the same way
from low to high27), such an ordering can be accomplished by comparing a sound of
unknown pitch to sine waves of various frequencies. The pitch of the sinusoid that
most closely matches the unknown sound is then said to be the pitch of that sound.

Pitch determinations are straightforward when working with strings and with
most harmonic instruments. For example, refer back to the spectrum of an ideal
string in Fig. 2.6 on p. 18 and the measured spectrum of a real string in Fig. 2.5
on p. 17. In both cases, the spectrum consists of a collectionof harmonic partials
with frequencies

�
, � �

,
� � 	 � � �, plus (in the case of a real string) some other unrelated

noises and artifacts. The perceived pitch will be
�
, that is, if asked to find a pure sine

wave that most closely matches the pluck of the string, listeners invariably pick one
with frequency

�
.
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Fig. 2.10.(a) and (b) have the same periodN and the same pitch. (c) and (d) change con-
tinuously into (e), which has periodO# . Thus, (e) is perceived an octave higher than (a). The
spectra (shown on the right) also change smoothly from (a) to(e). Where exactly does the
pitch change? See video example [V: 2].# .

With the caveat that some languages may use different words,for instance, “big” and
“small” instead of “low” and “high.”
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But it is easy to generate sounds electronically whose pitchis difficult to predict.
For instance, Fig. 2.10 part (a) shows a simple waveform witha buzzy tone. This
has the same period and pitch as (b), although the buzz is of a slightly different
character. The sound is now slowly changed through (c) and (d) (still maintaining its
period) into (e). But (e) is the same as (a) except twice as fast, and is heard an octave
above (a)! Somewhere between (b) and (e), the sound jumps up an octave. This is
demonstrated in video example [V: 2], which presents the fivesounds in succession.

The spectra of the buzzy tones in Fig. 2.10 are shown on the right-hand side.
Like the string example above, (a) and (e) consist primarilyof harmonically related
partials at multiples of a fundamental at

� 6 P
for (a) and at

�Q for (e). Hence, they
are perceived at these two frequencies an octave apart. But as the waveforms (b), (c),
and (d) change smoothly from (a) to (e), the spectra must movesmoothly as well.
The changes in the magnitudes of the partials are not monotonic, and unfortunately,
it is not obvious from the plots exactly where the pitch jumps.

2.4.2 Virtual Pitch

When there is no discernible fundamental, the ear will oftencreate one. Suchvir-
tual pitch,28 when the pitch of the sound is not the same as the pitch of any ofits
partials, is an aspect of holistic listening. Virtual pitchis expertly demonstrated on
the Auditory Demonstrations CD [D: 21], where the “Westminster Chimes” song is
played using only upper harmonics. In one demonstration, the sounds have spectra
like that shown in Fig. 2.11. This particular note has partials at 780, 1040, and 1300
Hz, which is clearly not a harmonic series. These partials are, however, closely re-
lated to a harmonic series with fundamental at 260 Hz, because the lowest partial is
260 times 3, the middle partial is 260 times 4, and the highestpartial is 260 times
5. The ear appears to recreate the missing fundamental, and this perception is strong
enough to support the playing of melodies, even when the particular harmonics used
to generate the sound change from note to note.

The pitch of the complex tones playing the Westminster Chimes song is deter-
mined by the nearest “harmonic template,” which is the average of the three fre-
quencies, each divided by their respective partial numbers. Symbolically, this is�R � S T �R " � � U �U " � R � �V � � � � �

Hz. This is demonstrated in video example [V: 3],
which presents the three sine waves separately and then together. Individually, they
sound like high-pitched sinusoids at frequenciesH � �

,
� � � �

, and
� � � �

Hz (as indeed
they are). Together, they create the percept of a single sound at � � �

Hz. When the par-
tials are not related to any harmonic series, current theories suggest that the ear tries
to find a harmonic series “nearby” and to somehow derive a pitch from this nearby
series. For instance, if the partials above were each raised� �

Hz, to
� � �

,
� � � �

, and� � � �
Hz, then a virtual pitch would be perceived at about

�R � T � �R " � � W �U " � R � �V � X � � *
Hz. This is illustrated in video example [V: 4], which plays the three sine waves in-
dividually and then together. The resulting sound is then alternated with a sine wave
of frequency� � * Hz for comparison.# /

Terhardt and his colleagues are among the most prominent figures in this area; see [B: 195]
and [B: 197].
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Fig. 2.11.Spectrum of a sound with prominent
partials at 780, 1040, and 1300 Hz. These are
marked by the arrows as the third, fourth, and fifth
partials of a “missing” or “virtual” fundamental at
260 Hz. The ear perceives a note at 260 Hz, which
is indicated by the extended arrow. See video ex-
ample [V: 3].

An interesting phenomenon arises when the partials are related to more than one
harmonic series. Consider the two sounds:

(i) With partials at 600, 800, and 1000 Hz
(ii) With partials at 800, 1000, and 1200 Hz

Both have a clear virtual pitch at 200 Hz. The first contains the third, fourth, and
fifth partials, whereas the second contains the fourth, fifth, and sixth partials. Sound
example [S: 6] begins with the first note and ascends by adding20 Hz to each partial.
Each raised note alternates with a sine wave at the appropriate virtual pitch. Similarly,
sound example [S: 7] begins with the second note and descendsby subtracting 20 Hz
from each partial. Again, the note and a sine wave at the virtual pitch alternate. The
frequencies of all the notes are listed in Table 2.2. To understand what is happening,
observe that each note in the table can be viewed two ways: as partials 3, 4, and 5 of
the ascending notes or as partials 4, 5, and 6 of the descending notes. For example,
the fourth note has virtual pitch at either�� Y � � �� " � � �� " � � � �* Z X � � * � �
or at �� Y � � �� " � � �* " � � � �� Z X � H � � �
depending on the context in which it is presented! Virtual pitch has been explored
extensively in the literature, considering such factors asthe importance of individual
partials [B: 115] and their amplitudes [B: 116].

This ambiguity of virtual pitch is loosely analogous to Rubin’s well-known
face/vase “illusion” of Fig. 2.12 where two white faces can be seen against a black
background, or a black vase can be seen against a white background. It is difficult to
perceive both images simultaneously. Similarly, the virtual pitch of the fourth note
can be heard as 215 when part of an ascending sequence, or it can be heard as 171
when surrounded by appropriate descending tones, but it is difficult to perceive both
simultaneously.
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Table 2.2. Each note consists of three partials. If the sequence is played ascending, then the
first virtual pitch tends to be perceived, whereas if played descending, the second, lower virtual
pitch tends to be heard. Only one virtual pitch is audible at atime. This can be heard in sound
examples [S: 6] and [S: 7].

Note First Second Third Virtual Pitch Virtual Pitch
partial partial partial ascending descending

1 600 800 1000 200.0 158.9
2 620 820 1020 205.2 163.0
3 640 840 1040 210.4 167.1
4 660 860 1060 215.6 171.2
5 680 880 1080 220.9 175.3
6 700 900 1100 226.1 179.4
7 720 920 1120 231.3 183.6
8 740 940 1140 236.6 187.7
9 760 960 1160 241.8 191.8
10 780 980 1180 247.0 195.9
11 800 1000 1200 252.2 200.0

Perhaps the clearest conclusion is that pitch determination for complex inhar-
monic tones is not simple. Virtual pitch is a fragile phenomenon that can be in-
fluenced by many factors, including the context in which the sounds are presented.
When confronted with an ambiguous set of partials, the ear seems to “hear” whatever
makes the most sense. If one potential virtual pitch is part of a logical sequence (such
as the ascending or descending series in [S: 6] and [S: 7] or part of a melodic phrase
as in the Westminster Chime song), then it may be preferred over another possible
virtual pitch that is not obviously part of such a progression.

Pitch and virtual pitch are properties of a single sound. Forinstance, a chord
played by the violin, viola, and cello of a string quartet is not usually thought of
as having a pitch; rather, pitch is associated with each instrumental tone separately.
Thus, determining the pitch or pitches of a complex sound source requires that it
first be partitioned into separate perceptual entities. Only when a cluster of partials
fuse into a single sound can it be assigned a pitch. When listening analytically, for
instance, there may be more “notes” present than in the same sound when listening
holistically. The complex sound might fission into two or more “notes” and be per-

Fig. 2.12.Two faces or one vase? Ambiguous perceptions, where one
stimulus can give rise to more than one perception are commonin
vision and in audition. The ascending/descending virtual pitches of
sound examples [S: 6] and [S: 7] exhibit the same kind of perceptual
ambiguity as the face/vase illusion.
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ceived as a chord. In the extreme case, each partial may be separately assigned a
pitch, and the sound may be described as a chord.

Finally, the sensation of pitch requires time. Sounds that are too short are heard
as a click, irrespective of their underlying frequency content. Tests with pure sine
waves show that a kind of auditory “uncertainty principle” holds in which it takes
longer to determine the pitch of a low-frequency tone than one of high frequency.29

2.5 Summary

When a tree falls in the forest and no one is near, it has no pitch, loudness, timbre,
or dissonance, because these are perceptions that occur inside a mind. The tree does,
however, emit sound waves with measurable amplitude, frequency, and spectral con-
tent. The perception of the tone quality, or timbre, is correlated with the spectrum of
the physical signal as well as with temporal properties of the signal such as envelope
and attack. Pitch is primarily determined by frequency, andloudness by amplitude.
Sounds must fuse into a single perceptual entity for holistic listening to occur. Some
elements of a sound encourage this fusion, and others tend toencourage a more an-
alytical perception. The next chapter focuses on phenomenathat first appear when
dealing with pairs of sine waves, and successive chapters explore the implications of
these perceptual ideas in the musical settings of performance and composition and
in the design of audio signal-processing devices.

2.6 For Further Investigation

Perhaps the best overall introductions to theScience of Soundare the book by Ross-
ing [B: 158] with the same name,Music, Speech, Audioby Strong [B: 187], and
The Science of Musical Soundsby Sundberg [B: 189]. All three are comprehensive,
readable, and filled with clear examples. The coffee-table quality of the printing of
Science of Musical Soundby Pierce [B: 135] makes it a delight to handle as well
as read, and it is well worth listening to the accompanying recording. Perceptual as-
pects are emphasized in the readablePhysics and Psychophysics of Musicby Roed-
erer [B: 154], and the title should not dissuade those without mathematical expertise.
Pickles [B: 133] givesAn Introduction to the Physiology of Hearingthat is hard
to beat. ThePsychology of Musicby Deutsch [B: 41] is an anthology containing
forward-looking chapters written by many of the researchers who created the field.
The recordingAuditory Demonstrations[D: 21] has a wealth of great sound exam-
ples. It is thorough and thought provoking.

For those interested in pursuing the acoustics of musical instruments, theFunda-
mentals of Musical Acousticsby Benade [B: 12] is fundamental. Those with better
math skills might consider theFundamentals of Acousticsby Kinsler and Fry [B: 85]
for a formal discussion of bending modes of rods and strings (as well as a whole lot# 0

This is discussed at length in [B: 99], [B: 61], and [B: 62].
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more). Those who want the whole story should check out thePhysics of Musical
Instrumentsby Fletcher and Rossing [B: 56]. Finally, the book that started it all is
Helmholtz’sOn the Sensations of Tones[B: 71], which remains readable over 100
years after its initial publication.
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Sound on Sound

All is clear when dealing with a single sine wave of
reasonable amplitude and duration. The measured amplitude
is correlated with the perceived loudness, the measured
frequency is correlated with the perceived pitch, and the phase
is essentially undetectable by the ear. Little is clear when
dealing with large clusters of sine waves such as those that
give rise to ambiguous virtual pitches. This chapter explores
the in-between case where two sinusoids interact to produce
interference, beating, and roughness. This is the simplest
setting in which sensory dissonance occurs.

3.1 Pairs of Sine Waves

When listening to a single sine wave, amplitude is directly related to loudness and
frequency is directly related to pitch. New perceptual phenomena arise when there
are two (or more) simultaneously sounding sine waves. For instance, although the
phase of a single sine wave is undetectable, the relative phases between two sine
waves is important, leading to the phenomena of constructive and destructive inter-
ference. Beats develop when the frequencies of the two wavesdiffer, and these beats
may be perceived as sensory dissonance. Although the ear canresolve very small
frequency changes in a single sine wave, there is a much larger “critical bandwidth”
that characterizes the smallest difference between partials that the ear can “hear out”
in a more complex sound. These ideas are explored in the next sections, and some
simple models that capture the essence of the phenomena are described.

3.2 Interference

When two sine waves of exactly the same frequency are played together, they sound
just like a single sine wave, but the combination may be louder or softer than the
original waves. Figure 3.1 shows two cases. The sum of curves(a) and (b) is given
in (c). As (a) and (b) have nearly the same phase (starting point), their peaks and
valleys line up reasonably well, and the magnitude of the sumis greater than either
one alone. This is called constructive interference. In contrast, when (d) and (e) are
added together, the peaks of one are aligned with the troughsof the other and their
sum is smaller than either alone, as shown in curve (f). This is called destructive
interference. Thus waves of the same frequency can either reinforce or cancel each
other, depending on their phases.
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Fig. 3.1. Constructive and destructive
interference between two sine waves
of the same frequency. (a) and (b) add
constructively to give (c), and (d) and
(e) add destructively to give (f).

In Appendix A, trigonometriphiles will find an equation showing that the sum of
two sine waves of the same frequency is always another sine ofthe same frequency,
albeit with a different amplitude and phase. The equation even tells exactly what the
amplitude and phase of the resulting wave are in terms of the phase difference of
the original waves. These equations also describe (in part)the perceptual reality of
combining sine waves in sound. Constructive interference reflects the common sense
idea that two sine waves are louder than one. Destructive interference can be used
to cancel (or muffle) noises by injecting sine waves of the same frequencies as the
noises but with different phases, thus canceling out the unwanted sound. Sound can-
celing earphones from manufacturers such as Bose and Sennheiser use this principle,
and some technical aspects of this technology, called active noise cancellation, are
discussed in [B: 51].

3.3 Beats

What if the two sinusoids differ slightly in frequency? The easiest way to picture this
is to imagine that the two waves are really at the same frequency, but that their relative
phase slowly changes. When the phases are aligned, they add constructively. When
the waves are out of phase, they interfere destructively. Thus, when the frequencies
differ slightly, the amplitude of the resulting wave slowlyoscillates from large (when
in phase) to small (when out of phase).

Figure 3.2 demonstrates. At the start of the figure, the two sines are aligned al-
most perfectly, and the amplitude of the sum is near its maximum. By about 0.3
seconds, however, the two sine waves are out of sync and theirsum is accordingly
small. By 0.6 seconds, they are in phase again and the amplitude has grown, and by
0.9 seconds they are out of phase again and the amplitude has shrunk. Thus, even
though there are “really” two sine waves of two different frequencies present in the
bottom plot of Fig. 3.2, it “looks like” there is only one sinewave that has a slow
amplitude variation. This phenomenon is calledbeating.

It may “look” like there is just one sine wave, but what does it“sound” like?
Sound examples [S: 8] to [S: 10] investigate (and these are repeated in video exam-
ples [V: 5] to [V: 7]). The three examples contain nine short segments.

Examples [S: 8] and [V: 5]:
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Fig. 3.2. The beating of two sine
waves of close but different frequen-
cies can be viewed as alternating re-
gions of constructive and destructive
interference. The bottom plot is the
sum of the amplitudes of the two si-
nusoids above. The envelope outlines
the undulations of the wave, and the
beating occurs at a rate defined by the
frequency of the envelope.

(i) A sine wave of 220 Hz (4 seconds)
(ii) A sine wave of 221 Hz (4 seconds)
(iii) Sine waves (i) and (ii) together (8 seconds)

Examples [S: 9] and [V: 6]:

(iv) A sine wave of 220 Hz (4 seconds)
(v) A sine wave of 225 Hz (4 seconds)
(vi) Sine waves (iv) and (v) together (8 seconds)

Examples [S: 10] and [V: 7]:

(vii) A sine wave of 220 Hz (4 seconds)
(viii) A sine wave of 270 Hz (4 seconds)
(ix) Sine waves (vii) and (viii) together (8 seconds)

The difference between the first two sine waves is fairly subtle because they are less
than 8 cents1 apart. Yet when played together, even this small differencebecomes
readily perceivable as beats. The sound varies in loudness about once per second,
which is the difference between the two frequencies. The fourth and fifth sine waves
are noticeably distinct, lying about 39 cents apart. When played together, the per-
ceived pitch is about 222.5 Hz. The beats are again prominent, beating at the much
faster rate of five times each second. Again, the rate of the beating corresponds to the
difference in frequency between sine waves.

In fact, it is not too difficult (if you like trigonometry) to show that the amplitude
variation of the beats always occurs at a rate given by the difference in the frequencies
of the sine waves. Appendix A gives the details. The result is2:�

There are 100 cents in a musical semitone. Thecentnotation is defined and discussed in
Appendix B.#
If this turns out to be negative, then take its absolute value. There is no such thing as a
negative beat.
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Thus, the rate of beating decreases with the difference in frequency, and the beats
disappear completely when the two sine waves are perfectly in tune. Because beats
are often more evident than small pitch differences, they are used to tune stringed
instruments such as the piano and guitar.

As the difference in frequency increases, the apparent ratein beating increases.
A frequency difference of 1 Hz corresponds to a beat rate of 1 per second: 5 Hz
corresponds to a beat rate of 5 times per second: 50 Hz corresponds to a beat rate
of 50 times per second. But when the two sine waves of frequency 220 and 270 are
played simultaneously, as in the ninth segment on the CD, there areno beats at all.
Has the mathematics lied?

Don’t lose the sound of the forest for the sound of falling trees.3 Does the word
“beats” refer to a physical phenomenon, or to a perception? If the former, then the
mathematics shows that, indeed, the waveform in part (ix) ofsound example [S: 10]
exhibits beats at 50 Hz. But it is an empirical question whether this mathematical
fact describes perceptual reality. There are two ways to “hear” part (ix). Listening
holistically gives the impression of a single, slightly electronic timbre. Listening an-
alytically reveals the presence of the two sine waves independently. As is audibly
clear,4 in neither case are there any beats (in the perceptual sense). Thus, the mathe-
matical model that says that the beat rate is equal to the frequency difference is valid
for perceptions of small differences such as 5 Hz, but fails for large differences such
as 50 Hz.

Can the spectrum give any insight? Figure 3.3 shows time and frequency plots
as the ratio of the frequencies of the two sine waves varies. When the ratio is large,
such as 1:1.5, two separate peaks are readily visible in the spectral plot. As the ra-
tio shrinks, the peaks grow closer. For 1:1.1, they are barely discernible. For even
smaller ratios, they have merged together and the spectrum appears to consist of
only a single frequency.5 A similar phenomenon occurs in the ear’s “biological spec-
trum analyzer.” When the waves are far apart, as in the sound example (ix), the two
separate tones are clearly discernible. As they grow closer, it becomes impossible
to resolve the separate frequencies. This is another property that the ear shares with
digital signal-processing techniques such as the FFT.

3.4 Critical Band and JND

As shown in Fig. 2.4 on p. 16, sine waves of different frequencies excite different
portions of the basilar membrane, high frequencies near theoval window and low$

Recall the “paradox” on p. 11.%
Some people can also hear a faint, very low-pitched tone. This is the “difference frequency,”
which is due to nonlinear effects in the ear. See [B: 69] and [B: 140].,
The resolving power of the FFT is a function of the sampling rate and the length of the data
analyzed. Details may be found in Appendix C.
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Fig. 3.3. Each plot shows a sum of
two sine waves with frequencies in the
specified ratios. Time plots show sam-
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tral plots show frequency versus mag-
nitude. Like the ear, the spectrum does
not resolve partials when they are too
close together.

frequencies near the apex of the conical cochlea. Early researchers such as Helmholtz
[B: 71] believed that there is a direct relationship betweenthe place of maximum
excitation on the basilar membrane and the perceived pitch of the sound. This is
called the “place” theory of pitch perception. When two tones are close enough in
frequency so that their responses on the basilar membrane overlap, then the two tones
are said to occupy the samecritical band. The place theory suggests that the critical
band should be closely related to the ability to discriminate different pitches. The
critical band has been measured directly in cats and indirectly in humans in a variety
of ways as described in [B: 140] and in [B: 212]. The “width” ofthe critical band is
roughly constant at low frequencies and increases approximately proportionallywith
frequency at higher frequencies, as is shown in Fig. 3.4.

The Just Noticeable Difference (JND) for frequency is the smallest change in
frequency that a listener can detect. Careful testing such as [B: 211] has shown that
the JND can be as small as two or three cents, although actual abilities vary with
frequency, duration and intensity of the tones, training ofthe listener, and the way
in which JND is measured. For instance, Fig. 3.4 shows the JNDfor tones with
frequencies that are slowly modulated up and down. If the changes are made more
suddenly, the JND decreases and even smaller differences are perceptible. As the
JND is much smaller than the critical band at all frequencies, the critical band cannot
be responsible for all pitch-detection abilities. On the other hand, the plot shows
that JND is roughly a constant percentage of the critical band over a large range of
frequencies.
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Fig. 3.4.Critical bandwidth is plotted as a func-
tion of its center frequency. Just Noticeable Dif-
ferences at each frequency are roughly a con-
stant percentage of the critical bandwidth, and
they vary somewhat depending on the amplitude
of the sounds. The frequency difference corre-
sponding to a musical whole tone (the straight
line) is shown for comparison. Data for critical
bandwidth is from [B: 158] and for JND is from
[B: 206].

An alternative hypothesis, called the “periodicity” theory of pitch perception,
suggests that information is extracted directly from the time behavior of the sound.
For instance, the time interval over which a signal repeats may be used to deter-
mine its frequency. In fact, there is now (and has been for thepast 100 years or so)
considerable controversy between advocates of the place and periodicity theories,
and it is probably safe to say that there is not enough evidence to decide between
them. Indeed, Pierce [B: 136] suggests that both mechanismsmay operate in tan-
dem, and a growing body of recent neurophysiological research (such as Cariani and
his coworkers [B: 24] and [B: 25]) reinforces this.

Computational models of the auditory system such as those of[B: 111] and
[B: 95] often begin with a bank of filters that simulate the action of the basilar mem-
brane as it divides the incoming sound into a collection of signals in different fre-
quency regions. Figure 3.5 schematizes a filter bank consisting of a collection of�
bandpass filters with center frequencies

� � 	 � � 	 � � � 	 � �
. Typical models use between� � � �

and� � � �
filters, and the widths of the filters follow the critical bandwidth

as in Fig. 3.4. Thus, the lower filters have a bandwidth of about 100 Hz and grow
wider as the center frequencies increase.

input
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Fig. 3.5.Theh filters separate the input sound into nar-
rowband signals with bandwidths that approximate the
critical bands of the basilar membrane.
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The JND measures the ability to distinguish sequentially presented sine waves.
Also important from the point of view of musical perception is the ability to dis-
tinguish simultaneously presented tones. Researchers have found that the ability to
resolve concurrent tones is roughly equal to the critical band. That is, if several sine
waves are presented simultaneously, then it is only possible to hear them individu-
ally if they are separated by at least a critical band. This places limits on how many
partials of a complex tone can be “heard out” when listening analytically.

3.5 Sensory Dissonance

When listening to a pair of sine waves, both are readily perceptible if the frequencies
are well separated. However, when the frequencies are closetogether, only one sine
wave is heard (albeit with beats), due to the finite resolvingpower of the ear. What
happens in between, where the ear is unsure whether it is hearing one or two things?
Might the ear “get confused,” and how would such confusion beperceived?

Sound example [S: 11] (and video example [V: 8]) investigatethe boundary be-
tween these two regimes by playing a sine wave of frequency 220 Hz together with
a wave of variable frequency beginning at 220 Hz and slowly increasing to 470 Hz.
See Fig. 3.6 for a pictorial representation showing part of the waveform and typical
listener reactions. Three perceptual regimes are evident.When the sine waves are
very close in frequency, they are heard as a single pleasant tone with slow variations
in loudness (beats). Somewhat further apart in frequency, the beating becomes rapid
and rough, dissonant. Then the tones separate and are perceived individually, gradu-
ally smoothing out as the tones draw further apart. Perhaps this perceived roughness
is a symptom of the ear’s confusion.

slow, pleasant beating rough, rapid beating
sound separates into
two distinct tones
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lit

u
d
e

time

Fig. 3.6. Part of the waveform resulting from two simultaneous sine waves, one with fixed
frequency of 220 Hz and the other with frequency that sweeps from 220 Hz to 470 Hz. Typical
perceptions include pleasant beating (at small frequency ratios), roughness (at middle ratios),
and separation into two tones (at first with roughness, and later without) for larger ratios. This
can be heard in sound example [S: 11] and in video example [V: 8].

In an important experiment, Plomp and Levelt [B: 141] investigated this care-
fully by asking a large number of listeners to judge the consonance (euphoniousness,
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pleasantness) of a variety of intervals when sounded by pairs of pure sine waves.6 The
experiment is succinctly represented by the curves in Fig. 3.7, in which the horizon-
tal axis represents the frequency interval between the two sine tones and the vertical
axis represents a normalized measure of dissonance. The dissonance is minimum
when both sine waves are of the same frequency, increases rapidly to its maximum
somewhere near one-quarter of the critical bandwidth, and then decreases steadily
back toward zero. In particular, this says that intervals such as the major seventh and
minor ninth are almost indistinguishable from the octave interms of sensory disso-
nancefor pure sine waves. Such a violation of musical intuition becomes somewhat
more palatable by recognizing that pure sine waves are almost never encountered in
music.
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Fig. 3.7. Two sine waves are sounded simultaneously. Typical perceptions include pleasant
beating (when the frequency difference is small), roughness (as the difference grows larger),
and separation into two tones (at first with roughness, and later without) as the frequency
difference increases further. The frequency of the lower sine wave is 400 Hz, and the horizontal
axis specifies the frequency of the higher sine wave (in Hz, insemitones, and as an interval).
The vertical axis shows a normalized measure of “sensory” dissonance.

Although this experiment was conducted with pairs of sine waves of fixed fre-
quency, the results are similar to our observations from sound example [S: 11]. The
same general trend of beats, followed by roughness and by a long smoothing out of
the sound is apparent. The Plomp and Levelt curves have been duplicated and ver-
ified in different musical cultures (for instance, Kameoka and Kuriyagawa [B: 79]
and [B: 80] in Japan reproduced and extended the results in several directions), and
such curves have become widely accepted as describing the response of the auditory
system to pairs of sine waves. Figure 3.8 shows how the sensory dissonance changes
depending on the absolute frequency of the lower tone.

The musical implications of these curves have not been uncontroversial. Indeed,
some find it ridiculous that Plomp and Levelt used the words “consonance” and “dis-
sonance” at all to describe these curves. “Everyone knows” that the octave and fifth
are the most consonant musical intervals, and yet they are nowhere distinguishable-

This experiment is discussed in more detail on p. 89.
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from nearby intervals on the Plomp–Levelt curves. We will have much more to say
about this controversy in later chapters. Perhaps to defusesome of the resistance
to their efforts, Plomp and Levelt were careful to call theiraxestonal consonance
and dissonance. Terhardt [B: 196] suggests the termssensoryconsonance and disso-
nance, and we follow this usage.

One of the major contributions of the Plomp and Levelt paper was to relate the
point of maximum sensory dissonance to the critical bandwidth of the ear. As the
critical band varies somewhat with frequency, the dissonance curves are wider at low
frequencies than at high, in accord with Fig. 3.8. Thus, intervals (like three semi-
tones) that are somewhat consonant at high frequencies become highly dissonant at
low frequencies. To hear this for yourself, play a major third in a high octave of the
piano, and then play the same notes far down in the bass. The lower third sounds
muddy and rough, and the higher third is clear and smooth. This is also consistent
with musical practice in which small intervals appear far more frequently in the tre-
ble parts, and larger intervals such as the octave and fifth tend to dominate the lower
parts.

3.6 Counting Beats

Perhaps the simplest way to interpret the sensory dissonance curves is in terms of the
undulations of the amplitude envelope. Referring back to Fig. 3.7, the “slow pleasant
beats” turn to roughness when the rate of the beating increases to around 20 or 30
beats per second.7 As the frequencies spread further apart, they no longer lie within a
single critical band8; the sine waves become individually perceptible and the sensory
dissonance decreases. Thus, one way to create a model of sensory dissonance is.

The peak of the dissonance curve in Fig. 3.7 occurs at about a semitone above 400 Hz,
which is 424 Hz. Thus, the beat rate is 24 Hz when the dissonance is maximum./
Figure 3.4 shows that a critical band centered at 400 Hz is a bit larger than 100 Hz wide.

100 Hz

200 Hz

400 Hz

600 Hz

1000 Hz

0

1

frequency of 
lower tone

frequency interval
 12-tet scale steps:      fourth    fifth                        octave 

s
e

n
s
o

ry
d

is
s
o

n
a

n
c
e

Fig. 3.8.Two sine waves are sounded simultaneously. As in Fig. 3.7, the horizontal axis repre-
sents the frequency interval between the two sine waves, andthe vertical axis is a normalized
measure of “sensory” dissonance.The plot shows how the sensory consonance and dissonance
change depending on the frequency of the lower tone.
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to “count” the beats, to create a system that detects the amplitude envelope of the
sound and then responds preferentially when the frequency of the envelope is near
the critical number where the greatest dissonance is perceived.

One way to build such a model is to use a memoryless nonlinearity followed by
a bandpass filter,9 as shown in Fig. 3.9. The rectification nonlinearityi �  � � [   j ��  k �

(3.1)

leaves positive values unchanged and sets all negative values to zero. Combined with
a low-pass filter, this creates an envelope detector10 with an output that rides along
the outer edge of the signal. The bandpass filter is tuned to have maximum response
in frequencies where the beating is most critical. Hence, its output is large when the
beating is rough and small otherwise.

rectification
noninearity g(x)

LPF

f

b

BPF

signal

enveloperectified signal
energy

accumulation

{
envelope detector

Fig. 3.9.The envelope detector outlines the beats in the signal and the bandpass filter is tuned
to respond to energy in the 20 Hz to 30 Hz range where beating isperceived as roughest.
Typical output of the model is shown in Fig. 3.10.

Typical output is shown in Fig. 3.10, which simulates the experiment of sound
example [S: 11], where two sine waves of equal amplitude are summed to create the
input; one is held fixed in frequency and the other slowly increases. The accumulated
energy at the output of the model qualitatively mimics the sensory dissonance curve
in Fig. 3.7. The detailed shape of the output depends on details of the filters chosen.
For the simulation in Fig. 3.10, the LPF was a Remez filter withcutoff at 100 Hz and
the BPF (which influences the detailed shape of the output signal) was a second-order
Butterworth filter with passband between 15 and 35 Hz. This model is discussed
further in Appendix G.0

This is similar to an early model by Terhardt [B: 195].� 1
See Appendix C of [B: 76] for a discussion of envelope detectors.
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Fig. 3.10.Two sine waves of equal amplitude are input into the model of Fig. 3.9. The fre-
quency of one sine is fixed at 400 Hz, and the other begins at 400Hz and slowly increases
to 850 Hz. The output of the bandpass filter (the energy accumulation) is largest when the
beating is in the 20 to 30 Hz range.

3.7 Ear vs. Brain

These first chapters have been using “the ear” as a synonym for“the human auditory
system.” Of course, there is a clear conceptual division between the physical ear (the
eardrum, ossicles, cochlea, etc.) that acts as a transducerfrom pressure waves into
neural impulses and the neural processes that subsequentlyoccur inside the brain.
It is not so clear, however, in which region various aspects of perception arise. For
instance, the perception of pitch is at least partly accomplished on the basilar mem-
brane, but it is also due in part to higher level processing.11

To investigate whether the perception of roughness arises in the physical ear or
in the brain, sound example [S: 12] repeats the previous track but with a binaural
recording; the sine wave of fixed frequency is panned all the way to the right, and
the variable sine wave is panned completely to the left. Listening normally through
speakers, the two sides mix together in the air. But listening through headphones,
each ear receives only one of the sine waves. If the perception of roughness origi-
nated exclusively in the physical ear, then no roughness should be heard. Yet it is
audible, although the severity of the beating is somewhat reduced.12 This suggests
that perceptions of sensory dissonance are at least partly amental phenomenon; that
is, the signals from the two ears are combined in the neural architecture. As the ef-
fect is stronger when the waves physically mingle together (recall sound example
[S: 11]), it is also likely that perceptions of roughness aredue at least partly to the
physical mechanism of the ear itself.

This chapter has considered the simple case of a pair of sine waves, where sen-
sory dissonance is readily correlated with the interference phenomenon of beating.� �

Electrodes attached directly to the auditory nerves of deafpeople induce the perception of
a “fuzzy, scratchy” sound like “comb and paper”; see [B: 133].� #
Another way to listen to this sound example, suggested by D. Reiley, is to listen through
the air and through headphones simultaneously. Plugging and unplugging the headphones
as the example progresses emphasizes the dual nature of the perception: part “ear” and part
“brain.”
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Later chapters return to this idea to build a more complete model that calculates the
sensory dissonance of an arbitrary collection of sounds. Meanwhile, Chap. 4 turns
to a consideration of musical scales and summarizes some of the many ways that
people divide up the pitch continuum.
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Musical Scales

People have been organizing, codifying, and systematizing
musical scales with numerological zeal since antiquity.
Scales have proliferated like tribbles in quadra-triticale: just
intonations, equal temperaments, scales based on overtones,
scales generated from a single interval or pair of intervals,
scales without octaves, scales originating from arcane
mathematical formulas, scales that reflect cosmological or
religious structures, and scales that “come from the heart.”
Each musical culture has its own preferred scales, and many
have used different scales at different times in their history.
This chapter reviews a few of the more common organizing
principles, and then discusses the question “what makes a
good scale?”

4.1 Why Use Scales?

Scales partition the pitch continuum into chunks. As a pieceof music progresses, it
defines a scale by repeatedly exploitinga subset of all the possible pitch relationships.
These repeated intervals are typically drawn from a small set of possibilities that are
usually culturally determined. Fifteenth-century monks used very different scales
than Michael Jackson, which are different from those used inJavanese gamelan or
in Sufi Qawwali singing. Yet there are certain similarities.Foremost is that the set of
all possible pitches is reduced to a very small number, five orsix per octave for the
monks, the major scale for Michael, either a five or seven-note nonoctave-based scale
for the gamelan, and up to 22 or so notes per octave in some Arabic, Turkish, and
Indian music traditions. But these are far from using “all” the possible perceptible
pitches. Recall from the studies on JND that people can distinguish hundreds of
different pitches within each octave.

Why does most music use only a few of these at a time? Most animals do not.
Birdsong glides from pitch to pitch, barely pausing before it begins to slide away
again. Whales click, groan, squeal, and wail their pitch in almost constant motion.
Most natural sounds such as the howl of wind, the dripping of water, and the ping of
ice melting are fundamentally unpitched, or they have pitches that change continu-
ously.

One possible explanation of the human propensity to discretize pitch space in-
volves the idea of categorical perception, which is a well-known phenomenon to
speech researchers. The brain tries to simplify the world around it. The Bostonian’s
“pahk,” the Georgian’s “paaark,” and the Midwesterner’s “park” are all interchange-
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able in the United States. Similarly, in listening to any real piece of music, there is a
wide range of actual pitches that will be heard as the same pitch, say middle3 . Per-
haps the flute plays a bit flat, and the violin attacks a bit sharp. The mind hears both
as the “same”3 , and the limits of acceptability are far cruder than the ear’s pow-
ers of resolution. Similarly, an instrumentalist does not play with unvarying pitch.
Typically, there is some vibrato, a slow undulation in the underlying frequency. Yet
the ear does not treat these variations as separate notes, but rather incorporates the
perception of vibrato into the general quality of the tone.

Another view holds that musical scales are merely a method ofclassification
that makes writing and performing music simpler. Scales help define a language that
makes the communication of musical ideas more feasible thanif everyone adopted
their own pitch conventions. For whatever reasons, music does typically exploit
scales. The next few sections look at some of the scales that have been historically
important, and some of the ways that they have been generalized and extended.

4.2 Pythagoras and the Spiral of Fifths

Musical intervals are typically defined by ratios of frequencies, and not directly by
the frequencies themselves. Pythagoras noted that a stringfretted at its halfway point
sounds an octave above the unfretted string, and so the octave is given by the ratio two
to one, written� 6 �

. Similarly, Pythagoras found that the musical fifth sounds when
the length of two strings are in the ratio

� 6 � , whereas the musical fourth sounds when
the ratio of the strings is� 6 �

.
Why do these simple integer ratios sound so special? Recall that the spectrum

of a string (from Fig. 2.5 on p. 17 and Fig. 2.6 on p. 18) consists of a fundamental
frequency

�
and a set of partials located at integer multiples of

�
. When the string

is played at the octave (when the ratio of lengths is 2/1), thespectrum consists of a
fundamental at� �

along with integer partials at� � � � � � � �
,

� � � � � � � �
, � � � � � �� �

, and so on, as shown in Fig. 4.1. Observe that all the partialsof the octave align
with partials of the original. This explains why the note andits octave tend to merge
or fuse together, to be smooth and harmonious, and why they can easily be mistaken
for each other. When the octave is even slightly out of tune, however, the partials do
not line up. Chapter 3 showed how two sine waves that are closein frequency can
cause beats that are perceived as a roughness or dissonance.In a mistuned octave, the� l m partial of the octave is very close to (but not identical with) the � � l m partial of
the fundamental. Several such pairs of partials may beat against each other, causing
the characteristic (and often unwanted) out of tune sensation.

When a note is played along with its fifth, alternating partials line up. The par-
tials that do not line up are far apart in frequency. As in the sensory dissonance curve
of Fig. 3.7 on p. 46, such distinct partials tend not to interact in a significant way.
Hence, the fifth also has a very smooth sound. As with the octave, when the fifth
is mistuned slightly, its partials begin beating against the corresponding partials of
the original note. Similarly, when other simple integer ratios are mistuned, nearby
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(a)

(b)

(d)

(c)

f       2f       3f      4f      5f      6f     7f      8f       9f     10f   11f

(3/2)f        3f         (9/2)f       6f      (15/2)f       9f         (21/2)f

frequency

partials of a harmonic sound

octave

fifth

out-of-tune

Fig. 4.1.A note with harmonic spectrum shown in (a) forms an octave, anout-of-tune octave,
and a fifth, when played with (b), (c), and (d), respectively.Observe the coincidence of partials
between (a) and (b) and between (a) and (d). In the out-of-tune octave (c), closely spaced
partials cause beats, or roughness.

partials interact to cause dissonances. Thus, Pythagoras’observations about the im-
portance of simple integer ratios can be viewed as a consequence of the harmonic
structure of the string.

Using nothing more than the octave and the fifth, Pythagoras constructed a com-
plete musical scale by moving successively up and down by fifths. Note that moving
down by fifths is equivalent to moving up by fourths, because

� � 6 � � � � 6 � � � � . To
follow Pythagoras’ calculations, suppose that the (arbitrary) starting note is called3 , at frequency

�
. After including the fifth

2
at

� 6 � , Pythagoras added
�

a fifth
above

2
, which is

� � 6 � � � � 6 � � � � � 6 � � � � + 6 � . As
+ 6 � is larger than an octave, it

needs to be transposed down. This is easily accomplished by dividing by 2, and it
gives the ratio

+ 6 �
. Then add? with the ratio

� � 6 � � R
, @ at

� � 6 � � U
, and so on (always

remembering to divide by 2 when necessary to transpose back to the original octave).
Alternatively, returning to the original3 , it is possible to add notes spiraling up by
fourths by adding� at 4/3,n o at

� � 6 � � �
, and so on, again transposing back into the

original octave. This process gives thePythagorean scaleshown in Fig. 4.2.
The seven-note Pythagorean scale in Fig. 4.2 is an early version of a diatonic

scale. Diatonic scales, which contain five large steps and two small steps (whole
tones and half tones), are at the heart of Western musical notation and practice
[B: 53]. In this case, the scale contains the largest number of perfect fourths and
fifths possible, because it was constructed using only the theoretically ideal ratios� 6 � and� 6 �

.
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ratio            cents

 1/1       0
   2187/2048 114
 9/8    204
 19683/16384   318
81/64   408

 4/3    498
    729/512        612
 3/2    702
   6561/4096     816
27/16   906
 59049/32768  1020
243/128   1110

  2/1   1200

Pythagorean Scale (wolf at Bb)

a=9/8

b=256/243

b

a

a

a

a

ratio            cents

1/1       0
    256/243          90
 9/8    204
     32/27           294
81/64   408

 4/3    498
    729/512        612
 3/2    702
    128/81          792
27/16   906
      16/9             996
243/128   1110

  2/1   1200

Pythagorean Scale (wolf at F#)

a=9/8

b=256/243
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C
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Fig. 4.2.In a Pythagorean scale, all intervals form perfect just fifths with the scale tone seven
steps above except for one called thewolf. The Pythagorean diatonic (major) scale is shown
on the white keys (labeledA , F , D , G , 5 , C , B , A ) and the black keys show two possible
extensions to a full 12-note system. The left-hand scale places the wolf on theG E , and the
right hand scale has the wolf atB p .

Much to Pythagoras’ chagrin, however, there is a problem. When extending the
scale to a complete tuning system (continuing to multiply successive terms by perfect� 6 � fifths), it is impossible to ever return to the unison.1 After 12 steps, for instance,
the ratio is

� � 6 � � � �
, which is

V R � U U �U � q W . When transposed down by octaves, this becomesV R � U U �V � U � T T , which is about
� � � � � �

, or one-quarter of a semitone (23 cents) sharp of the
unison. This interval is called thePythagorean comma, and Fig. 4.3 illustrates the
Pythagorean “spiral of fifths.”
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Fig. 4.3.In a Pythagorean scale built from all per-
fect fifths with ratios of

$# , the interval formed by
12 perfect fifths is slightly larger than an octave.

�
To see thatr 7 8 ' s t u ' v has no integer solutions, multiply both sides by' t , giving7 t u ' v w t . As any integer can be decomposed uniquely into primes, there can be no
integer that factors intoh powers of7 and simultaneously intox y h factors of 2.
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The implication of this is that an instrument tuned to an exact Pythagorean scale,
one that contained all perfect fifths and octaves, would require an infinite number
of notes. As a practical matter, a Pythagorean tuner choosesone of the fifths and
decreases it by the appropriate amount. This is called thePythgorean comma, and
the (imperfect) “fifth” that is a quarter semitone out of tuneis called thewolf tone,
presumably because it sounds bad enough to make people howl.In the left-hand side
of Fig. 4.2, the wolf fifth occurs between� z and the3 z above.

To the numerologically inclined, the Pythagorean scale is adelight. First of all,
there is nothing unique about the order in which the successive factors of a fourth
and fifth are applied. For instance, the right-hand side of Fig. 4.2 shows a second
Pythagorean scale with the wolf tone atn o . There are several ways to generate new
scales based on the Pythagorean model. First, other intervals than the fifth and fourth
could be used. For instance, let_ stand for any interval ratio (any number between
one and two will do), and letb be its complement (i.e., the interval for which_ b � � ).
Then _ and b generate a family of scales analogous to the Pythagorean family. Of
course, Pythagoras would be horrified by this suggestion, because he believed there
was a fundamental beauty and naturalness to the first four integers,2 and the simple
ratios formed from them.

The Pythagorean scale can also be viewed as one example of a large class of
scales based on tetrachords [B: 43], which were advocated bya number of an-
cient theorists such as Archytas, Aristoxenus, Didymus, Eratosthenes, and Ptolemy
[B: 10]. A tetrachord is an interval of a pure fourth (a ratio of � 6 �

) that is divided
into three subintervals. Combining two tetrachords arounda central interval of

+ 6 �
forms a seven-tone scale spanning the octave. For instance,Fig. 4.4 shows two tetra-
chords divided into intervals_ , b , a and _ { , b { , a { . When _ � _ { , b � b { , anda � a { ,
the scale is called an equal-tetrachordal scale. The Pythagorean scale is the special
equal-tetrachordal scale where_ � _ { � b � b { � + 6 �

. A thorough modern treat-
ment of tetrachords and tetrachordal scales is available inChalmers [B: 31].

2:1 octave

4:3 tetrachord 4:3 tetrachord
9:8

r           s          t                     r'         s'           t'

C            D         E        F         G        A          B           C
Fig. 4.4.Tetrachordal scales divide the
octave into two 4:3 tetrachords sepa-
rated by an interval of 9:8. The tetra-
chords are each divided into three inter-
vals to form a seven-note scale, which
is labeled in the key ofA .

A third method of generating scales is based on the observation that the intervals
between successive terms in the major Pythagorean scale arehighly structured. As
shown Fig. 4.2, there are only two distinct successive intervals,

+ 6 �
and � * � 6 � � �

,
between notes of the Pythagorean diatonic scale. Why not generate scales based on
some other interval ratios_ and b ? For octave-based scales, this would require that#

In the Pythagorean conception, thetetraktyswas the generating pattern for all creation:
politics, rhetoric, and literature, as well as music.
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there be integers� and ] such that_ | b � � � . The simplest possible scale of this
kind would haveb � _ , because then all adjacent notes would be equidistant.

4.3 Equal Temperaments

For successive notes of a scale to sound an equal distance apart, each interval must be
the same. Lettingb represent this interval, a scale with 12 equal steps can be written3� 	 b 	 b � 	 b R 	 b U 	 b V 	 b W 	 b S 	 b T 	 b q 	 b � � 	 b � � 	 b � � �
If the scale is to repeat at the octave, the final note must equal � . The equationb � � � �
has only one real solution, called the twelfth root of two. Itis notatedb � } ~� � , and
it is approximately

� � � * + � �
. A quick check with a calculator shows that multiplying� � � * + � �

times itself 12 times gives an answer (very close to)� .
Although ratios and powers are convenient for many purposes, they can be cum-

bersome for others. An easy way to compare different intervals is to measure incents,
which divide each semitone into 100 equal parts, and the octave into 1200 parts. Fig-
ure 4.5 depicts one octave of a keyboard, and it shows the 12-tet tuning in ratios,
in cents, and in the decimal equivalents. Given any ratio or interval, it is possible to
convert to cents, and given any interval in cents, it is possible to convert back into a
ratio. The conversion formulas are given in Appendix B.

note          cents interval

 C              
 C#/Db 
 D               
 D#/Eb 
 E                

 F                
 F#/Gb 
 G               
 G#/Ab 
 A                
 A#/Bb 
 B               

 C               

   0
 100 
 200 
 300 
 400

 500  
 600
 700 
 800 
 900 
1000 
1100 

1200 

1.0
1.0595
1.189
1.1225
1.260

1.335
1.4142
1.498
1.5874
1.682
1.7818
1.888

2.0

Fig. 4.5.The familiar 12-tone equal-tempered scale is the basis
of most modern Western music. Shown here is one octave of the
keyboard with note names, the intervals in cents defined by each
key, and the decimal equivalents. The white keys (labeledA , F ,D , G , 5 , C , B , A ) form the diatonicA major scale, and the full
12 keys form the 12-tet chromatic scale.

The 12-tone equal-tempered scale (12-tet) is actually fairly recent.4 With 12-tet,
composers can modulate to distant keys without fear of hitting wolf tones. As the$

The superscripts represent powers of� ; hence, the interval between theh � � and h y ) � �
step is� t w � 8 � t u � .%
The preface to Jorgensen [B: 78] states that “the modern equal temperament taken for
granted today as universally used on keyboard instruments did not exist in common prac-
tice on instruments until the early twentieth century... both temperament and music were
tonal.”
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modern Western instrumental families grew, they were designed to play along with
the 12-tet piano, and the tunings’ dominance became a stranglehold. It is now so
ubiquitous that many modern Western musicians and composers are even unaware
that alternatives exist.

This is not surprising, because most books about musical harmony and scales
focus exclusively on 12-tet, and most music schools offer few courses on non-12-
tet music, even though a significant portion of the historical repertoire was writ-
ten before 12-tet was common. For instance, the standard music theory texts Piston
[B: 137] and Reynolds and Warfield [B: 148] make no mention of any tuning other
than 12-tet, and the word “temperament” does not appear in their indices. All major
and minor scales of “classical music,” the blues and pentatonic scales of “popular
music,” and all various “modes” of the jazz musician are taught as nothing more
than subsets of 12-tet. When notes outside of 12-tet are introduced (e.g., “blues” or
“bent” notes, glissandos, vibrato), they are typically considered aberrations or ex-
pressive ornaments, rather than notes and scales in themselves.

Yet 12 notes per octave is just one possible equal temperament. It is easy to
design scales with an arbitrary number� of equal steps per octave. If_ is the � l m
root of 2 (_ � �� � ), then_ � � � and the scale� 	 _ 	 _ � 	 _ R 	 � � � _ � � � 	 _ �
contains� identical steps. The calculation is even easier using cents. As there are
1200 cents in an octave, each step in� -tone equal temperament is

� � � � 6 � cents.
Thus, each step in 10-tone equal temperament (10-tet) is 120cents, and each step
in 25-tet is 48 cents. Figure 4.6 shows all the equal temperaments between 9-tet and
25-tet. Because 12-tet is the most familiar, grid lines drawn at 100, 200, 300, ... cents
provide a visual reference for the others.

The Structure of Recognizable Diatonic Tunings[B: 15] examines many equal-
tempered tunings mathematically and demonstrates their ability to approximate in-
tervals such as the perfect fifth. More important than the mathematics, however, are
Blackwood’s12 Microtonal Etudes5 in each of the tunings between 13-tet and 24-tet,
which demonstrate the basic feasibility of these tunings.

It is fine to talk about musical scales and to draw interestinggraphics describ-
ing the internal structure of tunings, but the crucial question must be: What do these
tuningssoundlike? One of the major points of this book is that alternativetun-
ing systems can be used to create enjoyable music. The accompanying CD contains
several compositions in various equal temperaments, and these are summarized in
Table 4.1. The pieces range from very strange sounding (IsochronismandSwish) to
exotic (Ten FingersandThe Turquoise Dabo Girl) to reasonably familiar (Sympa-
thetic MetaphorandTruth on a Bus). References marked with [S:] point to entries
in the index of sound examples that starts on p. 381, where youcan find instructions
on how to listen to the files using a computer as well as more information about the
pieces.,

See (and hear) [D: 4].
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Fig. 4.6.Tuning of one octave of notes in the 9-tet, 10-tet, through 25-tet scales. The vertical
axis proceeds from unison (1/1) to the octave (2/1). The horizontal lines emanate from the
12-tet scale steps for easy comparison.

Table 4.1. Musical compositions in various equal temperaments appearing on the CD-ROM.

Name of Equal File For More
Piece Temperament Detail
Swish 5-tet swish.mp3 [S: 107]
Nothing Broken in Seven 7-tet broken.mp3 [S: 117]
Pagan’s Revenge 7-tet pagan.mp3 [S: 116]
Phase Seven 7-tet phase7.mp3 [S: 118]
March of the Wheel 7-tet marwheel.mp3 [S: 115]
Anima 10-tet anima.mp3 [S: 106]
Ten Fingers 10-tet tenfingers.mp3 [S: 102]
Circle of Thirds 10-tet circlethirds.mp3 [S: 104]
Isochronism 10-tet isochronism.mp3 [S: 105]
The Turquoise Dabo Girl 11-tet dabogirl.mp3 [S: 88]
Unlucky Flutes 13-tet 13flutes.mp3 [S: 99]
Hexavamp 16-tet hexavamp.mp3 [S: 97]
Seventeen Strings 17-tet 17strings.mp3 [S: 98]
Truth on a Bus 19-tet truthbus.mp3 [S: 100]
Sympathetic Metaphor 19-tet sympathetic.mp3 [S: 101]
Dream to the Beat 19-tet dreambeat.mp3 [S: 13]
Incidence and Coincidence19-tet+12-tet incidence.mp3 [S: 14]
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I believe that one of the main reasons alternative tunings have been underexplored
is because there were few musical instruments capable of playing them. Ironically,
the same keyboard instruments that saddled us with 12-tet for the past two and a half
centuries can now, in their electronic versions, easily play in almost any tuning or
scale desired.

Equal temperaments need not be based on the octave. A scale with � equal steps
in every pseudo-octave6 ! is based on the ratio_ � �� ! . Again, this calculation is
easier in cents. A pseudo-octave! � � � � defines an interval of 1284 cents. Dividing
this into (say) 12 equal parts gives a scale step of 107 cents,a tuning that is explored
in October 21st[S: 39]. Recall the “simple tune” of [S: 4]. This melody is developed
further (and played in a variety of different pseudo-octaves) in Plastic City[S: 38].
One interesting pseudo-octave is! � � � � � H �

, which defines a pseudo-octave of
1224 cents, the amount needed to make 12 perfect 3/2 fifths.7 Thus, the Pythagorean
spiral of fifths can be closed by relaxing the requirement that the scale repeat each
2/1 octave. However, harmonic sounds clash dissonantly when played in 1224-cent
intervals because of the almost coinciding partials. If thepartials of the sounds are
manipulated so as to realign them, then music in the 1224-cent pseudo-octave need
not sound dissonant.

Moreno [B: 118] examines many nonoctave scales and finds thatin some “� l m
root of p” tunings the ratio p:1 behaves analogously to the 2:1 ratio in 12-tet.
McLaren [B: 107] discusses the character of nonoctave-based scales and proposes
methods of generating scales that range from number theory and continued fractions
to the frequencies of vibrations of common objects. An interesting nonoctave scale
was proposed independently by Bohlen [B: 16] on the basis of combination tones
and by Mathews et al. [B: 101] on the basis of chords with ratios 3:5:7 (rather than
the more familiar 3:4:5 of diatonic harmony). The resultingscale intervals are fac-
tors of the thirteenth root of

�
rather than the twelfth root of� , and thetritave8 plays

some of the roles normally performed by the octave. Thus,! � �
defines the pseudo-

octave, and_ � } �� �
has 146.3 cents between each scale step. For more information,

see the discussion surrounding Fig. 6.9 on p. 107.
It is also perfectly possible to define equal-tempered scales by simply specifying

the defining interval. Wendy Carlos [B: 23], for instance, has defined the alpha scale
in which each step contains 78 cents, and the beta scale with steps of 63.8 cents. Gary
Morrison [B: 113] suggests a tuning in which each step contains 88 cents. This 88
cents per step tuning has 13.64 equal steps per octave, or 14 equal steps in a stretched
pseudo-octave of 1232 cents. Many of these are truly xenharmonic in nature, with
strange “harmonies” that sound unlike anything possible in12-tet. As will be shown
in subsequent chapters, a key idea in exploiting strange tunings such as these is to
carefully match the tonal qualities of the sounds to the particular scale or tuning used.
Two compositions on the CD use this 88 cent-per-tone scale:Haroun in 88[S: 15]
and88 Vibes[S: 16].- � u ' gives the standard octave..

Transposingr $# s � #
down (by octaves) to the nearest octave gives 1224 cents./

An interval of 3/1 instead of the 2/1 octave.
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4.4 Just Intonations

One critique of 12-tet is that none of the intervals are pure.For instance, the fifths are
each 700 cents, whereas an exact Pythagorean 3/2 fifth is 702 cents. The imperfection
of the wolf fifth has been spread evenly among all the fifths, and perhaps this small
difference is acceptable. But other intervals are less fortunate. Just as the octave and
fifth occur when a string is divided into simple ratios such as2/1 and 3/2, thirds and
sixths correspond to (slightly more complex) simple ratios. These are thejust thirds
and sixths specified in Table 4.2. For comparison, the 12-tetmajor thirds are 14 cents
flat of the just values, and the minor thirds are 16 cents sharp.9 Such discrepancies are
clearly audible. Many music libraries will have a copy of Barbour [D: 2], which gives
an extensive (and biased) comparison between just and equal-tempered intervals.

Table 4.2. The just thirds and sixths.

interval ratio cents
just minor third 6/5 316
just major third 5/4 386
just minor sixth 8/5 814
just major sixth 5/3 884

TheJust Intonation(JI) scale appeases these ill-tempered thirds. Two examples
are given in Fig. 4.7. The seven-note JI major scale in the topleft is depicted in the
key of 3 . The thirds starting on3 , 3 z , �

,
� z , � ,

2
, and

2 z are all just 5/4. As
the fifths starting on3 , 3 z , � ,

2
, and

2 z (among others) are perfect
� 6 � fifths, all

five form just major chords. Similarly, the JI scale on the bottom has five just minor
chords starting on3 ,

�
, @ , � , and? .

What do just intonations sound like? Sound examples [S: 17] through [S: 20]
investigate. Scarlatti’s Sonata K380 is first played in [S: 17] in 12-tet.10 The sonata
is then repeated in just intonation centered on3 in [S: 18]. As it is performed in
the appropriate key, there are no wolf tones. The overall impression is similar to
the 12-tet version, although subtle differences are apparent upon careful listening.
To clearly demonstrate the difference between these tunings, sound example [S: 19]
plays in 12-tet and in just intonation simultaneously. Notes where the tunings are the
same sound unchanged. Notes where the tunings differ sound chorused or phased
and are readily identifiable.0

The Pythagorean scale gives an even worse approximation. Byemphasizing fourths and
fifths, the thirds and sixths are compromised, and the Pythagorean major third< ) 8 ; 9 (408
cents) is even sharper than the equal-tempered third (400 cents). On the other hand, there
are many ways to construct scales. For example, the Pythagorean intervalr $# s / , when trans-
lated to the appropriate octave, is almost exactly a just major third.� 1
The musical score for K380 is shown in Fig. 11.3 on pp. 216 and 217. It is performed here
(transposed down a third) inA major.
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ratio            cents 
   
  1/1      0 
     81/80            22     
33/32     53 

21/20     84 
     16/15           112
12/11   151
     11/10           165
10/9     182
       9/8              204
  8/7      231

  7/6    267

Partch's 43 tone scale

     32/27          294
  6/5    316
     11/9             347
  5/4      386

14/11   417
       9/7             435
21/16   471
       4/3             498
27/20   520
      11/8             551
  7/5      583

 10/7        617

     16/11          649
40/27   680
       3/2              702
32/21   729

14/9    765
      11/7            782
  8/5    814
     18/11             853
  5/3     884
      27/16            906
 12/7    933

  7/4    969

      16/9          996
  9/5   1018
     20/11           1035
 11/6    1049

 15/8   1088
     40/21           1116
64/33  1147
    160/81          1178
  2/1   1200

ratio            cents

 1/1       0
 16/15  112
 9/8    204
   6/5   316
 5/4    386

 4/3    498
 45/32  590
 3/2    702
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  16/9   996
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  2/1   1200
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A Just Intonation Scale in C and
extension to a 12-note scale
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A Just Intonation Scale in C and
extension to a 12-note scale

Fig. 4.7.The intervals in just intonation scales are chosen so that many of the thirds and fifths
are ratios of small integers. Two JI diatonic scales are shown (labeledA , F , D , G , 5 , C ,B , A ) in the key ofA ; the black keys represent possible extensions to the chromatic 12-note
setting. Each interval in the top JI major scale with a * formsa just major third with the note
4 scale steps above, and each note marked with� � forms a just fifth with the note 7 scale
steps up. Similarly, in the bottom JI scale, each interval with a * forms a just minor third with
the note 3 scale steps above, and each note marked with� � forms a just fifth with the note 7
scale steps up. Partch’s 43-tone per octave scale contains many of the just intervals.
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The five pieces listed in Table 4.3 are performed in a variety of just intonation
scales, which are documented in detail in [S: 23] through [S:27]. These represent
some of my earliest compositional efforts, and I prefer to recommend recordings by
Partch [D: 31], Doty [D: 11], or Polansky [D: 34] to get a more complete idea of how
just intonations can be used.

Table 4.3. Musical compositions in various just intonations appearing on the CD-ROM.

Name of File For More
Piece Detail
Imaginary Horses imaghorses.mp3 [S: 23]
Joyous Day joyous.mp3 [S: 24]
What is a Dream? whatdream.mp3 [S: 25]
Just Playing justplay.mp3 [S: 26]
Signs signs.mp3 [S: 27]

JI scales are sometimes criticized because they are inherently key specific. Al-
though the above scales work well in3 and in closely related keys (those nearby on
the circle of fifths), they are notoriously bad in more distant keys. For instance, an� z major chord has a sharp third and an even sharper fifth (722 cents). Thus, it is
unreasonable to play a piece that modulates from3 to � z in JI. To investigate, sound
example [S: 20] plays Scarlatti’s K380 in just intonation centered on3 z even though
the piece is still played in the key of3 . The out-of-tune percept is unmistakable in
both the chords and the melody. When JI goes wrong, it goes very wrong. Barbour
[D: 2] analogously plays a series of scales, intervals, and chords in a variety of tun-
ings that demonstrate how bad JI can sound when played incorrectly. For instance,
“Auld Lang Syne” is played in3 in a just3 scale, and it is then played in� z without
changing the tuning. Barbour comments, “A horrible example—but instructive.” It is
a horrible example—of the misuse of JI. No practitioner would perform a standard
repertoire piece in3 just when it was written in the key of� z .

There are several replies to the criticism of key specificity. First, most JI advo-
cates do not insist that all music must necessarily be performed in JI. Simply put, if
a piece does not fit well into the JI framework, then it should not be performed that
way. Indeed, JI enthusiasts typically expect to retune their instruments from one JI
scale to another for specific pieces. The second response is that JI scales may contain
more than 12 notes, and so many of the impure intervals can be tamed. The third
response involves a technological fix. With the advent of electronic musical instru-
ments that incorporate tuning tables, it has become possible to retune “on the fly.”
Thus, a piece could be played in a JI scale centered around3 , and then modulated
(i.e. retuned) to a JI scale centered around� z , without breaking the performance.
This would maintain the justness of the intervals throughout. The fourth possibility
is even newer. What if the tuning could be madedynamic, so as to automatically
retune whenever needed? This is the subject of the “AdaptiveTunings” chapter.
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The second criticism brought against JI is closely related to the first. Rossing
[B: 158] explains that JI is impractical because an “orchestra composed of instru-
ments with just intonation would approach musical chaos.” Imagine if each instru-
mentalist required 12 instruments, one for each musical key! But it is only fixed pitch
instruments like keyboards that are definitively locked into a single tuning. Winds,
brass, and strings can and do change their intonation with musical circumstance.
Where fixed pitch instruments set an equal-tempered standard, such microtonal in-
flections may be in the direction of equal temperament. But subtle pitch manipu-
lations by the musician are heavily context dependent. Similarly, choirs sing very
differentlya cappellathan when accompanied by a fixed pitch instrument.

The amusing and caustic bookLies My Music Teacher Told Metells the first-
hand story of a choir director who discovers justly intoned intervals, and trains his
chorus to sing without tempering. Eskelin [B: 54] exhorts his choir to “singinto the
chord, not through it,” and teaches his singers to “lock intothe chord,” with the goal
of tuning the sound “until the notes disappear.” He describes a typical session with a
new singer who is at first:

reluctant and confused, and is convinced we are all a little crazy for ask-
ing him to sing the pitch out of tune. Eventually this defensiveness is re-
placed by curiosity, and finally the singer begins to explorethe space outside
his old comfort zone. When he experiences the peaceful calm that occurs
when the note locks with [the] sustained root, the eyebrows raise, the eyes
widen...another soul has been saved from the fuzziness of tempered tuning.

Whatever its practicality, JI concepts have been fertile ground for the creation of
musical scales. For instance, scales can be based around intervals other than thirds,
fifths, and octaves. Extending the JI vocabulary in this way leads to scales such as the
43-tone scale of Partch [B: 128] and to a host of 11 and 13-limit scales (those that
use ratios with numerator and denominator less than the specified number). David
Doty [B: 43] argues eloquently for the use of JI scales in his very readableJust In-
tonation Primer, and includes examples of many of the more important techniques
for constructing JI scales. An organization called the JustIntonation Network has
produced a number of interesting compilations, includingRational Music for an Ir-
rational WorldandNumbers Racket, and numerous JI recordings are available from
Frog Peak Music.11

4.5 Partch

Harry Partch was one of the twentieth century’s most prolific, profound, opinionated,
and colorful composers of music in just intonation.Partch developed a scale that uses
43 (unequal) tones in each octave. To perform in this 43-toneper octave JI scale,
Partch designed and built a family of instruments, including a reed keyboard called
the chromelodeon, the percussivecloud chamber bowls, the multistringedkithara,� �

See [B: 57] and [W: 13].
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thezymo-xylmade from wine bottles, and themazda marimbamade from the glass
of light bulbs. He wrote idiosyncratic choral and operatic music that mimicked some
facets of ancient Greek performances and trained musiciansto read and play his
scores. Some of his recordings are available; both [D: 32] and [D: 31] have been
recently reissued, and the Corporeal Meadows website [W: 6]contains photos of his
instruments and up-to-date information on performances ofhis music.

Partch’s scale, shown in Fig. 4.7, has the ability to maintain close approxima-
tions to many just intervals in many different keys. Also, the large palette of intervals
within each octave provides the composer with far more choices than are possible
in a smaller scale. For instance, depending on the musical circumstances and the
desired effect, one might choose 7/4, 16/9, or 9/5 to play therole of dominant sev-
enth, whereas the major seventh might be represented by 15/8or 40/21. The melodic
“leading tone” might be any of these, or perhaps 64/33 or 160/81 would be useful
to guide the ear up into the octave. This scale, and Partch’s theories, are discussed
further in Sect. 5.3.

4.6 Meantone and Well Temperaments

Although many keyboards have been built over the centuries with far more than
12 keys per octave, none have become common or popular, presumably because
of the added complexity and cost. Instead, certain tones on the 12-note keyboard
were tempered to compromise between the perfect intervals of the JI scales and the
possibilities of unlimited modulation in equal temperaments. Meantone scales aim to
achieve perfect thirds and acceptable triads in a family of central keys at the expense
of some very bad thirds and fifths in remote keys. They are typically built from a
circle of fifths like the Pythagorean tuning, but with certain fifths larger or smaller
than 3/2.

Figure 4.8 compares the Pythagorean, 12-tet, and two meantone tunings.12 Each
protruding spoke represents a fifth. A zero means that the fifth has a perfect 3/2 ratio,
whereas a nonzero value means that the fifth is sharpened (if positive) or flattened (if
negative) from 3/2. The Pythagorean tuning has zeroes everywhere except between
the wolf, which is shown here between

2 z and @ o . The g �
represents the size of

the Pythagorean comma, and the sum of all the deviations of the fifths in any octave-
based temperament must equalg �

. In equal temperament, each fifth is squeezed by
an identicalg � 6 � � . Quarter-comma meantone flattens each fifth byg � 6 � and then
compensates by creating a

" H 6 � wolf. This is done because a stack of fourg � 6 �
tempered fifths gives a perfect* 6 � third.

Of course, there are many other possibilities. Figure 4.9 shows a number of his-
torical well temperaments that aim to be playable (but not identical) in every key.
Many of these scales are of interest because they are easily tuned by ear. Before this
century, keyboardists typically tuned their instruments before each performance, and
a tuning that is easy to hear was preferred over a theoretically more precise tuning� #

The form of this diagram is taken from [B: 114].
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Fig. 4.8.Wheels of Tunings.

that is harder to realize. In fact, as Jorgensen [B: 78] points out, equal temperament
as we know it was not in common use on pianos as late as 1885.13 This is at least
partly because 12-tet is difficult to tune reliably.

But the interest in well temperings is more than just the practical matter of the
ease of tuning. Each key in a well temperament has a unique tone color, key-color,
or character that makes it distinct from all others. It was these characteristic colors
that Bach demonstrated in hisWell Tempered Clavier, and not (as is sometimes re-
ported) the possibilityof unlimited modulation in equal temperament. Many Baroque
composers and theorists considered these distinctive modes an important element of
musical expression, one that was sacrificed with the rise of 12-tet. Carlos [D: 7]
performs pieces by Bach in various well temperaments. Katahn [D: 24] performs a
stunning collection of piano sonatas inBeethoven in the Temperaments.

Two sound examples on the CD explore meantone tunings. Scarlatti’s Sonata
K380 is performed in the quarter comma meantone tuning centered in the key of3 in [S: 21].14 As in the JI performance, the effect is not overwhelmingly different
from the familiar 12-tet rendition in [S: 17]. But when the meantone tuning is used� $

Ellis’ measurements, reported in Helmholtz [B: 71], were accurate to about one cent.� %
As in the previous examples [S: 17]–[S: 20], the piece is transposed toA major.
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Fig. 4.9.Several well temperaments.

improperly, the piece suffers (example [S: 22] uses the quarter comma meantone
tuning centered on3 z ).
4.7 Spectral Scales

Both the Pythagorean and the just scales incorporate intervals defined by simple
integer ratios. Such ratios are aurally significant becausethe harmonic structure of
many musical instruments causes their partials to overlap,whereas nearby out-of-
tune intervals experience the roughness of beating partials. Another way to exploit
the harmonic series in the creation of musical scales is to base the scale directly on
the overtone series. Two possibilities are shown in Fig. 4.10. The first uses the eight
pitches from the fourth octave of the overtone series, and the second exploits the
16 pitches of the fifth octave. Of course, many other overtonescales are possible
because the sixth octave contains 32 different pitches (in general, the� l m octave
contains� � � �

pitches) and any subset of these can be used to define overtonescales.
Because the frequencies of the overtones are equally spacedarithmetically, they

are not equally spaced perceptually. The pitches of the tones in a harmonic series
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ratio      cents

  1/1      0
 
  9/8    204
 
  5/4    386

11/8      551 

  3/2     702
 13/8   841
  7/4    969
 
15/8   1088

  2/1   1200

Scale from the Harmonic Series:
Octave 4

ratio      cents

Scale from the Harmonic Series:
Octave 5

  1/1      0
  17/16  105
  9/8    204
  19/16  298
  5/4    386

21/16   471
 11/8      551 
 23/16   628
  3/2     702
 25/16   773
 13/8    841
27/16   906
    7/4    969
  29/16  1030 
15/8          1088
  31/16  1145
  2/1   1200

Fig. 4.10.All partials from the fourth octave of the harmonic series are reduced to the same
octave, forming the scale on the left. Partials from the fifthoctave of the harmonic series
similarly form the scale on the right. The keyboard mappingsare not unique.

grow closer together, and no two intervals between adjacentnotes in the scale are
the same. Moreover, each starting note has a different number of steps in its octave.
This contrasts strongly with equal temperaments in which all successive intervals
are identical and all octaves have the same number of steps. Nonetheless, overtone
scales may be as old as prehistory. Tonometric measurementsof pan pipes from
Nasca, Peru suggest that the Nasca culture (200 BC to 600 AD) may have used an
arithmetic overtone scale with about 43 Hz between succeeding tones, see [B: 67].

The “throat singing” technique ([B: 97], [D: 22], [D: 20]) allows a singer to
manipulate the overtones of the voice. By emphasizing certain partials and de-
emphasizing others, the sound may contain low droning hums and high whistling
melodies simultaneously. Because the voice is primarily harmonic, the resulting
melodies tend to lie on a single overtone scale.

Spectral composers such as Murail [B: 120] have attempted tobuild “a coherent
harmonic system based on the acoustics of sound,” which usesthe “sound itself as
a model for musical structure.” One aspect of this is to decompose a sound into its
constituent (sinusoidal) components and to use these components to define a musical
scale. Thus, the scale used in the composition comes from thesame source as the
sound itself. When applied to standard harmonic sounds, this leads to overtone scales
such as those in Fig. 4.10. More generally, this idea can be extended to inharmonic
sounds. For example, the metal bar of Fig. 2.7 could be used todefine a simple four-
note scale. More complex vibrating systems such as drums, bells, and gongs can also
be used to define corresponding “inharmonic” scales.

In Murail’s Gondwana[D: 28], the sounds of bells (inharmonic) and trumpets
(harmonic) are linked together by having the orchestral instruments play notes from
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scales derived from an analysis of the bells. InTime and Again, inharmonic sounds
generated by a DX7 synthesizer are the catalyst for pitches performed by the or-
chestra. The orchestral instruments are thus used as elements to resynthesize (and
augment) the sound of the DX7.

An interesting spectral technique is to tune a keyboard to one of the spectral
scales, and to set each note to play a pure sine wave. Such a “scale” is indistinguish-
able from the “partials” of a note with complex spectrum, andit becomes possible
to compose with the spectrum directly. As long as the sound remains fused into a
single perceptual entity, it can be heard as a flowing, constantly mutating complex
timbre. When the sound is allowed to fission, then it breaks apart into two or more
perceptual units. The composer can thus experiment with thenumber of notes heard
as well as the tone quality. In Murail’sDésintégrations, for example, two spectra fuse
and fission in a series of spectral collisions. Such techniques are discussed at length
in [B: 34].

As a composer, I find spectral scales to be pliant and easy to work with. They
are capable of expressing a variety of moods, and some examples appearing on the
CD are given in Table 4.4. These range from compositions using direct additive syn-
thesis15 (such asOvertuneandPulsating Silences) to those composed using spectral
techniques and the overtone scales of Fig. 4.10 (such asFree from GravityandIm-
manent Sphere). More information about the individual pieces is available in the
references to the sound examples beginning on p. 381.

Table 4.4. Musical compositions in various spectral scales appearingon the CD-ROM.

Name of File For More
Piece Detail
Immanent Sphere imsphere.mp3 [S: 28]
Free from Gravity freegrav.mp3 [S: 29]
Intersecting Spheres intersphere.mp3 [S: 30]
Over Venus overvenus.mp3 [S: 31]
Pulsating Silences pulsilence.mp3 [S: 32]
Overtune overtune.mp3 [S: 33]
Fourier’s Song fouriersong.mp3 [S: 34]

Spectral scales, even more than JI, tend to be restricted to particular keys or tonal
centers. They contain many of the just intervals when playedin the key of the funda-
mental on which they are based, but the approximations become progressively worse
in more distant keys. Similarly, instruments tuned to overtone scales are bound to
a limited number of related keys. For example, most “natural” (valveless) trumpets
produce all their tones by overblowing, and they are limitedto notes that are harmon-
ics of the fundamental. These are inherently tuned to an overtone scale. Of course,
many kinds of music do not need to modulate between keys; noneof the pieces in Ta-� ,

Where all sounds are created by summing a large collection ofpure sine wave partials.
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ble 4.4 change key. Some do not even change chord.Pulsating SilencesandOvertune
do not even change notes!

4.8 Real Tunings

Previous sections have described theoretically ideal tunings. When a real person
tunes and plays a real instrument, how close is the tuning to the ideal? The discussion
of just noticeable differences for frequency suggests thatan accuracy of 2 or 3 cents
should be attainable even when listening to the notes sequentially. When exploiting
beats to tune simultaneously sounding pitches to simple intervals such as the octave
and fifth, it is possible to attain even greater accuracy.16 But this only describes the
best possible. What is typical?
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Fig. 4.11.Each note of the performance appears as a dot localized in time (the horizontal axis)
and in frequency (the vertical axis). Theoretical note names of the Turkish tradition appear on
the right. Figure used with permission [B: 4].

The actual tuning of instruments in performance is difficultto measure, especially
in polyphonic music where there are many instruments playing simultaneously. Can
Akkoç [B: 4] has recently transcribed the pitches of a collection of Turkish improvi-
sations (taksim) played in a variety of traditional modes (maq̃amãt) by acknowledged
masters. Because these are played on a kind of flute (themansur neyis an aerophone
with openings at both ends), it is monophonic, and the process can be automated
using a pitch-to-MIDI converter and then translated from MIDI into frequency. The
results can be pictured as in Fig. 4.11, which plots frequency vs. time; each dot rep-
resents the onset of a note at the specified time and with the specified pitch. Observe
the large cluster of dots near the tonic, the horizontal linelabeleddugah. A large
number of notes lie near this tonic, sometimes occurring above and sometimes be-
low. Similarly, there are clusters of notes near other scalesteps as indicated by the� -

For instance, when matching two tones at 2000 Hz, it is possible to slow the beating rate
below 1 beat per second, which corresponds to an accuracy of about half a cent.
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dashed lines. Interestingly, many pitches occur at locations that are far removed from
scale steps, for instance, the cluster at the end halfway betweensegahanddik kundi.
Thus, the actual performances are different from the theoretical values. (Similar ob-
servations have also been made concerning Western performances.)
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Fig. 4.12.Zooming into the region between dugah and busilek shows how the notes are dis-
tributed in pitch. Each dot represents the duration of all notes at the indicated frequency, as a
percentage of the total duration of the piece. Figure used with permission [B: 4].

To try to understand this phenomenon, Akkoç replotted the data in the form of
a histogram as in Fig. 4.12. In this performance, the longesttime (about 2.7% of
the total) was spent on a note about 10 cents above the tonic! The peaks of this plot
can be interpreted as anchor tones around which nearby pitches also regularly occur.
Akkoç interprets this stochastically, suggesting that master performers do not stick
slavishly to predetermined sets of pitches, but rather deliberately play in distributions
around the theoretical values. In one piece:

two consecutive clusters are visited back to back at different points in time,
and at each visit the musician has selected different sets offrequencies from
the two clusters, thereby creating a variable micro scale. ..

Of course, themansur neyis a variable intonation instrument, and it is perhaps
(on reflection) not too surprising that the actual pitches played should deviate from
the theoretical values. But surely an instrument like a modern, well-tuned piano
would be tuned extremely close to 12-tet. This is, in fact, incorrect. Modern pianos
do not even have real 2/1 octaves!

Piano tuning is a difficult craft, and a complex system of tests and checks is used
to ensure the best sounding instrument. The standard methods begin by tuning one
note to a standard reference (say middle3 ) followed by all octaves of the3 . Tuning
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then proceeds by fifths or by thirds (depending on the system), where each interval
is mistuned (with respect to the just interval) by a certain amount. This mistuning
is quantified by the number of beats per second that the tuner perceives. Jorgensen
[B: 78], for instance, details several different methods for tuning equal temperament,
and the instructions contain many statements such as “beating occurs at this high
location between the nearly coinciding harmonics of the tempered interval below,”
“readjust middle3 until both methods produce beats that are exactly equal,” and
“numbers denote beats per second of the test interval.” At least part of the complex-
ity of the tuning instructions occurs because beats are related linearly to frequency
difference (and not frequency ratio, as is pitch). Thus, theexpected number of beats
changes depending on which octave is being tuned.

The deviation from 12-tet occurs because piano strings produce notes that are
slightly inharmonic, which is heard as a moderate sharpening of the sound as it
decays. Recall that an ideal string vibrates with a purely harmonic spectrum in
which the partials are all integer multiples of a single fundamental frequency. Young
[B: 208] showed that the stiffness of the string causes partials of piano wire to be
stretched away from perfect harmonicity by a factor of about1.0013, which is more
than 2 cents. To tune an octave by minimizing beats requires matching the funda-
mental of the higher tone to the second partial of the lower tone. When the beats are
removed and the match is achieved, the tuning is stretched bythe same amount that
the partials are stretched. Thus, the “octave” of a typical piano is a bit greater than
1202 cents, rather than the idealized 1200 cents of a perfectoctave, and the amount
of stretching tends to be greater in the very low and very highregisters. This stretch-
ing of both the tuning and the spectrum of the string is clearly audible, and it gives
the piano a piquancy that is part of its characteristic defining sound.

Interestingly, most people prefer their octaves somewhat stretched, even (or es-
pecially) when listening to pure tones. A typical experiment asks subjects to set an
adjustable tone to an octave above a reference tone. Almost without exception, peo-
ple set the interval between the sinusoids greater than a 2/1octave. This craving for
stretching (as Sundberg [B: 189] notes) has been observed for both melodic intervals
and simultaneously presented tones. Although the preferred amount of stretching de-
pends on the frequency (and other variables), the average for vibrato-free octaves is
about 15 cents. Some have argued that this preference for stretched intervals may
carry over into musical situations. Ward [B: 203] notes thaton average, singers and
string players perform the upper notes of the major third andthe major sixth with
sharp intonation.

Perhaps the preference for (slightly) stretched intervalsis caused by constant
exposure to the stretched sound of strings on pianos. On the other hand, Terhardt
[B: 194] shows how the same neural processing that defines thesensation of virtual
pitch17 may also be responsible for the preference for stretched intervals. Although
it may be surprising to those schooled in standard Western music that their piano is
not tuned to real octaves, the stretching of octaves is a time-honored tradition among
the Indonesian gamelan orchestras.� .

Recall the discussion on p. 33.
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4.9 Gamelan Tunings

The gamelan, a percussive “orchestra,” is the indigenous Indonesian musical tradi-
tions of Java and Bali. Gamelan music is varied and complex, and the characteristic
shimmering and sparkling timbres of the metallophones are entrancing. The gamelan
consists of a large family of inharmonic instruments that are tuned to either the five-
noteslendroor the seven-tonepelogscales. Neither scale lies close to the familiar
12-tet.

In contrast to the standardized tuning of Western music, each gamelan is tuned
differently. Hence, the pelog of one gamelan may differ substantially from the pelog
of another. Tunings tend not to have exact 2:1 octaves; rather, the octaves can be
either stretched (slightly larger than 2:1) or compressed (slightly smaller). Each “oc-
tave” of a gamelan may differ from other “octaves” of the samegamelan.

An extensive set of measurements of actual gamelan tunings is given in [B: 190],
which studies more than 30 complete gamelans. An average slendro tuning (obtained
by numerically averaging the tunings of all the slendro gamelans) is� 	 � � � 	 � H � 	 H � H 	 + * * 	 � � � �
(values are in cents) which has a pseudo-octave stretched by8 cents. The slendro tun-
ings are often considered to be fairly close to 5-tet, although each gamelan deviates
from this somewhat.

Similarly, an average pelog scale is� 	 � � � 	 � * � 	 * � + 	 � H * 	 H � * 	 + � � 	 � � � � 	
which is a very unequal tuning that is stretched by 6 cents. The instruments and
tunings of the gamelan are discussed at length in the chapter“The Gamelan,” and
detailed measurements of the tuning of two complete gamelans are given in Ap-
pendix L.

4.10 My Tuning Is Better Than Yours

It is a natural human tendency to compare, evaluate, and judge. Perhaps there is
some objective criterion by which the various scales and tunings can be ranked. If
so, then only the best scales need be considered, because it makes little sense to com-
pose in inferior systems. Unfortunately, there are many different ways to evaluate the
goodness, reasonableness, fitness, or quality of a scale, and each criterion leads to a
different set of “best” tunings. Under some measures, 12-tet is the winner, under oth-
ers 19-tet appears best, 53-tet often appears among the victors, 612-tet was crowned
in one recent study, and under certain criteria nonoctave scales triumph. The next
paragraph summarizes some of these investigations.

Stoney [B: 183] calculates how well the scale steps of various equal tempera-
ments match members of the harmonic series. Yunik and Swift [B: 209] compare
equal temperaments in terms of their ability to approximatea catalog of 50 different
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just intervals. Douthett et al. [B: 44] and van Prooijen [B: 144] use continued frac-
tions to measure deviations from harmonicity for arbitraryequal temperaments. Hall
[B: 68] observes that the importance of an interval depends on the musical context
and suggests a least-mean-square-error criterion (between the intervals of� -tet and
certain just intervals) to judge the fitness of various tunings for particular pieces of
music. Krantz and Douthett [B: 88] propose a measure of “desirability” that is based
on logarithmic frequency deviations, is symmetric, and canbe applied to multiple
intervals. As the criterion is based on “octave-closure,” it is not dominated by very
fine divisions of the octave. Erlich [B: 52] measures how close various just intervals
are approximated by the equal temperaments up to 34-tet and finds that certain 10-
tone scales in 22-tet approximate very closely at the 7-limit. Carlos [B: 23] searches
for scales that approximate a standard set of just intervalsbut does not require that
the temperaments have exact 2/1 octaves and discovers threenew scales with equal
steps of 78, 63.8, and 35.1 cents.

All of these comparisons consider how well one kind of scale approximates an-
other. In an extreme case, Barbour [B: 10] essentially calculates how well various
meantone and well-tempered scales approximate 12-tet and then concludes that 12-
tet is the closest!

The search for sensible criteria by which to catalog and classify various kinds
of scales is just beginning. Hopefully, as more people gain experience in composing
in a variety of scales, patterns will emerge. One possibility is suggested in McLaren
and Darreg [B: 109], who rate equal temperaments on a continuum that ranges from
“biased towards melody” to “biased towards harmony.” Perhaps someday it will be
possible to reliably classify the possible “moods” that a given tuning offers. See
[B: 36] for further comments.

4.11 A Better Scale?

Pythagoras felt that the coincidence of consonant intervals and small interval ratios
were confirmation of deeply held philosophical beliefs. Such intervals are the most
natural because they involve powerful mystical numbers like 1, 2, 3, and 4. Rameau
[B: 145] considered the just intervals to be natural becausethey are outlined by the
overtones of (many) musical sounds. Lou Harrison says in hisPrimer [B: 70] that
“The interval is just or not at all.” “The best intonation is just intonation.” For Harry
Partch [B: 129], 12-tet keyboards are a musical straightjacket, “twelve black and
white bars in front of musical freedom.” From all of these points of view, the 12-
tet tuning system is seen as a convenient but flawed approximation to just intervals,
having made keyboard design more practical, and enabling composers to modulate
freely.

Helmholtz further claimed that untrained and natural singers use just intervals,
but that musicians, by constant contact with keyboards, have been trained (or brain-
washed) to accept equal-tempered approximations. Only thegreatest masters suc-
ceed in overcoming this cultural conditioning. Although logically sound, these argu-
ments are not always supported by experimental evidence. Studies of the intonation
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of performers (such as [B: 4] and [B: 21]) show that they do nottend to play (or sing)
in just intervals. Nor do they tend to play in Pythagorean tunings, nor in equal tem-
peraments, exactly. Rather, they tend to play pitches that vary from any theoretically
constructed scale.18

There are arguments based on numerology, physics, and psychoacoustics in favor
of certain kinds of scales. There are arguments of expediency and ease of modulation
in favor of others. While each kind of argument makes sense within its own frame-
work, none is supported by irrefutable evidence. In fact, actual usage by musicians
seems to indicate a considerable tolerance for mistunings in practical musical situ-
ations. Perhaps these deviations are part of the expressiveor emotional content of
music, perhaps they are part of some larger theoretical system, or perhaps they are
simply unimportant to the appreciation of the music.

Almost every kind of music makes use of some kind of scale, some subset of all
possible intervals from which composers and/or performerscan build melodies and
harmonies.19 As the musical quality of an interval is highly dependent on the timbre
or spectrum of the instruments (recall the “challenging theoctave” example from the
first chapter in which the octave was highly dissonant),Tuning, Timbre, Spectrum,
Scaleargues that the perceptual effect of an interval can only be reliably anticipated
when the spectrum is specified. The musical uses of a scale depend crucially on the
tone quality of the instruments.

Thus, a crucial aspect is missing from the previous discussions of scales. Justly
intoned scales are appropriatefor harmonic timbres. Overtone scales make sense
when used with sounds that have harmonic overtones. Gamelan scales are designed
for play with metallophones. Whether the scale is made from small integer ratios,
whether it is formed from irrational number approximationssuch as the twelfth root
of two, and whether it contains octaves or pseudo-octaves (or neither) is only half of
the story. The other half is the kinds of sounds that will be played in the scale.

� /
Some recent work by Loosen [B: 98] suggests that musicians tend to judge familiar tem-
peraments as more in-tune. Thus, violinists tend to prefer Pythagorean scales, and pianists
tend to prefer 12-tet.� 0
The existence of sound collages and other textural techniques as in [D: 23], [D: 26], and
[D: 43] demonstrates that scales are not absolutely necessary.
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Consonance and Dissonance of Harmonic Sounds

Just as a tree may crash silently (or noisily) to the ground
depending on the definition of sound, the terms “consonance”
and “dissonance” have both a perceptual and a physical
aspect. There is also a dichotomy between attitude and
practice, between the way theorists talk about consonance
and dissonance and the ways that performers and composers
use consonances and dissonances in musical situations.
This chapter explores five different historical notions of
consonance and dissonance in an attempt to avoid confusion
and to place sensory consonance in its historical perspective.
Several different explanations for consonance are reviewed,
and curves drawn by Helmholtz, Partch, Erlich, and Plomp
for harmonic timbres are explored.

5.1 A Brief History

Ideas of consonance and dissonance have changed significantly over time, and it
makes little sense to use the definitions of one century to attack the conclusions
of another. In his 1988History of ‘Consonance’ and ‘Dissonance,’James Tenney
discusses five distinct ways that these words have been used.These are the melodic,
polyphonic, contrapuntal, functional, and psychoacoustic notions of consonance and
dissonance.

5.1.1 Melodic Consonance (CDC-1)

The earliest Consonance and Dissonance Concept (CDC-1 in Tenney’s terminology)
is strictly a melodic notion. Successive melodic intervalsare consonant or dissonant
depending on the surrounding melodic context. For instance, early church music was
typically sung in unison, and CDC-1 refers exclusively to the relatedness of pitches
sounded successively.

5.1.2 Polyphonic Consonance (CDC-2)

With the advent of early polyphony, consonance and dissonance began to refer to
the vertical or polyphonic structure of music, rather than to its melodic contour.
Consonance became a function of the interval between (usually two) simultaneously
sounding tones. Proponents of CDC-2 are among the clearest in relating “consonant”
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to “pleasant” and “dissonant” to “unpleasant.” For instance, summing up the com-
ments of a number of theorists from the thirteenth to the fifteenth century, Crocker
[B: 35] concludes:

These authors say, in sum, that the ear takes pleasure in consonance, and
the greater the consonance the greater the pleasure; and forthis reason one
should use chiefly consonances...

Theorists were divided on the root cause of the consonance and dissonance. Some
argued that the consonance of two tones is directly proportional to the degree to
which the two tones sound like a single tone. Recall how the partials of simple ratio
intervals such as the octave tend to line up, encouraging thetwo sounds to fuse
together into a single perception. Other theorists focusedon the numerical properties
of consonant intervals, presuming, like the Pythagoreans,that the ear simply prefers
simple ratios. As the simplest ratios are the unison, third,fourth, fifth, sixth, and
octave, these were considered consonant and all others dissonant. These conflicting
philosophies anticipate even further notions.

5.1.3 Contrapuntal Consonance (CDC-3)

Contrapuntal consonance defines consonance by its role in counterpoint. These are
the “rules” that are familiar to music students today when learning voice-leading
techniques. In a dramatic reversal of earlier usage, the fourth came to be considered
a dissonance (except in certain circumstances) much as is taught today. Similarly,
a minor third is considered consonant, whereas an augmentedsecond is considered
dissonant, even though the two intervals may be physically identical. Thus, it is the
context in which the interval occurs that is crucial, and notthe physical properties of
the sound.

5.1.4 Functional Consonance (CDC-4)

Functional consonance begins with the relationship of the individual tones to a
“tonic” or “root.” Consonant tones are those that have a simple relationship to this
fundamental root and dissonant tones are those that do not. This was crystallized by
Rameau, whose idea of thefundamental bassroughly parallels the modern notion of
the root of a chord. Rameau argues that all properties of:

sounds in general, of intervals, and of chords rest finally onthe single fun-
damental source, which is represented by the undivided string. . .

The “undivided” string in Fig. 5.1, which extends from 1 to A,sounds the funda-
mental bass. Half of the string, which vibrates at the octave, extends from 2 to A.
One third of the string, which vibrates at the octave plus a fifth, extends from 3 to
A. Thus, Rameau identifies all of the familiar consonances bythe distances on the
string and their inversions. For example, suppose two notesform an interval of a ma-
jor third (the region between 4 and 5 in the figure). These are both contained within
the undivided string, which vibrates at the fundamental bass.
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Fig. 5.1.Rameau illustrates the con-
sonance of intervals on a vibrating
string. If 1-A represents the com-
plete string, 2-A is one half the
string, 3-A is one third, and so
on. The musical intervals that result
from these different string lengths
include all of the consonances. This
figure is redrawn from [B: 145].

But Rameau’s fundamental bass implies not only the static notion of the lowest
note of a chord in root position, but also the dynamic notion of a succession of bass
notes. Dissonances occur when the music has moved away from its root, and they
set up an expectation of return to the root. Thus, functionaldissonance is not a result
of chordal motion, but rather its cause. This notion that dissonances cause motion
is very much alive in modern music theory. For example, Walter Piston [B: 137], in
Harmony, places himself firmly in this camp when he writes:

A consonant interval is one which sounds stable and complete, whereas the
characteristic of a dissonant interval is its restlessnessand its need for reso-
lution into a consonant interval... Music without dissonant intervals is often
lifeless and negative, since it is the dissonant element which furnishes much
of the sense of movement and rhythmic energy... It cannot be too strongly
emphasized that the essential quality of dissonance is its sense of movement
and not, as sometimes erroneously assumed, its degree of unpleasantness to
the ear.

5.1.5 Psychoacoustic Consonance (CDC-5)

The most recent concept of consonance and dissonance focuses on perceptual mech-
anisms of the auditory system. One CDC-5 view is calledsensory dissonanceand
is usually credited to Helmholtz [B: 71] although it has beensignificantly refined by
Plomp and Levelt [B: 141]. A major component of sensory dissonance is roughness
such as that caused by beating partials; sensory consonanceis then the smoothness
associated with the absence of such beats. Another component of psychoacoustic
consonance, calledtonalness, is descended from Rameau’s fundamental bass through
Terhardt’s notions of harmony [B: 196] as extended by Parncutt [B: 126] and Erlich
[W: 9]. A major component of tonalness is the closeness of thepartials to a harmonic
series; distonalness is thus increased as partials deviatefrom harmonicity.

CDC-5 notions of consonance and dissonance have three striking implications.
First, individual complex tones have an intrinsic or inherent dissonance. From the
roughness perspective, any tone with more than one partial inevitably has some
dissonance, because dissonance is caused by interacting partials. Similarly from a
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tonalness point of view, as the partials of a sound deviate from a perfect harmonic
template, the dissonance increases. These are in stark contrast to the earlier CDCs
where consonance and dissonance were properties of relationships between tones.1

The second implication is that consonance and dissonance depend not just on the
interval between tones, but also on the spectrum of the tones. Intervals are dissonant
when the partials interact to cause roughness according to the sensory dissonance
view. Similarly, intervals are increasingly dissonant as the partials deviate from har-
monicity according to the tonalness view. In both cases, theexact placement of the
partials is important.

The third implication is that consonance and dissonance areviewed as lying on a
continuum rather than as an absolute property. In the earlier CDCs, a given interval is
either consonant or dissonant. CDC-5 recognizes a continuum of possible gradations
between consonance and dissonance.

The sensory notion of dissonance has no problem explaining the “challenging
the octave” sound example [S: 1] of Chap. 1 (indeed, it was created from sensory
considerations), and both sensory dissonance and tonalness have a firm basis in psy-
choacoustic experimentation (as discussed in Sect. 5.3.4). But these CDC-5 ideas are
lacking in other respects. Perhaps the greatest strength ofthe contrapuntal and func-
tion consonance notions is that they provide comprehensiveprescriptions (or at least
descriptions) of the practice of harmony. They give guidance in the construction and
analysis of polyphonic passages, and they explain how dissonances are crucial to the
proper motion of musical compositions. In contrast, sensory dissonance and tonal-
ness are static conceptions in which every collection of partials has some dissonance
and there is not necessarily any relationship between successive clusters of sound in
a musical sequence.

Mechanistic approaches to consonance are not without controversy and have
been questioned from at least two perspectives. First, as Cazden [B: 28] points out,
the ideas of psychoacoustic dissonance do not capture the functional idea of musical
dissonance as restlessness or desire to resolve and the linked notion of consonance as
the restful place to which resolution occurs. In essence, itbecomes the responsibility
of the composer to impose motion from psychoacoustic dissonance to psychoacous-
tic consonance, if such a motion is desired.

Secondly, psychoacoustic experiments are tricky to conduct and interpret. De-
pending on the exact experimental setup, different effectsmay be emphasized. For
example, many experiments address the relevance of beats and roughness to per-
ceptions of intonation. Among these is Keisler [B: 81], who examines musicians’
preferences to various “just” and “tempered” thirds and fifths by manipulating the
partials of the sounds in a patterned way. Keisler concludesthat beating is not a
significant factor in intonation. Yet other studies such as Vos [B: 201], using differ-
ent techniques, have found the opposite. Similarly, the fact of perception of virtual
pitch is uncontested, and yet it sometimes appears as a strong and fundamental as-
pect (e.g., the Westminster chime song played by Houtsma [D:21]), or it may appear
fragile and ambiguous (as in sound examples [S: 6] and [S: 7]).�

Or of the relationship between a tone and the fundamental bass.
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5.2 Explanations of Consonance and Dissonance

What causes these sensations of consonance and dissonance?Just as there are differ-
ent paradigms for what consonance and dissonance mean, there are different ideas as
to their cause: from numerological to physiological, from difference tones to differ-
ing cultures. Are there physical quantities that can be measured to make reasonable
predictions of the perceived consonance of a sound, chord, or musical passage?

5.2.1 Small Is Beautiful

Perhaps the oldest explanation is the simplest: People find intervals based on small
integer ratios more pleasant because the ear naturally prefers small ratios. Although
somewhat unsatisfying due to its essentially circular nature, this argument can be
stated in surprisingly many ways. Pythagoras, who was fascinated to find small num-
bers at the heart of the universe, was content with an essentially numerological as-
sessment. Galileo [B: 58] wrote:

agreeable consonances are pairs of tones which strike the ear with a certain
regularity; this regularity consists in the fact that the pulses delivered by the
two tones, in the same interval of time, shall be commensurable in number,
so as not to keep the eardrum in perpetual torment, bending intwo different
directions in order to yield to the ever discordant impulses.

A more modern exposition of this same idea (minus the perpetual torment) is pre-
sented in Boomsliter and Creel [B: 17] and in Partch [B: 128].Here, consonance
is viewed in terms of the period of the wave that results when two tones of differ-
ent frequency are sounded: The shorter the period, the more consonant the interval.
Thus, 3/2 is highly consonant because the combined wave repeats every 6 periods,
whereas 301/200 is dissonant because the wave does not repeat until 60,200 peri-
ods.2 In essence, this changes the argument from “the ear likes small ratios” to “the
ear likes short waves.” The latter forms a testable hypothesis, because the ear might
contain some kind of detector that would respond more strongly to short repeating
waveforms. In fact, periodicity theories of pitch perception [B: 24] and [B: 136] sup-
pose such a time-based detector.

5.2.2 Fusion

The fusion of two simultaneously presented tones is directly proportional to the de-
gree to which the tones are heard as a single perceptual unit.Recall from Fig. 4.1 on
p. 52 that many of the partials of sounds in simple ratio intervals (such as the octave)
coincide. The ear has no way to tell how much of each partial belongs to which note,
and when enough partials coincide, the sounds may lose theirindividuality and fuse#

On the other hand, the 12-tet equal fifth, whether consideredas having infinite period or
some very long finite period, is more consonant than other intervals such as 25/24, which
have much shorter period. Thus, the theory cannot be so simple.
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together. Stumpf [B: 188] determined that the degree of fusion of intervals depends
on the simple frequency ratios in much the same way as consonance and hypothe-
sized that fusion is the basis of consonance. The less willing a sound is to fuse, the
more dissonant.

5.2.3 Virtual Pitch

Whereas Rameau’s theories focus on physical properties of resonating bodies, Ter-
hardt focuses on the familiarity of the auditory system withthe sound of resonating
bodies. This shifts the focus from the physics of resonatingbodies to the perceptions
of the listener. Terhardt’s theory of virtual pitch [B: 197]is combined with a “learn-
ing matrix” [B: 195] (an early kind of neural network) to givethe “principle of tonal
meanings.”

By repeatedly processing speech, the auditory system acquires - among
other Gestalt laws - knowledge of the specific pitch relations which... be-
come familiar to the “central processor” of the auditory system ... This way,
these intervals become the so-called musical intervals.

Terhardt emphasizes the key role that learning, and especially the processing of
speech, plays in the perception of intervals. Different learning experiences lead to
different intervals and scales and, hence, to different notions of consonance and dis-
sonance.

One of the central features of virtual pitch is that the auditory system tries to
locate the nearest harmonic template when confronted with acollection of partials.
This is unambiguous when the sound is harmonic but becomes more ambiguous as
the sound deviates from a harmonicity. The idea ofharmonic entropy(see [W: 9],
Sect. 5.3.3, and Appendix J) quantifies this deviation, measuring the tonalness of
an interval based on the uncertainty involved in interpreting the interval in terms of
simple integer ratios.

5.2.4 Difference Tones

When two sine waves of different frequencies are sounded together, it is sometimes
possible to hear a third tone at a frequency equal to the difference of the two. For
instance, when waves of

� � � * �
Hz andi � * H �

Hz are played simultaneously,
a low tone ati g � � � � �

Hz may also occur. Thesedifference tonesare usually
attributed to nonlinear effects in the ear, and Roederer [B:154] observes that “they
tend to become significant only when the tones used to evoke them are performed at
high intensity.” Under certain conditions, difference tones may be audible at several
multiples such as� � g i ,

� i g � �
, etc.3 When

�
andi form a simple integer ratio,

there are few distinct difference tones between the harmonics of
�

and the harmon-
ics of i . For instance, if

�
and i form an octave, the difference tones occur at the

same frequencies as the harmonics. But as the complexity of the ratio increases, the$
In general, such higher order difference tones may occur atr h y ) s � � h & for integersh .
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number of distinct difference tones increases. Thus, Krueger [B: 89] (among others)
proposes that dissonance is proportional to the number of distinct difference tones;
consonance occurs when there are only a few distinct difference tones.

Because both difference tones and beats occur at the same difference frequency� g i , it is easy to imagine that they are the same phenomenon, thatdifference
tones are nothing more than rapid beats. This is not so. The essence of the beat
phenomenon is fluctuations in the loudness of the wave, whereas difference tones
are a result of nonlinearities, which may occur in the ear butmay also occur in
the electronic amplifier or loudspeaker system. Hall provides a series of tests that
distinguish these phenomena in his paper [B: 69], “the difference between difference
tones and rapid beats.”

Difference tones are also similar to, but different from virtual pitch. Recall the
example on p. 34 where three sine waves of frequencies 600, 800, and 1000 Hz gen-
erate both a virtual pitch at 200 Hz and a difference tone at 200 Hz. When the sine
waves are raised to 620, 820, and 1020, the virtual pitch is somewhat higher than 200
Hz, whereas the difference tone remains at 200 Hz. For most listeners in most situ-
ations, the virtual pitch dominates emphasizing that difference tones can be subtle,
except at high intensities. On the other hand, “false” difference tones can be gener-
ated easily in inexpensive electronic equipment by nonlinearities in the amplifier or
speaker.

Difference tones can be readily heard in laboratory settings, and Hindemith
[B: 72] presents several musical uses. In many musical settings, however, difference
tones are not loud enough to be perceptually relevant and, hence, cannot form the ba-
sis of dissonance, as argued by Plomp [B: 138]. On the other hand, when difference
tones are audible, they should be taken into account.

5.2.5 Roughness and Sensory Dissonance

Helmholtz’s idea is that the beating of sine waves is perceived as roughness that in
turn causes the sensation of dissonance. This sensory dissonance is familiar from
Fig. 3.7 on p. 46, and this model can be used to explain why intervals made from
simple integer ratios are perceptually special, as suggested by the mistuned octaves
in Fig. 4.1 on p. 53.

The “challenging the octave” example (recall Fig. 1.1 on p. 2) demonstrates this
dramatically. The partials of the inharmonic tone are placed so that they clash rau-
cously when played in a simple 2/1 octave but sound smooth when played in a 2.1/1
pseudo-octave. Are these 2/1 and 2.1/1 intervals consonantor dissonant? It depends,
of course, on the definition. Much of our intuition survives from CDC-2, where con-
sonant and dissonant are equated with pleasant and unpleasant. Clearly, the 2.1/1
pseudo-octave is far more euphonious (when played with 2.1 stretched timbres) than
the real octave. Modern musicians have been trained extensively (brainwashed?) with
harmonic sounds. Because octaves are always consonant whenplayed with harmonic
sounds, the musician is likely to experience cognitive dissonance (at least) when
hearing the 2.1/1 interval appear smoother than the 2/1 octave. This example is chal-
lenging to advocates of functional consonance (CDC-4) because it is unclear what
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the terms “key,” “tonal center,” and “fundamental root” mean for inharmonic sounds
in non-12-tet scales. This is also a setting where the predictions of the tonalness
model and the sensory dissonance model disagree, and this isdiscussed more fully
in Sects. 6.2 and 16.3.

5.2.6 Cultural Conditioning

One inescapable conclusion is that notions of consonance and dissonance have
changed significantly over the years. Presumably, they willcontinue to change. Caz-
den [B: 28] argues that the essence of musical materials cannot be determined by
unchanging natural laws such as mathematical proportion, wave theories, perceptual
phenomena, the physiology of hearing, and so on, because “itis not possible that
laws which are themselves immutable can account for the profound transformations
which have taken place in musical practice.” Similarly, thewide variety of scales and
tunings used throughout the world is evidence that culturalcontext plays a key role
in notions of consonance and dissonance.

The importance of learning and cultural context in every aspect of musical per-
ception is undeniable. But physical correlates of perceptions need not completely
determine each and every historical style and musical idiosyncrasy as Cazden sug-
gests; rather, they set limits beyond which musical explorations cannot go. Surely
the search for such limits is important, and this is discussed further in Sect. 16.3 “To
Boldly Listen” in the final chapter.

Cazden also rightly observes that an individual’s judgmentof consonance can be
modified by training, and so cannot be due entirely to naturalcauses. This is not an
argument for or against any particular physical correlate,nor even for or against the
existence of correlates in general. Rather, the extent to which training can modify a
perception places limits on the depth and universality of the correlate.

The larger picture is that Cazden4 is attacking excessive scientific reductionism
in music theory, and in much of this he is quite correct. However, Cazden defines a
consonant interval to be stable and a dissonant interval to be restless, an attack on the
CDC-5 mindset using a CDC-4 definition. He states firmly that “consonance and dis-
sonance do not originate on the level of properties of tones,but on the level of social
communication,” and hence, all such beat, fusion, and difference tone explanations
are fundamentally misguided. Interpreting this to mean that questions of musical mo-
tion are not readily addressable within the CDC-5 framework, Cazden is correct. But
this does not imply that such physiological explanations can offer nothing relevant
to the perception of dissonances.

5.2.7 Which Consonance Explanation?

There are at least six distinctly different explanations for the phenomena of conso-
nance and dissonance: small period detectors, fusion of sounds, tonalness and virtual
pitch, difference tones, cultural conditioning, and beatsor roughness. The difference%

In [B: 29] and [B: 30].
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tone hypothesis is the weakest of the theories because experimental evidence shows
that it occurs primarily at high sound intensities, while dissonances can be clearly
perceived even at low volumes.

The remaining possibilities each have strengths and limitations. Consonance and
dissonance, as used in musical discourse, are complicated ideas that are not read-
ily reducible to a single formula, acoustical phenomenon, or physiological feature.
As we do not ultimately know which (if any) of the explanations is correct, a prag-
matic approach is sensible: Which of the possible explanations for consonance and
dissonance lead to musically sensible ideas for sound exploration and manipulation?

There is undoubtedly a large component of cultural influenceinvolved in the
perception of musical intervals, but it is hard to see how to exploit this view in the
construction of musical devices or in the creation of new musics. On the other hand,
as Terhardt [B: 195] points out, to whatever extent conventional musical systems are
the result of a learning process, “it may not only be possiblebut even promising to
invent new tonal systems.” Chapters 7, 9, 14, and 15 do just this.

The importance of fusion in the general perception of sound is undeniable—if a
tone does not fuse, then it is perceived as two (or more) tones. It is easy to see why
a viable fusion mechanism might evolve: The difference between a pack of hyenas
in the distance and a single hyena nearby might have immediate survival value. But
its role in consonance is less clear. In the “Science of Sound” chapter, several factors
were mentioned that influence fusion, including synchrony of attack, simultaneous
modulation, and so on. Unfortunately, these have not yet been successfully integrated
into a “fusion function” that allows calculation of a degreeof fusion from some set
of physically measurable quantities. Said another way, thefusion hypothesis does
not (yet?) provide a physical correlate for consonance thatcan be readily measured.
From the present utilitarian view, we therefore submerge the fusion hypothesis be-
cause it cannot give concrete predictions. Nonetheless, aswill become clear when
designing and exploring inharmonic sounds, ensuring that these sounds fuse in a
predictable way is both important and nontrivial. Finding aworkable measure of au-
ditory fusion is an important arena for psychoacoustics work. See Parncutt [B: 126]
for a step in this direction.

The small period hypothesis can only be sensibly applied to harmonic (i.e., pe-
riodic) sounds; it is not obvious how to apply it to music thatuses inharmonic in-
struments. For example, the small period theory cannot explain why or how the
pseudo-octaves of the “challenging the octave” experimentsound pleasant or restful
(pick your favorite CDC descriptor) when played in the 2.1 stretched timbres. On the
other hand, the roughness/sensory dissonance can be readily quantified in terms of
the spectra of the sounds. Because a large class of interesting sounds are inharmonic,
further chapters exploit the ideas of psychoacoustic consonance as a guide in the cre-
ation of inharmonic music. It is important to remember that this is just one possible
explanation for the consonance and dissonance phenomenon.Moreover, the larger
issue of creating “enjoyable music” is much wider than any notion of dissonance.
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5.3 Harmonic Dissonance Curves

Early theorists focused on the consonance and dissonance ofspecific intervals within
musical scales: Some are consonant and some are not. But there are an infinite num-
ber of possible pitches and, hence, of possible intervals. Are all of these other inter-
vals perceived as dissonant? Helmholtz investigated this using two violins, one play-
ing a fixed note and the other sliding up slowly. He found that intervals described
by small number ratios are maximally consonant. Partch listened very carefully to
his 43-tone-per-octave chromelodeon (a kind of reed organ)and learned to tune all
the intervals by ear using the beating of upper partials. He found he could relate the
relative consonances to small integer ratios. Erlich’s tonalness quantifies the confu-
sion of the ear as it tries to relate intervals to nearby smallinteger ratios. Plomp and
Levelt use electronic equipment to carefully explore perceptions of consonance and
dissonance. Again, they find that the intervals specified by small integer ratios are
the most consonant. All four, despite wildly differing methods, mindsets, and theo-
retical inclinations, draw remarkably similar curves: Helmholtz’s roughness curve,
Partch’s “one-footed bride,” Erlich’s harmonic entropy, and Plomp and Levelt’s plot
of consonance for harmonic tones.

5.3.1 Helmholtz and Beats

The idea of sensory consonance and dissonance was introduced5 by Helmholtz in
On the Sensations of Tonesas a physical explanation for the musical notions of con-
sonance and dissonance based on the phenomenon of beats. If two pure sine tones
are sounded at almost the same frequency, then a distinct beating occurs that is due
to interference between the two tones. The beating becomes slower as the two tones
move closer together, and it completely disappears when thefrequencies coincide.
Typically, slow beats are perceived as a gentle, pleasant undulation, whereas fast
beats tend to be rough and annoying, with maximum roughness occurring when beats
occur about 32 times per second. Observing that any sound canbe decomposed into
sine wave partials, Helmholtz theorized that dissonance between two tones is caused
by the rapid beating between the partials. Consonance, according to Helmholtz, is
the absence of such dissonant beats.

To see Helmholtz’s reasoning, suppose that a sound has a harmonic spectrum
like the guitar string of Fig. 2.5 on p. 17, or its idealized version in Fig. 2.6 on p. 18.
When such a sound is played at a fundamental frequency

� � � � �
(near the

2
below

middle 3 ), its spectrum is depicted in the top graph of Fig. 5.2. The same spectrum
transposed to a fundamental frequencyi � � * �

is shown just below. Observe that
many of the upper partials of

�
are close to (but not coincident with) upper partials

of i . For instance, the fourth and fifth partials of
�

are very near the third and fourth
partials ofi . As partials are just sine waves, they beat against each other at a rate
proportional to the frequency difference, in this case 26 Hzand at 32 Hz. Because
both these beat rates are near 32 Hz, the partials interact roughly.,

Similar ideas can be found earlier in Sorge [B: 178].
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Fig. 5.2. A harmonic note at fundamental
frequency & u ' � � Hz is transposed to� u ' = < Hz. When played simultaneously,
some of the upper partials interact by beat-
ing roughly, causing sensory dissonance.

Assuming that the roughnesses of all interacting partials add up, the dissonance
of any interval can be readily calculated. Figure 5.3 is redrawn from Helmholtz. The
horizontal axis represents the interval between two harmonic (violin) tones. One is
kept at a constant frequency labeled

� { , and the other is slid up an octave to
� { { . The

height (vertical axis) of the curves is proportional to the roughness produced by the
partials designated by the frequency ratios. For instance,the peaks straddling the
valley ati { are formed by interactions between:

(i) The second partial of the note ati { and the third partial of
� { (labeled

2:3 in the figure)
(ii) The fourth partial of the note ati { and the sixth partial of

� { (labeled
4:6)

(iii) The sixth partial of the note ati { and the ninth partial of
� { (labeled 6:9)

Other peaks are formed similarly by the beating of other pairs of interacting partials.
To draw these curves, Helmholtz makes three assumptions: that the spectra of

the notes are harmonic, that roughnesses can be added, and that the 32 Hz beat rate

c'                               e'b     e'         f'                  g'         a'b    a'        b'b                   c''
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Fig. 5.3.Two pitches are sounded simultaneously. The regions of roughness due to pairs of
interacting partials are plotted over one another, leavingonly a few narrow valleys of relative
consonance. The figure is redrawn from Helmholtz’sOn the Sensation of Tone.
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gives maximal roughness. His graph has minima (intervals atwhich minimum beat-
ing occurs) near many of the just intervals, thus suggestinga connection between the
beating and roughness of sine waves and the musical notions of consonance or disso-
nance. Helmholtz’s work can be evaluated by comparing his conclusions with those
of other notions of consonance and dissonance and by investigating his assumptions
in more detail. For instance, does the 32 Hz beat rate for maximal roughness hold up
under rigorous investigation? Do roughnesses really add up?

5.3.2 Partch’s One-Footed Bride

Harry Partch was an eclectic composer and theorist who not only created a just 43-
tone-per-octave musical scale, but also a family of instruments to play in this scale.
In Genesis of a Music, Partch [B: 128] details how he tuned his chromelodeon reed
organ by ear:

To illustrate the actual mechanics of tuning, assume that the interval in-
tended as 3/2 is slightly out of tune, so that beats are heard,perhaps two or
three per second between the second partial of the “3” and thethird partial
of the “2” .... Hence we scratch the reed at the tip, testing continually, until
the beats disappear entirely - that is, until the two pulsations are “commen-
surable in number” ... Experience in tuning the chromelodeon has proved
conclusively that not only the ratios of 3 and 5, but also the intervals of 7, 9,
and 11 are tunable by eliminating beats.

Although Partch is willing to use beats to tune his instruments, he maintains that
consonance is purely a result of simple integer ratios. He states this in terms of the
period of the resulting wave: The shorter the period, the more consonant the interval.
This is reminiscent of Galileo, who viewed simple intervalslike 3/2 as a pleasant
bending exercise for the ear, but intervals like 301/200 as perpetual torment. Partch
ridicules simple sine wave experiments (such as the kind used to explain sensory
dissonance in the “Sound on Sound” chapter) in a section called “Obfuscation by
the Moderns,” although it is unclear from his writing whether he disbelieves the
experimental results, or simply dislikes the conclusions reached.

However anachronistic his theoretical views, Partch was a careful listener. Us-
ing the chromelodeon, he classified and categorized all 43 intervals in terms of their
comparative consonance, resulting in the “One-Footed Bride: A Graph Of Compar-
ative Consonance,” which is redrawn here as Fig. 5.4. Observe how close this is to
Helmholtz’s figure, although it is inverted, folded in half,and stood on end. Where
Helmholtz draws a dissonant valley, Partch finds a consonantpeak: All familiar JI
intervals are present, and the octave, fourth, and fifth appear prominently.

In discussing the one-footed bride, Partch observes that “each consonance is a
little sun in its universe, around which dissonant satellites cluster.”6 As a composer,
Partch is interested in exploiting these suns and their planets. He finds four kinds-

Helmholtz would claim that these dissonant clusters are caused by the beating of the same
upper partials that allowed Partch to tune the instrument soaccurately.
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based onG. Four kinds of intervals
are depicted: intervals of power,
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Figure is redrawn and used with
permission [B: 128].

of intervals: intervals of power, of suspense, of emotion, and of approach. Power
intervals are the familiar perfect consonances recognizedsince antiquity. Suspenseful
intervals are those between the fourth and the fifth that generalize the function of the
tritone. A variety of thirds and sixths rationalize (in a literal sense) and expand on
the kind of emotions normally associated with major and minor thirds and sixths.
Finally, the intervals of approach are usually reserved forpassing tones and melodic
inflections.

Like Helmholtz, Partch observed little correlation between the notes of the 12-tet
scale and the comparative consonance of the intervals. Of course, 12-tet scale steps
can approximate many of the just ratios. But Partch was not a man to compromise or
approximate, and he devoted his life to creating music and instruments on which to
realize his vision of a just music that would not perpetuallytorment the ear. Fortu-
nately, today things are much easier. Electronic keyboardscan be retuned to Partch’s
(or any other scale) with the push of a button or the click of a mouse.

5.3.3 Harmonic Entropy

The discussion of virtual pitch (in Sect. 2.4.2) describes how the auditory system
determines the pitch of a complex tone by finding a harmonic template that lies close
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to the partials of the tone. If the fundamental (or root) of the template is low, then the
pitch is perceived as low; if the root of the template is high,then the pitch is perceived
as high. Often, however, the meaning of “closest harmonic template” is ambiguous,
for instance, when there is more than one note sounding or when a single note has an
inharmonic spectrum. Harmonic entropy, as introduced by Erlich [W: 9], provides a
way to measure the uncertainty of the fit of a harmonic template to a complex sound
spectrum. Erlich writes:

There is a very strong propensity for the ear to try to fit what it hears into
one or a small number of harmonic series, and the fundamentals of these
series, even if not physically present, are either heard outright, or provide
a more subtle sense of overall pitch known to musicians as the“root.” As
a component of consonance, the ease with which the ear/brainsystem can
resolve the fundamental is known as “tonalness.”

Entropy is a mathematical measure of disorder or uncertainty; harmonic entropy
is a model of the degree of uncertainty in the perception of pitch. Tonalness is the
inverse: A cluster of partials with high tonalness fits closely to a harmonic series and
has low uncertainty of pitch and low entropy, and an ambiguous cluster with low
tonalness has high uncertainty and hence high entropy. Recall that a single sound
is more likely to fuse into one perceptual entity when the partials are harmonic.
Similarly, holistic hearing of a dyad or chord as a unified single sound is strengthened
when all of the partials lie close to some harmonic series.

In the simplest case, consider two harmonic tones. If the tones are to be under-
stood as approximate harmonic overtones of some common root, they must form a
simple-integer ratio with one another. One way to model thisuses the Farey series� �

, which contains all ratios of integers up to� . This series has the property that the
distance between successive terms is larger when the ratiosare simpler. Thus, 1/2 and
2/3 occupy a larger range than complex ratios such as 24/49. For any given interval� , a probability distribution (a bell curve) can be used to associate a probability! 
 � � �
with the ratios

� 

in

� �
. The probability that the interval� is perceived as the� th

member of the Farey series is high when� is close to
� 


and low when� is far from� 

. The harmonic entropy (HE) of� is then defined in terms of these probabilities as� @ � � � � g �
 ! 
 � � � � � � � ! 
 � � � � �

When the interval� lies near a simple-integer ratio
� 


, there will be one large proba-
bility and many small ones. Harmonic entropy is low. When theinterval � is distant
from any simple-integer ratio, many complex ratios contribute many nonzero prob-
abilities. Harmonic entropy is high. A plot of harmonic entropy over a one-octave
range is shown in Fig. 5.5 where the intervals are labeled in cents. Clearly, inter-
vals that are close to simple ratios are distinguished by having low entropy values,
whereas the more complex intervals have high harmonic entropy. Details on the cal-
culation of harmonic entropy can be found in Appendix J.
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5.3.4 Sensory Consonance and Critical Bandwidth

In the mid 1960s, Plomp and Levelt conducted a series of experiments on the sensa-
tions of consonance and dissonance. About 90 volunteers were asked to judge pairs
of pure tones on a seven-point scale where 1 indicated the most dissonant and 7
the most consonant. The pairs were chosen so as to vary both the octave and the
frequency ratios presented within the octave. The experiment was carefully devised:
Each subject was tested individually, each subject only judged a few intervals so as to
avoid interval recognition and fatigue, responses were tested for consistency (those
who gave erratic results were discounted), and the subjectswere allowed a prelimi-
nary series of intervals to familiarize them with the range of stimulus so they could
make adequate use of the seven-point scale.

One of the most unique (and controversial) features of Plompand Levelt’s
methodology was the use of musically untrained subjects. Previous studies had
shown that musically trained listeners often recognize intervals and report their
learned musical responses rather than their actual perceptions. An example is in Tay-
lor’s Sounds of Music, which presents Helmholtz’s roughness curve along with a
series of superimposed crosses that closely match the curve. These crosses are the
result of a series of experiments in which sine waves were graded by subjects in
terms of their harshness or roughness. As Taylor says, the close match “cannot be
explained in terms of the beating of upper partials, becausethere are none!” How-
ever, the close match may be explainable by considering the musical background of
his subjects.

To avoid such problems with learned responses, Plomp and Levelt chose to use
musically naive listeners. Subjects who asked for the meaning of consonant were
told beautifuland euphonious, and it can be argued that the experiment therefore
tested the pleasantness of the intervals rather than the consonance. However, as most
musically untrained people (and even many with training) continue to think in this
CDC-2 manner, this was deemed an acceptable compromise.

Despite considerable variability among the subject’s responses, there was a clear
and simple trend. At unison, the consonance was maximum. As the interval in-
creased, it was judged less and less consonant until at some point a minimum was
reached. After this, the consonance increased up toward, but never quite reached, the
consonance of the unison. This is exactly what we heard in sound example [S: 11]
when listening to two simultaneous sine waves.
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Their results can be succinctly represented in Fig. 3.7 on p.46, which shows
an averaged version of the dissonance curve (which is simplythe consonance curve
flipped upside-down) in which dissonance begins at zero (at the unison) increases
rapidly to a maximum, and then falls back toward zero. The most surprising feature
of this curve is that the musically consonant intervals are undistinguished—there is
no dip in the curve at the fourth, fifth, or even the octave (in contrast to the learned
response curves found by investigators like Taylor, which do show the presence of
normally consonant intervals, even for intervals formed from pure sine waves).

Plomp and Levelt observed that in almost all frequency ranges, the point of max-
imal roughness occurred at about 1/4 of the critical bandwidth. Recall that when a
sine wave excites the inner ear, it causes ripples on the basilar membrane. Two sine
waves are in the same critical band if there is significant overlap of these ripples
along the membrane. Plomp and Levelt’s experiment suggeststhat this overlap is
perceived as roughness or beats. Dependence of the roughness on the critical band
requires a modification of Helmholtz’s 32 Hz criterion for maximal roughness, be-
cause the critical bandwidth is not equally wide at all frequencies, as was shown in
Fig. 3.4 on p. 44. For tones near 500 Hz, however, 1/4 of the critical band agrees well
with the 32 Hz criterion.

Of course, these experiments gathered data only on perceptions of pure sine
waves. To explain sensory consonance of more musical sounds, Plomp and Levelt
recall that most traditional musical tones have a spectrum consisting of a root or fun-
damental frequency, along with a series of sine wave partials at integer multiples of
the fundamental. If such a tone is sounded at various intervals, the dissonance can be
calculated by adding up all of the dissonances between all pairs of partials. Carrying
out these calculations for a note that contains six harmonically spaced partials leads
to the curve shown in Fig. 5.6, which is taken from Plomp and Levelt [B: 141].
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Fig. 5.6.Plomp and Levelt calculate the
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harmonics. The first tone is fixed at a fre-
quency of 250 Hz, and the second varies
over an octave. Peaks of consonance oc-
cur at simple integer ratios of the funda-
mental frequency, where harmonics coin-
cide. From Plomp and Levelt (1965).

Observe that Fig. 5.6 contains peaks at many of the just intervals. The most con-
sonant interval is the unison, followed closely by the octave. Next is the fifth (3:2),
followed by the fourth (4:3), and then the thirds and sixths.As might be expected,
the peaks do not occur at exactly the scale steps of the 12-tone equal-tempered scale.
Rather, they occur at the nearby simple ratios. The rankingsagree reasonably well
with common practice, and they are almost indistinguishable from Helmholtz’s and
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Partch’s curves. Thus, an argument based on sensory consonance is consistent with
the use of just intonation (scales based on intervals with simple integer ratios), at
least for harmonic sounds.

5.4 A Simple Experiment

It is easy to experience sensory dissonance for yourself. Play a note on an organ (or
some other sustained, harmonically rich sound) that is nearthe low end of your vocal
range. While sounding the note loudly and solidly (turn off the vibrato, chorusing,
and other effects), sing slightly above, slightly below, and then swoop right onto the
pitch of the note. As you approach the correct pitch, you willhear your voice beating
against the organ, until eventually your voice “locks into”the fundamental. It works
best if you use little or no vibrato in your voice. Now repeat the experiment, but this
time sing around (slightly above and slightly below) the fifth. Again, you will hear
your voice beat (the second partial of your voice against thethird partial of the organ)
and finally lock onto the perfect fifth.

Now sing a major third above the sustained organ note, again singing slightly
above and slightly below. Listen carefully to where your voice goes... does it lock
onto a 12-tet third? Or does it go somewhere slightly flat? Listen carefully to the
pitch of your locked-in voice. If you are truly minimizing the dissonance, then the
fourth partial of your voice will lock onto the fifth partial of the organ. Assuming
the organ has harmonic partials, you will be singing a just major third (a ratio of
5/4, or about 386 cents, instead of the 400 cent third in 12-tet). Can you feel how it
might be tempting for a singer to synchronize in this way? By similarly exploring
other intervals, you can build up your own personal dissonance curves. How do they
compare with the curves of Helmholtz, Partch, and Plomp and Levelt?

In his amusing bookLies My Music Teacher Told Me, Eskelin [B: 54] describes
this to his choir:

If you do it slowly and steadily, you will hear the relationship between the
two sounds changing as your voice slides up. It’s a bit like tuning in stations
on a radio dial (the old fashioned ones that had knobs to turn,not buttons to
push). As you arrive at each “local station” it gradually comes into sharp fo-
cus and then fades out of focus as you go past it. What you are experiencing
is calledconsonanceanddissonance.

5.5 Summary

The words “consonance” and “dissonance” have been used in many ways throughout
history, and many of these conflicting notions are still prevalent today. Psychoacous-
tic consonance provides a pragmatic working definition in the sense that it leads to
physical correlates that can be readily measured. It is sensory dissonance that un-
derlies the “dissonance meter” and the resulting applications of the first chapter. Al-
though arguably the most important notion of dissonance today, sensory dissonance
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does not supplant previous notions. In particular, it says nothing about the important
aspects of musical movement that functional consonance provides.

Helmholtz understood clearly that his roughness curve would be “very different
for different qualities of tone.” Partch realized that his one-footed bride would need
to be modified to account for different octaves and differenttimbres, but he saw no
hope other than “a lifetime of laboratory work.” Plomp and Levelt explicitly based
their consonance curve on tones with harmonic overtones. But many musical sounds
do not have harmonic partials. The next chapter explores howsensory consonance
can be used in inharmonic settings, gives techniques for thecalculation of sensory
dissonance, suggests musical uses in the relationship between spectrum and scale,
and demonstrates some of the ideas and their limitations in aseries of musical exam-
ples.

5.6 For Further Investigation

On the Sensations of Tone[B: 71] set an agenda for psychoacoustic research that is
still in progress. Papers such as Plomp and Levelt’s [B: 141]“Tonal Consonance and
Critical Bandwidth” and the two-part “Consonance of Complex Tones and its Cal-
culation Method” in Kameoka and Kuriyagawa [B: 79] and [B: 80] have expanded
on and refined Helmholtz’s ideas.A History of ‘Consonance’ and ‘Dissonance’by
Tenney [B: 192] provided much of the historical framework for the first section of
this chapter, and it contains hundreds of quotes, arguments, definitions, and anec-
dotes. Although Partch’sGenesis of a Music[B: 128] may not be worth reading for
its contributions to psychoacoustics or to historical musicology, it is inspiring as a
prophetic statement about the future of music by a musical visionary and composer.
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Related Spectra and Scales

Sensory dissonance is a function of the interval and the
spectrum of a sound. A scale and a spectrum arerelatedif
the dissonance curve for the spectrum has minima (points of
maximum sensory consonance)at the scale steps. This chapter
shows how to calculate dissonance curves and gives examples
that verify the perceptual validity of the calculations. Other
examples demonstrate their limits. The idea of related spectra
and scales unifies and gives insight into a number of previous
musical and psychoacoustic investigations, and some general
properties of dissonance curves are derived. Finally, the idea
of the dissonance curve is extended to multiple sounds, each
with its own spectrum.

“Clearly the timbre of an instrument strongly affects what tuning and scale sound
best on that instrument.”W. Carlos [B: 23].

6.1 Dissonance Curves and Spectrum

Figures like Helmholtz’s roughness curve and Plomp and Levelt’s consonance curve
(Figs. 5.3 and 5.6) on pp. 85 and 90 are calleddissonance curvesbecause they
graphically portray the perceived consonance or dissonance versus musical inter-
vals. Partch’s one-footed bride (Fig. 5.4 on p. 87) is another, although its axis is
folded about the tritone. Perhaps the most striking aspect of these harmonic disso-
nance curves is that many of the familiar 12-tet scale steps are close to points of
minimum dissonance. The ear, history, and music practice have settled on musical
scales with intervals that occur near minima of the dissonance curve.

A spectrum and a scale are said to berelatedif the dissonance curve for
that spectrum has minima at scale positions.

Looking closely, it is clear that the minima of the harmonic dissonance curves of
the previous chapter do not occur at scale steps of the equal-tempered scale. Rather,
they occur at the just intervals, and so harmonic spectra arerelated to just intonation
scales.

The relatedness of scales and spectra suggests several interesting questions.
Given a spectrum, what is the related scale? Given a scale, what are the related spec-
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tra? How can spectrum/scale combinations be realized in existing electronic musical
instruments? What is it like to play inharmonic sounds in unfamiliar tunings?

6.1.1 From Spectrum to Tuning

Because dissonance curves are drawn for a particular spectrum (a particular set of
partials), they change shape if the spectrum is changed: Minima appear and disap-
pear, and peaks rise and fall. Thus, given an arbitrary spectrum, perhaps one whose
partials do not form a standard harmonic series, this chapter explores how to draw
its dissonance curve. The minima of this curve occur at intervals that are good can-
didates for notes of a scale, because they are intervals of minimum dissonance (or,
equivalently, intervals of maximum consonance).

The crucial observation is that these techniques allow precise control over the
perceived (sensory) dissonance. Although most statementsare made in terms of max-
imizing consonance (or of minimizing dissonance), the realstrength of the approach
is that it allows freedom to sculpt sounds and tunings so as toachieve a desired
effect. Sensory consonance and dissonance can be used to provide a perceptual path-
way helpful in navigating unknown inharmonic musical spaces.

The idea of relating spectra and scales is useful to the electronic musician who
wants precise control over the amount of perceived dissonance in a musical passage.
For instance, inharmonic sounds are often extremely dissonant when played in the
standard 12-tet tuning. By adjusting the intervals of the scale, it is often possible to
reduce (more properly, to have control over) the amount of perceived dissonance. It
can also be useful to the experimental musician or the instrument builder. Imagine
being in the process of creating a new instrument with an unusual (i.e., inharmonic)
tonal quality. How should the instrument be tuned? To what scale should the finger
holes (or frets, or whatever) be tuned? The correlation between spectrum and scale
answers these question in a concrete way.

6.1.2 From Tuning to Spectrum

Alternatively, given a desired scale (perhaps a favorite historical scale, one that di-
vides the octave into� equal pieces, or one that is not even based on the octave),
there are spectra that will generate a dissonance curve withminima at precisely the
scale steps. Such spectra are useful to musicians and composers wishing to play in
nonstandard scales such as 10-tet, or in specially fabricated scales. How to specify
such spectra, given a desired scale, is the subject of the chapter “From Tuning to
Spectrum.”

6.1.3 Realization and Performance

All of this would be no more than fanciful musings if there wasno way to concretely
realize inharmonic spectra in their related tunings. The next chapter “A Bell, A Rock,
A Crystal” gives three examples of how to find the spectrum of an inharmonic sound,
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draw the dissonance curve, map the sound to a keyboard, and play. The process is de-
scribed in excruciating detail to help interested readers pursue their own inharmonic
musical universes.

6.2 Drawing Dissonance Curves

The first step is to encapsulate Plomp and Levelt’s curve for pure sine waves into a
mathematical formula. The curve is a function of two pure sine waves each with a
specified loudness. Representing the height of the curve at each point by the letter

�
,

the relationship can be expressed as:� �
is the frequency of the lower sine� � � � 	 � � 	 � � 	 � � � 	 where

� �
is the frequency of the higher sine� �
and

� �
are the corresponding loudnesses

A functional equation using exponentials is detailed in Appendix E, and the mathe-
matically literate reader may wish to digress to this appendix for a formal definition
of the function

�
and of dissonance curves. But it is not really necessary. Simply

keep in mind that the function
� � � 	 � 	 � 	 � �

contains the same information as Fig. 3.8
on p. 47.

When there are more than two sine waves occurring simultaneously, it is possible
to add all dissonances that occur. Suppose the note� has three partials at

� �
,

� �
, and� R , with loudnesses

� �
,
� �

, and
� R . Then the intrinsic or inherent dissonance

� 

is the

sum of all dissonances between all partials. Thus
� 


is the sum of
� � � � 	 � 
 	 � � 	 � 
 �

as� and� take on all possible values from 1 to 3. Although it is not the major point of
the demonstration, you can hear sounds with varying degreesof intrinsic consonance
by listening holistically to sound example [S: 54]. The initial sound is dissonant, and
it is smoothly changed into a more consonant sound.

The same idea can be used to find the dissonance when the spectrum � is played
at some interval

�
. For instance, suppose� has two partials

� �
and

� �
. The complete

sound contains four sine waves: at
� �

,
� �

,
� � �

, and
� � �

. The dissonance of the inter-
val is the sum of all possible dissonances among these four waves. First is the intrin-
sic dissonances of the notes

� 
 � � � � � 	 � � 	 � � 	 � � �
and

� � 
 � � � � � � 	 � � � 	 � � 	 � � �
.

Next are the dissonances between
� � �

and the two partials of� ,
� � � � 	 � � � 	 � � 	 � � �

and
� � � � 	 � � � 	 � � 	 � � �

, and finally the dissonances between
� � �

and the partials of� ,� � � � 	 � � � 	 � � 	 � � �
and

� � � � 	 � � � 	 � � 	 � � �
. Adding all of these terms together gives the

dissonance of� at the interval
�
, which we write

� 
 � � �
. The dissonance curve of

the spectrum� is then a plot of this function
� 
 � � �

over all intervals
�

of interest.
If you are thinking that there are a lot of calculations necessary to draw disso-

nance curves, you are right. It is an ideal job for a computer.In fact, the most useful
part of this whole mathematical parameterization is that itis now possible to cal-
culate the dissonance of a collection of partials automatically. Those familiar with
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the computer languages BASIC orMatlab will find programs for the calculation of
dissonance on the CD and discussions of the programs in Appendix E.1

For example, running either of the programs from Appendix E without changing
the frequency and loudness data generates the dissonance curve for a sound with
fundamental at 500 Hz containing six harmonic partials. This is shown in Fig. 6.1
and can be readily compared with Helmholtz’s, Plomp and Levelt’s, and Partch’s
curves (Figs. 5.3, 5.4, and 5.6 on pp. 85, 87, and 90).
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Fig. 6.1. Dissonance curve for a spectrum with fundamental at 500 Hz and six harmonic
partials has minima that coincide with many steps of the JustIntonation scale and that coincide
approximately with 12-tet scale steps, which are shown above for comparison.

Table 6.1 provides a detailed comparison among the 12-tet scale steps, the just
intonation major scale, and the minima of the dissonance curve drawn for a harmonic
timbre with nine partials. The JI intervals are similar to the locations of the minima
of the dissonance curve. In particular, the minima agree with the septimal scales of
Partch [B: 128] for seconds, tritones, and the minor seventh, but with the JI major
scale for the major seventh. Minima occur at both the septimal and the just thirds.

One assumption underlying dissonance curves such as Fig. 6.1 is additivity, the
assumption that the sensory dissonance of a collection of sine partials is the sum of
the dissonances between all pairwise partials. Although this assumption generally
holds as a first approximation, it is easy to construct examples where it fails. Follow-
ing Erlich [W: 9], consider a sound with ratios 4:5:6:7 (thiscan be heard in sound
example [S: 40]) and an inharmonic sound with ratios 1/7:1/6:1/5:1/4 (as in sound
example [S: 41]). Both sounds have the same intervals,2 and hence, the sensory dis-
sonance is the same. Yet they do not sound equally consonant.Sound example [S: 42]�

A FORTRAN version, along with an alternative parameterization of the Plomp–Levelt
curves can also be found in [B: 92].#
To be specific, the 4:5:6:7 sound example consists of sine waves at 400, 500, 600, and 700
Hz and contains the intervals= 8 9 , 7 8 ' , > 8 9 , ; 8 = , > 8 = , and> 8 ; . The inharmonic sound is
made from sine waves at 400, 467, 560, and 700 Hz, and has the same intervals. Similar
results appear to hold for harmonic sounds.
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Table 6.1. Notes of the equal-tempered musical scale compared with minima of the disso-
nance curve for a nine-partial harmonic timbre, and compared with the just intonation major
scale from [B: 207]. Septimal (sept.) scale values from [B: 128].

Note 12-tet Minima of Just
Name � u } ~� ' dissonance curve Intonation

C � 1 u ) 1 1:1 unison
CE � � u ) ( � = : 16:15 just semitone
D � # u ) ( ) ' ' 1.14 (8:7 = sept. maj. 2) 9:8 just whole tone
Ep � $ u ) ( ) < : 1.17 (7:6 = sept. min 3)

1.2 (6:5) 6:5 just min. 3
E � % u ) ( ' ; � 1.25 (5:4) 5:4 just maj. 3
F � , u ) ( 7 7 = 1.33 (4:3) 4:3 just perfect 4
FE � - u ) ( 9 ) 9 1.4 (7:5 = sept. tritone) 45:32 just tritone
G � . u ) ( 9 : < 1.5 (3:2) 3:2 perfect 5
A p � / u ) ( = < > 1.6 (8:5) 8:5 just min. 6
A � 0 u ) ( ; < ' 1.67 (5:3) 5:3 just maj. 6
B p � � 1 u ) ( > < ' 1.75 (7:4 = sept. min. 7) 16:9 just min. 7
B � � � u ) ( < < < 1.8 (9:5 = just min. 7) 15:8 just maj. 7
C � � # u ' 2.0 2:1 octave

alternates between the harmonic and inharmonic sounds, andmost listeners find the
harmonic sound more consonant. Thus, dissonance cannot be fully characterized as
a function of the intervals alone without (at least) considering their arrangement. Ac-
cordingly, sensory dissonance alone is insufficient to fully characterize dissonance.
In this case, the sound with greater tonalness (smaller harmonic entropy) is judged
more consonant than the sound with lesser tonalness (greater harmonic entropy).

6.3 A Consonant Tritone

Imagine a spectrum consisting of two inharmonic partials atfrequencies
�

and
� � �

.
Because the

� � interval defines a tritone (also called a diminished fifth or augmented
fourth in 12-tet), this is called thetritone spectrum. The dissonance curve for the tri-
tone spectrum, shown in Fig. 6.2, begins with a minimum at unison, rapidly climbs
to its maximum, then slowly decreases until, just before thetritone, it rises and then
falls. There is a sharp minimum right at the tritone, followed by another steep rise.
For larger intervals, dissonance gradually dies away. You can verify for yourself by
listening to sound example [S: 35] that the perceived dissonance corresponds more
or less with this calculated curve. Video example [V: 9] reinforces the same conclu-
sion. Thus, the dissonance curve does portray perceptions of simple sweeping sounds
fairly accurately. But it is not necessarily obvious what (if anything) such tests mean
for more musical sounds, in more musical situations.

Sounds used in music are not just static sets of partials: they have attack, decay,
vibrato, and a host of other subtle features. A more “musical” version of the tritone
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Fig. 6.2.Dissonance curve for an inharmonic spectrum with partials at & and
� ' & has minima

at 1.21 (between 3 and 4 semitones) and at 1.414, which is a tritone.

spectrum should mimic at least some of these characteristics. The “tritone chime”
has the same tritone spectrum but with an envelope that mimics a softly struck bell
or chime, and a bit of vibrato and reverberation. This chime will be used in the next
two sound examples to verify the predictions of the dissonance curve.

Both the fifth (an interval of seven semitones) and the fourth(five semitones) lie
near peaks of the tritone dissonance curve. Thus, the dissonance curve predicts that a
chord containing both a fourth and a fifth should be more dissonant than a chord con-
taining two tritones, at least when played with this timbre.To see if this prediction
corresponds to reality, sound example [S: 36] begins with a single note of the tritone
chime. It is “electronic” sounding, somewhat percussive and thin, but not devoid
of all musical character. The example then plays the three chords of Fig. 6.3. The
chords are then repeated using a more “organ-like” sound, also composed from the
tritone spectrum. In both cases, the chords containing tritones are far more consonant
than chords containing the dissonant fifths and fourths. Thepredictions of the disso-
nance curve are upheld. This demonstration is repeated somewhat more graphically
in video example [V: 10].

fifths

fourths

tritones

& # ˙̇̇ ˙̇̇ ˙̇̇
Fig. 6.3.Familiar intervals such as the fifth
and fourth are dissonant when played using
the “tritone chime.” But chords containing
tritones are consonant.

But still, sound example [S: 36] deals with isolated chords,devoid of meaningful
context. Observe that there is a broad, shallow minimum around 1.21, approximately
a minor third. This suggests that the minor third is more consonant than the major
third. Combined with the consonance of the tritone, this implies that a diminished
chord (root, minor third, and tritone) should be more consonant than a major chord
(root, major third, and fifth) when played with the tritone sound. Is this inversion of
normal musical usage possible? Listen to sound example [S: 37], which places the
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tritone chime into a simple musical setting. The following two chord patterns are
each repeated once:

(a) � major, 3 major,
2

major,3 major
(b) 3 dim,

�
dim,

� z dim,
�

dim

This is shown in musical notation in parts (a) and (b) of Fig. 6.4, where “dim” is
an abbreviation for “diminished.” Both patterns are playedwith the same simple
chordal rhythm, but there is a dramatic difference in the sound. The major progres-
sion, which, when played with “normal” harmonic tones wouldsound completely
familiar, is dissonant and bizarre. The diminished progression, which in harmonic
sounds would be restless, is smooth and easy. The inharmonictritone chime is capa-
ble of supporting chord progressions, although familiar musical usage is upended.

The final two tritone chime chord patterns, shown in (c) and (d) of Fig. 6.4,
investigate feelings of resolution or finality. To my ears, (d) feels more settled, more
conclusive than (c). Perhaps it is the dissonance of the major chord that causes it to
want to move, and the relative restfulness of the diminishedchord that makes it feel
more resolved. Essentially, the roles of the fifth and the tritone have been reversed.
With harmonic sounds, the tritone leads into a restful fifth.With tritonic spectra, the
fifth leads into a tranquil tritone.

Observe: We began by pursuing sensory notions of dissonancebecause it pro-
vided a readily measured perceptual correlate. Despite this, it is now clear (in some
cases, at least) that sensory dissonance is linked with functional dissonance, the more
musical notion, in which the restlessness, motion, and desire of a chord to resolve
play a key role. Even in this simple two-partial inharmonic sound, chords with in-
creased (sensory) dissonance demand resolution, whereas chords with lower (sen-
sory) dissonance are more stable.

This two-partial tritone sound is not intended to be genuinely musical, because
the tone quality is simplistic. The purpose of the examples is to demonstrate in the
simplest possible inharmonic setting that ideas of musicalmotion, resolution, and

F
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Cdim   C
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(b)
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Fig. 6.4.Chord patterns using the tritone chime sound.
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chord progressions can make sense. Of course, the “rules” ofmusical grammar may
be completely different in inharmonic musical universes (where major chords can
be more dissonant than diminished, and where tritones can bemore consonant than
fifths), but there are analogies of chord patterns and strange inharmonic “harmonies.”
These arexentonal: Unusual tonalities that are not possible with harmonic sounds.

6.4 Past Explorations

As the opening quote of this chapter indicates, this is not the first time that the rela-
tionship between timbre and scale has been investigated, although it is the first time
it has been explored in such a general setting. Pierce and hiscolleagues are major
explorers of the connection between sound quality and tonality.

6.4.1 Pierce’s Octotonic Spectrum

Shortly after the publication of Plomp and Levelt’s article, Pierce [B: 134] used a
computer to synthesize a sound designed specifically to be played in an eight-tone
equal-tempered (8-tet) scale, to demonstrate that it was possible to attain consonance
in “arbitrary” scales. Letting_ � �� � , an octotonicspectrum can be defined3 by
partials at � 	 _ � � 	 _ � W 	 _ � � 	 _ � � 	 _ � U �
In the same way that 12-tet divides evenly into two interwoven whole-tone (6-tet)
scales, the 8-tet scale can be thought of as two interwoven 4-tet scales, one contain-
ing the even-numbered scale steps and the other consisting of the odd scale steps. As
the partials of Pierce’s octotonic spectrum fall on even multiples of the eighth root
of two, the even notes of the scale form consonant pairs and the odd notes form con-
sonant pairs, but they are dissonant when even and odd steps are sounded together.

This can be seen directly from the dissonance curve, which isshown in Fig. 6.5.
The curve has minima at all even scale steps, implying that these intervals are conso-
nant when sounded together. Although he does not give details, Pierce says “listeners
report” that notes separated by an even number of scale stepsare more concordant
than notes separated by an odd number of scale steps.

The scale related to the octotonic spectrum consists of those scale steps at which
minima occur. These are at ratios

� 	 _ � 	 _ U 	 _ W
, and _ T

. Although this scale may ap-
pear completely foreign at first glance, observe how it linesup exactly with scale
steps

� 	 � 	 � 	 +
, and

� � of the 12-tet scale,4 which is plotted above for handy refer-
ence. Thus, the primary consonant intervals in this octotonic scale are identical to the
familiar minor third, tritone, and major sixth, and the octotonic spectrum is a close
cousin of the tritone spectrum of the previous section. Again, conventional music$

Beware of a typo in Table 1 of [B: 134]: the frequency ratio of the second partial should be� � 1 u ' ( 7 > < .%
Using � to represent the 12-tet interval ratio

} ~� ' , this lining up occurs because� # u � $ ,� % u � - , � - u � 0 , and of course� / u � � # u ' .
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Fig. 6.5.Dissonance curve for Pierce’s octotonic spectrum designedfor play in the 8-tet scale.
Minima occur at even steps of the 8-tet scale. The 12-tet scale steps are placed above for
comparison. Every third step in 12-tet is the same as every second step in 8-tet.

theory has been upended, with consonant tritones and dissonant fifths, consonant
diminished chords, and dissonant major chords.

To perform using Pierce’s octatonic spectrum, I created a sound with the specified
partials in which the loudnesses died away at an exponentialrate of 0.9. A percussive
envelope and a bit of vibrato help make it feel more like a natural instrument. First,
I played in 12-tet. As expected, the tritones were far more consonant than the fifths,
and the diminished chords were very smooth. Retuning the keyboard to 8-tet, the
same diminished chords are present. In fact, that’s all there is! In 8-tet with the oc-
totonic spectrum, all even scale steps form one big diminished seventh chord (but a
very consonant diminished seventh) and all odd scale steps form another diminished
seventh. In a certain sense, music theory is very simple in this 8-tet setting: There are
“even” chords and there are “odd” chords.5 There are no major or minor chords, no
leading tones, and no blues progressions–just back and forth between two big conso-
nant diminished sevenths. Of course, related spectra and scales will not always lead
to such readily comprehensible musical universes.

Pierce concludes on an upbeat note that, “by providing musicwith tones having
accurately specified but inharmonic partials, the digital computer can release music
from the tyranny of 12 tones without throwing consonance overboard.”

6.4.2 Stretching Out

“Inharmonic” is as precise a description of a sound spectrumas “nonpink” is of light.
As there are so many kinds of inharmonicity, it makes sense tostart with sounds that
are somehow “close to” familiar sounds. Recalling that the partials of a piano are
typically stretched away from exact harmonicity (see Young[B: 208]), Slaymaker
[B: 176] investigated spectra with varying amounts of stretch. The formula for the
partials of harmonic sounds can be written

� 
 � � � � � � � � � ~ � 
 �
for integers� . By,

Although even the even chords are decidedly odd.



102 6 Related Spectra and Scales

replacing the 2 with some other number� , Slaymaker created families of sounds
with partials at � 
 � � � � � � ~ � 
 � �
When �   � , the frequencies of the partials are squished closer together than in
harmonic sounds, and the tone is said to becompressed. When � j � , the partials
are spread out like the bellows of an accordion, and the tone isstretchedby the factor� . The most striking aspect of compressed and stretched spectra is that none of the
partials occur at the octave. Rather, they line up at the stretched octave, as shown
in Fig. 6.6. In the same way that the octave of a harmonic tone is smooth because
the partials coincide, so thepseudo-octaveof the stretched sound is smooth due to
coinciding partials.

1    2    3    4    5    6   7    8    9   10  11  12  13  14  15  16  17  18 

harmonic
spectrum at f

harmonic
spectrum at 2f

stretched
spectrum at f

stretched
spectrum 
at 2.1f

1   2.1  3.2  4.4  5.6  6.8   8.0  9.3 10.5 11.8 13. 14.3 15.6 16.9 18.1

Fig. 6.6. Locations of partials are shown for four spectra. The partials of the 2.1 stretched
spectrum at fundamental& have the same relationship to its 2.1 pseudo-octave (at fundamen-
tal ' ( ) & ) as the partials of the harmonic spectrum at fundamental& have to the octave at
fundamental' & .

This is also readily apparent from the dissonance curves, which are plotted in
Fig. 6.7 for stretch factors� � � � � H (the pseudo-octave compressed to a seventh),� � � � � (normal harmonic tones and octaves),� � � � � (the pseudo-octave stretched
by about a semitone), and� � � � � (the pseudo-octave stretched to a major 9th). In
each case, the frequency ratio� is a pseudo-octave that plays a role analogous to
the octave. Real 2:1 ratio octaves sound dissonant and unresolved when� is signif-
icantly different from 2, whereas the pseudo-octaves are nicely consonant. This is
where the “challenging the octave” sound example from the first chapter came from.
A stretched sound with� � � � � was played in a 2.0 octave, which is dreadfully dis-
sonant, as suggested by the lower left of Fig. 6.7. When played in its pseudo-octave,
however, it is consonant.

Each of the curves in Fig. 6.7 has a similar contour, and minima of the disso-
nance curve occur at (or near) the 12 equal steps of the pseudo-octaves. A complete
pseudo-just intonation of pseudo-fifths, pseudo-fourths,and pseudo-thirds is readily
discernible, suggesting the possibility that music theoryand practice can be trans-
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Fig. 6.7.Dissonance curves generated by stretched (and compressed)spectra have the same
contour as the harmonic dissonance curve, but minima are stretched (or compressed) so that
pseudo-octaves, pseudo-fifths, and so on, are clearly visible. The bottom axis shows 12 equal
divisions of the pseudo-octave, and the top axis shows the standard 12-tet scale steps. Tick
marks for the octave (frequency ratio of 2) and the fifth (frequency ratio 3/2) are extended for
easy comparison. As usual, the dissonance axis is normalized.

ferred to compressed and stretched spectra, when played in compressed and stretched
scales.

Is Stretched Music Viable?

There is a fascinating demonstration on theAuditory Demonstrations CD[D: 21] in
which a four-part Bach chorale is played four ways:

(i) A harmonic spectrum in the unstretched 12-tet scale
(ii) A 2.1 stretched spectrum in the 2.1 stretched scale
(iii) A harmonic spectrum in the 2.1 stretched scale
(iv) A 2.1 stretched spectrum in the unstretched 12-tet scale

The first is normal sounding, if somewhat bland due to the simplicity of the nine
partial “electric piano” timbre. The second version has no less sensory consonance, a
result expected because all notes occur near minima of the dissonance curve. But the
tone quality is decidedly strange. It is not easy to tell how many tones are sounding,
especially in the inner voices. The notes have begun to lose tonal fusion. Although the
sensory dissonance has not increased from (i), the tonalness aspect of dissonance has
increased. The third and fourth versions are clangorous anddissonant in a spectacular
way–like the extended versions of the “challenging the octave” demonstrations in
sound examples [S: 2] to [S: 5].
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Several experiments have investigated the uses and limitations of stretched tones
in semimusical contexts. Mathews and Pierce [B: 100] testedsubjects’ ability to de-
termine the musical key and the “finality” of cadences when played with stretched
timbres. Three simple musical passages¡ , ¢ , and £ , were played in sequence¡ ¢ ¡ £ , and subjects were asked to judge whether¡ was in the same key as¢
and£ . Both musicians and nonmusicians were able to answer correctly most of the
time. But when subjects were asked to rate the “finality” of a cadence and an anti-
cadence, the stretched versions were heard as equally (not very) final. Mathews and
Pierce observe that melody is more robust to stretching thanharmony, and they sug-
gest that the subjects in the key determination experiment may have used the melody
to determine key rather than the chordal motion. The stretchfactor used in these
experiments was� � � � � , which is well beyond where notes typically lose fusion.
Thus, one aspect of musical perception (the finality of cadences) requires the fusion
of tones, even though fusion may not be critical for others such as a sense of the
“melody” of a passage. An alternative explanation is that notes of a melodic passage
may fuse more readily when they are the focus of attention.

Perhaps the most careful examination of stretched intervals is the work of Cohen
[B: 33], who asked subjects to tune octaves and fifths for a variety of sounds with
stretched spectra ranging from� � � � � to � � � � � . Cohen observed two different
tuning strategies: interval memory and partial matching. Some subjects consistently
tuned the adjustable tone to an internal model or template ofthe interval, and they
were able to tune to real octaves and fifths, despite the contradictory spectral clues.
Others pursued a strategy of matching the partials of the adjustable tone to those of
the fixed tone, leading to a consistent identification of the pseudo-octave rather than
the true octave.

Plastic City: A Stretched Journey

In talking about Pierce’s work on stretched tunings, Moore [B: 117] observes that
Pierce uses traditional music, rather than music specifically composed around prop-
erties of the new sounds. Taking this as a challenge, I decided to hear for myself.
First, I created about a dozen sets of sounds via additive synthesis6 with partials
stretched from� � � � * to � � � � � . As expected, those with extreme stretching
lost fusion easily, so I chose four sets of moderately stretched and compressed tones
(with � � � � � 	 � � � 	 � � � 	 and

� � � H ) that sounded more or less musical. When gen-
erating these sounds,7 and when using the keyboard to add performance parameters
such as attack and decay envelopes, vibrato, and so on, I was careful to keep the
sounds strictly comparable: If I added vibrato or reverb to one sound, I added the
same amount of vibrato or reverb to each of the other sounds. In this way, fair com-
parisons should be possible.

The resulting experiment, calledPlastic City, can be heard in sound example
[S: 38]. The structure of the piece is simple: The theme is played with harmonic-

Appendix D contains a discussion of additive synthesis..
The sounds used inPlastic Citycontained between five and ten partials, with a variety of
amplitudes with primarily percussive envelopes.
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tones (in standard 12-tet), then with the 2.2 stretched tones, then with the compressed
1.87 tones, and finally with the 2.1 stretched tones (each in their respective stretched
scales, of course). The theme is based on a simple I V IV V pattern followed by I V
I. It is unabashedly diatonic and has a clear sense of harmonic motion and resolution.
The theme is repeated with each sound, and the second time a lead voice solos. At
the end of the repeat, the theme disintegrates and scatters,making way for the next
tuning.

Now stop reading. Listen toPlastic City(sound example [S: 38] in the
file plasticity.mp3 ), and make up your own mind about what
parts work and what parts do not.

Most people find the entrance of the 2.2 tone extremely bizarre. Then, just as the
ear is about to recover, the compressed tone begins a new kindof uneasiness. Finally,
the entrance of the 2.1 tone is like a breath of fresh air aftera torturous journey. The
most common comment I have heard (besides a sigh of relief) isthat “now we’re back
to normal.” But 2.1 stretched is really very far from normal—it contains no octaves,
no fifths, no recognizable intervals at all. The octaves are out-of-tune by almost a
semitone. This is the same amount of stretch used on theAuditory Demonstrations
CD [D: 21] to show the loss of fusion with stretched tones. Yetin this context, 2.1
stretched can be heard as “back to normal.”

Thus, 2.2 is stretched a bit too far, and 1.87 is squished a bittoo much. The kinds
of things you hear inPlastic Cityare typical of what happens when tones fission. It
becomes unclear exactly how many parts are playing. It is hard to focus attention on
the melody and to place the remaining sounds into the background. Chordal motion
becomes harder to fathom. Of course, this piece is structured so as to “help out” the
ear by foreshadowing using normal harmonic sounds. Thus, itis more obvious what
to listen for, and by focusing attention, the “same” piece can be heard in the stretched
and compressed versions, but it takes an act of will (and/or repeated listenings) before
this occurs.

Perhaps the 2.1 version only sounds good in this context because the ear has been
tortured by the overstretching and undercompressing. Sound example [S: 39], called
October 21st, is a short piece exclusively in 2.1 stretched. The timbres are the same as
used inPlastic Cityand in [S: 4], and here they sound bright, brilliant, and cheerful.
The motion of the chord patterns is simple, and it is not difficult to perceive. Torture
is not a necessary precondition to make stretched tones sound musical. Perhaps the
most interesting aspect of this piece is its familiarity. I have played this for numerous
people, and many hear nothing unusual at all.

What does it mean when a sound has been stretched or compressed “too far?”
Perhaps the most obvious explanation is loss of fusion; thatis, it is no longer heard
as a single complex sound but as two or more simpler sounds. A closely related pos-
sibility is loss of tonal integrity; that is, the uncertainty in the (virtual) pitch mecha-
nism has become too great. In the first case, the sound appearsto bifurcate from one
sound into two, whereas in the latter case, it appears to havea pitch that is noticeably
higher (for stretched sounds) than the dominant lowest partial. Cohen’s experiments
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[B: 33] are relevant, but it is not obvious how to design an experiment that clearly
distinguishes these two hypotheses.

Moving beyond stretched versions of the 12-tet scale, it is not always possible
to correlate inharmonic spectra and their related scales with standard music theory.
The next example shows how a simple class of sounds (those with odd-numbered
partials) can lead to a nonintuitive tuning based on 13 equaldivisions of the “tritave”
rather than 12 equal divisions of the octave.

6.4.3 The Bohlen–Pierce Scale

Pan flutes and clarinets (and other instruments that act liketubes open at a single end)
have a spectrum in which odd harmonics predominate. For instance, Fig. 6.8 shows
the spectrum of a pan flute with fundamental frequency

� � � � �
Hz and prominent

partials at about
� �

, * �
, H �

, and
+ �

. Recall that the just intonationapproach exploited
ratios of the first few partials of harmonic tones to form the “pure” intervals such as
the fifth, fourth, and thirds. A generalized just intonationapproach to sounds with
only odd partials would similarly exploit ratios of small odd numbers, such as 9/7,
7/5, 5/3, 9/5, 7/3, and 3/1.
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Fig. 6.8.Some instruments have spectra that consist primarily of odd-numbered partials. This
pan flute has a fundamental at& u 9 9 ) Hz and prominent partials at (approximately)7 & , = & ,> & , : & , and) ) & .

Mathews and Pierce8 observed that these ratios can be closely approximated by
steps of a scale built from 13 equal divisions of the ratio 3/1(the tritave). The most
promising of these scales,9 which they call theBohlen–Piercescale, contains nine
notes within a tritave. Recall that when a harmonic sound is combined with its octave,
no new frequency components are added, as was shown in Fig. 4.1. For spectra with
only odd partials, however, the addition of an octave does add new components (the
even partials), but the addition of a tritave does not. Thus,the tritave plays some of
the same roles for spectra with odd partials that the octave plays for harmonic tones./

[B: 102], and see also Bohlen [B: 16].0
Built on steps 0, 1, 3, 4, 6, 7, 9, 10, and 12.
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Mathews and Pierce analyze many of the possible chords in thetritave-based
Bohlen–Pierce scale in the hope of determining if viable music is possible. Chords
built from scale steps 0, 6, and 10 are somewhat analogous to major chords, and
those built from 0, 4, and 10 have a somewhat minor flavor. Whenmusicians and
nonmusicians are asked to judge the consonance of the various chords, some inter-
esting discrepancies originate. Naive listeners tend to judge the consonance of the
chords more or less as indicated by the Plomp–Levelt models (i.e., to agree with
the predictions of the dissonance curve). But musically sophisticated listeners judge
some of the chords more dissonant than expected. On closer inspection, Mathews
and Pierce found that these chords contained close (but not exact) approximations
to standard 12-tet intervals. Thus, the musically trained subjects heard a familiar in-
terval out of kilter, rather than an unfamiliar interval in tune. Recall that Plomp and
Levelt had similar problems with highly trained musical subjects whose judgments
of intonation were often based on their training rather thanon what they heard.
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Fig. 6.9.Dissonance curve for the panflute spectrum with odd integer partials at& , 7 & , = & ,> & , and: & . The bottom axis shows steps of the Bohlen–Pierce scale in parentheses, which are
a subset of 13 equal divisions of 3. Observe how steps 3, 4, 6, 7, 10, and 13 occur at or near
sharp minima of the dissonance curve. The top axes shows the familiar 12-tet scale steps as
well as the¤ u 7 stretched scale.

Figure 6.9 shows the dissonance curve for spectra with odd partials such as the
pan flute. Observe that the curve has many minima aligned withthe Bohlen–Pierce
scale: at steps 3, 4, 6, 7, 10, and 13. The tritave is very consonant, and all the in-
tervals of the “major” and “minor” chords proposed by Mathews and Pierce (and
their inversions) appear convincingly among the deepest ofthe minima. To facilitate
comparison with previous scales, two additional axes appear at the top of the dia-
gram. Note that the tritave is equal to a standard octave plusa fifth, but that virtually
none of the other 12-tet scale steps occur near minima of the dissonance curve. Also,
compare the Bohlen–Pierce tritave scale and the stretched scale with stretch factor� � �

. Although the pseudo-octave of the stretched scale is identical to the tritave,
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none of the other stretched scale steps coincide closely with minima.10 Thus, the
Bohlen–Pierce scale really is fundamentally different, and it requires a fundamen-
tally new music theory. Unlike the tritone spectrum in 8-tet, this theory is not trivial
or obvious. Three exploratory compositions in the Bohlen–Pierce scale can be heard
on the CD accompanyingCurrent Directions in Computer Music Research[B: 103].

6.5 Found Sounds

Each of the previous examples began with a mathematically constructed spectrum
(the tritone spectrum, the octatonic spectrum, stretched spectra, spectra with odd
partials) and explored a set of intervals that could be expected to sound consonant
when played with that spectrum. The dissonance curve provides a useful simplifying
tool by graphically displaying the most important intervals, which together form the
scale steps. Each of the previous examples had a clear conceptual underpinning. But
mathematical constructions are not necessary—the only concept needed is the sound
itself.

McLaren [B: 107] is well aware of the need to match the spectrum with the
scale, “Just scales are ideal for instruments that generatelots of harmonic partials”
but when the instruments have inharmonic partials, the solution is to use “non-just
non-equal-tempered scales whose members are irrational ratios of one another... [to]
better fit with the irrational partials of most... instruments.” Found sounds:

remain one of the richest sources of musical scales in the real world. Anyone
who has tapped resistor heat sinks or struck the edges of empty flower pots
realizes the musical value of these scales. . .11

This section suggests approaches to tunings for “found” objects or other sounds
with essentially arbitrary spectra. In this respect, dissonance curves can be viewed
as a formalization of a graphical technique for combining sounds first presented by
Carlos. Two concrete examples are worked out in complete detail.

6.5.1 Carlos’ Graphical Method

The quote at the start of this chapter is taken from the article “Tuning: At the Cross-
roads” by Carlos [B: 23], which contains an example showing how the consonance
of an interval is dependent on the spectrum of the instrument. Carlos contrasts a har-
monic horn with an electronically produced inharmonic “instrument” called thegam
with both played in octaves and in stretched octaves. The gamsounds more conso-
nant in the pseudo-octave, and the horn sounds most consonant in the real octave.� 1

Stretched scales and spectra are fundamentally different from the Bohlen–Pierce scale and
spectra with odd integer partials. A¤ u 7 stretched spectrum, for instance, has partials at& , 7 & , = ( > & , : & , ) ' ( < & ¥ etc.� �
From McLaren [B: 107].
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This is presented on the sound sheet (recording) that accompanies the article, and it
is explained in graphical form.

Carlos’ graphical method can be applied to almost any sound.Consider a struck
metal bar, and recall that the bending modes (partials) are inharmonically related.
This was demonstrated in Fig. 2.8 on p. 24, which shows the partials diagrammati-
cally. When several metal bars are struck in concert, as might happen in a glocken-
spiel or a wind chime, longer bars resonate at lower frequencies than smaller bars,
but the relationships (or ratios) between the various resonances remains the same.
Figure 6.10 shows three bars with fundamentals at

� �
, i �

, and¦ �
. The invariance of

the ratios between partials implies that§ ~§ } � ¨ ~¨ } � m ~m } and that§ �§ } � ¨ �¨ } � m �m } .
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Fig. 6.10.Three metal bars of different lengths
(that are otherwise identical) have the same pat-
tern of bending modes (partials), but beginning
at different base frequencies. When these partials
coincide, as for bars 1 and 3, they achieve maxi-
mum sensory consonance. When they fail to co-
incide, like bars 1 and 2, dissonances originate.

When the partials of one bar fall close to (but not identical with) the partials of
another, then the sound beats in a harsh and dissonant fashion. When the overtones
coincide, however, the sound becomes smoother, more consonant. The trick to de-
signing a consonant set of metal bars (wind chimes, for instance) is to choose the
lengths so that the overtones overlap, as much as is possible. In the figure, bars 1 and
3 will sound smooth together, and bars 1 and 2 will be rougher and more dissonant.

Although this graphical technique of overlaying the spectra of inharmonic sounds
and searching for intervals in which partials coincide is clear conceptually, it be-
comes cumbersome when the spectra are complex. Dissonance curves provide a
systematic technique that can find consonant intervals for agiven spectrum that is
essentially independent of the complexity of the spectra involved.

6.5.2 A Tuning for Ideal Bars

There are many percussion instruments such as xylophones, glockenspiels, wind
chimes, balophones, sarons, and a host of other instrumentsthroughout the world
that contain wood or metal beams with free (unattached) ends. Assuming that the
thickness and density of the bar are constant throughout itslength, the frequencies
of the bending modes or partials can be calculated using a fourth-order differential
equation given inFundamentals of Acousticsby Kinsler and Fry [B: 85]. Assuming
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that the lowest mode of vibration is at a frequency
�
, and that the beam is free to

vibrate at both ends, the first six partials are� 	 � � H � � 	 * � � � � 	 � � + � � 	 � � � � * � 	 and
� � � � * �

which are clearly not harmonically related.
Two octaves of the dissonance curve for this spectrum are shown in Fig. 6.11.

Numerous minima, which define intervals of a scale in which the uniform bar instru-
ment will sound most consonant, are spaced unevenly throughout the two octaves.
Observe that there are only a few close approximations to familiar intervals: the fifth,
the major third, and the second octave. The octave itself is fairly dissonant.
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Fig. 6.11.Dissonance curve for a uniform bar has minima shown by tick marks on the lower
axis. The upper axis shows 12-tet, with several intervals extended for easy comparison.

With so few intervals coincident with those of the 12-tet scale, how can such bar
instruments be played in ensembles with strings, winds, andother harmonic instru-
ments? First, most have a short, percussive envelope. This tends to hide the rough-
ness, because beats take time to develop. Second, by mounting the bar in clever
ways, many of the offensive partials can be attenuated. For instance, the bar is typi-
cally suspended from two points roughly two-ninths of the way from the ends. These
points coincide with the nodes of the first partial. (In Fig. 2.8 on p. 24, these are
the stationary points in the vibration pattern of the first partial.) As other partials re-
quire nonzero excursions at the 2/9 point, they rapidly die away. This is somewhat
analogous to the way that guitarists play “harmonics” by selectively damping the
fundamental, only here all partials but the fundamental aredamped. To hear this for
yourself, take a bar such as a long wind chime, and hold it in the middle (rather than
at the 2/9 position). The fundamental will be damped, and theodd-numbered partials
(at � � H � �

,
� � + � �

and
� � � � * �

) will be greatly exaggerated. Suspending at yet other
points brings other partials into prominence.

Despite the short envelope and the selective damping of partials, the inharmonic-
ity of bar instruments is considered a problem, and attemptsto manipulate the con-
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tour and/or density of the bar to force it to vibrate more harmonically12 are common.
The idea of related scales and spectra suggests an alternative. Rather than trying to
manipulate the spectrum of the bar to fit a preexisting pattern, let the bar sound as it
will. Play in the musical scale defined by the spectrum of the bar, the scale in which
it will sound most consonant.

6.5.3 Tunings for Bells

Bell founders and carillon makers have long understood thatthere is an intimate
relationship between the modes of vibration of a bell and howmuch in-tune certain
intervals sound. Because bells are shaped irregularly, they vibrate in modes far more
complex than strings or bars. ThePhysics of Musical Instrumentsby Fletcher and
Rossing [B: 56] contains a fascinating series of pictures showing how bells flex and
twist in each mode. The frequencies of these modes vary depending on numerous
factors: the thickness of the material, its uniformity and density, the exact curvature
and shape, and so on.

There is no theoretically ideal bell like there is an ideal rectangular bar, but bell
makers typically strive to tune the lowest five modes of vibration (called the hum,
prime, tierce, quint,13 and nominal) so that the partials are in the ratios

� � * © � ©� � � © � � * © � . The tuning process involves carefully shaving particularportions of the
inside of the bell so as to tame wanton modes without adversely effecting already
tuned partials. Traditional church bells tuned this way arecalled “minor third” bells
because of the interval 1.2, which is exactly the just minor third 6/5. Bell makers have
recently figured out how to shape a bell in which the tierce becomes 1.25, which is
the just major third 5/4. These are called “major third” bells.

Using dissonance curves, it is easy to investigate what intervals such bells sound
most consonantly. The frequencies of the modes of vibrations of three bells are
shown in Table 6.2. The partials of the ideal minor and major third bells are taken
from [B: 94],14 and the measured bell is from a

� V church bell as investigated by
[B: 132] and [B: 157]. The most noticeable difference between the minor and major
bells is the tierce mode, which has moved from a minor to a major third. Inevitably,
the higher modes also change. The measured bell gives an ideaof how accurately
partials can be tuned. The quint and undeciem are considerably different from their
ideal values. There is debate about whether the stretched double octave is intentional
(recall that stretching is preferred on pianos) or accidental.

The dissonance curves for these three bells are shown in Fig.6.12, and the exact
values of the minima are given in Table 6.3. Although bells cannot be made harmonic
because of their physical structure, the close match between the just ratios and the
minima of the dissonance curves suggests that bell makers tune their instruments
so that they will be consonant with harmonic sounds. Such tuning is far more com-
plex than simply tuning the fundamental frequency because it requires independent
shaping of a large number of partials.� #

For instance, see [B: 124].� $
Those who remember their Latin will recognize tierce and quint as roots for third and fifth.� %
As reported in [B: 56].
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Table 6.2. Partials of bells used in Fig. 6.12.

Name of Ideal Minor Measured Ideal Major
Partial Third Bell Bell Third Bell
hum 0.5 0.5 0.5
prime 1.0 1.0 1.0
tierce 1.2 1.19 1.25
quint 1.5 1.56 1.5
nominal 2.0 2.0 2.0
deciem 2.5 2.51 2.5
undeciem 2.61 2.66 2.95
duodeciem 3.0 3.01 3.25
upper octave 4.0 4.1 4.0
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Fig. 6.12.Dissonance curve for an “ideal” minor third bell is comparedwith the dissonance
curve of a real bell, and to the dissonance curve of the “majorthird” bell described by [B: 94].
The ideal has deep minima at many of the just ratios, and the minima for the real bell are
skewed. The increase in consonance of the major third is apparent in both octaves of the lower
plot, although the fifths have become slightly flat.
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The dissonance curve for the measured bell is close to the ideal. Some extra min-
ima have been introduced, and some of the deeper minima have been smeared by the
slight misalignment of partials. The major third bell has accomplished its goal. In
both octaves, the major third is very consonant, second onlyto the octave. Unfortu-
nately, the consonance of the fifth has been reduced, and the minimum corresponding
to the fifth has become noticeably flat. It is unclear whether or how much this effects
the playability of the bell.

Table 6.3. Minima of dissonance curves in Fig. 6.12.

Nearest Ideal Minor Measured Ideal Major
Just Ratio Third Bell Bell Third Bell

1/1 1.0 1.0 1.0
1.15 1.13 1.14

6/5 1.2 1.2 1.18
5/4 1.25 1.26 1.25
4/3 1.33 1.33 1.35

1.38 1.4
3/2 1.5 1.51 1.48

1.6
1.62

5/3 1.67 1.66 1.69
1.75 1.8 1.75

2/1 2.0 2.0 2.0
2.08 2.08
2.2 2.26 2.28

12/5 2.4 2.36 2.33
10/4 2.5 2.51 2.5

2.62 2.72 2.72
2.75 2.76

3/1 3.0 3.01 2.95

The literature on bells is vast, and either [B: 56] or [B: 157]can be consulted
for an overview. The present discussion highlights the use of dissonance curves as
a way of investigating what intervals sound consonant when played by a bell with a
specified set of partials. An alternative is to try writing a piece of music emphasizing
the inharmonic nature of the bell, an avenue pursued in the next chapter.

6.5.4 Tuning for FM Spectra

Frequency Modulation (FM) was originally invented for radio transmission. Chown-
ing [B: 32] pioneered its use as a method of sound generation in digital synthesizers,
and it gained popularity in the Yamaha DX and TX synthesizers. Sound is typically
created in a FM machine using sine wave oscillators. By allowing the output of one
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sine wave (the modulator) determine the frequency of a second (the carrier), it is pos-
sible to generate complex waveforms with rich spectra usingonly a few oscillators.
When the ratio of the carrier frequency to the modulator frequency is an integer, the
resulting sound is harmonic, whereas noninteger ratios generate inharmonic sounds.
In practice, these complex inharmonic sounds are often relegated to percussive or
noise patches because they sound dissonant when played in 12-tet. Using the related
scale allows such sounds to be played more consonantly.

For example, consider an FM tone with carrier-to-modulation ratio
� © ] of

� ©� � � and modulating index15 ª � � . The frequencies and magnitudes of the resulting
spectra are shown schematically in Fig. 6.13. The spectrum is clearly inharmonic,
and the magnitude of the fundamental (at 500 Hz) is small compared with many
of the partials. When programmed on a TX81Z (a Yamaha FM synthesizer), the
sound is complex and somewhat noisy. Placing a slowly decaying “plucked string”
envelope over the sound and a small amount of vibrato gives ita strange inharmonic
flavor: more like a koto or shamisen than a guitar. There are few intervals in 12-tet at
which this sound can be played without significant dissonance. The most consonant
interval (when restricted to the 12-tet scale) is probably the minor seventh, although
the fourth is also smooth. The fifth and octave are definitely dissonant.

Two octaves of the dissonance curve for this spectrum are plotted in Fig. 6.14,
and it is readily apparent why there are so few consonant intervals in the 12-tet scale.
Although there are numerous minima, almost none coincide with steps of the 12-tet
scale, except for the fourth and minor seventh. But when retuned to the related “FM
scale” with steps given by the minima of the figure, the sound can be played without
excessive dissonance.

The reason for including this example is because it is likelythat some readers
will have access to an FM-based synthesizer. This is an easy source of inharmonic
sounds, and many units incorporate tuning tables so that thetuning of the keyboard
can be readily specified. This particular timbre is, frankly, not all that interesting
musically, but the procedure can be applied generally. Why not find the spectrum
of your favorite (inharmonic) FM sound, and retune the synthesizer to play in the� ,

The way that the parameters« , x , and¬ relate to the frequencies and amplitudes of the par-
tials of the resulting sound is complex, but formulas are available in [B: 32] and [B: 158].
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Fig. 6.13.Line spectrum showing the partials of the FM spectrum with« ­ x ratio ) ­ ) ( 9 and
modulating index¬ u ' . The “fundamental” was arbitrarily chosen at« u = � � Hz.
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 fifth         octave 1                            octave 2

frequency ratio

1            1.33 1.49       1.8    2.11  2.4   2.75   3.2   3.66
         1.19  1.37 1.58      1.92  2.17   2.5   2.89   3.37  3.8
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Fig. 6.14.Dissonance curve for the FM spectrum with« ­ x ratio ) ­ ) ( 9 and modulating
index ¬ u ' has minima shown by the tick marks on the bottom axis. The 12-tet scale steps
are shown above for comparison.

related scale? Working through an example like this is the best way to ensure you
understand the procedure, and you may find yourself enthralled by a new musical
experience.

6.6 Properties of Dissonance Curves

The shape of the dissonance curve is dependent on the frequencies (and magnitudes)
of the components of the spectrum. Changing these frequencies (and magnitudes)
changes the location and depth of the minima, which changes the scale in which
the spectrum can be played most consonantly. The examples ofthe previous sec-
tions showed specific spectra and their related scales. In contrast, this section looks
at general properties of dissonance curves by probing the mathematical model for in-
ternal structure and by exploring patterns in its behavior.Four generic properties are
presented, although formal statements of these properties(and their proofs) are rel-
egated to Appendix F. These properties place bounds on the number of minima of a
dissonance curve, identify symmetries, and describe two generic classes of minima.
These properties help give an intuitive feel for where minima will occur and how
they change in response to changes in the frequencies and amplitudes of the partials.

Throughout this section, we suppose that the spectrum� has� partials located
at frequencies

� � 	 � � 	 � � � 	 � �
.

Property 1: The unison is a minimum of the dissonance curve.

Recall that any nontrivial sound16 has an inherent dissonance due to the interaction of
its partials. The dissonance of the sound at unison consistsof just this intrinsic disso-
nance, whereas other intervals also contain interactions between nonaligned partials.
Details and caveats are given in Appendix F.� -

That is, any sound that contains more than a single partial. Only silence and a pure sine
wave have zero dissonance.
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Property 2: As the interval grows larger, the dissonance approaches a
value that is no more than the intrinsic dissonance of the sound.

The second property looks at extremely large intervals where all partials of the lower
tone fall below the partials of the upper tone. For large enough intervals, the inter-
action between the partials becomes negligible, and the dissonance decreases mono-
tonically as the interval increases. In practical terms, a tuba and a piccolo may play
together without fear of excess dissonance.

The next result gives a bound on the number of minima of a dissonance curve in
terms of the complexity of the spectrum.

Property 3: The dissonance curve generated by� has at most� � �
min-

ima that are located symmetrically (on a logarithmic scale)so that half
occur for intervals between 0 and 1, and half occur for intervals between
1 and infinity.

There are really two parts to this property: a bound on the number of minima, and an
assertion of symmetry. The easiest way to see (and hear) these is by example. Con-
sider a simple spectrum with just two partials. As shown in Fig. 6.15, the dissonance
curve can have three different contours depending on the spacing between the two
partials:17 The unison may be the only minimum, there may be an additionaltwo
steep minima, or there may be an additional two “broad” minima.

The middle graph of Fig. 6.15 shows the dissonance curve for asimple sound
with two partials at

�
and

� � � * �
. The dissonance begins at the unison, rises rapidly

to its peak, and then plummets to a sharp minimum at 1.15. Dissonance then climbs
again before sinking slowly toward zero as the two sounds drift apart. It is easy to
understand this behavior in terms of the coincidence of the partials. Let_ denote the
ratio between the two notes. Near unity (for_ X �

), the partials of
�

beat furiously
against the corresponding partials of_ �

. When_ reaches 1.15, the second partial of�
aligns exactly with the first partial of_ �

, and the dissonance between this pair van-
ishes, causing the minimum in the curve. As_ continues to increase, the previously
aligned partials begin to beat, producing the second peak. For large_ , both partials of�

are separated from both partials of_ �
so that there is little interaction, and hence

little dissonance.
Perhaps the most striking feature of this figure is its symmetry.18 Suppose that

instead of sliding the second tone up in frequency, it is shifted down; a similar sce-
nario ensues. For_ X �

, there is large dissonance. As_ descends to 0.87 (which is
the inverse of 1.15, that is,

�� ® � V � � � � H ), the first partial of
�

aligns with the second
partial of _ �

to cause a minimum. As_ continues to descend, the rise and fall of dis-
sonance occur just as before. In general, whenever there is aminimum at a particular
value _ ¯ , there is also a minimum at

� 6 _ ¯ . Thus, the range from 0 to 1 is a mirror� .
To make this figure clearer, the intrinsic dissonances have been subtracted out.� /
The astute reader will note that the symmetry is not exact, because dissonance curves vary
with absolute frequency. However, over much of the audio range, the curves are nearly
symmetric.
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Fig. 6.15.Dissonance curves for spec-
tra with two partials have three possible
shapes: The partials may be too close
together to allow any minima other than
the unison (top), the minima may occur
at the intervals defined by the ratios of
the partials (middle), or there may also
be “broad” minima due to the sparsity
of partials (bottom). Observe the sym-
metry about the unison. Steps of the 12-
tet scale are shown above for compari-
son.

image of the range from 1 to infinity, and they are typically folded together, as has
been done for most of the dissonance curves throughout the book.

If the partials are too close together, there may be no minimaother than the uni-
son. The top graph in Fig. 6.15 shows the dissonance curve fora sound with partials
at

�
and

� � � � �
. At first thought, one might expect that_ � � � � �

(and its inverse)
should be minima. But the other partials are clustered nearby, and their combined
dissonances are enough to overwhelm the expected minima. Inessence, if the par-
tials are clumped too tightly, minima can disappear.

Thus, minima may (or may not) occur when partials coincide. Minima can also
occur when partials are widely separated. The bottom graph in Fig. 6.15 shows the
dissonance curve for a sound with partials at

�
and

� � � � �
. As expected, there are

minima at 1.86 and its inverse 0.54, but there is also a new kind of “broad” minimum
at 1.41 (and its inverse). This occurs because the partials are widely separated, so that
for a large range of the ratio_ , there is little significant interaction. Such minima are
typically wide, and they tend to disappear for sounds with more than a few partials.
The harmonic dissonance curve of Fig. 6.1 on p. 96, for instance, consists exclusively
of minima caused by coinciding partials; the broad, in-between minima have been
vanquished. This discussion foreshadows a property describing the two classes of
minima: those caused by coinciding partials and those caused by widely separated
partials.
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Property 4: The principle of coinciding partials. Up to � �
of the minima

occur at interval ratios_ for which _ � � � 6 � 

where

� � and
� 


are
partials of� . Up to � �

of the minima are the broad type of the bottom
curve in Fig. 6.15.

For example, spectra with three partials may have up to threeminima at points where_ � � � � � �
, _ � � � � � R , and _ R � � � � R , which are represented schematically in

Fig. 6.16. Essentially, a minimum can occur whenever two of the partials coincide,
and this property is called the principle of coinciding partials. Of course, other min-
ima may exist as well. The top graph in Fig. 6.17 shows the dissonance curve for the
spectrum

� 	 b � 	 b U �
, whereb � } °� � . Note that the three minima predicted by prop-

erty 4 are at exactly the first and fourth scale degrees of the ten-tone equal-tempered
scale, and at the difference frequencyb R �

. The bottom graph of Fig. 6.17 places the
partials at

� 	 b � 	 b W �
, generating the expected scale steps at 1 and 6, and the differ-

ence frequencyb V �
at 10-tet scale step 5. There is also a broad minimum between

the third and fourth steps, which is a result of the distance between the partialsb �
and b W �

.

f1 f2 f3

r1f1 r1f2 r1f3

r2f1 r2f2 r2f3

r3f1 r3f2 r3f3

Fig. 6.16.Schematic representation of
three possible local minima (at ratios� � , � # , and � $ ) of a spectrum with par-
tials at & � , & # , and& $ .

Properties 3 and 4 combine to give a fairly complete picture of the number and
types of minima to expect. They are located symmetrically (on a logarithmic scale)
so that half occur for intervals between 0 and 1, and half occur for intervals between
1 and infinity. No more than half of the minima are the broad type due to a paucity of
partials. No more than half are the steep kind, which occur when partials coincide at
intervals defined by ratios of the partials. Because the musically useful information
is located in intervals within a couple of octaves of unity, because the broad minima
tend to vanish (except for sparse spectra), and because manyminima are annihilated
when partials are densely packed, typical dissonance curves exhibit far fewer than
the maximum. In Fig. 6.1 on p. 96, for instance, there are onlynine minima within
the octave of interest, considerably fewer than the bound of� � H �

.
Symmetry of the dissonance curves about one is not the same asrepetition at the

octave. For instance, the harmonic dissonance curve19 has a minimum at* 6 � , and
the corresponding symmetric minimum occurs at� 6 * . When translated back into the
original octave between 1 and 2, this is

� 6 * , which is not a minimum. Thus, using
the related scale under the assumption of octave equivalence is different, in general,
from using the intervals of the dissonance curve plus their inverses. Depending on� 0

Fig. 6.1 on p. 96.
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12-tet scale steps fourth fifth octave
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Fig. 6.17.Dissonance curves demonstrating local minima for spectra with three partials, with� defined as the tenth root of two. Observe that minima are coincident with scale steps of
10-tet and not with scale steps of 12-tet.

the musical context, either one or the other may be preferred.20 Typically, the minima
of a dissonance curve become sparser (further apart) for very high and for very low
frequencies, implying that both low and high notes will be far apart when using the
scale with inverses. This accords well with our perceptual mechanism because the
majority of notes tend to cluster in the midrange where hearing is most sensitive.

Another consequence of the symmetry of dissonance curves isthat the “inverse”
of a spectrum will have the same dissonance curve as the spectrum. For example,
subharmonic sounds are those defined by a frequency

�
, and the subharmonics

� 6 � ,� 6 � 	 � � �. Such subharmonic sounds have the same dissonance curve andthe same
related scale as harmonic sounds.

6.7 Dissonance Curves for Multiple Spectra

The dissonance curves of the previous sections assumed thatboth notes in the interval
had the “same” spectrum; that is, they differed only by a simple transposition.21 As
it is common to combine sounds of different tonal quality, itis important to be able
to draw analogous dissonance curves for notes with different spectra.

Suppose the note� has partials at
� � with loudness� � , and the note

2
has partials

at i 

with loudnesŝ



. Then the dissonance between� and

2
is the sum of all dis-# 1

Octave equivalence is often assumedbecause it is generallyeasier to “map” to the keyboard,
but this is a pragmatic and not a musical or perceptual preference.# �
The note with partials at& ± and loudnessM ± , when transposed by an interval� , has partials
at � & ± with the same loudness.
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sonances
� � � � 	 i 
 	 � � 	 ^ 
 �

, where the function22 �
represents the sensory dissonance

between the pure sine wave partials at
� � and i 


as in Fig. 3.8 on p. 47, weighted
by the loudnesses. Similarly, if

2
is raised (or lowered) by an intervalb , then the

dissonances
� � � � 	 b i 
 	 � � 	 ^ 
 �

are summed, whereas if� is raised (or lowered) by an
interval _ , then the dissonance is calculated23 by summing all

� � _ � � 	 i 
 	 � � 	 ^ 
 �
.

For example, suppose that a sound� with four harmonic partials is played simul-
taneously with a sound

2
with three inharmonic partials ati ,

� � * � * i , and
� � � � i . The

corresponding dissonance curve is shown in Fig. 6.18 over a region of slightly larger
than an octave in both_ and b . The curve is drawn with_ and b on the same axis
because they are essentially inverses; that is, the effect of playing � and transposing2

by b is nearly the same24 as playing
2

and transposing� by _ � � 6 b .
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Fig. 6.18.Dissonance curve for soundsG (at interval � ) and 5 (at interval � ). G has four
harmonic partials while5 has three inharmonic partials at� , ) ( = ) = � , and7 ( 9 ; � . The curve
has many minima close to the steps of 5-tet, which is shown above for comparison.

In this example, minima occur near many of the steps of 5-tet,which is shown on
the top horizontal axis. There are minima whenb is the first, second, and fifth steps
of 5-tet, and when_ is the first, third, and fourth steps. Together, this suggests that
this pair of sounds may be sensibly played in 5-tet.

Dissonance curves for multiple spectra have somewhat different properties than
similar curves for sounds with a single spectrum. For instance, the unison is not# #

Details of the function² can be found in Appendix E.# $
An alternative approach is to combine the spectra of the two sounds, and then draw the
(normal) dissonance curve. For instance, combining theG and5 of Fig. 6.18 gives a “new”
sound³ with partials at́ ¥ ) ( = ) = ´ ¥ ' ´ ¥ 7 ´ ¥ 7 ( 9 ; ´ ¥ and9 ´ ( The dissonance curve for this
spectrum has many of the same features as Fig. 6.18, but it is not identical. For instance,
when the sixth partial of the lower tone corresponds to the fourth partial of the higher tone
(at the interval9 8 7 ), the dissonance curve of³ may have a minimum, depending on the
loudness of the partials. There is no minimum at 4/3 in Fig. 6.18 however, because there
are no pairs of partials inG and5 with this 4/3 ratio.# %
They differ only due to the absolute frequency dependence ofdissonance, which is rela-
tively small over moderate intervals.
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always a minimum. Figure 6.19 shows the dissonance curve fortwo inharmonic
sounds with partials at

�
,

� � H �
, and � � � � �

, and ati ,
� � � H i , and

� � � � i . The deepest
minimum occurs at the intervalb � � � H , where the first and second partials of�
align with the second and third partials of

2
. The unison is not a minimum.

The second property, which says that dissonance must decrease as the intervals
grow asymptotically large, is still valid. But the third property must be amended.

Property
� { : The dissonance curve generated by� and

2
has at most� � ] minima, where� is the number of partials in� and] is the num-

ber of partials in
2

.

The symmetry of the curves about unity is lost, as shown in both Figs. 6.18 and 6.19.
The principle of coinciding partials must also be modified.

Property� { : In the dissonance curve generated by� and
2

, up to� ] of
the minima occur at intervals_ for which either_ � i 
 6 � � or _ � � � 6 i 


,
where

� � and i 

are the partials of� and

2
. Up to � ] of the minima

are the broad type of the bottom curve in Fig. 6.18.

Dissonance curves can give insight into how different kindsof sounds can be com-
bined so as to control sensory consonance. This might find application, for instance,
in a piece that combines several kinds of inharmonic sounds.Small manipulations
of the pitches may lead to dramatic changes in the perceived dissonance of the com-
bined sound, and dissonance curves can be used to reliably predict these changes.

6.8 Dissonance “Surfaces”

Dissonance curves can also be drawn for three note “chords.”These can be readily
pictured as dissonance surfaces where mountainous peaks are points of maximum
dissonance, and valleys are locations of maximum consonance.
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Fig. 6.19.Dissonance curve generated by two soundsG (with partials at& , ) ( > & , and' ( < 9 & )
and5 (with partials at� , ) ( ; > � , and7 ( ) 9 � ). Loudness values for both sounds are 1, 5, and 5.
Minima occur at� u ) ( ) , ) ( 7 > , and ) ( < = , and at� u ) ( � ' , ) ( 7 7 , and ) ( > . The unison is not a
minimum.
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As usual, the total dissonance is calculated by adding the dissonances between
all simultaneously sounding partials. The sensory dissonance of a sound� played in
a chord containing the intervals 1,_ , and b is25:µ¶· £ ` a � ¸� � b b ` � � � � K` � 3 ¦ ` _ � ¹º» � µ¶· � � b b ` � � � � Kn K a � K K �� � � � _ � ¹º» " µ¶· � � b b ` � � � � Kn K a � K K �� � � � b � ¹º» " µ¶· � � b b ` � � � � Kn K a � K K �_ � � � � b � ¹º»
Generalizations to] sounds, each with its own spectrum, follow the same philoso-
phy, although in higher dimensions there is no simple way to draw pictures.

Figure 6.20 shows the dissonance “surface”26 for a sound� consisting of six
harmonic partials, as_ and b are varied over a region slightly larger than an octave.
The central rift, which is sandwiched by a range of high mountains near the diagonal,
is the degenerate case where_ X b . The two far edges of the surface (which are not
clearly visible due to the angle of view) are where_ � �

(on the left) andb � �
(around the back). As all three notes have the same spectra,_ and b are interchange-
able and the surface is symmetric about the diagonal. Hence,the most interesting
and musically useful information is contained in the foothills on the near side of the
diagonal range.

1

2

1
2

s
e

n
s
o

ry
 d

is
s
o

n
a

n
c
e

interval between the first and second notes

in
te

rv
a
l b

e
tw

e
e
n
 t
h
e

fir
st

 a
n
d
 t
h
ir
d
 n

o
te

s

Fig. 6.20.Dissonance curve for a sound with six harmonic partials has minima at many inter-
vals defined by small integer ratios. These form chords with maximum sensory consonance.
Figure 6.21 shows the same data as a contour plot.

Although surface plots such as Fig. 6.20 give a broad overview of the landscape,
it is not always easy to spot detailed features. The same information is displayed as# , � G is the transposition ofG by the interval� .# -

Appendix E details how the surfaces are drawn.
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a “contour plot,” a topographic map of the dissonance landscape, in Fig. 6.21. The
symmetry about the diagonal is readily apparent. The far andleft-hand edges again
represent the degenerate cases whereb X �

and _ X �
, and the beaded strand on the

diagonal is where_ X b . In these regions, two of the three notes have merged.
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Fig. 6.21.Contour plot of the dissonance curve for three note chords with harmonic spectra.
Several of the most important features are indicated. Tick marks on the axes indicate intervals
of the 12-tet scale step. The chords labeled A-J are examinedin more detail in Table 6.4.

Many of the just chords appear in the lower left half of the figure as promi-
nent sinkholes in the dissonance wilderness. For instance,the arrows¼ and ¢ in
Fig. 6.21 indicate long narrow ravines at the perfect fifth inboth the horizontal and
vertical dimensions, that is, in both_ and b . This ravine contains both the just major
and just minor chordsn and

�
. An angled string of minima for which the second

and third notes are locked into a perfect fifth is indicated bythe arrow½ . This string
intersects the ravine at the¾ chord, which is composed of two perfect fifths piled on
top of each other.

The chord labeled? contains both a perfect fourth and a perfect fifth. Such “sus-
pended” chords do not form a normal diatonic triad, and yet they are not unfamiliar.
The chord

2
can be viewed as an inversion. Raising the fundamental of 1,_ V

, _ � �
one octave gives_ V

, _ � �
, _ � �

, which is a transposition of? . The chord3 is also an
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Table 6.4. Minima of the dissonance surface for a sound with six harmonic partials occur at
many of the just chords and at many of the simple integer ratios. Labels refer to regions on the
contour plot for harmonic sounds in Fig. 6.21.

Actual Closest 12-tet
Label Minimum scale steps CommentM u } ~� '

A 1, 4/3, 3/2 1,M ,
, M .

suspended
B 1, 5/4, 3/2 1,M %

, M .
just major

C 1, 9/8, 3/2 1,M #
, M .

suspended
D 1, 6/5, 4/3 1,M $

, M .
just minor

E 1, 5/4, 5/3 1,M %
, M 0

inversion of minor
F 1, 4/3, 5/3 1,M ,

, M 0
inversion of major

G 1, 4/3, 16/9 1,M ,
, M � 1

string of fourths
H 1, 4/3, 2 1,M ,

, 2 open fourth
I 1, 3/2, 2 1,M .

, 2 open fifth
J 1, 3/2, 9/4 1,M .

, M � %
string of fifths

inversion of? , as can be seen by lowering the highest note an octave. Similarly, @
and� are inversions of the just major and minor chords.

It may at first appear strange that the intervals 9/8 and 16/9 appear in3 and
2

,
because the dissonance surface was generated by a harmonic sound containing only
the first six partials. But the interval from 3/2 to 9/8 is exactly 4/3, and so the 9/8
interval is a byproduct of the consonance of the perfect fourth and the perfect fifth.
Similarly, the 16/9 in

2
forms a perfect fourth with 4/3, and this suspended chord

can be thought of as a “string of fourths.” In fact, the stringof fifths chord¾ is also
an inversion of this same suspension, because lowering the highest note an octave
gives the3 chord.

The real purpose of this discussion is not to learn more aboutjust intonation or
about the traditional diatonic setting, because these havebeen explored extensively
through the years. Rather, it is to demonstrate that in the familiar harmonic setting,
features of dissonance curves and surfaces correspond closely with familiar musical
objects. Hence, there is good reason to expect that in unfamiliar inharmonic contexts,
analogous features can be used to predict and explore unfamiliar musical intervals,
scales, and chords. An extended example is given in the chapter “Towards a ‘Music
Theory’ for 10-tet.”

6.9 Summary

Dissonance curves generalize the kinds of curves drawn by Helmholtz, Partch, and
Plomp to sounds with inharmonic spectra. They give a graphicdisplay of the in-
tervals with the greatest sensory consonance (least sensory dissonance) for a given
spectrum, and these intervals can be gathered into therelated scale. Several previ-
ous investigations were highlighted, including the work ofMathews and Pierce and
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their colleagues, and the musical explorations of Carlos. Examples were drawn from
ideal bars, bells, and FM synthesis. General properties of dissonance curves bound
the number of minima, demonstrate the symmetry of the intervals about the unison,
and classify them into those caused by coinciding partials and those that are a result
of gaps in the partial structure. Extensions to multiple sounds with different spectra
are straightforward. The next chapter explores three examples thoroughly.
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A Bell, A Rock, A Crystal

To bring the relationship between tuning and spectrum into
sharper focus, this chapter looks at three examples in detail:
an ornamentalhand bell, a resonant rock from Chaco Canyon,
and an “abstract” sound created from a morphine crystal.
All three are discussed at length, and each step is detailed so
as to highlight the practical issues, techniques, and tradeoffs
that originate when applying the ideas to real sounds making
real music. The bell, rock, and crystal were used as the basis
for three compositions:Tingshaw, The Chaco Canyon Rock,
and Duet for Morphine and Cymbal, which appear on the
accompanying CD as sound examples [S: 43], [S: 44], and
[S: 45].

7.1 Tingshaw: A Simple Bell

By the tenth century BC, bells were used to accompany rituals, and they are among
the oldest extant musical instruments. Bells can be made from metal, wood, clay,
glass, and almost any other material that can be shaped to sustain oscillation. They
range in size from tiny ornaments to monstrosities weighingseveral tons. Because of
the great variety of materials, shapes, and sizes, bells arecapable of a wide variety
of tones and timbres. The typical bell sound is inharmonic, and its sound envelope (a
rapid rise followed by a long slow decay) is probably its mostdistinctive feature.

This section uses one particular hand bell, and it derives the related scale using
the dissonance curve. This scale is then “mapped” onto a standard keyboard, and
some aspects of performance are considered. A musical composition calledTing-
shawfeaturing this inharmonic bell played in its nonequal, nonoctave based scale, is
presented in sound example [S: 43].

Despite the “scientific” flavor of much of the discussion in previous chapters, the
translation from sound to scale is not a completely mechanical process. Decisions
must be made that will ultimately shape the performance and playability of the sound
and, hence, will help to mold the resulting music. To outlinethe complete procedure:

(i) Choose a sound
(ii) Find the spectrum of the sound
(iii) “Simplify” the spectrum
(iv) Draw the dissonance curve, and choose a set of intervals(a scale) from

the minima
(v) “Create an instrument” that can play the sound at the appropriate scale

steps
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(vi) Play music

Each of these will now be discussed in detail, and the decisions and choices made for
the tingshaw will be explained. Although someone versed in spectral analysis will
find many aspects of this discussion familiar, there are a number of issues that are
specific to the auditory setting.1 I do not present this detail in the expectation that it
would be useful to exactly duplicate my steps. Rather, over several years of working
with this kind of material, I have run across certain problems and traps again and
again. My hope is to post warnings near some of these traps.

7.1.1 Choose a Sound

Although obvious, this is the most crucial step of the procedure, because the charac-
ter of everything in the music (from the character of the sound to the scale in which it
will be played) are derived from the sound itself. Sounds maycome from a musical
synthesizer. They may be from “real” instruments such as bells, gongs, cymbals, and
so on. They may originate from collisions between natural objects such as bricks,
metal pans, scrap wood, rocks, or recyclables. They may be digitally generated by a
computer program.

Although any sound can be used, not all sounds are equally useful. If the spec-
trum of the sound is too simple, then the related scale may be trivial. For instance,
the tritone spectrum has a dissonance curve with only three minima, and hence, the
related scale has only three notes; it will be hard to write a convincing melody with
only three notes. On the other hand, if the spectrum of the sound is too complex, then
the related scale may have hundreds or even thousands of notes. This extreme may
also be impractical. Finally, an unexciting sound cannot bemiraculously rejuvenated
by playing it in the related scale. If the timbre is dull and uninteresting, then it will
most likely lead to dull and uninteresting music.

For this example, I have chosen a small bell called tingshaw.It has a cheery little
clang with a sharp attack and a long slow decay. The tingshaw was sampled at the
standard CD rate of 44100 Hz, and the sample was downloaded toa computer and
stored in a file called ting.wav.

7.1.2 Find the Spectrum

There are many programs that can readily calculate the spectrum, but the accuracy
and usefulness of the results are determined primarily by the sample rate, the num-
ber of samples analyzed, and the windowing procedure used. If you have never taken�

The musician may find all of these decisions and the incredible detail frightening. Recog-
nize that I am trying to write itall down. Imagine if you were to try and document every
step of the decision-making process when writing even a simple piece of music. You would
need to explain why it is in 4/4 time, why one particular note is syncopated and another
is not, why the viola line crosses the violin line (in violation of standard rules), and why
you have allowed a parallel octave in one section but not another. There are many decisions
for each note, and there are many, many notes! Rest assured that all of these decisions and
detail would be enough to frighten even the hardiest of engineers.
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a spectrum before, you will want to read Appendix C,Speaking of Spectra, for an
overview of the kinds of tradeoffs that are inherent in this process. The more compe-
tently these decisions are made, the more meaningful the results.

The tingshaw bell has a sharp attack followed by a long slow decay into in-
audibility. The complete sound file contains about 120K samples, a little less than 3
seconds of sound.2 Taking the FFT of the complete sound is a bad idea for two rea-
sons. First, it is too long. Because the computation time foran FFT increases rapidly
as the length of the signal increases, 120K points could takea long time. Second,
the attack is very important to the sound, but it lasts only a few thousand samples.
Even if the computation time was acceptable, the long decay would obscure the short
attack because of the averaging effect of the FFT.

On the other hand, the FFT must not be too short. At least part of the decay
portion of the sound must be present or the spectrum cannot represent the complete
sound. Also, the accuracy will suffer. Recall (or read aboutit in Appendix C) that the
width of the FFT frequency bins determines the precision with which the sinusoidal
components can be pinpointed. As the width of the bins is proportional to the sam-
pling rate divided by the length of the waveform, taking too small a portion of the
wave leads to wide bins and poor estimates for the frequencies of the partials. Such
inaccuracies can have serious consequences when defining the related scale.

As the just noticeable difference Fig. 3.4 on p. 43 showed, the ear is sensitive to
changes in pitch as small as 2 or 3 Hz in the most sensitive regions below 1000 Hz.
Thus, it is sensible to choose an FFT length that gives at least this accuracy. Using an
FFT with length that is a power of two gives two choices: a 16K FFT with resolution
of 2.69 Hz,3 or a 32K FFT with a resolution of 1.35 Hz. To decide, I listenedto the
first 16K of the waveform and to the first 32K. The 16K segment seemed to capture
enough of the sustained part of the sound.

To examine the effects caused by truncating the wave, I triedseveral different
windowing strategies. The rectangular window and the hamming windows gave es-
timates for the most important frequencies that were several Hertz apart. There are
two sources of error: The hamming window attenuates the attack portion signifi-
cantly, and the rectangular window simply truncates the signal after 16K samples.
I reasoned that it was a good idea to leave the attack portion undisturbed, because
this is where much of the important information resides. Because a signal has the
same spectrum whether it is played forward or backward in time, I carefully selected
a “middle point,” and reversed the 16K waveform about this midpoint.4 When plot-
ted, the transition point was visually smooth (i.e., no large jump occurred in either the
value of the signal or its slope), and so it seemed unlikely togreatly effect the results.
Indeed, this gave a spectrum that differed by no more than 1.5Hz from the original
rectangular window, and so I decided to accept this as the “real” spectrum. Figure#

The duration is the length divided by the number of samples per second; thus,
� # 1 1 1 1% % � 1 1 ¿' ( > ' seconds.$ sampling rate

length of FFT u % % � 1 1� - $ / % u ' ( ; : u resolution in Hz.%
Various windowing strategies are discussed in Appendix C.
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7.1 shows an FFT of the first 16K samples of the sound file ting.wav, accomplished
using a 32K FFT and a wave reversal “windowing” strategy.
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Fig. 7.1.Spectrum of the tingshaw bell with the most prominent spectral peaks labeled.

7.1.3 Simplify the Spectrum

The output of this FFT says that the first 3/8 second of the tingshaw sound consists
of the first

� � 	 � � �
harmonics of a fundamental at 1.35 Hz, each with a specified

amplitude and phase. Despite the fact that this is literallytrue, it is useless.
A far better interpretation of Fig. 7.1 is that there are two dominant regions of

spectral activity near 2370 and 5555, and three smaller peaks at 4784, 7921, and
10103. There is also a small cluster near 11300, and a couple of isolated peaks,
at about 700 and 3200. It is important to try and select only the most significant
peaks, without missing any, because spurious peaks may cause extra minima in the
dissonance curve, whereas missing peaks may cause missing scale steps. Neither
is good. Perhaps the best strategy is to analyze several different recordings and to
choose only what is common among them. This approach is detailed in the next
section in the discussion of the Chaco Rock. Unfortunately,the tingshaw bell went
missing shortly after I recorded it, leaving only the one sample (and some great
memories).

One way to get more information from limited data is to analyze it in different
ways. I pursued two different strategies: multiple analysis and analysis by synthesis.
One interesting and puzzling feature of the tingshaw spectrum Fig. 7.1 is that there
are two separate peaks close to 5555. To investigate, I did a series of 4K spectral
snapshots.5 The snapshots suggested that there is really only one partial in any 4K
segment, but that it is slowly changing in frequency from about 5570 down to about
5550 over the course of the sample. As 5550 is its steady-state value (as shown by
FFTs taken with the attack portion of the sound stripped away), I settled on the single
value 5553 to represent all of this activity. Using the same 4K snapshots shows that,

To be specific, I used a 4K hamming window and evaluated the spectrum centered at sam-
ples 1K, 2K, 3K, ... , 15K.
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the peaks near 7921 are simpler: They merge into a single sinusoid as the sound
progresses and remain centered at 7921 throughout.

The second way to try and understand more from a limited number of samples
is a variation on a technique pioneered by Risset and Wessel [B: 151] in which
the accuracy of an analysis is verified by resynthesizing thesound. If the analysis
captures most of the important features of the sound, then the resynthesized sound
will be much like the original. In the present context, I firstresynthesized6 the sound
using the five major peaks, and then added in the smaller peaksnear 700, 3200, and
11,300. Of course, the resynthesized sounds were not much like the tingshaw, but
there was almost no perceptible difference between the two resynthesized sounds.
This suggested that the extra smaller peaks were likely to have little effect on the
overall sound.

Hence, I decided that the five inharmonically related peaks represent the primary
constituents of the sound, and this simplified tingshaw spectrum is used to draw the
dissonance curve. It is shown in Fig. 7.2.
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Fig. 7.2.Spectrum of the tingshaw bell
simplified to show only the most promi-
nent features.

A third method to help decide which are the most important spectral peaks might
be called “analysis by subtractive synthesis.” In this method, the FFT of the original
sound is manipulated by removing a few suspicious partials and then reconstructed
using the inverse FFT. If there is little or no difference between the original and the
reconstruction, then the removed partials must be of littleimportance to the overall
sound. I did not actually need to use this technique on the tingshaw because I was
already satisfied that I had located the most important spectral information, but it is
a technique that has worked well in other situations.

7.1.4 Draw the Dissonance Curve

The simplified spectrum for the tingshaw shown in Fig. 7.1 canbe entered into the
dissonance calculating programs given in Appendix E,How to Draw Dissonance
Curves, in a straightforward way. Setting the frequency vector andamplitude vectors

freq=[2368, 4784, 5553, 7921, 10103]
amp=[1.0, 0.5, 1.0, 0.6, 0.5]-

See the AppendixAdditive Synthesisfor details on the resynthesis procedure.
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gives the dissonance curve for the tingshaw shown in Fig. 7.3. This figure shows the
dissonance curve from unison to just a bit more than two octaves. In the code, the
algorithm increments byinc=0.01 and the upper value is specified by therange
variable, in this case 4.1. It is often a good idea, when first looking at the dissonance
curve of a sound, to calculate the curve over a larger range tomake sure nothing
“interesting” happens at large values. For the tingshaw, there was one more bump
and dip near 4.27, but it was small and seemed unimportant. Asshown in the figure,
the dissonance curve has minima unevenly spaced at

1, 1.16, 1.29, 1.43, 1.56, 1.66, 1.81, 2.02, 2.15, 2.35, 2.83, 3.34, and 4.08.

One way to choose the scale is to simply use these ratios (plusmaybe the one at 4.27)
to play the tingshaw. Another possibility is to also use the inverse ratios

1, 0.862, 0.775, 0.699, 0.641, 0.602, 0.552, 0.495, 0.465, 0.425, 0.353,
0.299, and 0.245,

which would result in a complete scale with almost twice as many notes. This is
sensible because the dissonance curve is really symmetric about the unison (recall
property number 3) and hence contains all of these inverse intervals as well.
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Fig. 7.3.Dissonance curve for the tingshaw bell. The minimum at 2.02 serves as a pseudo-
octave, because some of the minima in the second pseudo-octave are aligned with those in
the first. For example,' ( 7 = 8 ' ( � ' u ) ( ) ; and 7 ( 7 9 8 ' ( � ' u ) ( ; = are found in both pseudo-
octaves. Steps of the 12-tet scale are shown above for comparison.

But looking more carefully at the minima of the dissonance curve reveals an in-
teresting pattern. If the minimum at 2.02 is thought of as a kind of pseudo-octave,
then the intervals� � � * 6 � � � � � � � � �

,
� � � � 6 � � � � � � � � * , and � � � � 6 � � � � � � � � � are

present in both pseudo-octaves. As these are the most prominent features in the sec-
ond half of the curve, the tingshaw sound is closely related to the eight-note unequal
stretched-octave scale

1, 1.16, 1.29, 1.43, 1.56, 1.66, 1.81, and 2.02.

This is the scale used in the pieceTingshawon the accompanying recording.
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7.1.5 Create an Instrument

Assuming adequate metal working skills and sufficient time,it would probably be
possible to build a whole carillon of ting-bells: large onesto peal the deep notes
and tiny ones to ring the highs. Exactly how to scale the proportions of the bell
and how to choose appropriate materials so as to leave the timbral quality more or
less unchanged are nontrivial issues, but with enough experimentation and dedica-
tion, these could likely be solved. This was exactly Harry Partch’s situation when he
found that his dream of playing in the 43-tone unequal scale could not be realized
without instruments that could play in 43 tones per octave. Accordingly, he set out
to build such instruments, and much of his career was devotedto instrument design,
crafting, and construction. Until just a few years ago, embarking on a long and com-
plex construction project would have been the only way to turn the ting-chime into
reality.

Fortunately, today there is an easier way. Digital samplingtechnology is based
on the idea of creating “virtual” instruments. Sound beginsin a digital sampling
keyboard7 (a sampler) as a waveform stored in computer-like memory. This is pro-
cessed, filtered, and modulated in a variety of ways, and thenspread across the key-
board so that each key plays back the “same” sound, but at a different fundamental
frequency. The (in)famous “dog-bark symphony” is a classicexample where the vo-
calizations of man’s best friend are tuned to a 12-tet scale and played as if it were a
musical instrument. As general-purpose computers have become faster, software has
become available for both synthesis and sample playback that can replace much of
the external hardware.

The most exciting feature of many samplers (whether hardware or software) is
that the user can specify both the waveform and the tuning; the sampler will then
play back the chosen sound in the specified scale. In concreteterms, it is possible
to transfer the sound file ting.wav from the computer into thesampler, and to then
program the sampler so that it will play in the desired scale.8 The musician can play
the keyboard as a realistic simulation of a ting-carillon.

As the specifics of moving sound files from one machine to another are unique to
the individual machines, they will not be discussed further: See your owners manual,
software guide, or ask a friend. But one detail remains. Although we decided to
use the eight-note unequal stretched-octave scale of the previous section, we did not
decide how the scale steps were to be assigned to the keys of the keyboard. One.

A detailed discussion of the design of samplers and other electronic musical instruments is
well beyond the scope of this book. Sources such as De Furia [B: 38] provide an excellent
introduction from a musicians perspective, and the engineer might wish to consult Rossing
[B: 158] or DePoli [B: 40] for a more technological presentation./
Transferring the wave file from the computer to the sampler can often be accomplished
using software utilities available from the manufacturer or from third-party software com-
panies. Each sampler has somewhat different internal specifications and limitations. For
instance, some samplers only allow the pitch to be changedÀ ) semitone away from its
12-tet default value, whereas others allow arbitrary assignment of frequencies to keys of
the keyboard.Caveat emptor.



134 7 A Bell, A Rock, A Crystal

possibility is to simply map successive scale tones to successive keys. Although this
is often the most sensible strategy, in this particular case, there is a better way. As
there are eight notes in the scale per pseudo-octave, and there are eight white notes
per (normal, familiar) octave on the keyboard, the easiest mapping is the one shown
in Fig. 7.4 in which each octave of the keyboard is used to playeach pseudo-octave
of the tingshaw scale.

ratio            cents

 1.0      0
   
 1.16    257
 
 1.29    441

 1.43    619
    
 1.56    770
  
 1.66    877
 
 1.81   1027

 2.02   1200

Tingshaw Scale

Fig. 7.4.Each pseudo-octave of the tingshaw scale can be
readily mapped to the white keys on a standard keyboard.

7.1.6 Play Music

Most samplers have numerous options that let the musician manipulate certain fea-
tures of the sound. Filters can be set to vary along with the note played, attack
and decay parameters can be modulated by the key velocity (how rapidly the key
is pressed), subtle pitch and timbral transformations can be programmed to respond
to aftertouch (how hard the key is pressed), and reverberation and other effects can be
added to simulate various auditory environments. All features of the sampler should
be exploited, as seems appropriate to the sound.

For the tingshaw, I added a bit of reverberation to give the sound a more open
feel, incorporated a subtle low-pass filter to subdue some harshness at the high end of
the keyboard, and programmed the aftertouch to induce a delicate vibrato. Because
the sound grew a bit mushy at the low end, I increased the speedof the attack for
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the lower notes. These are the kinds of modifications that anysound designer9 would
apply to make a more playable sound.

Now (finally!) comes the fun part. The tingshaw sound is spread across the key-
board in a virtual ting-carillon. Fingers are poised. This ting tolls for us.

7.2 Chaco Canyon Rock

The reddish rocks of Chaco Canyon (in New Mexico) produce colorful sounds as
they scrape and clatter underfoot. They are musical, but inharmonic. They are res-
onant, but ambiguously pitched. While hiking the shale cliffs surrounding Chaco
Canyon a few years ago, I was captivated by the music of these rocks. I hit them with
sticks, struck them with mallets, and beat the rock against itself.

Figure 7.5 shows a typical sampled waveform. The large initial impact is rapidly
damped, and the vibration is inaudible by 1/4 of a second. Theshape of the waveform
is irregular, although its envelope follows a smooth exponential decay. Using a digital
sampler to pitch shift this sound across a keyboard creates acomplete “lithophone”
that sounds deep and resonant in the lower registers, natural in the middle range,
and degenerates into a sharp plink when transposed into the far upper registers. The
default operation of most samplers is to pitch shift the sound into the familiar 12-tet
scale. Is this really the best way to tune a Chaco lithophone?

A little experimentation reveals that 12-tet works well forpieces that are primar-
ily percussive, in which the sound envelope of one note dies away before the next
note begins. But denser pieces, and those with sustained tones10 become increas-
ingly dissonant, especially in the lower registers. This section details a systematic
way to retune the pitches of the keyboard based on the spectrum of the rock sound
so as to minimize the dissonance. TheChaco Canyon Rock(sound example [S: 44])
demonstrates many of the ideas.11

7.2.1 Find the Spectrum

Eventually, I settled on a favorite piece of rock. Roughly circular with a diameter of
about 15 cm, it is less than a centimeter thick. It weighs 3 kilograms: lighter than it
looks, but heavier than a cymbal of the same size. By strikingit with different mallets
in different places, it speaks in a remarkable variety of ways.0

I know of no single source containing a comprehensive discussion of sound design, al-
though there are numerous articles spread throughout popular magazines such asElec-
tronic MusicianandKeyboardin which individual sound designers discuss their methods
and philosophies.� 1
For instance, extreme time expansion can transform the sharp percussive envelope into a
lengthy reverberation.� �
This work on the Chaco rock was originally presented (in different form) at theSynaesthet-
ica conference [B: 168].
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Fig. 7.5.Typical waveform of the Chaco rock when struck by a hard mallet. A small portion
is expanded to make the irregularity of the waveform more apparent.

I sampled the rock 12 times12 to try and capture the full range of its tonal qual-
ities. Each sample was transferred to the computer, stored as a sound file, and ana-
lyzed by a 16K FFT. Most of the wavefiles (such as the one shown in Fig. 7.5 above)
contained about 16K samples, and thus no windowing was needed. In a few cases,
the wavefile was smaller than 16K samples. These were lengthened by zero padding,
which augments the data with a string of zeroes. Three typical spectra are shown in
the Fig. 7.6.

7.2.2 Simplify the Spectrum

Each strike of the rock has a unique sound, and yet they are allclearly from the same
source. The most constant mode (although rarely the loudest) is a high resonance
near 4070 Hz. No matter how the rock is struck, no matter what mallet is used,
this mode is audible. Other resonances occur in just one or two of the samples. For
instance, the peak at 2736 in the top spectrum of Fig. 7.6 appears in only this one
sample. Perhaps it was caused by the mallet, or perhaps this mode is very hard to
excite, and I was lucky to find it. In either case, it is not a part of the generic sound
of the rock.

Often, the loudest component of the sound is somewhere between 2040 and 2200.
For instance, the most prominent partial in the top spectrumis at 2163. In the bottom
spectrum, the dominant partial is at 2047, which may be reinforced by the (slightly
flat) octave at 4070. At first, I thought these both represented a single dominant� #

As before, at the standard rate of 44.1 KHz.
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Fig. 7.6. Spectra of three
different strikes of the Chaco
Canyon rock.

mode whose exact frequency varied somewhat with the situation. But by striking
and listening carefully, it became clear that both really exist, as shown in the middle
spectrum, where 2040 and 2170 are present simultaneously. After playing around a
bit, I realized that there are places on the rock face where itis possible to reliably
predict which of these two modes will dominate. Moving the strike point back and
forth causes the pitch of the rock to move up and down about a semitone. This makes
sense because the ratio 2167/2040 is 105 cents. At least one of these two modes is
present at all times, and this mode tends to determine the pitch. When both sound
clearly, the pitch becomes more ambiguous.

As the partials near 5066 and 7666 are present in a number of samples other than
the ones shown, they also form a part of the generic sound of the Chaco rock. The
mode at 1351 is due to one particular edge of the rock. Whenever this edge is hit, the
resonance at 1351 is excited. By striking elsewhere, the partial at 1351 is subdued.

Combining the above observations about the various modes ofthe rock, the “full”
behavior can be approximated by forming the composite line spectrum in Fig. 7.7,
which has spectral lines at 1351, 2040, 2167, 4068, 5066, and7666. The exact val-
ues used for the amplitudes of the partials in the composite spectrum are somewhat
arbitrary, but they are intended to reflect both the number ofsamples in which the
mode appears and the amplitude of the partial within those samples.

This is clearly not a harmonic sound, because the frequencies are not an integer
multiple of any audible fundamental. The inharmonicity is evident to both the ear
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Fig. 7.7.The three spectra of the Chaco
rock are combined to form a composite
line spectrum that captures much of the
acoustic behavior of the samples.

(the semitone between 2040 and 2167 is strikingly inharmonic) and to the eye (from
the spectra).

7.2.3 Draw the Dissonance Curve

The composite spectrum for the Chaco rock shown in Fig. 7.7 can be entered into the
dissonance calculating programs of the appendix in a straightforward way. Setting
the frequency vector and amplitude vectors

freq=[1351, 2040, 2167, 4068, 5066, 7666]
amp=[0.2, 0.9, 0.9, 1.0, 0.5, 0.5]

gives the dissonance curve for the Chaco rock in Fig. 7.8, which shows the disso-
nance curve from unison to just a bit more than two octaves.
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Fig. 7.8.Dissonance curve for the composite Chaco rock spectrum has 17 minima within a
two-octave span. These are indicated by the tick marks on thehorizontal axis. Upper axis
shows 12-tet scale steps, with several extended for easy comparison.

Perhaps the most surprising features of this dissonance curve are the minima at
the fifth, octave, and the octave plus fifth. A little thought (and some simple calcula-
tions) show that these are due to overlapping partials. Whenplayed at a ratio of 1.99,
the 4068 partial of the lower tone coincides with the 2040 partial of the (almost)
octave. When played at a ratio of 1.51, the 7666 partial of thelower tone coincides
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with the 5066 partial of the (almost) fifth. The minimum at 3.01 originates similarly
from the coincidence of the 4068 and the 1351 partials.

Except for these familiar intervals, the inharmonic spectrum of the Chaco rock
has a dissonance curve with minima that do not coincide with the notes of the 12-tet
scale, and the most consonant intervals using the Chaco sound are different from the
familiar consonant intervals defined by harmonic tones. Hence, the most consonant
scale using the Chaco rock differs significantly from the familiar 12-tet scale.

7.2.4 Create an Instrument

Because it is illegal to remove material from a National Historical Site, quarrying
rocks from Chaco Canyon and sculpting them into a giant lithophone is not feasible.
Consequently, we will pursue a simulation strategy by building a virtual lithophone,
which will be tuned by judicious use of the intervals from thedissonance curve.

Places where dips in the dissonance curve occur are intervals that sound most
consonant. These points can be read directly from the figure and translated into their
cent equivalents, which gives

0, 272, 386, 545, 713, 824, 908, 1093, 1200, 1472, 1572,
1764, 1908, 2030, 2188, and 2293.

Subtracting 1200 cents from each of the intervals in the second octave and rear-
ranging shows that many of the intervals occur in both octaves, although some are
markedly different: � � H � � � � * � * H � � � � � + � � � � + �� � H � � H � * � � H � � � � � + � � � � + �
Clearly, the final scale should contain the common intervals0, 272, and 1093. Scale
steps at 710 (a compromise between 708 and 713) and 827 (a compromise between
824 and 830) are sensible. As 908 and 988 are close to a semitone apart, it is rea-
sonable to use both. Similarly, 545 and 564 differ significantly. As thirds are so im-
portant, we might also choose to use both 372 and 386 (which isexactly the just
major third), giving three kinds of thirds: a flat minor third, a neutral third, and a just
major third. This gives an 11-note scale. As it is much easierto play a tuning that re-
peats every 12 notes rather than 11, due to the physical layout of Western keyboards,
perhaps we should add another note?

The largest step in the scale (by far) is the first interval of 272 cents. This seems
like a reasonable place for an extra note because it might help to smooth a melody
as it approaches or leaves the tonic. Recall from the previous discussion that it is
possible to make the rock change pitch by about a semitone (105 cents) by striking
it in different places. As this 105-cent interval naturallyoccurs within the stone, it is
a reasonable “extra” interval. The full 12-note scale is defined in the Fig. 7.9, where
the notes are shown mapped to a single octave of the keyboard from 3 to 3 .

As the above discussion shows, there is nothing inevitable about this particular
tuning. It is a compromise between faithfulness to the dissonance curve and find-
ing a practical keyboard that is easy to play. Perhaps the most arbitrary decision in
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interval         cents

  1.0       0
    1.063  105
  1.17   272
    1.24  372
  1.25   386

  1.37   545
    1.385   564
  1.507   710
    1.612  827
  1.69   908
    1.77  988
  1.88  1093

  2/1   1200

Keyboard Layout for Chaco Tuning

Fig. 7.9.One possible keyboard layout for the Chaco litho-
phone repeats one full octave every 12 keys. Numbers give
the tuning (in cents) of each key with respect to an arbitrar-
ily chosen fundamental frequency& .

the whole process was to base the tuning on the octave. Although this is perfectly
justified when focusing on the first octave, observe that the second octave (marked
“octave 2” in Fig. 7.8) does not occur at (or near) a local minimum.

7.2.5 Play Music

The performance molding capabilities of the sampler allow considerable freedom in
sculpting the ultimate sound of the rock. Adding reverberation helps to counteract
the rapid decay by creating a feeling of space. Imagine playing the lithophone in a
hard-walled cavern where each stroke echoes subtly with itsown reflection.

When playing the rock live, there are inevitable scraping and grating sounds as
the mallet and rocks chafe and abrade. These “extraneous” sounds were mostly re-
moved from the samples by careful sampling techniques, so that they would not
influence the dissonance curve and the resulting scale. But now, to make the piece
richer, I mixed them back in. Consequently, most of the rhythm track, and all of
the rubbing and grating sounds were derived from the rock, albeit in a completely
nontonal way.

To try and lighten the sound of the piece, I generated some noncorporeal (elec-
tronic) Chaco rocks. A number of interesting timbral variations are possible by using
additive synthesis13 in which the partial structure is specified from the composite
spectrum of Fig. 7.7. These tend to be high and “electronic” sounding because they
are much simpler than natural sounds, but they do help balance the heaviness of the
raw rock samples. Because they are artificial, there is no constraint on their duration.
In the first section of the piece, they are used as a soprano extension of the rock,
whereas in the middle section they function more like an inharmonic rock organ.

Is music possible in such an idiosyncratic tuning, with suchidiosyncratic tim-
bres? Absolutely. Listen for yourself to theChaco Canyon Rockin sound example
[S: 44].� $

A program listing of a simple additive synthesis program is given in Appendix D.
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7.3 Sounds of Crystals

Sound is a kind of vibration, and there are many kinds of vibrations. For example,
light and radio waves vibrate as they move through space. A stereo receiver works by
translating electromagnetic vibrations into sound vibrations that you can hear. With
such translations any type of vibration is a potential “sound.” One kind of “noise-
less” sound lurks in the molecular structure of everyday substances, and these sounds
can be extracted using techniques of x-ray crystallographyand additive synthesis.14

Thus, the final example of this chapter begins with the “noiseless sound” of a crys-
tal and realizes this in a noisy, consonance-based way. The resulting piece,Duet for
Morphine and Cymbal, appears in sound example [S: 45].

The simplest example of a noiseless sound is one that is pitched too low or too
high for human ears to hear, like a dog whistle. Clearly, it ispossible to record or
sample a dog whistle, and to then play the sample back at a slower speed, thus low-
ering the pitch so that it can be heard. Another translation technique is employed by
Fiorella Terenzi inMusic from the Galaxies[D: 44]. Rather than beginning with a
dog whistle, she uses digital recordings of the microwave radio emissions of various
interstellar objects. These are slowed down until they are transposed into the audible
range, and music (or at least sound) is created. Dr. Terenzi calls her work “acoustic
astronomy.” Amazingly enough, in Terenzi’s work, outer space sounds just like you
always thought it would.

7.3.1 Choose the Sound

There are other, less obvious noiseless sounds in nature. A technique called x-ray
diffraction is a way of discovering and understanding the molecular structure of ma-
terials. The idea is to shine an x-ray beam (think of it as the beam of a flashlight)
onto a crystalline structure. The x-rays, which vibrate as they move, pass through the
crystal and are bent when they hit the atoms inside. Because of the pattern in which
the atoms are arranged, the x-rays bend in a few characteristic directions.

This process, called diffraction, is at work in prisms and rainbows. When sunlight
passes through a prism, it is broken apart into its constituent elements—the colors
of the rainbow. Each color has a characteristic frequency, and each color is bent (or
diffracted) through an angle that is proportional to that frequency. The same idea
works with the diffraction of x-rays through crystals, but because the structure is
more complicated, there is a correspondingly more complicated pattern, composed
of beams of x-rays moving in different directions with different intensities.

These diffraction patterns are typically recorded and displayed graphically as
a Fourier transform, a spectral chart that concisely displays the angle and intensity
information. For example, the transform of the chemical bismuth molybdenum oxide
(n � � ¢ ` R Á � �

) is shown in Fig. 7.10. The main scientific use of this technique is that
each crystal has a unique transform, a unique signature. Unknown materials can be
tested, and their transforms compared with known signatures. Often, the unknown� %

This idea was first reported in [B: 174].
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material can be identified based on its transform, much as fingerprints are used to
identify people.

Angle of Diffraction in Degrees
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Fig. 7.10. This x-ray diffraction pat-
tern is the (spatial) Fourier transform of
the chemical bismuth molybdenum ox-
ide. Using a simple mapping, it can be
transformed into sound.

In materials, any periodic physical structure (usually called a crystal) reflects
electromagnetic energy (such as x-rays) in a characteristic way that can be decom-
posed into a collection of angles. The angle at which diffraction occurs quantifies the
resonance point for vibrations in the crystal, although thevibrations here are of x-
rays and not of air. Thus, the angle of the diffracted beam in crystallography plays a
role similar to sine waves in sound, providing an analogy between the Fourier trans-
form of the crystalline material and the Fourier transform of a sound. The intensity
of the energy at each angle can be similarly translated into sound wave amplitudes.
This then provides a basis for the mapping of x-ray diffraction data into sound data,
and it defines a method ofauditory crystallography,in which the spectrum of the
crystal maps into the spectrum of a sound.

7.3.2 Find the Spectrum

A base frequency, or fundamental, must be chosen to realize the sound. This choice is
probably best left to the performer by assigning various fundamentals to the various
keys of a keyboard, allowing the “crystal tones” to be playedin typical synthesizer
fashion. In generating the sound data, the fundamental frequency is based on the
angle, which has maximum intensity. Referring to Fig. 7.10,the largest spike occurs
at an angle of about 25 degrees, which is labeledÂ | Ã Ä .

Each angleÂ � of the x-ray diffraction pattern can be mapped to a particular fre-
quency

� � via the relation
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which transforms the x-ray diffraction angles into frequencies of sine waves. In gen-
eral, angles that are less thanÂ | Ã Ä are mapped to frequencies higher than the funda-
mental, whereas angles that are greater thanÂ | Ã Ä are mapped to lower frequencies.
This feature of the mapping is responsible for much of the uniqueness of crystal
sounds, because typical instrumental sounds have few significant partials below the
fundamental. As bothÅ Æ Ç � Â � �

andÅ Æ Ç � Â | Ã Ä �
can take on any value between 0 and 1,� � can be arbitrarily large (or small).

To see how the formula works, grab a calculator that has the sine function. For
a Â | Ã Ä of 25 degrees, calculateÅ Æ Ç � Â | Ã Ä � � Å Æ Ç � � * � � � � � � � �

(if you get -0.1323,
change from radians to degrees). To find the frequency corresponding to the spectral
line at 41 degrees, calculateÅ Æ Ç � � � � � � � � * � �

, and then divide
� � � � � � 6 � � � * � � �� � � � � � . Thus, the frequency of this partial is 0.6442 times the frequency of the fun-

damental. For an? note at 440 Hz, this would be� � � � � � � � � � � � � �
Hz.

The amplitude of each partial corresponds to the intensity of the Â � , and it may
be read directly from the graph. Referring to Fig. 7.10 again, the amplitude of the
sine wave with frequency corresponding to an angle of 41 degrees is about 2/3 the
amplitude of the fundamental. Designate the amplitude of the ith sine wave by� � .
Then the complete sound can be generated from the frequencies

� � 	 � � 	 � R 	 � � � with
amplitudes� � 	 � � 	 � R 	 � � � via the standard techniques of additive synthesis.

7.3.3 Simplify the Spectrum

As a practical matter, the number of different frequencies must be limited. The eas-
iest method is to remove all angles with amplitudes below a given threshold. The
threshold used forn � � ¢ ` R Á � �

, for example, is shown in Fig. 7.10. Using the for-
mula of the previous section, the truncated x-ray diffraction pattern can be readily
transformed into the set of partials shown in Fig. 7.11. The angle with the largest
intensity in the diffraction pattern (about 25 degrees) corresponds to the partial with
maximum amplitude, which appears at 950 Hz. Because the majority of larger an-
gles in the diffraction pattern occur at angles larger than 25 degrees, the majority of
partials in the resulting sound lie below 950 Hz. The clustering of partials near 500
Hz is perhaps the most distinctive feature of this sound.

It is feasible to create sounds from almost any material. TomStaley and I [B: 174]
experimented with a number of sound-materials, including glucose, tartaric acid,
topaz, roscherite, reserpine, a family of Bismuth Oxides, cocaine, and THC.15 One
of my favorite sounding crystals was from morphine, and thissound is featured in
the compositionDuet for Morphine and Cymbal. There are numerous sources for
x-ray diffraction data, which are available in technical libraries.� ,

Listening to materials does not necessarily have the same effect as consuming them.
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Fig. 7.11.The partials of the sound corresponding to the x-ray diffraction pattern for bismuth
molybdenum oxide are tightly clustered.

7.3.4 Dissonance Curve

Because crystal sounds liken � � ¢ ` R Á � � 16 have a high intrinsic dissonance caused
by tightly packed partials, the dissonance curves tend to beuniform, having neither
deep minima nor large peaks. For instance, Fig. 7.12 shows that the dissonance curve
for n � � ¢ ` R Á � �

has eight minima within two octaves that are barely distinguishable
from the general downward slope of the curve. Thus, no intervals are significantly
more consonant than any others, and the rationale for defining the related scale via
the dissonance curve vanishes.

                            octave 1                           octave  2
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Fig. 7.12.Dissonance curve for bismuth molybdenum oxide has minima atthe tick marks 1.2,
1.39, 1.42, 1.56, 1.61, 1.68, 1.89, and 2.13. The lack of any genuinely consonant intervals (no
deep minima) suggests that these intervals might not produce a very convincing musical scale.

This problem with the dissonance curves of highly complex spectra is readily
audible. Although the crystal spectra sound interesting, it is difficult to find any in-
tervals at which the sounds can be reasonably played. Octaves, fifths, and the small
dips in the dissonance curve all sound muddy in the lower registers, and clash dis-
astrously in the higher registers. One solution is to returnto the diffraction pattern
and choose a higher threshold. This will give a simpler spectrum and, hence, a more� -

I have used bismuth molybdenum oxide throughout this section to describe the process of
transforming crystal data into sound (even though the musical composition is based on the
spectrum of the morphine crystal) because I was unable to locate a clean x-ray diffraction
graph for morphine.
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usable dissonance curve. The danger is that oversimplification may lose the essence
of the original diffraction pattern.

Recall that points of minimum dissonance often develop because partials in two
simultaneously sounding complex tones coincide, and that dissonance curves show
the intervals at which a single sound can be played most consonantly. But if, as with
then � � ¢ ` R Á � �

sound, there are no such intervals, another approach is needed. Per-
haps consonance can be regained bychanging the spectrum along with the interval.
The simplest approach is to change the spectrum at each scalestep, so that all partials
coincide, no matter what scale steps are played. As will become clear, the total dis-
sonance of any combination of scale steps need not exceed theintrinsic dissonance
of the original sound.

7.3.5 Create an Instrument

Think of a “crystal instrument” in which each partial location defines a scale
step. If the 25 partials of the bismuth molybdenum oxide sound of Fig. 7.11
are labeled

� � 	 � � 	 � � � 	 � � V , then the scale steps occur at precisely these frequen-
cies. Construct a different spectrum at each scale step by choosing from among
the remaining partials. For instance, the spectrum at

� �
might contain partials at� � 	 � � 	 � V 	 � W 	 � � � 	 � � R 	 � � W 	 � � �

, and
� � �

. Similarly, the spectrum at
� W

might
contain

� W 	 � S 	 � � R 	 � � V 	 � � S 	 and
� � �

. This is shown diagrammatically in Fig. 7.13,
which displays a possible spectrum for each of the first 13 notes of the scale. Thus,
each vertical stripe is a miniature line spectrum specifying the frequency and ampli-
tude of the partials played when the key with “fundamental”

� � is pressed.
Observe that each spectrum contains a subset of the partialsfrom the original

crystal sound. When playing multiple notes, only partials that occur in the original
sound are present, and hence, the dissonance cannot be significantly greater than the
intrinsic dissonance of the original (it might increase somewhat because the partials
in the combined sound can have different amplitudes than in the original). Each note
contains only a small piece of the “complete” timbre, which is revealed only by
playing various “chords” and tonal clusters.17

In terms of implementation, this is more complex than the previous two exam-
ples, because each key of the sampler must contain its own waveform (corresponding
to the specified spectrum) and each spectrum must be created separately. Neverthe-
less, the process of generating 25 different spectra and assigning them to 25 different
keys on the sampler is not particularly onerous, especiallywhen much of the work
can be automated by software.

7.3.6 Play Music

The most striking feature of crystal sounds is their inharmonicity. The spectra tend to
be rich in frequencies within an octave of the fundamental because the major peaks� .

Essentially, the higher notes are pieces of a single grand über-chord. This is somewhat
parallel to Rameau’s fundamental bass, but for inharmonic sounds.
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Fig. 7.13.The frequencies of the bismuth sound are used to construct a scale and a family of
spectra consonant with that scale. Each scale step occurs with a fundamental& ± , and a possible
line spectrum is shown for each.

of the diffraction pattern often lie in clusters. This is in stark contrast with conven-
tional harmonic tones that consist of integer multiples of asingle base frequency.
Crystal spectra do not sound like standard musical instruments. A tempting analogy
is with the inharmonic spectra of bells. When the crystal tones are struck, and the
sound is allowed to die away slowly, they resonate much like abell, although addi-
tive synthesis does not require the use of such a percussive envelope. Although some
of the sounds (THC and roscherite, for instance) are very similar, most are distinct.
Perhaps the closest comparison is with synthesizer voices with names like “sound-
track,” “metal vapor,” and “space pad,” which give an idea ofthe subjective flavor of
the sounds.

Because it has a distinct and complex quality, I chose to compose a piece using
the sound of the morphine crystal, which was truncated so as to have 37 different
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partials. The 37-note partial-based scale was programmed into a sampler, and a “dif-
ferent” spectrum was assigned to each key, as in Fig. 7.13. The sounds were then
looped, and performance parameters like modulation, aftertouch, and amplitude en-
velopes were added.

The keyboard is easy to play, although decidedly unfamiliar. As each note con-
sists of partials aligned precisely with the partials of thecrystal sound, it is almost
impossible to hit “wrong” notes. Almost any combination of notes can be played
simultaneously, creating unique tonal clusters. In essence, partial-based scales and
spectra allow the performer to play with timbre directly, ina highly structured way.
In theDuet for Morphine and Cymbal, complex clusters of tones are juxtaposed over
a rhythmic bed supplied by the more percussive timbre of the cymbal. The bass line
was created exactly as above, but with very simple spectra (only two or three partials
per note) pitched well below the rest of the sound mass. Finally, a partial-based scale
of pure sine waves was used for the melody lines.

7.3.7 The Sound of Data

Originally we had hoped that by listening to the sounds of crystalline structures,
it would be possible to learn to identify the material from which the sound came,
using the ear as an aid in data analysis. Although we have beenunsuccessful in
realizing this goal of auditory crystallography, “noiseless sounds” such as the spectral
interpretation of x-ray diffraction data can provide a fruitful source of sounds and
tunings. This gives a way to “listen” to crystal structures and to “play” the sounds of
materials.

Imitative sound synthesis captures real sounds and places them inside musical
machines. Audio crystallography begins with a conceptual sound (molecular reso-
nances) that does not exist until it is mapped into the audio realm. There are many
other sources of conceptual sound data. For instance, atomic resonances are often
described via Fourier transforms, and they can be similarlyconverted to sound. At
the other end of the time scale, planetary and stellar systems resonate and can be
described using Fourier techniques.

Indeed, such explorations have already begun. Alexjander [B: 5] used transform
data to generate musical scales in the article “DNA Tunings”and the CDSequencia
[D: 1], although the sounds used with these scales were standard synthesizer tones
and acoustic instruments. Terenzi [D: 44] mapped data from radio telescopes into
audio form. She comments, “The predominant microtonality of the galaxy is a fasci-
nating aspect that could be explored... by creating new scales and timbres.” Indeed,
part of this book presents methods to carry out such exploration in a musical and
perceptually sensible way.

7.4 Summary

In the pursuit of genuinely xenharmonic music that does not sacrifice consonance or
depth of timbral material, this chapter presented three concrete examples of related
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tunings and spectra. The tingshaw bell and the Chaco rock showed how to take the
spectrum of an existing sound, draw the dissonance curve, find the related scale, and
build a playable “instrument.” The crystal section showed how to take an arbitrary
complex spectrum and to realize it in sound via a related partial-based scale.

Despite the odd timbres and scales, the resulting music gives an impression of
tonality or key. It has the surface feeling of tonality, but it is unlike anything possible
in 12-tet. McLaren comments18:

The Chaco Canyon Rockbounces from one inharmonic “scale member” to
another, producing an astonishing sense of consonance. Theeffect isn’t iden-
tical to traditional tonality–yet it produces many of tonality’s effects. One is
instantly aware of “right” and “wrong” pitches, and there isa sense of spec-
tral “progression.”

We call such musicxentonal.
With the intent of making this chapter a “how to” manual, no amount of detail

was spared. Each of many agonizing compositional, technical, and creative decisions
was discussed, the options weighed, and then one way was chosen. Other paths,
other choices of analysis methods, windowing techniques, scale steps, performance
parameters, keyboard mappings, and so on, would have led to different compositions.
Thus, the complete process, as outlined in the above six steps, is not completely
mechanical, and there are numerous technical and artistic pitfalls. Although the bell,
the rock, and the crystal were used throughout as examples, the methods readily
apply to any sound, although they are most useful with inharmonic sounds.

It is often desirable to augment the original sound with other complementary
tones, and there are three approaches to creating new soundsthat are fully consonant
with the original. Additive synthesis has already been mentioned several times as one
way to augment the timbral variation of a piece. The use of partial-based scales is not
limited to sounds created from x-ray crystallography, and it can be readily applied
in other situations. The third technique, called spectral mappings, is a way of trans-
forming familiar instrumental sounds into inharmonic versions that are consonant
with a desired “target” spectrum. This is discussed at length in the chapter “Spectral
Mappings.”

� /
In Tuning Digest120.
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Adaptive Tunings

Throughout the centuries, composers and theorists have
wished for musical scales that are faithful to the consonant
simple integer ratios (like the octave and fifth) but that can
also be modulated to any key. Inevitably, with a fixed (finite)
scale, some intervals in some keys must be compromised. But
what if the notes of the “scale” are allowed to vary? This
chapter presents a method of adjusting the pitches of notes
dynamically, anadaptive tuning, that maintains fidelity to a
desired set of intervals and can be modulated to any key. The
adaptive tuning algorithm changes the pitches of notes in a
musical performance so as to maximize sensory consonance.
The algorithm can operate in real time, is responsive to the
notes played, and can be readily tailored to the spectrum
of the sound. This can be viewed as a generalized dynamic
just intonation, but it can operate without specifically musical
knowledge such as key and tonal center, and it is applicable to
timbres with inharmonic spectra as well as the more common
harmonic timbres.

8.1 Fixed vs. Variable Scales

A musical scale typically consists of an ordered set of intervals that (along with a
reference frequency such as? � � � �

Hz) define the pitches of the notes used in a
given piece. As discussed at length in Chap. 4, different scales have been used in dif-
ferent times and places, and scales are usually thought of asbeing fixed throughout a
given piece, and even throughout a complete repertoire or musical genre. However,
even master performers may deviate significantly from the theoretically ideal pitches
[B: 21]. These deviations are not just arbitrary inaccuracies in pitch, but they are an
important expressive element. One way to model these pitch changes is statistically1;
another is to seek criteria that govern the pitch changes. For example, the goal might
be to play in a just scale that maximizes consonance even though the piece has com-
plex harmonic motion. The key is to use a variable scale, anadaptive tuningthat
allows the tuning to change dynamically while the music is performed. The trick is
to specify sensible criteria by which to retune.

Imagine a trumpet player. When performing with other brasses, there is a temp-
tation to play in the tuning that originates naturally from the overtones of the tubes.
When performing with a fixed pitch ensemble, the temptation is to temper the�

As suggested in [B: 4] and discussed in Sect. 4.8.
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pitches. Similarly, a violinist may lock pitch to the overtones of others in a string
quartet but may temper toward 12-tet when playing with keyboard accompaniment.
Some a capella singers (such as Barbershop quartets) are well known to deviate pur-
posefully from 12-tet so as to lock their pitches together. Eskelin2 advises his choral
singers to “singinto the chord, not through it,” to “lock into the chord.” In all of
these cases, performers purposely deviate from the theoretically correct 12-tet scale,
adjusting their intonation dynamically based on the musical context. The goal of an
adaptive tuning is to recapture some of these microtonal pitch variations, to allow
traditionally fixed pitch instruments such as keyboards an added element of expres-
sive power, to put a new musical tool into the hands of performers and composers,
and to suggest a new theory of adaptive musical scales.

8.1.1 Approaches to (Re)tuning

The simplest kind of tuning that is responsive to the intervals in a piece uses a fixed
scale within the piece but retunes between pieces. There is considerable historical
precedent for this sensible approach. Indeed, harpsichordists regularly retune their
instruments (usually just a few notes) between pieces. Carlos [B: 23] and Hall [B: 68]
introduced quantitative measures of the ability of fixed scales to approximate a de-
sired set of intervals. As different pieces of music containdifferent intervals, and
because it is mathematically impossible to devise a single fixed scale in which all
intervals are perfectly in tune, Hall [B: 68] suggests choosing tunings based on the
piece of music to be performed. For instance, if a piece has many thirds based on3 , then a tuning that emphasizes the purity of this interval would be preferred. An
elegant early solution to the problem of comma drift in JI uses two chains of mean-
tone a perfect fifth apart. This was proposed by Vicentino in 1555 [B: 199] and is
explored in [W: 32]. TheGrovenSystem3 allows a single performer to play three
acoustic pianos that together are tuned to a 36-tone just scale.

8.1.2 Approaches to Automated (Re)tuning

With the advent of electronics, Polansky [B: 142] suggests that a “harmonic distance
function” could be used to make automated tuning decisions,and points to the “intel-
ligent keyboard” of Waage [B: 202] that uses a logic circuit to automatically choose
between alternate versions of thirds and sevenths depending on the musical context.
As early as 1970, Rosberger [B: 155] proposed a “ratio machine” that attempts to
maintain the simplest possible integer ratio intervals at all times. Expanding on this
idea, Denckla [B: 39] uses sophisticated tables of intervals that define how to ad-
just the pitches of the currently sounding notes given the musical key of the piece.
The problem is that the tables may grow very large, especially as more contextual
information is included. A modern implementation of this idea can be found in the
justonictuning system [W: 14], which allows easy switching between avariety of#

From [B: 54]. Discussed more fully on p. 63.$
Described athttp://vms.cc.wmich.edu/ È code/groven
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scales as you play. Frazer has implemented a dynamic tuning in the Midicode Syn-
thesizer [W: 11] that allows the performer to specify the root of the retuned scale on
a dedicated MIDI channel. Thehermodetuning [W: 15] “analyses chords and im-
mediately adjusts the pitch of each note so that the prominent harmonics line up.”
Through its numerous sound examples, the website provides astrong argument for
the use of tunings that can continuously adjust pitch. The method is discussed fur-
ther in Sect. 8.2. Another modern implementation of a dynamic tuning is included in
Robert Walker’sFractal Tune Smithy[W: 31], which microtonally adjusts the pitch
of each new note so as to maximize the number of consonant dyads currently sound-
ing.

Partch had challenged [B: 128] that “it is conceivable that an instrument could
be built that would be capable of an automatic change of pitchthroughout its en-
tire range.” The hermode tuning system is one response. Another approach is John
deLaubenfels’ [W: 7] spring-mass paradigm that models the tension between the cur-
rently sounding notes (as deviations from an underlying just intonation template) and
adapts the pitches to relax the tension. This spring model, detailed in Sect. 8.3, pro-
vides a clear physical analog for the operation of adaptive tunings.

The bulk of this chapter realizes Partch’s challenge using ameasure of conso-
nance as its “distance function” to change the pitches of notes dynamically (and in
real time) as the music is performed.4 As we will see, the strategy can maintain a de-
sirable set of intervals (such as the small integer ratios) irrespective of starting tone,
transpositions, and modulations. In addition, the adaptive tuning is responsive to the
spectrum of the instruments as they are played. Recall that the dissonance function� 
 � É �

describes the sensory dissonance of a sound with spectrum� when played
at intervals

É
. Values of

É
at which local minima of the dissonance function occur

are intervals that are (locally) maximally consonant. The adaptive tuning algorithm
calculates the (gradient of the) dissonance at each time step and adjusts the tuning of
the notes toward the nearest minimum of the dissonance curve.

8.2 The Hermode Tuning

The hermode tuning, created in 1988 by Werner Mohrlok ([B: 48], [W: 15]), is a
method of dynamically retuning electronic musical instruments in real time so as to
remove tuning errors introduced by the equal-tempered scale. In order to help retain
compatibility with standard instruments playing in standard tunings, the hermode
tuning adjusts the absolute pitches so that the sum of the pitch deviations (in cents
from the nominal 12-tet) is zero.

The process begins with an analysis of the currently sounding notes. For example,
suppose that3 , @ , and

2
are commanded. The system detects the3 major chord

and consults a stored table of retunings, finding (in this case) that the@ should be
flattened by 14 cents and the

2
sharpened by 2 cents to achieve a justly intoned

chord. All three notes are then raised in pitch so that the average deviation is zero, as%
This first appeared in [B: 167], from which key elements of this chapter are drawn.
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illustrated in Fig. 8.1. In its normal operation, the analysis proceeds by reducing all
notes to one octave, which greatly simplifies the tables needed to store the retuning
information.

C E G

Equal Temperament

C

E (-14)

G (+2)

Just Intonation in C Hermode Tuning

C (+4)

E (-10)

G (+6)
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Fig. 8.1.The hermode tuning retunes chords to just intervals while centering the pitches so
that the sum of all deviations is zero. This helps to maintainhorizontal consistency and com-
patibility with standard instruments.

“Hermode” is a contraction and anglicization ofharmonischer modus, which
translates roughly as “modes of just intonation.” Thus, thegoal of the hermode sys-
tem is to automatically retune the keyboard into a form of just intonation while re-
taining the ability to perform in concert with other instruments. For example, when
the same note appears in successive chords, certain (vertical) intervals may be tem-
pered to disguise the (horizontal) motion. In order to counteract possible drifts of
the tuning, the hermode tuning does not allow the level of anychord pattern to be
retuned more thanÊ � �

cents, which effectively limits the retuning of any given note
to within Ê � �

cents (except for some of the sevenths). Finally, when many notes are
sounding simultaneously and the optimal tuning becomes ambiguous, the frequen-
cies of the notes are controlled to the best horizontal line.A complete description of
the hermode tuning can be found in Mohrlok’s paper “The Hermode Tuning System,”
which is available electronically on the CD [W: 26].

The hermode tuning can operate in several modes. These provide different ways
to ensure that the retuned pitches remain close to 12-tet andpragmatic features aimed
at making the system flexible enough for real time use. Some ofthese are:

(i) A mode that only adjusts thirds and fifths
(ii) A mode that includes adaptation of sevenths
(iii) A mode that considers the harmonic center of a piece
(iv) A mode containing a depth parameter that allows the performer to use

the hermode tuning at one extreme and equal temperament at the other
extreme

The hermode tuning is currently implemented in the Waldorf “Q” synthesizer [W: 34],
in the Access “Virus” [W: 33], in organs by Content [W: 5], andwill soon be added
to a number of software synthesizers. Theoretically, the hermode tuning generalizes
just intonation in at least two senses. First, it is insensitive to the particular key of the
piece; that is, the same tuning strategy “works” in all keys.Second, because the level
at which the tunings are equalized (above and below equal temperament) is allowed
to fluctuate with the music, there is no absolute tonal center.
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8.3 Spring Tuning

To see why adaptive tunings are not completely straightforward to specify and im-
plement, consider trying to play the simple four-note chord3 ,

�
,

2
, and ? in a

hypothetically perfect intonation in which all intervals are just. The fifths can be
made just (each with 702 cents) by setting3 � �

,
� � � � � ,

2 � H � � , and? � + � �
cents.5 But 3 to ? is a sixth; if this is to be a just major sixth, it must be 884 cents.6

Clearly,
� � � Ë� + � �

, and there is a problem. Perfection is impossible, and compro-
mise is necessary.

John deLaubenfels’ approach [W: 7], developed in 2000, defines a collection of
tuning “springs,” one for each of the just intervals. As shown in Fig. 8.2, each spring
connects two notes; the spring is at rest when the notes are ata specified just interval� . If the interval between the notes is wider than� , the springs pull inward to narrow it.
If the notes are tuned too closely, the spring pushes the pitches apart. Once all pairs of
notes are connected with appropriate springs, the algorithm simulates the tugging of
the springs. Eventually, the system reaches equilibrium where the intervals between
the notes have stabilized at a compromise tuning that balances all competing criteria.

spring at 
rest defined 
by JI interval

h

h

h

h C

D

G

A

major 2nd 
spring

perfect 5th
spring

major 6th
spring

major 2nd 
spring

perfect 4th
spring

perfect 5th
spring

extended spring
pulls inwards

towards JI interval

compressed 
spring pushes out
towards JI interval

h

h

h

h

h

h

Fig. 8.2.Springs are at rest when the notes are at their assigned just intervals. Once all notes
are connected by a network of springs (the right-hand network shows the four-note chordA , F , 5 , C and its springs), the algorithm simulates the pushing and pulling of springs. At
convergence, a compromise tuning is achieved.

For example, the right-hand side of Fig. 8.2 shows the four note-chord3 ,
�

,
2

,
and? along with the appropriate assignments of desired intervals to springs. As the
tuning of the fifths and sixths cannot all be pure simultaneously, the springs move, A to 5 is 702 cents and5 to F is also 702 cents. Hence,A to F is 1404 cents, which is

octave reduced to 204 cents.F to C is then' � 9 y > � ' u : � ; cents.-
Recall Table 4.2 on p. 60.
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the pitches slightly away from the just intervals. The exactvalues achieved depend
on the strength of the springs; that is, the constants that specify the restoring force of
the springs as a function of displacement. The spring tuningpresumes that the “pain”
caused by deviations in tuning (measured in cents) is proportional to the square of
the pitch change. Thus, pain is analogous to energy (becausethe energy stored in a
linear spring is proportional to the square of the displacement), and the goal of the
spring tuning is to minimize the pain.

The mistuning of simultaneously sounding notes is only one kind of pain that
can occur in a variable tuning. A second kind occurs when the same note is retuned
differently at different times. This happens when the note appears in different musical
contexts, i.e., in different chords, and it may be disconcerting in melody lines and in
sustained notes when it causes the pitch to waver and wiggle.The third kind occurs
when the whole tuning wanders up or down. All three of these issues are discussed
in detail in the context of the adaptive tuning algorithm of Sect. 8.4.

For the spring tuning, there is an elegant solution: Assign new kinds of springs to
deal with each new kind of pain. For example, Fig. 8.3 shows a collection of springs
connected horizontally between successive occurrences ofthe same notes. Observe
that these springs do not pull horizontally in time, but vertically in pitch. Strength-
ening the springs ensures less wavering of the pitches across time, but it pulls the
vertical harmonies further from nominal. Weakening these springs allows more vari-
ation of the pitches over time and closer vertical harmonies. Similarly, “grounding”
springs can be assigned to combat any tendency of the tuning to drift. This can be
implemented by connecting springs from each note to the nearest 12-tet pitch (for
instance).

h
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h
time
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Fig. 8.3.When notes are allowed to vary in pitch,
a A note in one chord may differ in pitch from
the “same”A note in another. This wandering of
pitches can be controlled by assigning a second
set of springs between the same notes occurring at
different (nearby) times. These springs are drawn
vertically because they do not pull horizontally
(in time), but only vertically (in pitch).
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Thus, there are three ways that the tuning can deviate from ideal and three kinds
of springs: Across each vertical interval is a spring that pulls toward the nearest just
ratio, horizontal springs control the instability of pitches over time, and grounding
springs counteract any global wandering of the tuning. The model has several pa-
rameters that directly influence how the retuning proceeds:

(i) The strength of the vertical springs may differ for each interval type.
(ii) The strength of the horizontal strings may differ depending on the dis-

tance in time. Setting all horizontal springs completely rigid allows the
same algorithm to find an “optimal” fixed tuning.7

(iii) The strength of the grounding springs may differ to specify the fidelity
to the underlying fixed tuning.

(iv) The strength of the springs may be a function of the loudness of the
notes.

(v) The time interval over which events are presumed to be simultaneous
may be changed.

(vi) There may be a factor that weakens the horizontal springs when many
notes are sounding.

The large number of parameters allows considerable flexibility in the implementation
and may be changed based on individual taste. For example, a listener preferring
pure intervals may de-emphasize the strength of the horizontal springs whereas a
listener who dislikes wavering pitches may increase the strength of the horizontal
springs. One thorny issue lies in the automatic specification of which size or kind of
spring should be assigned to each interval. For example, thejust interval of a major
second may be represented by the frequency ratio

� �q , by
qT , or by

TS , depending on
the musical context. In the spring tuning, this fundamentalassignment must be made
in a somewhat ad hoc manner, unless some kind of extra high-level logic is invoked.
In one implementation, dissonances such as the major and minor seconds are not tied
together with springs (equivalently, the spring constantsare set to zero). A number
of retunings of common practice pieces are available at deLaubenfels’ personal web
page, see [W: 7].

8.4 Consonance-Based Adaptation

Another way of creating an adaptive tuning is to calculate the sensory dissonance of
all notes sounding at each time instant and to move the pitches so as to decrease the
dissonance. Picture the mountainous contour of a dissonance curve such as Fig. 8.4.
If the musical score (or the performer) commands two notes that form the intervalÉ �

, then consonance can be increased by making the interval smaller. If the score.
In a preferred (non-real-time) application of the spring tuning, this “calculated optimum
fixed tuning” (COFT) can be used as a starting point for further adaptation by tying the
grounding springs to the COFT. This helps to lend horizontalconsistency to the retuned
piece. The COFT is analogous to the procedure applied to the Scarlatti sonatas in Sect. 11.2
using the consonance-based algorithm.
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commands
É �

, the consonance can be increased by making the interval larger. In
both cases, consonance is increased by sliding downhill, and dissonance is increased
by climbing uphill. As the minima of the dissonance curve define the related scale,
the simple strategy of always moving downhill provides a musically sensible way to
automatically play in the related scale. This is the idea behind the adaptive tuning
algorithm.
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Fig. 8.4.Any interval betweenÌ � andÌ # is dynamically retuned by sliding downhill on the
dissonance curve to the nearby local minimum atÌ Í . This adaptive tuning strategy provides a
way to automatically play in the related scale.

The algorithm must have access to the spectra of the sounds itis to adjust because
dissonance curves are dependent on the spectra. This information may be built-in (as
in the case of a musical synthesizer or sampler that inherently “knows” the timbre
of its notes), or it may be calculated (via a Fourier transform, for instance). The
algorithm adjusts the pitch of each note so as to decrease thedissonance until a
nearby minimum is reached. This modified set of pitches (or frequencies) is then
output to a sound generation unit. Thus, whenever a new musical event occurs, the
algorithm calculates the optimum pitches so that the sound (locally) minimizes the
dissonance.

There are several possible ways that the necessary adjustments can be carried out.
Consider the simple case of two notes with pitches� �

and� �
(with � �   � �

). With
no adaptive tuning, the interval� � 6 � �

will sound. The simplest adaptive strategy
would be to calculate the dissonances of the intervals� � 6 � � " Î

for various values
of

Î
, (appropriate

Î
’s could be determined by the bisection method, for instance). The

point of minimum dissonance is given by that value of
Î

for which the dissonance is
smallest. The pitches of� �

and � �
are then adjusted by an appropriate amount, and

the more consonant interval sounded.
This simple search technique is inefficient, especially when it is necessary to cal-

culate the dissonance of several simultaneous notes.8 Thegradient descentmethod
[B: 205] is a better way to find the nearest local minimum of thedissonance curve.
Suppose that] notes, each with spectrum� are desired. Let

� �   � �   � � �   � |/
The number of directions to search increases as' v , wherex is the number of notes.
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represent the fundamental frequencies (pitches) of the notes. Acost function
�

is
defined to be the sum of the dissonances of all intervals at a given time,� � �� Ï
 � 
 � � �� 
 � � (8.1)

An iteration is then conducted that updates the
� � by moving downhill over the]

dimensional surface
�

. This isµ¶· � K �� _ K d \ K � � ef � ¸ \ K b ¹º» � µ¶· ` ¸ �� _ K d \ K � � ef � ¸ \ K b ¹º» g Ð b a K ! b � Ñ K Ò Ð i _ � � � K � a Ò (8.2)

where thei _ � � � K � a is an approximation to the partial derivative of the cost with re-
spect to the� l m frequency. The minus sign ensures that the algorithm descends to look
for a local minimum (rather than ascending to a local maximum). More concretely,
the algorithm is:

Adaptive Tuning Algorithm

do
for � � �

to ]� � � Ó " � � � � � � Ó � g Ô � �� � � � Ó � (8.3)

endfor
until Õ � � � Ó " � � g � � � Ó � Õ   Ö for all �

where
Ó

is an iteration counter. Thus, the frequencies of all notes are modified in pro-
portion to the change in the cost and to the stepsizeÔ until convergence is reached,
where convergence means that the change in all frequencies is less than some speci-
fied Ö . Some remarks:

(i) Ö should be chosen based on the tuning accuracy of the sound generation
unit.

(ii) It may sometimes be advantageous to fix the frequency of one of the
� �

and to allow the rest to adapt relative to this fixed pitch.
(iii) It is sensible to carry out the adaptation with a logarithmic stepsize, that

is, one that updates the frequency in cents rather than directly in Hertz.
(iv) It is straightforward to generalize the algorithm to retune any number of

notes, each with its own spectral structure.
(v) A detailed discussion of the calculation of× Ø× § Ù � Ú � is given in Appendix H.
(vi) There are many ways to carry out the minimization of

�
. An iterative

algorithm is proposed because closed-form solutions for the minima are
only possible in the simplest cases.
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(vii) If desired, the adaptation can be slowed by decreasingthe stepsize. Out-
putting intermediate values causes the sound to slide into the point of
maximum consonance. This is one way to realize Darreg’s vision of an
“elastic” tuning [B: 36].

8.5 Behavior of the Algorithm

This section examines the adaptive tuning algorithm by looking at its behavior in
a series of simple situations. Any iterative procedure raises issues of convergence,
equilibria, and stability. As the adaptive tuning algorithm is defined as a gradient
descent of the dissonance

�
, such analysis is conceptually straightforward.However,

the function
�

is complicated, its error surface is multimodal, and exact theoretical
results are only possible for simple combinations of simplespectra. Accordingly,
the analysis focuses on a few simple settings, and examples are used to demonstrate
which aspects of these simple settings generalize to more complex (and hence more
musically interesting) situations. The next few examples (which are formalized as
theorems in Appendix H) show the close relationship betweenthe behavior of the
algorithm and the surface formed by the dissonance curve. Ineffect, the behavior
of the algorithm is to adjust the frequencies of the notes so as to make a controlled
descent of the dissonance curve.

8.5.1 Adaptation of Simple Sounds

The simplest possible case considers two notes� and
2

, each consisting of a single
partial. Let

� �
and i �

be the initial frequencies of the two sine wave partials, with� �   i �
, and apply the adaptive tuning algorithm. Then either

(i)
� Ú approachesi Ú as

Ó
increases

(ii)
� Ú andi Ú grow further apart as

Ó
increases

To see this graphically, picture the algorithm evolving on the single humped disso-
nance curve of Fig. 8.5. If the initial difference between

� �
andi �

is small, then the
algorithm descends the near slope of the hump, driving

� Ú and i Ú closer together
until they merge. If the difference between

� �
andi �

is large, then the algorithm de-
scends the far side of the hump and the dissonance is decreased as

� Ú and i Ú move
further apart. The two partials drift away from each other. (This is conceptually sim-
ilar to the “parameter drift” of [B: 172], where descent of anerror surface leads to
slow divergence of the parameter estimates.) Together, (i)and (ii) show that the point
of maximum dissonance (the top of the hump) is an unstable equilibrium.

For sounds with more complex spectra, more interesting (anduseful) behaviors
develop. Figure 8.6 shows how interlaced partials can avoidboth drifting and merg-
ing. Suppose that the note� consists of two partials fixed at frequencies

�
and

É �
with

É j �
, and that

2
consists of a single partial at frequencyi �

that is allowed to
adapt via the adaptive tuning algorithm. Then:
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Fig. 8.5.Dissonance between two notes& and� , each a pure sine wave. There are two possible
behaviors as the adaptive tuning algorithm is iterated, depending on the starting frequency. If� is in region A, then� ultimately merges with& . If � is in region B, then� and & ultimately
drift apart.

(i) There are three stable equilibria: ati � �
, at i � É �

, and ati �� � " É � � 6 �
(ii) If i �

is much less than
�
, theni Ú drifts toward zero

(iii) If i �
is much greater than

�
theni Ú drifts toward infinity

The regions of convergence for each of the possible equilibria are shown below the
horizontal axis of Fig. 8.6. As in the first example, wheni is initialized far below

�
or far above

É �
(in regions A or E), theni drifts away, and ifi starts near enough to�

or
É �

(in regions B or D), theni ultimately merges with
�

or
É �

.
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Fig. 8.6.Dissonance between a note with two fixed partials at& and Ì & , and a note with a
single partial� , as a function of� . There are five possible behaviors as the adaptive tuning
algorithm is iterated, depending on the starting frequency. If � begins in region A, then� drifts
toward zero. If� begins in region B, then� merges with& . If � begins in region C, then� has
a minimum at Û � w Ü Ý Þ# . If � begins in region D, then� merges withÌ & . If � begins in region
E, then� drifts toward infinity.

The interesting new behavior in Fig. 8.6 occurs in region C where i is repelled
from both

�
and

É �
and becomes trapped at a new minimum at

� � ß à � §� . In fact, this
behavior is generic—sandwiched partials typically reducedissonance by assuming
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intermediate positions. This is fortunate, because it gives rise to many of the musi-
cally useful properties of adaptive tunings. In particular, sets of notes with interlaced
partials do not tend to drift apart because it is difficult forpartials to cross each other
without a rise in dissonance.

To be concrete, consider two notes,� with partials at frequencies
� � � 	 � � 	 � � � � � �

and
2

with partials at frequencies
� i � 	 i � 	 � � � i | �

. Suppose thati � is sandwiched
between

� 

and

� 
 ß �
, � 
   i �   � 
 ß � 	

and that all other partials are far away� 
 � �     � 
 	 � 
 ß �     � 
 ß �i � � �     � 
 	 � 
 ß �     i � ß � �
Then the dissonances (and their gradients) betweeni � and the

� � are insignificant in
comparison with the dissonances betweeni � and the nearby frequencies

� 

and

� 
 ß �
.

Thus,i � acts qualitatively like thei of Fig. 8.6 as it is adjusted by the adaptive tuning
algorithm toward some intermediate equilibrium. Of course, the actual convergent
value depends on a complex set of interactions among all partials, but i � tends to
become trapped, because approaching either

� 

or

� 
 ß �
requires climbing a hump of

the dissonance curve and a corresponding increase in dissonance.

8.5.2 Adapting Major and Minor Chords

As more notes are adapted, the error surface increases in dimension and becomes
more complex. Notes evolve on an] -dimensional sheet that is pocketed with
crevices of consonance into which the algorithm creeps. Even a quick glance at
Appendix H shows that the number of equations grows rapidly as the number of
interacting partials increases.

To examine the results of such interactions in a more realistic situation, Table 8.1
reports converged values (in Hertz, accurate to the nearestinteger) for triads played
with harmonic tones with varying numbers of partials. In each case, the algorithm is
initialized with fundamental frequencies that correspondto the 12-tet notes3 , @ o ,2

(a minor chord) or to3 , @ ,
2

(a major chord), and the algorithm is iterated until
convergence. No drifting notes or divergence occurs because the partials of the notes
are interlaced. In all cases, the fifth (the interval between3 and

2
) remains fixed at

a ratio of 1.5:1. For simple two and three partial notes, the major and minor chords
merge, converging to a “middle third” that splits the fifth into two parts with ratios
1.21 and 1.24. With four partials, the middle third splits the fifth into two nearly
equal ratios of 1.224.

For notes with five or more partials (up to at least 16), the twoinitializations
evolve into distinct musical entities. The major chord initialization converges to a
triad with ratios 1.2 and 1.25, and the minor chord initialization converges to a triad
with the inverted ratios 1.25 and 1.2. These are consistent with the minor and ma-
jor thirds of the just intonation scale, suggesting that performances in the adaptive
tuning are closely related to a just intonation when played with harmonic timbres of



8.5 Behavior of the Algorithm 161

Table 8.1. Converged major and minor chords differ depending on the number of harmonic
partials they contain.

Initial Initial Converged Converged Converged
notes frequencies frequencies frequencies frequencies

in 12-tet (2–3 partials) (4 partials) (5–16 partials)
C 523 523 523 523
Ep 622 647 641 627
G 784 784 784 784

C 523 523 523 523
E 659 647 641 654
G 784 784 784 784

sufficient complexity. Thus, when the sounds have a harmonicspectra, the action of
the adaptive tuning algorithm is consistent with just intonation.

8.5.3 Adapting to Stretched Spectra

When the spectra deviate from a harmonic structure, however, the justly tuned inter-
vals are not necessarily consonant, and the adaptation operates so as to minimize the
sensory consonance. In extreme cases, it is easy to hear thatthe ear prefers con-
sonance over justness. A particularly striking example is the use of sounds with
stretched (and/or compressed) spectra as in theChallenging the Octavesound ex-
ample [S: 1] from Chap. 1.

Consider an inharmonic sound with partials at� 	 � � � � 	 � � � � � 	 � � � � � 	 and* � � �
which are the first five partials of the stretched spectrum defined by� � � � ? � � � ~ �
for ? � � � � . As shown in Table 8.2, an initial set of notes at3 , @ ,

2
, 3 converges to

notes with fundamental frequencies that are completely unrelated to “normal” 12-tet
intervals based on the semitone

� � � � . The convergent values also bear no resem-
blance to the just intervals. Rather, they converge near notes of the stretched scale
defined by the stretched semitoneá � � � � � � � . Thus, a major chord composed of
notes with stretched timbres converges to a stretched majorchord. Similarly, the mi-
nor chord converges to a stretched minor chord. Sound examples [S: 46] and [S: 47]
demonstrate, first in the original 12-tet tuning and then after the adaptation is com-
pleted.

8.5.4 Adaptation vs. JI vs. 12-tet

As harmonic tones are related to a scale composed of simple integer ratios, using the
adaptive tuning strategy is similar to playing in a Just Intonation (JI) major scale,
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Table 8.2. Using five partial stretched timbres, the adaptive tuning algorithm converges to
stretched major and minor chords. The chords in this table can be heard in sound examples
[S: 46] and [S: 47].

Initial Initial Nearest
notes frequency of Convergent Convergent stretched step

in 12-tet fundamental values ratios â u � # � ' ( )
C 523 508 1.0 â 1 u )
Ep 622 616 1.21 â $ u ) ( ' �
G 784 784 1.54 â . u ) ( = 9
C 1046 1067 2.1 â � # u ' ( )
C 523 523 1.0 â 1 u )
E 659 665 1.27 â % u ) ( ' <
G 784 808 1.54 â . u ) ( = 9
C 1046 1100 2.1 â � # u ' ( )

at least in a diatonic setting. Significant differences occur, however, when the tonal
center of the piece changes. Consider a musical fragment that cycles through major
chords around the circle of fifths:3 2 � ? @ n � z 3 z 2 z � z ? z � 3
For reference, this is performed in sound example [S: 48] in 12-tet. When played in JI
in the key of C major,9 as in sound example [S: 49], the progression appears very out-
of-tune. This occurs because intervals in keys near3 are just (or nearly so), whereas
intervals in distant keys are not.10 For instance, major thirds are harmoniously played
at intervals of 5:4 in the keys near3 , but they are sounded as 32:25 in? and@ and as
512:405 in� z . Some fifths are impure also; the fifth in the

� z chord, for example, is
played as 40:27 rather than the desired 3:2. Such inaccuracies are readily discernible
to the ear and sound out-of-tune and dissonant. Problems such as this are inevitable
for any non-equal fixed tuning [B: 68]. The adaptive tuning, on the other hand, is able
to maintain the simple 5:4 and 3:2 ratios throughout the musical fragment because it
does not maintain a fixed set of intervals. The circle of fifthsis performed again in
sound example [S: 50]; all chords are just and consonant.

One might consider switching from JI in3 to JI in
2

to JI in
�

and so on, using
the local musical key to determine which JI scale should be used at a given instant.
This results in a performance identical to [S: 50].11 This cures the immediate prob-
lem for this example. Unfortunately, it is not always easy todetermine (in general)
the proper local key of a piece, nor even to determine if and when a key change
has occurred. The adaptation automatically adjusts the tuning to the desired intervals
with no a priori knowledge of the musical key required. When used with harmonic0

Using the 12 note JI scale from Fig. 4.7 on p. 61.� 1
Such injustices shall not go unpunished!� �
This is the approach taken by table-driven schemes such as the justonic [W: 14] tuning.
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timbres, it is reasonable to view the adaptive tuning as a wayto continuously inter-
polate between an appropriate family of just intonations.

8.5.5 Wandering Tonics

A subtler problem12 is that variable tunings may drift or wander. For example, Hall
[B: 68] points out that if the chord pattern of Fig. 8.7 is played in JI with the tied
notes held at constant pitch, then the instrument finishes lower than it begins. Equal
temperament prevents this drift in tonal center by forcing the mistuning of many of
the intervals away from their just small integer ratios. Theadaptive tuning maintains
the just ratios, and the tonal center remains fixed. This is possible because the pitches
of the notes are allowed to vary microtonally. For instance,the 3 note in the second
chord is played at 528 Hz, and the “same” note in the first chordis played at 523 Hz.

Three renditions of Fig. 8.7 are played in sound examples [S:51] to [S: 53]. In
[S: 51], the phrase is played six times in just intonation. Because of the tied notes,
the tuning drifts down about 21 cents each repeat. As the firstand the final chords
are identical, each repeat starts where the previous one ends. After five repetitions, it
has drifted down about a semitone. The final rendition is played at the original pitch
to emphasize the drift. For comparison, [S: 52] plays the same phrase in 12-tet; of
course, there is no drift. Similarly, [S: 53] plays the phrase in adaptive tuning. Again
there is no drift; yet all chords retain the consonance of simple integer ratios.

One of the major advantages of the 12-tet scale over JI is thatit can be transposed
to any key. The adaptive tuning strategy shares this advantage, as demonstrated by
the circle of fifths example. Both 12-tet and the adaptive tuning can be played starting
on any note (in any key). The 12-tet tuning has sacrificed consonance so that (say) all3 notes can have the same pitch. As before, the adaptive tuningalgorithm modifies
the pitch of each note in each chord slightly to increase the consonance. Thus, the3 note in the3 chord has a (slightly) different frequency from the3 note in the�
chord, and from the (12-tet enharmonically equivalent)n z note in the

2 z chord.
When restricted to a single key (or to a family of closely related keys), JI has the

advantage that it sounds more consonant than 12-tet (at least for harmonic timbres),
because all intervals in 12-tet are mistuned somewhat from the simple integer ratios.
The adaptive tuning shares this advantage with JI. Thus, thedifference between an
adapted piece and the same piece played in 12-tet is roughly the same as the differ-
ence between JI and 12-tet, for pieces in a single key when played with harmonic
timbres. Whether this increase in consonance is worth the increase in complexity
(and effort) is much debated, although the existence of groups such as theJust Into-
nation Networkis evidence that some find the differences worthy of exploration.

When focusing on timbres with harmonic spectra, the adaptive spring tuning of
Sect. 8.3 and the consonance-based adaptation have much thesame effect, although
the spring tuning requires more information because it mustspecify which just inter-
val to assign to each spring. When the timbres are inharmonic, however, neither the
spring tuning nor the table-driven models are appropriate.� #

Gary Morrison, in theTuning Digest(9/9/96), argues that wandering tonics can also be
viewed as a feature of dynamic tunings that “have a fascinating musical effect.”
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Frequencies when 
played in 12-tet:

  392   440   440   392    392

  329.5 329.5 293.5 293.5  329.5

  261.5 261.5 293.5 247    261.5

  131   110    87.5  98    131

Frequencies when 
played in adaptive 
tuning:

  392.5 440   438.5 391    392.5

  327   330   292   294    327

  261.5 264   292   245    261.5

  131   110    87.5  98    131

Frequencies when
played in JI with held 
notes:

  392.5 436---436   387.5--387.5

  327   327   290.5-290.5  323

  261.5-261.5 290.5 242    258.5

  131   109    87    96.5  129

Ratios when played in 
adaptive tuning and 
in JI:

  6/5   4/3   3/2   4/3    6/5

  5/4   5/4   1/1   6/5    5/4

  2/1   6/5   5/3   5/4    2/1

 

Fig. 8.7.An example of drift in Just Intonation: the fragment ends about 21 cents lower than it
begins. 12-tet maintains the pitch by distorting the simpleinteger ratios. The adaptive tuning
microtonally adjusts the pitches of the notes to maintain simple ratios and to avoid the wander-
ing pitch. Frequency values are rounded to the nearest 0.5 Hz. The three cases are performed
in sound examples [S: 51] to [S: 53].

8.5.6 Adaptation to Inharmonic Spectra

A major advantage of the adaptive tuning approach becomes apparent when the tim-
bres of the instruments are inharmonic, that is, when the partials are not harmoni-
cally related. Consider a “bell-like” or “gong-like” instrument with the inharmonic
spectrum of Fig. 8.8, which was designed for play in 9-tet using the techniques of
Chap. 12. The dissonance curve is significantly different from the harmonic disso-
nance curve. The most consonant intervals occur at steps of the 9-tet scale (the bot-
tom axis) and are distinct from the simple integer ratios.The 12-tet scale steps (shown
in the top axis) do not closely approximate most of these consonant intervals. Table
8.3 demonstrates the behavior of the adaptive tuning algorithm when used with this
9-tet tone. Pairs of notes are initialized at standard 12-tet; the algorithm compresses
or expands them to the nearest minimum of the dissonance curve. In all cases, the
converged values are intervals in 9-tet. Similarly, a standard major chord converges
to the root, third, and fifth scale steps of the 9-tet scale.
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Fig. 8.8.Dissonance curve for an inharmonic timbre with partials at) , â 0
, â � %

, â � /
, â # �

, â # ,
,â # .

, andâ $ 1
, whereâ u 0 � ' . This timbre is appropriate for 9-tet, because minima of the

dissonance curve occur at many of the 9-tet scale steps (bottom axis) and not at the steps of
the 12-tone scale steps (top axis). Observe that every thirdstep in 9-tet is equal to every fourth
step in 12-tet. This follows from the numerical coincidencethat r 0 � ' s $ u r � # � ' s % .

Table 8.3. Using the 9-tet sound of Fig. 8.8, the adaptive tuning algorithm converges to
minima of the related dissonance curve. The major chord converges to a chord with 9-tet scale
steps 0, 3, and 5.

Initial Initial Nearest
notes frequency of Convergent Convergent 9-tet step

in 12-tet fundamental values ratios â u 0 � '
C 523 528
Ep 622 617

1.17 â # u ) ( ) >
C 523 528
E 659 659

1.26 â $ u ) ( ' ;
C 523 518
F 698 705

1.36 â % u ) ( 7 ;
C 523 513
FE 739 755

1.47 â , u ) ( 9 >
C 523 528
G 783 777

1.47 â , u ) ( 9 >
C 523 523
GE 830 830

1.59 â - u ) ( = :
C 523 519
A 880 888

1.71 â . u ) ( > )
C 523 527
E 659 664

1.26 â $ u ) ( ' ;
G 783 774

1.47 â , u ) ( 9 >



166 8 Adaptive Tunings

The adaptive tuning strategy can be viewed as a generalization of just intonation
in two directions. First, it is independent of the key of the music being played; that is,
it automatically adjusts the intonation as the notes of the piece move through various
keys. This is done without any specifically “musical” knowledge such as the local
key of the music. Second, the adaptive tuning strategy is applicable to inharmonic
as well as harmonic sounds, thus broadening the notion of just intonation to include
a larger palette of sounds. Recall that a scale and a timbre are said to be related if
the timbre generates a dissonance curve with local minima atthe scale steps. Using
this notion of related scales and timbres, the action of the algorithm can be described
succinctly:

The adaptive tuning algorithm automatically retunes notesso as to play
in intervals drawn from the scale related to the timbre of thenotes.

8.6 The Sound of Adaptive Tunings

This section examines the adaptive tuning algorithm by listening to its behavior.
Several simple sound examples demonstrate the kinds of effects possible. The com-
positions of Chap. 9 (see especially Table 9.1 on p. 181) demonstrate the artistic
potential.

8.6.1 Listening to Adaptation

In sound example [S: 54], the adaptation is slowed so that it is possible to hear the
controlled descent of the dissonance curve. Three notes areinitialized at the ratios
1, 1.335, and 1.587, which are the 12-tet intervals of a fourth and a minor sixth (for
instance,3 , � , and? o ). Each note has a spectrum containing four inharmonic par-
tials at

� 	 � � � � � � 	 � � H � 	 � �
. Because of the dense clustering of the partials and the

particular intervals chosen, the primary perception of this tonal cluster is its rough-
ness and beating. As the adaptation proceeds, the roughnessdecreases steadily until
all of the most prominent beats are removed. The final adaptedratios are 1, 1.414,
and 1.703.

This is illustrated in Fig. 8.9, where the vertical grid on the left shows the familiar
locations of the 12-tet scale steps. The three notes are represented by the three ver-
tical lines, and the positions of the partials are marked by the small circles. During
adaptation, the lowest note descends, and the higher two ascend, eventually settling
on a “chord” defined by the intervalsi ,

� � � � i , and
� � H i . The arrows pointing left

show the locations of four pair of partials that are (nearly)coinciding.
Sound example [S: 54] performs the adaptation three times atthree different

speeds. The gradual removal of beats is clearly audible in the slowest. When faster,
the adaptation takes on the character of a sliding portamento. There is still some
roughness remaining in the sound even when the adaptation iscomplete, which is
due to the inherent sensory dissonance of the sound. The remaining slow beats (about
one per second) are due to the resolution of the audio equipment.
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F#=1.41 f

C=1.0 f

F=1.33 f

Ab =1.58 f
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2.0 g

2.4 g

F#=1.41 f

C=1.0 f

F=1.33 f

Ab =1.58 f

C=2.0 f

C=4.0 f

1.0 g

1.41 g

1.7 g

2.0 g

2.4 g

Fig. 8.9. Three notes have fundamen-
tals at A , G , and C p , and partials
at 1.0& , 1.41& , 1.7& , and 2.0& . After
adaptation, theA at frequency& slides
down to frequency� , and the other
two notes slide up to 1.41� and 1.70� .
The arrows on the right emphasize the
resulting four pairs of (almost) coin-
ciding partials. Sound example [S: 54]
demonstrates.

There are two time scales involved in the adaptation of a musical passage. First
is the rate at which time evolves in the music, the speed at which notes occur. Sec-
ond is the time in which the adaptation occurs, which is determined by the stepsize
parameter. The two times are essentially independent13; that is, the relative rates of
the times can be chosen by the performer or composer. For instance, the adaptation
can be iterated until convergence before the sound starts, as was done in Fig. 8.7 and
sound examples [S: 50] and [S: 53]. Alternatively, intermediate values of the adap-
tive process can be incorporated into the performance, as was done in sound example
[S: 54]. The resulting pitch glide can give an interesting elasticity to the tuning, anal-
ogous to a guitar bending strings into tune or a brass player lipping the sound to
improve the intonation. Adaptation provides a kind of “intelligent” portamento that
begins wherever commanded by the performer and slides smoothly to a nearby most-
consonant chord. The speed of the slide is directly controllable and may be (virtually)
instantaneous or as slow as desired.

8.6.2 Wavering Pitches

When the two time rates are coupled incorrectly, there may besome unusual (and
undesirable) effects. Several sound examples demonstrateusing the first section of
Domenico Scarlatti’s harpsichord sonata K1. These are as follows:

(i) [S: 55]: Scarlatti’s K1 sonata in 12-tet
(ii) [S: 56]: Scarlatti’s K1 sonata with adaptation (incorrect stepsizes)
(iii) [S: 57]: Scarlatti’s K1 sonata with adaptation.� $

The inevitable time lag due to the computation of the algorithm can be made almost imper-
ceptible by using a reasonably fast processor.
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The first two measures of the sonata are shown in Fig. 8.10. Thefirst eight notes
in all three are identical because only one note is sounding.When two voices occur
simultaneously, both are adapted, and the adapted version differs from the 12-tet
version. The most obvious change is during the trill at the end of the second measure,
although subtler differences can be heard throughout.
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Fig. 8.10.Scarlatti’s Sonata K1 is played in 12-tet, and with different speeds of adaptation.
The first two measures are shown.

Sound example [S: 58] focuses attention on the second measure by playing all
three versions one after the other. As written (and as heard in 12-tet), the trill alter-
nates between? and n o , and it is accompanied by a slower repeated? an octave
below. When adapted (assuming a harmonic spectrum for the harpsichord),14 the be-
havior of the algorithm can best be described by reference toa dissonance curve for
harmonic sounds (such as in Fig. 6.1 on p. 96). The octaves in the trill are unchanged,
because the octave is a minimum of the dissonance curve. The interval between?
andn o does not fall on a minimum, and the adaptation moves downhillon the dis-
sonance curve, pushing the notes apart to the nearby minimumthat occurs at a ratio
of 2.25 (which is just a bit more than an octave plus a whole tone). The algorithm
essentially “splits the difference” by sharpening then o about 50 cents and simulta-
neously flattening the? about 50 cents. It is the rapid oscillation between the true?
and the flat? that causes the wavering.

Although the algorithm is moving each pair to the most consonant nearby in-
terval, the overall effect is unlikely to be described as restful consonance. Rather,
the rapid wiggling of the lower tone during the trill is probably confusing and dis-
concerting. This kind of wavering of the pitch can occur whenever rapidly varying
tones occur over a bed of sustained sounds. Although this maybe useful as a special
effect, it is certainly not always desirable. The strangeness of the gliding of the adap-
tive tuning is especially noticeable when played using an instrumental sound like the
harpsichord that cannot bend its pitch.

There are several different ways to fix the wavering pitch problem. The simplest
is to adapt the notes with a slower time constant, like the elastic tuning of sound� %

The harpsichord is assumed to have nine harmonic partials where theã � � partial has ampli-
tude� ( : ± . See Fig. 11.7 on p. 225.
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example [S: 54]. By adapting more slowly, the pitches of rapid trills such as in the
second measure of the Scarlatti piece do not have time to wander far, thus reducing
the waviness. Another solution is to adapt those notes that are already sounding more
slowly than newer notes. This is implemented by making the stepsize corresponding
to new notes larger than the stepsize corresponding to held notes. A third approach,
using the idea of a musical “context” or “memory,” is explored in Sect. 9.4.

To investigate this, the same two measures of the Scarlatti K1 sonata are played
with new notes adapted ten times as fast as held notes. In sound example [S: 58](c),
the wavering of the pitch beneath the trill is almost inaudible. A careful look at the
adapted notes shows that the sustained? descends only about 10 cents, and then o ’s
ascend almost 90 cents, again forming an interval of 2.25. Thus, the sustained? only
wiggles imperceptibly and then o has risen to (almost) an .

This example demonstrates that the use of the adaptive tuning can be at odds with
a composers intent. Likely, Scarlatti meant for the dissonance of the trill to be part of
the effect of the piece (else why write it?). By turning this dissonance into a slightly
wavering series of consonances, this intent has been subverted, underscoring the dan-
ger of applying a musical transformation in a setting to which it is not appropriate.
This example shows the behavior of the adaptive tuning algorithm in a particularly
unfriendly setting. When many notes are sounding at once, new notes (such as the
trill) become less likely to cause large wavering changes. Thus, the simple two note
setting is the most likely place to encounter the wavering pitch phenomenon.

8.6.3 Sliding Pitches

In the adaptive tuning algorithm, whenever a new note occurs, all currently sounding
notes are re-adapted. In some situations, like the Scarlatti example, this can cause an
undesirable wavering pitch. In other situations, however,the pitches glide gracefully,
smoothly connecting one chord to another. In yet other situations, the adaptation may
cause new “chords” to form as the pitches change. Sound example [S: 59] contains
six short segments:

(i) A single measure in 12-tet
(ii) The “same” measure after adaptation

(iii) The measure (i) followed immediately by (ii)
(iv) Another measure in 12-tet
(v) The “same” measure after adaptation
(vi) The measure (iv) followed immediately by (v)

Both (i) and (ii) start on a� major chord. The adapted version is slightly closer to
a justly intoned chord, but this is probably imperceptible.The most obvious change
occurs at the second beat. Although the 12-tet version simply continues to arpeggiate,
one note of the adapted version slides up. Perhaps because this tone is moving against
a relatively fixed background, it jumps out and becomes the “main event” of the
passage. When the chord changes to

2
major at the third beat, an? note remains

suspended. In the adapted version, this repels the sliding note, which moves back
down to a

2
note on the third beat.
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Thus, the adaptation has actually added something of musical interest. In fact,
adaptation will sometimes change the “chord” being played.In parts (iv) and (v) of
sound example [S: 59], one measure of a� chord is played in 12-tet, followed by
its adapted version. Although the basic harmony remains fixed in the original 12-tet,
the chord changes in the adapted version on the fourth beat. The change appears to
be to a nearby, closely related chord, although in reality itis to a nearby microtonal
variant of the original.

Sound example [S: 60],Three Ears, contains all the measures from sound ex-
ample [S: 59]. Many other similar passages occur—the algorithm causes interesting
glides and unusual microtonal adjustments of the notes, allwithin an “easy-listening”
setting. The microtonal movement is done in a perceptually sensible fashion. In the
Scarlatti examples [S: 58], the sliding pitches were a liability. In sound examples
[S: 59] and in theThree Ears, they are exploited as a new kind of “intelligent” musi-
cal effect.

8.7 Summary

The adaptive tuning strategy provides a new solution to the long-standing problem
of scale formation. Just intonations (and related scales) sacrifice the ability to mod-
ulate music through multiple keys, and 12-tet sacrifices theconsonance of intervals.
Adaptive tunings retain both consonance and the ability to modulate, at the expense
of (real-time) microtonal adjustments in the pitch of the notes. The spring tuning
provides a simple physical model of the stresses of mistunings, and the consonance-
based adaptive tuning encodes a basic human perception, thesensory dissonance
curves.

Adaptive tuning algorithms are implementable in software or hardware and can
be readily incorporated into electronic music studios. Just as many MIDI synthesizers
have built-in alternate tunings tables that allow the musician to play in various just
intonations and temperaments, an adaptive tuning feature could be readily added to
sound modules. The musician can then effortlessly play in a scale that continuously
adjusts to the timbre and the performance in such a way as to maximize sensory
consonance. One concrete realization appears in Chap. 9.

The behavior of the adaptive tuning algorithm can be described in terms of notes
continuously descending a complex multidimensional landscape studded with dis-
sonant mountains and consonant valleys. These behaviors are described mathemati-
cally in Appendix H. For harmonic timbres, the adaptive tuning acts like a just into-
nation that automatically adjusts to the key of the piece, with no specifically musical
knowledge required. For harmonic timbres, the action of thespring tuning and the
consonance-based adaptations are similar. For inharmonictimbres, the adaptive tun-
ing automatically adjusts the frequencies of the tones to a nearby minimum of the
dissonance curve, providing an automated way to play in the scale related to the
spectrum of the sound. Adaptive tunings are determined by the spectra of the sounds
and by the piece of music performed; chords and melodies tendto become more “in
tune with themselves.”
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A Wing, An Anomaly, A Recollection

The adaptive tuning of the last chapter adjusts the pitches
of notes in a musical performance to minimize the sensory
dissonance of the currently sounding notes. This chapter
presentsa real-time implementation calledAdaptun (written
in the Max programming language and available on the
CD in the software folder) that can be readily tailored
to the timbre (or spectrum) of the sound. Several tricks for
sculpting the sound of the adaptive process are discussed.
Wandering pitches can be tamed with an appropriatecontext,
a (inaudible) collection of partials that are used in the
calculation of dissonance within the algorithm, but that
are not themselves adapted or sounded. The overall feel of
the tuning is effected by whether the adaptation converges
fully before sounding (or whether intermediate pitch bends
are allowed). Whether adaptation occurs when currently
sounding notes cease (or only when new notes enter) can
also have an impact on the overall solidity of the piece.
Several compositional techniques are explored in detail, and
a collection of sound examples and musical compositions
highlight both the advantages and weaknesses of the method.

9.1 Practical Adaptive Tunings

To bring the techniques of adaptive tunings into sharper focus, this chapter looks at
several examples of the use of adaptation in tuning. In some (such asLocal Anomaly
[S: 79]), all notes adapt continuously and simultaneously.In others (such asWing
Donevier [S: 85]), all notes are adapted completely before they are sounded.Re-
called Opus[S: 82] presents an adaptation of a (synthesized) string quartet in which
a “context” is used to help tame excess horizontal (melodic)motion. Several compo-
sitions (which are listed in Table 9.1) are discussed at length, and steps are detailed to
highlight the practical issues, techniques, and tradeoffsthat develop when applying
adaptive tunings.

The next section discusses theAdaptun software, and Sect. 9.3 details some
of the simplifications to the basic algorithm of Chap. 8 that are used to make the
program operate efficiently in real time. The use of a contextis discussed in Sect. 9.4
as a way of imposing a kind of consistency on the adaptation toreduce some of the
melodic artifacts. The bulk of the chapter provides an extensive series of examples.
Many of these are short snippets exploring some feature of the adaptive process,
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and many are complete compositions. The final section poses some of the aesthetic
questions that arise in the use of adaptation in musical contexts.

9.2 A Real-Time Implementation inMax

Figure 9.1 shows the main screen of the adaptive tuning programAdaptun , which
was first presented in [B: 171]. The user must first configure the program to access
the MIDI hardware. This is done using the two menus labeledSet Input Port
andSet Output Port , which list all valid MIDI sources and destinations. The
figure shows the inputUS-428 Port 1 , which is my hardware, and the output
is set toä IAC Bus # 2 , which is an interapplication (virtual) port that allows
MIDI data to be transferred between applications. The interapplication ports allow
Adaptun to exchange data in real time with sequencers, software synthesizers, or
other programs. In particular, the output ofAdaptun can be recorded by setting the
input of a MIDI sequencer to receive on the appropriate IAC bus.

In normal operation, the user plays a MIDI keyboard. The program rechannel-
izes and retunes the performance. Each currently sounding note is assigned a unique
MIDI channel, and the adapted note and appropriate pitch bend commands are output
on that channel. As the algorithm iterates, updated pitch bend commands continue
to fine tune the pitches. The MIDI sound module must be set to receive on the ap-
propriate MIDI channels with “pitch bend amount” set so thatthe extremes ofÊ � �
correspond to the setting chosen in the box labeledPB value in synth . The
finest pitch resolution possible is about 1.56 cents when this is set to 1 semitone,
3.12 cents when set to 2 semitones, and so on.

There are several displays that demonstrate the activity ofthe program. First, the
message box directly under the block labeledAdapt shows the normalized sensory
dissonance of the currently sounding notes. The bar graph onthe left displays the
sensory dissonance as a percentage of the original sensory dissonance of the current
notes. A large value means that the pitches did not change much, and a small value
means that the pitches were moved far enough to cause a significant decrease in sen-
sory dissonance. The large display in the center shows how many notes are currently
adapting (how many pieces the line is broken into) and whether these notes have
adapted up in pitch (the segment moves to the right) or down inpitch (the segment
moves to the left). The screen snapshot in Fig. 9.1 shows the adaptation of three
notes; two have moved down and one up. There is a wraparound ineffect on this dis-
play; when a note is retuned more than a semitone, it returns to its nominal position.
The number of actively adapting tones is also displayed numerically in the topmost
message box.

The user has several options that can be changed by clicking on message boxes.1

One is labeledspeed and depth of adaptation in Fig. 9.1. This repre-
sents the stepsize parameterÔ from (8.2) and (8.3) on p. 157. When small, the�

When aMax message box is selected, its value can be changed by draggingthe cursor or
by typing in a new value. Changes are output at the bottom of the box and incorporated into
subsequent processing.
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Fig. 9.1. Main screen of the adaptive tuning programAdaptun , implemented in theMax
programming language.

adaptation proceeds slowly and smoothly over the dissonance surface. Larger val-
ues allow more rapid adaptation, but the motion is less smooth. In extreme cases, the
algorithm may jump over the nearest local minimum and descend into a minimum
far from the initial values of the intervals. The relationship between the speed of
adaptation and “real time” is complex, and it depends on the speed of the processor
and the number of other tasks occurring simultaneously. Themessage box labeled#
of partials in each note specifies the maximum number of partials that
are used. (The actual values for the partials are discussed in detail in Sect. 9.3.)

There are two useful tools at the bottom of the main screen. The menu labeled
input MIDI file lets the user replace (or augment) the keyboard input with
data from a standard MIDI file. The menu has options tostop , start , andread .
First, a file isread . When started, adaptation occurs just as if the input were ar-
riving from the keyboard. The message box immediately belowthe menu specifies
the tempo at which the sequence will be played. This is especially useful for older
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(slower) machines. A standard MIDI file (SMF) can be played (and adapted) at a
slow tempo and then replayed at normal speed, increasing theapparent speed of the
adaptation. Finally, theall notes off button sends “note-off” messages on all
channels, in the unlikely event that a note gets stuck.

9.3 The Simplified Algorithm

In order to operate in real time (actual performance dependson processor speed),
several simplifications are made. These involve the specification of the spectra of the
input sounds, using only a special case of the dissonance calculation, and a simplifi-
cation of the adaptive update.

The dissonance measure2 in (8.1) on p. 157 is dependent on the spectra of the
currently sounding notes, and so the algorithm (8.3) must have access to these spec-
tra. Although it should eventually be possible to measure the spectra from an audio
source in real time, the current MIDI implementation assumes that the spectra are
knowna priori. The spectra are defined in a table, one for each MIDI channel,and
they are assumed fixed throughout the piece (or until the table is changed). They are
stored in the collection3 file timbre.col . The default spectra are harmonic with a
number of partials set by the user in the message box on the main screen, although
this can easily be changed by editingtimbre.col . The format of the data reflects
the format used throughoutAdaptun ; all pitches are defined by an integer� � � å

(MIDI Note Number)
"

(Number of Cents)� (9.1)

For instance, a note with fundamental 15 cents above middle3 would be represented
as

� � � * � � � � å � � " � * because
� �

is the MIDI note number for middle3 . Similarly,
all intervals are represented internally in cents: an octave is thus

� � � �
and a just major

third is
� � �

.
Second, the calculation of the dissonance is simplified from(8.1) by using a

single “look-up” table to implement the underlying dissonance curves.4 A nominal
value of 500 Hz is used for all calculations between all partials, rather than directly
evaluating the exponentials. In most cases, this will have little effect, although it
does mean that the magnitude of the dissonances will be underestimated in the low
registers and overestimated in the high. More importantly,the loudness parameters� �

and� �
are set to unity. Combined with the assumption of fixed spectra, this can be

interpreted as implying that the algorithm operates on a highly idealized, averaged
version of the spectrum of the sound.

The numerical complexity of the iteration (8.3) is dominated by the calculation
of the gradient term, due to its complexity (which grows worse in high dimensions
when there are many notes sounding simultaneously). One simplification uses an#

This is further detailed in (H.2).$
In Max, a “collection” is a text file that stores numbers, symbols, and lists.%
This look-up table simplifies the implementation of (8.1) and (E.2) because no transcen-
dental functions need be calculated.
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approximation to bypass the explicit calculation of the gradient.Adaptun adopts a
variation of the simultaneous perturbation stochastic approximation (SPSA) method
of [B: 180].5 To be concrete, the functioni � � � � Ó � � � � � � � � Ó � " � æ � Ó � � g � � � � � Ó � g � æ � Ó � �� � æ � Ó �
where

æ � Ó �
is a randomly chosen BernoulliÊ �

random vector, can be viewed as
an approximation to the gradient× Ø× § Ù � Ú � . This approximation grows closer as

�
ap-

proaches zero. The algorithm for adaptive tuning is then� � � Ó " � � � � � � Ó � g Ô i � � � � Ó � � � (9.2)

In the standard SPSA, convergence to the optimal value can beguaranteed if both
the stepsizeÔ and the perturbation size

�
converge to zero at appropriate rates, and if

the cost function
�

is sufficiently smooth [B: 179]. In the case of adaptive tunings,
it is important that the stepsize and perturbation sizenot vanish, because this would
imply that the algorithm becomes insensitive to new notes asthey occur.

In the adaptive tuning application, there is a granularity to pitch space induced
by the MIDI pitch bend resolution of about

� � * �
cents. This is near to the resolving

power of the ear (on the order of 1 cent), and so it is reasonable to chooseÔ and
�

so
that the updates to the

� � are (on average) roughly this size. This is the strategy fol-
lowed byAdaptun , although the user-chooseable parameter labeledspeed and
depth of adaptation gives some control over the size of the adaptive steps.
Convergence to a fixed value is unlikely when the stepsizes donot decay to zero.
Rather, some kind of convergence in distributionshould be expected, although a thor-
ough analysis of the theoretical implications of the fixed-stepsize version of SPSA
remain unexplored. Nonetheless, the audible results of thealgorithm are vividly por-
trayed in Sect. 9.5.

9.4 Context, Persistence, and Memory

Introspection suggests that people readily develop a notion of “context” when listen-
ing to music and that it is easy to tell when the context is violated, for instance, when
a piece changes key or an out-of-tune note is performed. Although the exact nature
of this context is a matter of speculation, it is clearly related to the memory of re-
cent sounds. It is not unreasonable to suppose that the humanauditory system might
retain a memory of recent sound events, and that these memories might contribute
to and color present perceptions. There are examples throughout the psychological
literature of experiments in which subjects’ perceptions are modified by their expec-
tations, and we hypothesize that an analogous mechanism maybe partly responsible
for the context sensitivity of musical dissonance.

Three different ways of incorporating the idea of a musical context into the sen-
sory dissonance calculation are suggested in [B: 173], in the hopes of being able to
model some of the more obvious effects.,

This can also be viewed as a variant of the classic Kiefer–Wolfowitz algorithm [B: 84].
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(i) The exponential windowuses a one-sided window to emphasize recent
partials and to gradually attenuate the influence of older sounds.

(ii) The persistence modeldirectly preserves the most prominent recent par-
tials and discounts their contribution to dissonance in proportion to the
elapsed time.

(iii) The context modelsupposes that there is a set of privileged partials that
persist over time to enter the dissonance calculations.

All three models augment the sensory dissonance calculation to include partials not
currently sounding; these extra partials originate from the windowing, the persis-
tence, or the context. A series of detailed examples in [B: 173] shows how each
model explains some aspects but fails to explain others. Thecontext model is the
most successful, although the problem of how the auditory system might create the
context in the first place remains unresolved.

To see how this might work, consider a simple context that consists of a set of
partials at� � �

,
� � �

, � � �
, and

� � �
Hz. When a harmonic note? or @ is played

at a fundamental of� � �
or

� � �
Hz, many of their partials coincide with those of

the context, and the dissonance calculation (which now includes the partials in the
context as well as those in the currently sounding notes) is barely larger than the
intrinsic dissonance of the? or @ . When, however, a

2 z note is sounded (with
fundamental at about� � �

Hz), the partials of the note will interact with the partials
of the context to produce a significant dissonance.

The context idea is implemented inAdaptun using a static “drone.” The check
box labeleddrone enables a fixed context that is defined in the collection file
drone.col . The format of the data is the same as in (9.1) above. For example,
the drone file for the four-partial context of the previous paragraph is:ç 	 è é ê ê ëì 	 é ì ê ì ëí 	 é î ê ê ëè 	 ï è ê ì ë
(The “02” occurs because the perfect fifth between 330 Hz and 220 Hz corresponds
to 702 cents, not 700 cents as in the tempered scale.) When thedrone switch is
enabled, notes that are played on the keyboard (or notes thatare played from the
input MIDI file menu) are adapted with a cost function that includes both
the currently sounding notes and the partials specified in the drone file. The drone is
inaudible, but it provides a framework around which the adaptation occurs. Examples
are provided in the next section.

9.5 Examples

This section provides several examples that demonstrate the adaptive tuning al-
gorithm and explores the kinds of effects possible with the various options in
Adaptun . Discussions of the compositional process and demonstrations of the artis-
tic potential of the adaptive tunings are deferred until Sect. 9.6.



9.5 Examples 177

9.5.1 Randomized Adaptation

The motion of the adapting partials in sound example [S: 54] was shown pictorially
in Fig. 8.9 on p. 167. When usingAdaptun to carry out the adaptation (rather than
(8.3), the true gradient algorithm), the final converged value ofi may differ from run
to run. This is because the iteration is no longer completelydeterministic; the probe
directions

æ � Ó �
in (9.2) are random, and the algorithm will follow (slightly)different

trajectories each time. The bottom of the dissonance landscape is always defined by
the ratio of the fundamentals of the notes (in this case,i ,

� � � � i , and
� � H i ) but the

exact value ofi may vary.
In most cases, the convergent values of theAdaptun algorithm will be the same

as the converged values of the deterministic version. An exception occurs when the
initial intervals happen to be maximally dissonant, that is, when they lie near a peak
of the dissonance surface. The deterministic version will always descend into the
same consonant valley, but the probe directions ofAdaptun ’s SPSA method may
cause it to descend in either direction. This can be exploited as an interesting effect,
as in the second adaptive study [S: 62] or theRecalled Opus[S: 82] where pairs
of notes are repeatedly initialized near a dissonant peak and allowed to slide down:
sometimes contracting to a unison and sometimes expanding to a minor third.

9.5.2 Adaptive Study No. 1

Sound example [S: 61] is orchestrated for four synthesized “wind” voices. When sev-
eral notes are sounded simultaneously, their pitches are often changed significantly
by the adaptation. This is emphasized by the motif, which begins with a lone voice.
When the second voice enters, both adapt, giving rise to pitch glides and sweeps.
As the timbres have a harmonic structure, most of the resulting intervals are actu-
ally justly intoned because the notes adapt to align a partial of the lower note with
some partial of the upper. By focusing attention on the pitchglides (which begin at
12-tet scale steps), this demonstrates clearly how distantmany of the common 12-tet
intervals are from their just counterparts.

Perhaps the most disconcerting aspect of the study is the waythe pitches wander.
As long as the adaptation is applied only to currently sounding notes, successive
notes may differ: The3 note in one chord may be retuned from the3 note in the
next. This can produce an unpleasant “wavy” or “slimy” sound. This effect is easy to
hear in the long notes that are held while several others enter and leave. For instance,
between 0:36 and 0:44 seconds (and again at 1:31 to 1:39), there is a three-note
chord played. The three notes adapt to the most consonant nearby location. Then the
top two notes change while the bottom is held; again all threeadapt to their most
consonant intervals. This happens repeatedly. Each time the top two notes change,
the held note readapts, and its pitch slowly and noticeably wanders. Although the
vertical sonority is maintained, the horizontal retuningsare distracting.

The most straightforward way to forbid this kind of behavioris to leave currently
sounding notes fixed as newly entering notes adapt their pitches. This can be im-
plemented by setting the stepsizeÔ to zero for those fundamentals corresponding
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to held notes. Unfortunately, this does not address the fundamental problem; it only
addresses the symptom that can be heard clearly in this soundexample. A better way
is by the introduction of the inaudible “drone,” or context.

9.5.3 A Melody in Context

Adaptun implements a primitive notion of memory or context in its drone function.
A collection of fixed frequencies are prespecified in the filedrone.col , and these
frequencies enter into the dissonance calculation although they are not sounded.

The simplest case is when the spectrum of the adapting sound consists of a single
sine wave as in parts (a) and (b) of Fig. 9.2. The unheard context is represented by the
dashed horizontal lines. Initially, the frequency of the note is different from any of
the frequencies of the context. If the initial note is close to one of the frequencies of
the context, then dissonance is decreased by moving them closer together. The note
converges to the nearest frequency of the context, as shown by the arrow. In (b), the
initial note is distant from any of the frequencies of the context. When both distances
are larger than the point of maximum dissonance (the peaks ofthe curves in Fig. 3.8
on p. 47), then dissonance is decreased by moving further away. Thus, the pitch is
pushed away from both of the nearby frequencies of the context, and it converges to
some intermediate position.

(a) (b) (c) (d) (f)

fr
e

q
u

e
n

c
y

time

(e)

Fig. 9.2.The dashed horizontal grid defines a fixed “context” against which the notes adapt.
When the note has a spectrum consisting of a single sine wave partial as in (a) and (b), then
the note will typically adjust its pitch until it coincides with the nearest partial of the context
as in (a), or else it will be repelled from the nearby partialsof the context as in (b). When
the spectrum has two partials, then the adaptation may alignboth partials as in (c), one as in
(d), or none as in (e). In (f), the partials fight to align themselves with the context, eventually
converging to minimize the beating.
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Generally the timbre will be more complex than a single sine wave. Figure 9.2
shows several other cases. In parts (c), (d), and (e), the timbre consists of two sine
wave partials. Depending on the initial pitch (and the details of the context), this
may converge so that both partials overlap the context as in (c), so that one partial
merges with a frequency of the context and the other does not as in (d), or to some
intermediate position where neither partial coincides with the context, as in (e). Part
(f) gives the flavor of the general case when the timbre is complex with many sine
wave partials and the context is dense. Typically, some partials converge to nearby
frequencies in the context and some will not.

To see how this might function in a more realistic setting, suppose that the current
context consists of the note3 and its first 16 harmonics. When a new harmonic note
occurs, it is adapted not only in relationship to other currently sounding notes, but
also with respect to the partials of the3 . Because partials of the adapting notes often
converge to coincide with partials in the context (as in part(f) of Fig. 9.2), there
is a good chance that a partial of the note will align with a partial of the context.
When this occurs, the adapted interval will be just, formed from the small integer
ratio defined by the harmonic of the note with that of the context.

Thus, the context provides a structure that influences the adaptation of all the
sounding notes, like an unheard drone. In this way, it can give a horizontal consis-
tency to the adaptation that is lacking when no memory is allowed.

9.5.4 Adaptive Study No. 2

The next example, presented in [S: 62], is orchestrated for four synthesized “violin”
voices. Like the first study, the adaptive process is clearlyaudible in the sweeping
and gliding of the pitches. For this performance, however, acontext consisting of all
octaves of3 plus all octaves of

2
was used.6

The context encourages consistency in the pitches, maintaining (an unheard) tem-
plate to which the currently sounding notes adapt. Althoughthe study still contains
significant pitch adaptation, the final resting places are constrained so that the ad-
justed pitches are related to the unheard3 or

2
. Typically, some harmonic of each

adapted note aligns with one of the octaves of the3 or
2

template.
In several places throughout the piece, adjacent notes (of the 12-tet scale) are

played simultaneously. For the specified timbres, this is near the peak of the disso-
nance curve. Depending on exactly which notes are played, the order in which they
are played, and the vagaries of the random test directions

æ � Ó �
of (9.2), sometimes

the two pitches adapt to an interval at about 316 cents (a justminor third) by moving
apart in pitch, and sometimes they merge into a unison at someintermediate pitch.
In either case, the primary sensation is of the motion.-

The drone file contained all A ’s ' 9 � � ¥ 7 ; � � ¥ 9 < � � ¥ ; � � � ¥ ( ( ( plus all 5 ’s7 ) � � ¥ 9 7 � � ¥ = = � � ¥ ; > � � ¥ ( ( ( .
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9.5.5 A Recollection

Many of the kinds of pitch slides and glides that are so obvious in the two adaptive
studies are exploited in a more structured way inRecalled Opus[S: 82]. Adaptun
was used to play four string voices (a synthesized “string quartet”). Each tone begins
on a 12-tet pitch and adapts the pitches in real time. The action of the algorithm is
unmistakable.

Because the string timbres are harmonic, the retuning converges primarily to
various just intervals. When the pitches begin close to JI, such as a 12-tet fifth, the
adjustment is only a few cents. But when the pitches begin faraway from JI (such
as a 12-tet minor second), the pitch sweeps are dramatic. Allof the pitch bending
is done by the algorithm in real time.7 This piece provides a nonverbal and visceral
demonstration of the differences between JI and 12-tet.

9.6 Compositional Techniques and Adaptation

Adaptive tunings are not constrained to any particular style of music, and the pre-
vious sound examples suggest that a number of interesting and unusual effects are
possible. One avenue of exploration is perhaps obvious: Play with Adaptun , and al-
low happy accidents to occur. The adaptive studies andRecalled Opus[S: 82] were
derived from spontaneous improvisations that crystallized into repeatable forms.Per-
sistence of Time[S: 81] began with a three-against-two rhythmic bed, and repeated
improvisation led to the final piece.

Table 9.1 lists the adaptively tuned pieces that appear on the CD along with
three compositional parameters. The third column indicates whether a context was
used during adaptation, as discussed in the previous section using thedrone option
in Adaptun . The fourth column specifies whether the algorithm was allowed to
achieve full convergence before the notes are sounded (indicated by y) or whether all
intermediate pitches were output (n). This can have a major impact on the sound and
effect of the piece. For example,Persistence of Timedoes not have the kind of slimy
undulating pitches that are so conspicuous inRecalled Opus. The column labeled
“Adapt on Note-off” specifies whether the adaptation is redone when notes end (that
is, each time the number of currently sounding notes changes) or whether adaptation
occurs only when new notes begin. This is one of the reasonsWing Doneviersounds
more steady thanExcitalking Very Much.

With the exception ofRecalled Opus, all of the pieces in Table 9.1 were created
using a method ofadaptive randomization, a compositional technique that is partic-
ularly appropriate for adaptive tunings. The adaptive randomization begins with a
simple rhythmic pattern, adds complexity, orchestration,and timbral variety without
regard for harmonic or melodic content, and then tames the dissonances by selective
application of the adaptive tuning algorithm. The first stepis to select an arbitrary.

The piece was not performed in one pass, several individual sections were recorded sepa-
rately and then spliced together.
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Table 9.1. Several musical compositions appearing on the CD-ROM use adaptive tunings.
Also indicated are whether a context was used, whether the algorithm was allowed to output
intermediate pitches as it adapted (or only after convergence), and whether the adaptation was
conducted at note-off events as well as note-on events.

Name of File Context Converge Adapt on See
Piece Fully Note-off
Adventiles in a Distorium adventiles.mp3 y n y [S: 74]
Aerophonious Intent aerophonious.mp3 y n n [S: 75]
Story of Earlight earlight.mp3 n n n [S: 76]
Excitalking Very Much excitalking.mp3 y y n [S: 77]
Inspective Liquency inspective.mp3 n n y [S: 78]
Local Anomaly localanomaly.mp3 n n y [S: 79]
Maximum Dissonance maxdiss.mp3 n y n [S: 80]
Persistence of Time persistence.mp3 n y n [S: 81]
Recalled Opus recalledopus.mp3 y n y [S: 82]
Saint Vitus Dance saintvitus.mp3 n n y [S: 83]
Simpossible Taker simpossible.mp3 y y y [S: 84]
Three Ears three ears.mp3 n y y [S: 60]
Wing Donevier wing.mp3 y y n [S: 85]

pattern of notes triggering a set of synthesized sounds. As the pitches are essentially
random, the sequence is wildly and uniformly dissonant. Application of the adap-
tive tuning algorithm perturbs the pitches of all currentlysounding notes at each
time instant to the nearest intervals that maximize consonance. Sometimes the disso-
nances are tamed and interesting phrases occur. By winnowing the results, separating
desirable and undesirable elements, reorchestrating, andusing the cut-and-paste op-
erations available in modern audio editing software, strange and unusual pieces can
be constructed.

There are many possible sources for musical patterns. They might be constructed
mathematically (like the three-against-two pattern ofPersistence of Time), they might
be a complete piece (Three Earswas first composed in 12-tet and the adaptation im-
posed at a later stage), or they might be only a rhythm part (Wing Donevierbegan as
a standard MIDI drum part8 played in an aggressive seven beats per measure). The
classical MIDI archive at [W: 4] contains thousands of MIDI files free for down-
loading, and there are many other sources on the web of both commercial and public
domain libraries of MIDI files.

In order to demonstrate the technique concretely, Fig. 9.3 shows the first four
measures of a standard MIDI drum track.9 The information is displayed in a kind of
“piano-roll” notation10 in which the vertical axis represents MIDI note-number. Time
proceeds along the horizontal axis. MIDI note events are shown in bold black. For/

From the Keyfax [W: 17] collection of drum tracks performed by Bill Bruford.0
Sequenced by Keyfax Software [W: 17] in theBreakbeatscollection.� 1
Figures 9.3 through 9.6 show screen snapshots fromDigital Performer, a commercial audio
and MIDI sequencer [W: 20].
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drum tracks, there is a standard assignment of note numbers to instruments,11 and
the relevant ones (bass drum, snare, and three cymbals) are labeled on the left-hand
side of the figure. This is performed as written in sound example [S: 63].

bass
snare

cymbals

time   

standard MIDI
drum assignment reassignment

bass

guitar

Fig. 9.3.A standard MIDI drum file can be played as a percussion part (sound example [S: 63]
performs this sequence with the standard instruments indicated on the left), or it can be re-
orchestrated (sound example [S: 64] reassigns the notes to guitar and bass as indicated on the
right).

One of the interesting features of the MIDI standard is that note events are not
necessarily tied to their default instrumentation.Sound example [S: 64], for instance,
reorchestrates the four measures in Fig. 9.3 by assigning the lowest two notes to bass
guitar (instead of bass drum and snare) and the upper notes toguitar (instead of cym-
bals) as indicated by the reassignment on the right-hand side. Even more useful than
the reorchestration are the editing capabilities offered by modern software. Notes
(and other MIDI events) can be rearranged in many ways using simple cut-and-paste
techniques. Figure 9.4, for example, shows the same four measures as Fig. 9.3, with
the upper notes (that were originally devoted to the cymbals) repeated, offset in pitch,
and time-stretched by factors of two (one slower and one faster). As before, this can
be performed on any desired set of instruments. Sound examples [S: 65] through
[S: 67] demonstrate three simple variations.

When the instrumentation is finalized (in this case, using harmonic samples of
guitar and bass), then the piece can be adapted. This is demonstrated in [S: 68] using
the default settings inAdaptun . Compare this sparse example with the fully orches-
tratedSimpossible Taker[S: 84], which applied this same method to a set of MIDI
“hip-hop” drum patterns.12 In order to tame some of the pitch sweeps, a context was
used and all notes were allowed to converge fully. The remaining pitch glides are
due to the adaptation of held notes. As all sounding notes readjust whenever a note� �

Details of the MIDI file specification can be found at [W: 25].� #
Commercially available from [W: 17].
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bass

time   

slow

medium

fast

Fig. 9.4.The standard MIDI file in Fig. 9.3 is edited, creating more complex and interesting
patterns. Sound examples [S: 65] through [S: 67] demonstrate.

enters or leaves, the held notes slide to their new “most consonant” pitch. This effect
is already familiar fromThree Ears[S: 60].

There are many other ways that MIDI data can be transformed tocreate inter-
esting sequences. Figure 9.5 shows the data of Fig. 9.4 edited in several ways. The
bass guitar part is randomized over an octave, creating a newbass line with con-
siderable motion. Using the instrumentation of [S: 65], this can be heard in sound
example [S: 69]. The “fast” line is also randomized and transposed, resulting in a
rapid arpeggiation. This is performed in [S: 70] using the same guitar samples as in
[S: 65]. Finally, the “slow” line of Fig. 9.4 is transposed upand randomized, creating
a constrained random melody. Orchestrating the melody witha synthetic-sounding
flute results in sound example [S: 71].

randomized 
bass

time   

randomized
rhythm

randomized
melody

Fig. 9.5.The standard MIDI file in Fig. 9.4 is edited, creating more complex and interesting
(randomized) patterns. Sound examples [S: 69] and [S: 70] demonstrate.

Although these are interesting in their own way, they can be combined with the
adaptive process to create a large assortment of unusual effects. For example, sound
example [S: 72] is an adapted version of [S: 71]. The sound is more aligned, almost
lighter in the adapted version, although the pitch glides inthe guitar may be dis-
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concerting. Sound example [S: 73] repeats the same piece butusing two methods to
reduce the amount of pitch uncertainty: first by allowing theconvergence to complete
before outputting the notes, and then by disallowing adaptation when notes cease to
sound. This technique is a template of many of the compositions in Table 9.1.

9.6.1 A Wing

Wing Donevier[S: 85] is named after a fictional captain who fell at the siegeof
Eriastur (itself a fictional medieval town). In 7/4 time, this piece began as a standard
MIDI drum file from Keyfax Software [W: 17] in their Bill Bruford collection. The
original is orchestrated solely for percussion and hence isnontonal, that is, in no
particular key. It is recorded as a MIDI file, and so it is easy to assign different
voices. A context consisting of all octaves of low3 (65.4 Hz) and all octaves of
low

2
(98 Hz) was used. The adaptive process moves the pitches of all notes so as

to maximize the instantaneous sensory consonance between the currently sounding
notes and the immutable context.

The result is still atonal, but not overly dissonant. Each vertical slice of time
is fairly consonant, although melodically (horizontally)there are many small ad-
justments. After adaptation, the MIDI file was reorchestrated with bass, synth,
and drums. The adaptation is allowed to converge completelybefore each note is
sounded, and no adaptation is done when note-off events occur. Together, these
choices remove most of the wavering pitches.

The screen snapshot in Figure 9.6 shows the sequence window of a combined
audio/MIDI editor.13 The numbers in the upper right represent measures. The small
icons just below represent miniaturized versions of the MIDI tracks familiar from
Figs. 9.3 though 9.5 that contain MIDI performance data. These are labeled by their
instrumentation (bass, rhy1, rhy2, mel, etc.) and are sent to the IAC (interapplica-
tion MIDI) # 1 bus and hence toAdaptun . The return path uses IAC # 2, and this
is record enabled so that the adapted data can be recorded forfurther editing and
compositing. The adapted data are also output to “Unity,” a software synthesizer.14

Finally, the audio output of the synthesizer is sent to the digital to analog converters,
which, in this case, is a Tascam US-428.

9.6.2 An Anomaly

Local Anomaly[S: 79] is another piece in which all notes were retuned adaptively
beginning with a randomized MIDI drum file. The major timbresare again guitar-
like (and hence primarily harmonic), but the use of the adaptation is quite different
from bothWing Donevierand the string quartetRecalled Opus. Besides the obvious
rhythmic intensity of the piece, the notes come rapidly. Rarely is a note held much
longer than the time it takes it to converge to the nearby “most consonant” interval.� $

The program isDigital Performerby Mark of the Unicorn [W: 20].� %
Created by Bitheadz software [W: 2].
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Interapplication 
Bus #1 sends 

MIDI data to Max

Interapplication 
Bus #2 returns 
adapted data to 

sequencer

adapted data sent 
to software synth "Unity"

audio returns for
recording

measures represents MIDI tracks

adapted data has
pitch bends for retuningaudio output

Fig. 9.6.This screen snapshot shows how MIDI information can be sent from the sequencer
to Max (which is runningAdaptun ) and then returned to the sequencer for recording. The
adapted MIDI data are then output to a software synthesizer so that the results can be heard.

As no context is used (and none of the ‘cures’ for wavering pitches are invoked), the
pitch of each note is in constant motion.

Thus, one of the most prominent features ofLocal Anomalyis the pitch slides,
which give an “elasticity” to the tuning analogous to a guitar bending strings into
(or out of) tune. All glides inLocal Anomalyare created by the adaptive process,
which provides a kind of “intelligent” portamento that begins where commanded by
the performer (or MIDI file) and slides smoothly to a nearby “most consonant” set
of intervals. The tonal center inRecalled Opuswas kept reasonably stable by careful
composition. A context was used to ensure stability ofWing Doneveir. In contrast,
the pitches fall where they may inLocal Anomalyand there is no clear notion of
musical “key.” It is easy to hear the wriggling about of the tonal center (if indeed
this piece can be said to have one). Perhaps it is better to think of it as having an
“average” tonality that happens to have a large variance.

It is not easy to put these effects into words. The tonality isslinky and greasy, the
drums funky and somewhat dark. The piece has an energetic minor cast. Even though
there are both (just) major and (just) minor thirds throughout, the primary perception
is of their wriggling around. There is a sense in whichLocal Anomaly“gets rid of
scales and chords,” bypassing any kind of fixed-pitch scalesor tunings. At the same
time, it is not without a considerable structure that is readily perceptible.

9.7 Toward an Aesthetic of Adaptation

The adaptive tuning strategy can be viewed as a generalization of just intonation
in two respects. First, it is independent of the key of the music being played; that
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is, it automatically adjusts the intonation as the notes of the piece move through
various keys. This is done without any specifically “musical” knowledge such as
the local “key” of the music, although such knowledge can be incorporated in a
simple way via the context, the unheard drone. Second, although not stressed here,
the adaptive tuning strategy is applicable to inharmonic aswell as harmonic sounds.
This broadens the notion of just intonation to include a larger palette of sounds. The
adaptation provides a kind of “intelligent”portamento that begins where commanded
by the performer and slides smoothly to a nearby “most consonant” set of intervals.

A shortcoming of the adaptive tuning approach is that sensory consonance is not
a globally desirable property in music. Typically, a composer strives to move from
consonance to dissonance and back again, and so indiscriminate application of the
algorithm may, at least in principle, lead to pieces that lose appropriate dissonances.
In practice, this may not be a large problem because it is always easy to increase
dissonance by increasing the complexity of the sound, for example, by playing more
notes. Alternatively, the algorithm could be applied selectively to places where con-
sonance is most desired.

An extreme example occurs inMaximum Dissonance[S: 80], which, like its
name, reverses the effect of the algorithm so as to maximize (rather than minimize)
the sensory dissonance at each time instant. The piece is fairly difficult to listen to,
especially at first, although it has a certain rhythmic vitality. Even with all of the dis-
sonance, it cannot be said to be truly unlistenable (like themismatched tuning/timbre
combinations in sound examples [S: 3] and [S: 5]). This is probably because the dis-
sonance is not uniform; it increases and decreases with the number of notes. With
few notes, the algorithm can only increase the dissonance a small amount; with more
notes, the algorithm is able to increase the dissonance significantly.

Considered as a group, perhaps the most obvious feature of the adaptively tuned
pieces in Table 9.1 is the pitch glides—rarely do notes sustain without changing
pitch. A sensible strategy when orchestrating such a piece is to use timbres that fa-
miliarly bend and slide: for example, violin and fretless bass rather than harpsichord
and piano. Another technique that is used extensively in these pieces is hocketing;
rather than playing a melodic passage with a single instrumental sound, each note is
performed with a different sound.Inspective LiquencyandAerophonious Intentin-
corporate extensive hocketing. Pitch instabilities are not, however, an intrinsic prop-
erty of the adaptive process, but rather a function of the particular program (i.e.,
Adaptun ) used to carry out the adaptation. For example, pitch glidesare absent
from Wing DonevierandPersistence of Time.

The compositional technique of adaptive randomization begins with a pattern that
is random melodically and harmonically (although not rhythmically). Complexity
can be added to the sequence in many ways: duplicating notes and offsetting them
in time or transposing in pitch, reversing patterns in time,randomizing or inverting
pitches, quantizing, and so on. After orchestrating, some semblance of tonal order
can be reimposed using the adaptive tuning. Full pieces can be constructed by cut-
and-paste methods. Of course, more traditional compositional methods may still be
applied.
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By functioning at the level of successions of partials (and not at the level of
notes), the sensory dissonance model does not deal directlywith pitch, and hence
it does not address melody, or melodic consonance. Rasch [B:146] describes an
experiment in which:

Short musical fragments consisting of a melody part and a synchronous bass
part were mistuned in various ways and in various degrees. Mistuning was
applied to the harmonic intervals between simultaneous tones in melody
and bass... The fragments were presented to musically trained subjects for
judgments of the perceived quality of intonation. Results showed that the
melodic mistunings of the melody parts had the largest disturbing effects on
the perceived quality of intonation...

Interpreting “quality of intonation” as roughly equivalent to melodic dissonance, this
suggests that the misalignment of the tones with the internal template was more
important than the misalignment due to the dissonance between simultaneous tones.

Such observations suggest why attempts to retune pieces of the common practice
period into just intonation, adaptive tunings, or other theoretically ideal tunings may
fail15; squeezing harmonies into just intonation requires that melodies be warped out
of tune. If the melodic dissonance described by Rasch dominates the harmonic disso-
nance, then the process of changing tunings may introduce more dissonance, albeit of
a different kind. This does not imply that it is impossible (or difficult or undesirable)
to compose in these alternative tunings, nor does it suggestthat they are somehow
inferior; rather, it suggests that pieces may be more appropriately performed in the
tunings in which they were conceived.

9.8 Implementations and Variations

There are several ways that adaptive tunings can be added to (or incorporated in) a
computer-based music environment. These include:

(i) Software to manipulate Standard MIDI Files (or the equivalent). In such an im-
plementation, the musician or composer generates a Standard MIDI File (SMF).
The adaptive tuning algorithm is implemented as a software program that reads
the SMF, adapts the tuning of the notes as described above, and writes a mod-
ified SMF file that can subsequently be played via standard sound modules or
manipulated further by the musician/composer in a sequencer program.

(ii) A stand-alone piece of hardware (or software to emulatesuch hardware) that
interrupts the flow of MIDI data from the controller (for instance, the keyboard),
adapts the tuning, and outputs the modified notes.� ,

The effort to improve Beethoven or Bach by retuning pieces tojust intonation produced
a sense that the music was “unpleasantly slimy” (to quote George Bernard Shaw when
listening to Bach on Bosanquet’s 53-tone per octave organ [B: 106]) or badly out of tune
due to the melodic distortions.
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(iii) The adaptive tuning strategy can be incorporated directly into the sound genera-
tion unit (the synthesizer or sampler).

(iv) Direct manipulation of digitized sound.

The software strategy (i) has the advantage that it may be simply and inexpen-
sively added to any computer-based electronic music system. The disadvantage is
that it is inherently not a real-time implementation. On theother hand, both the stand-
alone approach (ii) and the built-in approach (iii) are capable of real time operation.
Adaptun is in the second class. As the algorithm requires the spectraof the sounds,
this must be input by the operator in both (i) and (ii). Of course, a frequency analysis
module could be added to the software/hardware, but this would increase the com-
plexity. The built-in solution (iii) does not suffer from any of these complications (in-
deed, the synthesizer inherently “knows” the spectrum of the sound it is producing)
and is consequently preferred for MIDI implementation, although it would clearly
require a commitment by musical equipment manufacturers.

The adaptive tuning can also be implemented in hardware (or software to emu-
late such hardware) that directly manipulates digitized sound. Such a device would
perform an appropriate analysis of the sound (a Fast FourierTransform, wavelet de-
composition, or equivalent) to determine the current spectrum of the sound, run the
adaptive algorithm to modify the spectrum, and then return the modified spectrum
to the time domain with an inverse transform. The device could be operated off-line
or in real time if sufficient computing resources were devoted to the task. Such an
implementation is not, however, completely straightforward: it may be more of an
adaptive “timbre” algorithm than an adaptive “tuning.” This is an exciting area for
future research.

Throughout Chaps. 8 and 9, the adaptive tuning algorithm hasbeen stated in
terms of an optimization problem based on dissonance curvessolvable by gradient
descent methods. Other algorithms are certainly possible.For instance, instead of
laboriously descending the error surface, an algorithm might exploit the fact that
the adaptation often converges to intervals that align the partials of simultaneously
sounding notes. An algorithm that operated by simply liningup the partials would
have much the effect of the consonance-based adaptation without much of the over-
head. More generally, other optimization criteria based onother psychoacoustic mea-
sures of sound quality and solvable by other types of algorithms are also possible. For
example, incorporating a virtual pitch model or a model of masking might allow the
algorithm to function in a wider range of situations. Indeed, as the state of knowledge
of psychoacoustic phenomena increases, new methods of adaptation seem likely.

9.9 Summary

Just as the theory of four taste bud receptors cannot explainthe typical diet of an
era or the intricacies of French cuisine, so the theories of sensory dissonance cannot
explain the history of musical style or the intricacies of a masterpiece. Even restrict-
ing attention to the realm of sensory dissonance, the average amount of dissonance



9.9 Summary 189

considered appropriate for a piece of music varies widely with style, historical era,
instrumentation, and experience of the listener.

The intent ofAdaptun is to give the adventurous composer a new option in
terms of musical scale: one that is not constraineda priori to a small set of pitches,
yet that retains some control over consonance and dissonance. The incorporation of
the “context” feature helps to maintain a sense of melodic consistency while allowing
the pitches to adapt to (nearly) optimal intervals.

This algorithm does not avoid the melodic artifacts associated with just intona-
tion, but it automates intonation decisions. Perhaps more importantly, it can handle
sounds with inharmonic spectra, such as bells, which fall outside conventional tuning
theories.
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The Gamelan

The gamelan “orchestras” of Central Java in Indonesia are
one of the great musical traditions. The gamelan consists of
a large family of inharmonic metallophones that are tuned
to either the five-noteslendroor the seven-tonepelogscales.
Neither scale lies close to 12-tet. The inharmonic spectra of
certain instruments of the gamelan are related to the unusual
intervals of the pelog and slendro scales in much the same
way that the harmonic spectrum of instruments in the Western
tradition is related to the Western diatonic scale.

10.1 A Living Tradition

The gamelan plays many roles in traditional Javanese society: from religion and
ceremony to education and entertainment. In recent years, recordings of gamelan
music have become available in the West.1 First impressions are often of an ener-
getic, strangely shimmering sound mass punctuated with oddvocal gestures. The
exotically tuned ensemble plays phrases that repeat over and over, with variations
that slowly evolve through pieces of near symphonic length.A deep gong punctuates
sections, and the music is driven forward by vigorous drumming and dynamic rhyth-
mic articulations. Indeed, the wordgamelancan be translated literally as “pounding
of a hammer.”2

The unique sounds are produced by an assortment of metallophones that include
numerous gongs and xylophone or glockenspiel-like instruments of various sizes,
timbres, and tones. At first glance, thebonangsandkenongsappear to be collections
of upside-down pots and pans hit with sticks, and thesaronplayers seem to pound a
small collection of metal bars with hammers. As we will see, this is akin to viewing
a Stradivarius as a wooden box with strings. Gamelan instruments are finely crafted,
carefully tuned, and are the result of a long cultural tradition that values precision
and refinement in its music, instruments, and musicians.�

For instance, the excellent series from the World Music Library includesGamelan Gong
Kebyar of Eka Cita[D: 18], Gender Wayang of Sukawati[D: 19], theKlênêngan Session of
the Solonese Gamelan[D: 25], Gamelan Gong Gede of the Batur Temple[D: 17], and the
Gamelan of Cirebon[D: 16]. Other recordings are available from the Library of Congress
(Music for the Gods[D: 29]), from CMP records (Gamelan Batel Wayang Ramayana
[D: 15]), from Lyrichord (music of I. W. Sadra [D: 38]), and from Nonesuch (Music from
the Morning of the World[D: 27].#
gamelmeans “hammer,” and-an is a suffix meaning “action.”
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The first major study of the instruments, repertoire, and history of the gamelan
(“the result of twenty-eight years’ listening, collecting, and reflecting”) was the land-
markMusic in Java[B: 90]. Kunst discusses the various instruments of the gamelan
and the tuning systems and observes a difference in the listening aesthetic between
the Javanese and the Western ear:

of necessity a virtue was born: this partial discrepancy between vocally and
instrumentally produced tones has developed unmistakablyinto an aesthetic
element... a play of tensions alternately arising and disappearing... these dis-
crepancies in intonation are to some extent satisfying to the Javanese ear.3

Kunst’s love of the music and the people is obvious, and he catalogs a number of
gamelan “themes” so that they would not be lost. Kunst offersa dire warning:

Once again foreign influences are affecting it [gamelan music], but this time
the interloper is... like a corrosive acid, like a transfusion from a different
blood group, [which] attacks and destroys it in its profoundest essence...
one can almost watch–or rather hear–native music degenerating day by day.

Fortunately, this apocalyptic vision has failed to materialize, and gamelan music has
not only survived, but flourished.

There are many reasons why gamelan music challenges Westernlisteners. The
timbre of the instruments is unusually bright and harsh. Thescales and tunings are
unfamiliar. Both the tunings and the timbres are discussed at length in later sections
because they are easily quantifiable. But there are also profound differences in the
basic structure of the music. In theGuide to the Gamelan, Sorrell [B: 177] describes
the Javanese concept of aninner melodyin the evocative passage:

the concept of an inner melody... is the common basis of all the parts in the
gamelan and yet which is not literally stated by any instrument. Rather, it is
in the minds of the musicians. It is therefore felt, or, one may say, internally
sung.

Thus, listening to and understanding the inner melody of a gamelan piece is different
from listening to and understanding the outer melody of a symphony. In many tra-
ditional Western forms, the themes are stated, developed, and restated. In contrast,
the gamelan performance presents many different ways of disguising the same un-
derlying theme. An analogy may be fruitful. A syncopated rhythm has an underlying
pulse. Although this pulse may never be stated literally, itforms an essential part of
the listening experience. To truly “understand” the syncopated rhythm, it is necessary
to “hear” something that is not there!

10.2 An Unwitting Ethnomusicologist

There are as many different gamelan tunings as there are gamelans because instru-
ments in the Indonesian musical tradition are not all tuned to a single standard ref-$

A modern investigation of the perception of music among the Balinese can be found in
[B: 82].
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erence scale. Rather, each instrument is tuned and timbrally adjusted to work in its
own orchestral context; each instrument is created for and remains with a single en-
semble. Each gamelan is tuned to its own variant of pelog or slendro. Every kettle
of each bonang, every key of each saron, is hand shaped with hammer and file. The
result is that a piece played on one gamelan inevitably differs in intonation, tone, and
feel from the same piece played on another gamelan.

This presents an intriguing challenge. Recall that Westerndiatonic scales are in-
timately connected to4 sounds with harmonic spectra. Perhaps a similar relationship
exists between the pelog and slendro scales and the inharmonic sounds of the saron,
bonang, gender, or gong. Further, perhaps the differences between the tunings of var-
ious gamelans can be explained in terms of the differences between the spectra of the
various instruments.

An obvious starting point is to search the literature, and tocorrelate the spectra
of the gamelan instruments with the tunings of the gamelans from which they come.
Although several important studies over the years have documented the variation
in the tunings of the gamelans, only one published article [B: 159] has detailed the
spectra of any gamelan instruments, and this was not a complete study, even of the
one gamelan. Of the metallophones, only thejegongan(a kind of Balinese gender)
and the gong are studied. Clearly, more data are required.

Accordingly, I traveled to Indonesia between August and December 1995. A
portable DAT machine and microphone5 made it possible to carry everything needed
for full fidelity recordings, which could be analyzed back inthe lab. Gathering more
data (i.e., recording each key of each instrument in the gamelan) was not straight-
forward. Although equipped for the technological task, I was underprepared for the
social and cultural aspects. A few months of study ofBahasa Indonesia(the lan-
guage) was adequate for basic survival, but it was not enoughto conduct genuine
interviews. Reading several books6 on ethnomusicology (in general) and Indonesia
(in particular) readied me for some of the issues I would confront, but it was not
enough to provide ready answers.

In particular, it was difficult to approach gamelan masters with my request, in
part because of the oddity of the task (usually people are more interested in gamelan
performance and music than in the instruments), in part because of language dif-
ficulties, and in part because of property issues. Gamelans are often owned by the
village, and it is considered improper for individuals to profit from public resources.
This was further complicated by the diversity of Indonesiansociety; each region has
its own customs and sense of propriety. Offering the gamelanmaster a small gift
earmarked for the gamelan (to help with maintenance and upkeep) often seemed to
be appropriate.%

In the jargon of the previous chapters, “related to.”,
Along with rechargeable batteries, a copy ofEveryday Indonesian, and a backpack of es-
sentials.-
Including the excellent general works by Merriam [B: 112] and Nettl [B: 121], and books
specifically about the gamelan such as those by Kunst [B: 90],Sorrell [B: 177], and Tenzer
[B: 193].



194 10 The Gamelan

Eventually, I met Basuki Rachmanto at the University of Gadjah Mada in Yo-
gyakarta, who became interested in the project, and helped find and record eight
complete (pelog and slendro) gamelans. Basuki also introduced Gunawen Widiyanto,
the son of a respected gamelan-smith in Surakarta. Gunawen arranged to record nine
complete gamelans in the Surakarta area and helped me to interview several game-
lan makers and tuners. Without the generous help of Basuki and Gunawen, it would
have taken far longer to have accomplished far less. In addition, I am grateful to Ben
Suharto of the ISI in Yogyakarta, and to Deni Hermawan of the STSI in Bandung for
allowing me to record their “performance” gamelans.

10.3 The Instruments

Most of the idiophones of the gamelan are percussion instruments made from metal.
They are struck with a variety of mallets that range from hardwood to woolen ball
heads; harder mallets give a brighter tone with more high partials, and softer mal-
lets return a more muted sound. Names of the instruments varyby region, and the
names used here (gong, gender, saron, bonang, kenong, gambang) are common in
the Central Javan cities of Yogyakarta and Surakarta.

Most of the instruments consist of a set of keys, kettles, or bells of definite shape,
arranged on a wooden frame so that they may be readily struck by the performer.
Each key is hand forged in a charcoal furnace. This is a slow, grueling process; a crew
of three or four workers can beat a hot slab of metal into a rough bowl shape over
the course of several hours.7 Detailed shaping is done by hammer once it has cooled,
and then the keys are polished. A complete set of keys is tunedby the master tuner
using a hand file, although the final tuning is not done until all of the instruments are
assembled.

Like most percussion instruments, the metallophones of thegamelan have inhar-
monic spectra. Each kind of instrument has its own idiosyncrasies, and the remainder
of this section looks at each of the instruments in turn. All samples in this chapter
are from either the Gamelan Swastigitha,8 which is under the capable direction of
Suprapto Atmosutijo, or from Gamelan Kyai Kaduk Manis, which was built for Pak
Cokro (K.R.T. Wasitodiningrat), also of Yogyakarta. Gamelan Kyai Kaduk Manis
was built in 1997, is in excellent condition, and hence is a good example of a mod-
ern gamelan, although it was modeled after one of the palace gamelans in Surakarta.
Gamelan Swastigitha is considerably older, although it is certainly post-World War
II.

10.3.1 Saron

Sarons are a kind of metal keyed xylophone. Each key is a solidrectangular chunk
of bronze whose top has been rounded slightly, as in Fig. 10.1. Keys are suspended.

It takes 60 workers about 5 months to build a complete gamelan./
Ngadinegawan MJ 3/122, Yogyakarta.
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above a trough-shaped frame on two metal pins. Sarons appearin a large range of
sizes (and hence pitches), and each usually has between six and nine keys.

saron gender

Fig. 10.1.Keys of the saron and gender
act much like uniform metal bars, but
details of their shape and contour cause
important differences in the spectra of
the sound.

Sarons are usually played with an interesting two-handed technique. First, the
wooden hammer strikes a key at an angle so that the mass of the hammer does not
interfere with the resonance. The player then mutes the key with the thumb and fore-
finger of the free hand by pinching it. Thus, at each moment, the player strikes a new
note while damping the old. Fast passages are played by two (or more) players hock-
eting on matched instruments, that is, alternating notes ina predetermined way. The
saron often plays the main theme, although it can also be heard playing a supporting
role by syncopating or duplicating the main themes. Its keen, sparkling sound is one
of the most characteristic timbres of the gamelan.

The sound, and hence the spectrum of the saron, varies somewhat from gamelan
to gamelan, but the pitch is always determined by the fundamental. The spectra ap-
pear to come in two basic varieties. The simpler kind is shownin Fig. 10.2, which
plots the spectra of two typical saron keys from gamelan Swastigitha.9 The top spec-
trum has partials at

�
, � � H � �

, and � � � � �
, and the bottom spectrum has partials at�

, � � � � �
, � � * � �

, � � � � �
, and* � + � �

. Over the whole set of instruments, four partials
appear consistently. The median of these values is� 	 � � H � � 	 � � H � � 	 and * � + � �
which may be taken as a kind of generic saron key for this gamelan. Observe that this
is close to, but significantly different from, the spectrum of an ideal bar. In particular,
the third and fourth partials of the ideal bar are* � � �

and
� � + �

, and the Swastigitha
sarons are uniformly lower.

The second kind of saron spectrum is exemplified by the saronsof Gamelan Kyai
Kaduk Manis in Fig. 10.3, which have prominent partials at� 	 � � � � � 	 � � H � � 	 � � H * � 	 * � � � � 	 * � + � � 	 and at� 	 � � � � � 	 � � � � � 	 � � � * � 	 * � � � � 	 � � � � � �
Essentially, the partials near 2.7 and 4.8 have bifurcated so that a pair occurs where
previously there was one. An idealized or generic version ofthe sarons of Gamelan
Kyai Kaduk Manis is0

Except where explicitly stated, all spectra in this chapterwere computed using a 32K FFT.
Each plot represents the behavior in the first 3/4 second of the sample.
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Fig. 10.2.Spectra of two typical keys of a saron from gamelan Swastigitha from Yogya.� 	 � � � + � 	 � � H � � 	 � � H * � 	 * � � � � 	 * � + � � �
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Fig. 10.3.Spectra of two typical keys of a saron from gamelan Kyai KadukManis from Yogya.

The origin of the bifurcated partials so prominent in the sarons of Kyai Kaduk
Manis is not obvious. Perhaps they are caused by some impurity (or nonuniformity)
in the brass, or perhaps from some accidental deviation in physical dimensions, but
these seem unlikely because the intervals between the pairsare so consistent across
the keys of all 11 sarons. Rather, it would appear that this timbre is intentional, that
the tuner chose to encourage these closely spaced modes.10 Indeed, referring back
to the Swastigitha sarons, the higher of the two pairs are visible; they are prominent� 1

Perhaps it is inherent in the rounded shape of the saron keys,or perhaps it is caused by
some careful sculpting of the physical contour of the keys. If, for instance, one side of the
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in the bottom spectrum, and the arrow in the upper spectrum points to a small, but
observable bifurcated partial.

10.3.2 Gender

The gender is a metallophone with thin bronze keys (see Fig. 10.1) that are sus-
pended above tubular resonators, much like a vibraphone. The air column vibrates in
sympathy with certain partials, reinforcing the sound. When tuning a gamelan, the
gender is usually tuned first, and all other instruments are tuned to the gender.

Genders are often played with soft disk-headed mallets, in such a way as to para-
phrase and restate the melody. The padded mallet tends to give a soft, mellow sound.
As the instrument resounds for a long time, the player usually mutes old notes with
the heel of the hand while striking new notes. Larger (lower pitched) genders play
slowly, and the smaller and higher pitched instruments movemore rapidly.

The spectra of two typical gender hits are shown in Fig. 10.4.These have promi-
nent partials at � 	 � � � � � 	 � � * H � 	 � � � * � 	 � � � � 	 � � � H � 	 and� 	 � � + H � 	 � � H � � 	 � � � + � 	 * � � � � 	 � � + H �
which can be interpreted as a metal bar (the partials at or near � � H �

and * � � �
) or

as a modified saron bar (the partials at or near� � H �
and � � � �

) in conjunction with
harmonic partials at or near� �

, � �
, andH �

. This makes physical sense because the
gender is a metal bar. The harmonic partials are likely due tothe resonances of the
air column.
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Fig. 10.4.Spectra of two typical gender hits.

key was slightly thinner than the other, then the two sides might vibrate at slightly different
frequencies.
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In [B: 159], the resonances of four bars of ajegongan(a large Balinese gender)
are found to be nearly identical to the resonances of an idealbar. Presumably, these
were measured without the air resonances, because there is no hint of the harmonic
partials that are so prominent in Fig. 10.4.

10.3.3 Bonang

A bonang usually consists of two tiers of bronze kettles. Each kettle is shaped like
a broad-rimmed gong as in Fig. 10.5, and it is suspended open side downward on
two strings tied to a wooden frame. The player holds two hard,wrapped mallets, and
strikes the protruding knobs on the top end. The kettles in a slendro bonang are often
arranged antisymmetrically: � * � � ð�� �ñ �ñ *ñ �ñ
in the two ranks so that the performer can easily play (near-octave) pairs of notes.
The dots indicate notes in the octave above or below.

bonang

kenong

knob

rim

a 

Fig. 10.5. The kettles of the bonang
and kenong are shaped similarly, but
the rim of the kenong is longer and the
sound generally sustains longer.

A typical pelog bonang is similarly arranged:� � * � � H �ñ� Hñ �ñ �ñ *ñ �ñ �ñ
Kunst describes the musical function of the bonangs eloquently:

[the bonangs] devote themselves to the paraphrasing of the main theme. Now
they anticipate it, now they analyze it into smaller values and imitate it in
the octave. Then again, they syncopate it... then they fill upthe melodic gaps
with their penetrating tinkling sound.

As the bonang has a unique bell-like shape, there is no ideal to which it can be
compared. The spectrum of three different bonang kettles have prominent partials at



10.3 The Instruments 199� 	 � � * � � 	 � � � � � 	 � � + � �� 	 � � * � � 	 � � � � � 	 � � + � 	� 	 � � � � � 	 � � * � � 	 � � � H � 	 � � H � � 	 � � � � � 	 � � � + �
as shown in Fig. 10.6. The first two are typical and a good generic bonang spectrum
is � 	 � � * � � 	 � � � � � 	 � � + � � �
Many of the bonang kettles also demonstrate the behavior of bifurcating partials
previously encountered in certain of the more complex saronkeys. For instance, in
the lower spectrum in Fig. 10.6, the partials at

� � � � �
and

� � * � �
might be interpreted

as children of the generic bonang partial at
� � * � �

, and those at
� � � H �

and
� � H � �

might be derived from the generic partial at
� � � � �

.
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Fig. 10.6.Spectra of three typical bonang kettles.

The kenong is a kind of kettle with a larger rim that makes a clear and sustained
sound. It is often used to subdivide the long gong phrases into smaller pieces, and
hence it serves a primarily rhythmic function. Spectra of the kenong are similar to
those of the bonang, despite the differences in shape.

10.3.4 Gong

Perhaps the most characteristic sound of the gamelan is the deep, dark strokes of the
gong marking the end of each musical phrase. The largest gongs can have a diameter
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up to a meter, weigh 60 or more kilograms, and have a fundamental frequency of
only 40 or 50 Hz. Gongs may come in a variety of shapes, and Fig.10.7 shows a
fairly common profile.

According to tradition, gongs are of divine origin, and theywere used as a sig-
naling system among the Gods. Kunst [B: 90] reports that somegongs are protected
by powerful beliefs; for instance, no European is allowed totouch the sacred gong
at Lodaya. “One civil servant, who ventured nevertheless totouch it, died soon after-
wards.”

Without a doubt, the acoustic behavior of gongs is complicated. Figure 10.8
shows the first four seconds of a gong stroke, divided into 32K(3/4 second) seg-
ments. The first ten partials are at frequencies+ � 	 � � * 	 � * � 	 � � � 	 � � � 	 � � + 	 � � � 	 � * + 	 * � � 	 � � �
which is � 	 � � � + � 	 � � � H � 	 � � 	 � � � H � 	 � � + � � 	 � � � H � 	 � � + � � 	 * � + H � 	 � � + � �
for

� � + �
Hz, the perceived pitch. All of these partials are integer multiples of 15

Hz,11 which is not directly perceptible. Equivalently, the “scale” formed by these ten
partials (after reduction back into a single octave) is� 	 � 6 � 	 � 6 � 	 * 6 � 	 H 6 � 	 �
which is a simple just pentatonic scale.

One interesting behavior is the rising and falling of partials as the sound evolves.
For instance, consider the partial at 626 Hz, which slowly decays in amplitude until
3 seconds, when it suddenly begins to regain prominence. Similarly, the partial at
495 Hz falls and then grows, Such energy exchanges give the gong its characteristic
evolving timbre—as if the partials of the gong are smoothly sweeping up and down
the pentatonic scale.

Rossing and Shepherd [B: 159] suggest that the two prominentoctave partials
(at 90 and 180 Hz in this case) that determine the pitch arise from two axisymmetric
modes of vibration and are tuned by careful control of the ratio of the mass of the
dome to the total mass.� �

Rameau [B: 145] would have found this remarkable.

Fig. 10.7.The giant gongs of the gamelan have a
rich deep sound that can last well over 30 sec-
onds. “The sound of the gong, beaten heavily,
rolls on its ponderous beats like the ocean tide.”
Quoted from Kunst [B: 90].



10.3 The Instruments 201

0 200 400 600 800 1000 1200

frequency

0-0.75

0.75-1.5

1.5-2.25

2.25-3.0

3.0-3.75

3.75-4.0

time period
(seconds) 90

180

538 626

495

Fig. 10.8.Partials of the gong rise and
fall as time evolves. Curves show the
spectrum for successive time periods.

10.3.5 Gambang

The gambang is essentially a Javanese xylophone. Three or four octaves of wooden
keys lie on soft cushions that are mounted on a wooden frame. The lower keys tend
to be large and flat, and the higher keys are shorter and rounder. The sound is heavily
damped, more of a plink than a dong. The spectra of typical gambang strikes are
shown in Fig. 10.9. These are very close to the spectrum of an ideal bar, and hence
the gambang is best thought of in this way.
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Fig. 10.9.Observe how these two hits
of the gambang have spectra close to
that of an ideal bar. The top has par-
tials in the ratios 1, 2.86, 5.4, 8.4 and
the bottom has partials in the ratios 1,
2.73, 5.26, 8.3.
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10.3.6 Other Instruments

Thekendangis a full-bellied wooden drum, not dissimilar to a conga drum. The head
is traditionally made of buffalo skin that is stretched by means of rattan hoops. The
kendang player is, more than anyone else, the conductor of the gamelan. Often, the
kendang signals impending changes by stylized rhythmic messages, and subtle hand
motions are used to indicate which parts are to be emphasized.

Besides the fixed pitch instruments of a typical gamelan, there are instruments
that are often used in specific kinds of gamelan styles. In some styles, the theme is
played12 by therebab, a two-stringed bowed lute with a heart-shaped body. By its
nature, the rebab plays far more fluidly than the metallophones. The strings are often
made from thin copper wire, and the bow is stretched taut by two fingers of the right
hand, much like the Chineseerhu. There is no fingerboard as on a violin; rather, the
strings are stopped by pressure from the fingers alone. Because the bow is applied
near the bridge, the rebab has a more nasal quality than the violin. The spectrum of
the sound is primarily harmonic, as expected from a stringedinstrument.

Thesuling is an aerophone, an end blown bamboo tube with tone holes cut ap-
propriately to sound in the pelog or the slendro scale. Air isforced to cross the
wedge-shaped sound hole by means of an ingenious bamboo ringthat encircles the
mouthpiece. It is thus as easy to blow as a Western recorder. It is also easy to bend
the pitches of notes by partially covering the holes, which allows the suling to imi-
tate the call of a bird or the inflections of a voice in its richly ornamented parts. Like
most instruments based on the resonance of air columns, the spectrum is primarily
harmonic.

Finally, gamelan performances often include singing. Thismay be during an in-
terpretation of thewayang kulit(shadow puppets), or it may represent a characters
voice in a dramatic stage performance or a popular show. Thus, gamelan music in-
cludes several families of inharmonic instruments, each with their own character,
and yet retains a basic compatibility with harmonic instruments such as the rebab,
the suling, and the human voice.

10.4 Tuning the Gamelan

Gamelan tunings come in two flavors: the five-note slendro andthe seven-note pelog.
The earliest reported measurements of these tunings are from Kunst [B: 90], who
observed that the interval between each note in a slendro scale is equal to 240 cents.
This implies that slendro is similar to 5-tet:

note:
� � � � * �

cents: � � � � � � � � � � � � � � �
The naming of notes is only partially numerical. In slendro,there is no 4, and the
scale is often considered to start (and end) on 6.� #

Sometimes the rebab lags the “melody” (thebalungan) slightly, and sometimes it antici-
pates.
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Pelog, according to Kunst, is more complex, consisting of seven unequal divi-
sions of the octave:

note:
� � � � * � H �

cents:
� � � � * � � H � � * � � � * � � * � * �

Unfortunately, Kunst’s tone measurements were conducted using a monochord (a
stretched string, to which the desired tones are compared byear) and so are of limited
accuracy. As more modern investigations show, the above scales are only part of the
story.13

First, each gamelan is tuned differently. Hence, the pelog of one gamelan may
differ substantially from the pelog of another. Second, tunings tend not to have exact
2:1 octaves. Rather, the octaves can be either stretched (slightly larger than 2:1) or
compressed (slightly smaller). Third, each “octave” of a gamelan may differ from
other “octaves” of the same gamelan. And fourth, there is usually some note that is
common between the slendro and pelog scales of a given gamelan, although match-
ing notes differ from gamelan to gamelan.

An extensive set of measurements is carried out inTone Measurements of Out-
standing Javanese Gamelans in Yogyakarta and Surakarta[B: 190], which gives the
tunings of 70 gamelans.14 The measurements were taken using an analog electronic
system with an accuracy of about 1 Hz. The technique requiresthat all higher par-
tials be filtered out, and so only the fundamentals are reported. This is completely
adequate for measuring the tunings, because the pitches of the metallophones are
determined by the fundamentals. Unfortunately, it means that information about the
timbre (spectra) of the instruments has been lost.

Kunst measured the tuning of one saron in each gamelan, and extrapolated from
that to the tuning of the whole gamelan. This was unfortunatefor two reasons. First,
tunings may differ somewhat depending on the register. Second, Kunst failed to ob-
serve that the tunings were not genuinely octave based. For instance, the notes 6 and
D:6 (or 6̇ and 6) need not be in an exact 2:1 ratio. This latter fact is one of the most
remarkable aspects of the gamelan tunings, at least from theoctavo-centric West-
ern viewpoint. The octave stretching (and compressing) is amply demonstrated in
[B: 190], and pseudo-octaves ranging from 1191 to 1232 centsare reported.15

Another striking aspect of the data in [B: 190] is the accuracy to which gamelans
are tuned. For instance, of the 11 instruments tuned to pitch6 in the fifth register
of Gamelan Kyahi Kanyutmesem (Table 3 of [B: 190]), all are within 3 Hz of 582.
Eight are within 1 Hz of 580. It is therefore not a tenable position that gamelan oc-
taves are stretched or compressed by accident, or by inability to tune the instruments
accurately enough. Similarly, the differences in tuning between various gamelans� $

Kunst also offers an explanation for the tunings of the gamelan in terms of von Hornbostel’s
theory of a cycle of “blown” (compressed) fifths.� %
Originally published in Indonesian in 1972, this book has been recently translated into
English.� ,
Carterette [B: 26] reanalyzes the data from [B: 190] and describes the stretching of the
scales concretely by finding the best exponential fit.
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are far greater than the variation within gamelans. The variety of gamelan tunings is
intentional.

10.4.1 A Tale of Two Gamelans

This section examines the tunings of Gamelan Swastigitha and Gamelan Kyai Kaduk
Manis in detail. The slendro tuning of Gamelan Swastigitha is shown in Table L.2
on p. 362, where the calculation of the fundamental of each key is accurate to about
1 Hz. With the exception of the gambang,16 the tuning is extremely consistent. Dif-
ferent instruments in the same column have keys at the same pitch, and these rarely
differ by more than 1 or 2 Hz. For example, the six metallophones at note 6 in register
II are all between 471 and 472 Hz.

The last row of the table shows the median values within each column, and this
represents an idealized tuning for this gamelan. Translating these values into cents
and arranging by register shows the internal structure of this slendro scale:

Gamelan Swastigitha: Slendro
register intervals “octave”

I � * � � � � � � � � � � � � + � � � +
II � � � � � + � � � � � * � � � � � � �
III � � * � � � � � � � * � � � H � � � �

average� � � � � � � � � � � � � � � � � � �
Each octave is stretched by an average of 10 cents. The scale is remarkably uniform;
the mean difference of this scale from 5-tet is 2 cents, and the maximum error is 6.
To place this in perspective, consider the just major scale of Table 6.1 (p. 97) and its
approximation by 12-tet scale steps. The mean difference between these two is 8.8
cents, and the largest error is 16 cents.

Similarly, the slendro tuning of Kyai Kaduk Manis is given inTable L.3 on p. 362.
Reformatting this into cents gives:

Gamelan Kyai Kaduk Manis: Slendro
register intervals “octave”

I � � � � � � � � + � � H � * � � � + �
II � � H � � H � � � � � � � * � � � + �
III � � � � � + � � * � * � � � � � � + +

average� � H � � � � � � � � � � � � � � + �
Again, the scale is very close to 5-tet (mean difference of 5.6 cents, maximum differ-
ence eight cents), but the octaves of this tuning are compressed slightly. All of these
values fall well within the ranges observed in [B: 190].

Pelog tunings for the gamelans are given in Tables L.4 and L.5on pp. 363 and
364. Rearranging the data gives:� -

It may be that the gambang is harder to tune than the others because of its short envelope.
It may also be that the wood becomes nicked, scratched, and detuned far more easily than
the metallophones.
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Gamelan Swastigitha: Pelog
register intervals “octave”

I
� � � � � * � � � � � � + + � � � � � � � � � +

II
� � � � * � � H * � � H � � � � � � � � � � � + +

III
� � � � � � � � + � � + � � + � H � � � � � � � H

average
� � + � * * � � � � � + � � � � H � � � � � � + +

and
Gamelan Kyai Kaduk Manis: Pelog

register intervals “octave”
I

� � � � � � � � H � � + � � + � H � � � H � � � �
II

� � H � � * � H � � � * � � � � + H � � + � � + �
III

� * � � * � � * � + � � * � � � � � � � � � � �
average

� * H � * � � � � � � � � � � � � � � � H � � � �
Obviously, pelog is not an equal-tempered scale. Surjodiningrat et al. [B: 190] aver-
age the tunings from thirty pelog gamelans to obtain� � � 	 � � � 	 � � � 	 � � � 	 � � � 	 � * � 	 � � �
but they are clear to state that this “does not mean the best but only the average.”

In fact, a general pattern for pelog scales is� � 	 � � 	 ½ � 	 � R 	 � U 	 � V 	 ½ � 	
where the� � represent small intervals and the½ � represent large intervals.17 The
actual values of the� � and ½ � vary considerably among gamelans and even within
the same gamelan, so this pattern cannot be taken too literally.

10.4.2 Conversations about Tuning

Why is your gamelan tuned this way?While traveling through Indonesia, I asked
this question many times. People who tune gamelans, those who play, and those who
build them were often willing to comment, and their answers ranged from practi-
cal tuning advice to mystical explanations, from detailed historical justifications to
friendly ironic smiles that meant “what a silly question.”

Before describing the responses, consider the question. Ifasked why the pi-
ano is tuned as it is, perhaps you would describe the historical progression from
Pythagorean to equal temperaments, perhaps comment how 12-tet allows modula-
tion through all of the keys, perhaps describe how the major scale originates from a
juxtaposition of certain major triads, as an approximationto the harmonic series, or
as a conjunction of tetrachords.18 Similarly, it would be unreasonable to expect any
kind of unanimity of answers about gamelan tuning.� .

This provides an interesting inversion of the diatonic scale defined byò ¥ ò ¥ ¤ ¥ ò ¥ ò ¥ ò ¥ ¤ .� /
If you were reading this book, you might comment how 12-tet isan approximation to a
scale related to sounds with a harmonic spectrum.
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The most common answer was to name a gamelan that had been usedas a tun-
ing reference, reflecting a common practice for the initial tuning of the gender. For
instance, Pak Cokro, the master of Gamelan Kyai Kaduk Manis,said that it was ref-
erenced to a respected gamelan at the palace in Surakarta. “In ancient times it was
necessary to tune the gender right in the palace,” said Pak Cokro, “but in modern
times most people use a tape recorder.” A gamelan by Siswosumarto19 was similarly
referenced to the gamelan at the National Radio Station,20 and a gamelan of Mulgo
Samsiyo21 was referenced to a gamelan at the University in Yogyakarta.22 Mulgo
Samsiyo uses an electronic tuning device to tune the genders. “All the others are the
same as the genders,” he said.

Suhirdjan,23 a gamelan maker and tuner in Yogyakarta, described the tuning pro-
cedure. “You pick a scale and then tune the gender to that scale. Then all the other
instruments are fit to the gender.” I asked how the initial scale is chosen. “Just tune
until it sounds right,” he said. This sentiment was echoed far more poetically by Pur-
wardjito,24 an instructor at the Arts College in Surakarta, “Gamelans are tuned to
nature. In the west you tune with your mind. In Indonesia, we tune with the heart.”

Both Suhirdjan and Purwardjito are proficient with the techniques of tuning.Each
described in detail the parts of the saron key that must be scraped to raise or lower
the pitch, and these accord well with techniques used to tunexylophone keys.25 The
bonang family is trickier, but both agreed that filing from the outside of the rim tends
to lower the pitch, and filing the inside has the opposite effect. Filing the knob on the
outside also raises the pitch. The greatest factor, however, is the angle marked� in
Fig. 10.5; smaller angles correspond to lower pitches, and larger angles correspond
to high pitches. “This should only be changed in the gong factory, since it is dan-
gerous to hammer a bronze kettle–it might crack.” Purwardjito continues, “It’s also
important that the walls be uniform. When the thickness is uneven, the sound damps
out much more quickly. We say the sound is drowning in water.”Gongs are hard to
tune. “You never know which way the pitch is going to go when you hit or file it,”
says Suhirdjan, “Each gong has its own personality.”

Neither tuner uses beats when he tunes, although both are well aware of their ex-
istence. Towards the end of the interviews, I asked “a complicated question.” Grab-
bing a bonang, I placed my hand so as to damp out all but the fundamental. After I
hit it, I whistled the pitch of the fundamental. I then shifted the position of my hand
so as to damp out all but the partial at about

� � * �
, and then highlighted the pitch of

this partial26 by whistling. There were two kinds of reactions. Some of the informers,
like Suhirdjan, denied that there were two different pitches. “I hear both as the same� 0

Kaplingan Jatiteken Rt. 04/V. (Timor Bengawan Solo) Ds. Laban-Mojolaban Skh
Surakarta.# 1
RRI, Surakarta.# �
Dk. Gendengan Rt. 1/IV. Ds. Wirun Mojolaban, Sukoharjo-Jateng.# #
ISI, Yogyakarta.# $
Condronegaran Mj. 1/951, Gedong Kiwo, Yogyakarta.# %
STSI Surakarta. Jur-Karawitan, Kentingan Jebres.# ,
See, for instance, [B: 124].# -
Which to my ear was now the dominant sound.
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pitch... or as different parts of the same pitch,” he said. “It’s like when you hit the
same kettle softly, it is the same pitch as when you hit it hard. They are the same
pitch, but different.” Clearly, Suhirdjan is listening holistically. Very likely he tunes
in a holistic way as well.

Purwardjito’s reaction was different. First he laughed. Then he said, “Ah, I see.
You mean the supporting27tone... There are many kinds of tuning.There is the tuning
in the furnace, where you determine the shape. There is the fine tuning with file and
hammer. When you tune the gender [to the reference scale], you only pay attention to
the pitch. But when you tune the bonang, the kenong, or the gongs, you pay attention
to the supporting tones.” This kind of attention is analytical listening, and presumably
Purwardjito tunes analytically as well.

10.5 Spectrum and Tuning

Just as Western theoreticians do not generally think in terms of correlating the spec-
trum of an instrument with its tuning, Indonesian gamelan tuners are unlikely to have
developed their scales with a detailed awareness of the spectra of their instruments.
Rather, they used their ears to create compatible scales andinstruments.

A key tool in relating harmonic sounds to diatonic (just) scales is the dissonance
curve. The partials of the sound are specified, and then the related scale is defined by
the minima of the dissonance curve. Although gamelan tunerscan tune with remark-
able accuracy, the number of different partials they can reliably control is limited,
usually only two to four.28 Such sparse spectra lead to dissonance curves with only a
few widely spaced minima, not enough to explain any of the extant scales. Thus, the
situation for the gamelan is a bit more complex, because no single instrument has the
appropriate spectrum.

One clue to the resolution of this dilemma is in the first quotein this chapter
where Kunst spoke of the “discrepancy” between the vocal andinstrumental tones
of the gamelan. Another clue is that gamelan music includes several kinds of inhar-
monic instruments, and yet it retains compatibility with harmonic instruments such
as the rebab, suling, and the human voice. Thus, gamelan scales can be viewed in
terms of the spectra of two different instruments. That is, both pelog and slendro
scales can be viewed as minima of the dissonance curve29 generated by an inhar-
monic instrument in combination with a harmonic sound.

10.5.1 Slendro

Slendro is simpler than pelog both because it contains fewernotes and because it
varies less from gamelan to gamelan. A generic bonang with partials at

� 	 � � * � � 	 � � � � � 	 � � + � �# .
Gunawen, who was translating the conversation, conferred with Purwardjito for several
moments, searching for the right word, eventually settlingon “supporting.”# /
Usually only two to four partials are at consistent intervals throughout an instrument.# 0
The section “Dissonance Curves for Multiple Spectra” in thechapter “Related Spectra and
Scales” details how such dissonance curves are drawn.
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was experimentally derived in the previous sections. Drawing the dissonance curve
for this spectrum� in combination with a harmonic spectrum

2
with partials ati 	 � i 	 � i 	 � i gives the dissonance curve30 of Fig. 10.10.
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Fig. 10.10.SoundsG (a generic bonang) and5 (a harmonic sound with four partials) gen-
erate a dissonance curve with many minima close to the steps of 5-tet, which is shown for
comparison.

Observe that many of the minima of this curve occur at or very near steps of the
5-tet scale, which are themselves very near the steps of typical slendro tunings. Thus,
it is reasonable to interpret slendro tunings using the sameprinciples as were used
to derive the just scales as a basis of Western harmonic music. In fact, the deviation
of slendro from 5-tet (and from the minima of the dissonance curve of Fig. 10.10) is
smaller31 than is the deviation of the just scale from 12-tet (and from the minima of
the dissonance curve for harmonic sounds). In essence, the theory provides a better
explanation for the slendro tunings than it does for Westerntunings.

Besides the coincidence of the minima with scale steps, there are two notable
features of this curve. First, there are three minima very close to the octave: at 1.96,
1.98, and 2.0. This variation in minima of the dissonance curve near the octave mir-
rors the variation in “octaves” of the slendro scales, and itmay provide a hint as to
why there is no single fixed octave in the slendro world. Second, observe the mini-
mum at 1.02. With a fundamental of 100 Hz, this minimum would occur at 102 Hz,
giving a beat rate of 2 per second. At a fundamental of 500 Hz, this minimum would
occur at 510 Hz, with a beat rate of 10 Hz. This may be a hint as tothe origin of the
aesthetic of beats that the gamelan is famous for.

One objection to this analysis is that some arbitrary choices are made. For in-
stance, why was

2
chosen to have four partials? Why not more? Why assume all

partials are of equal importance (by assuming equal amplitudes)? Certainly, the par-
ticular values were chosen so that Fig. 10.10 was clear. Nonetheless, as in all dis-
sonance curves, the fundamental features (in this case, thealignment of the minima
with steps of the 5-tet scale) are relatively invariant to small changes in the assump-
tions. For instance, dropping a partial from

2
does not change any of the minima.$ 1

All partials were assumed of equal magnitude.$ �
Both in average and in maximum error.
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Adding a partial to
2

causes another (extraneous) minimum to occur at 1.44. Delet-
ing the partial at 3.92 from� causes the minima at 1.02 and 1.96 to disappear.
Changing the amplitudes to more closely match the actual spectra only changes the
height of the various minima, not their location. Indeed, the fundamental features are
robust.

10.5.2 Pelog

The pelog scale of one gamelan may differ substantially fromthe pelog of another.
Thus, pelog is not as easily explained as slendro, which could be reasonably approx-
imated by 5-tet.

One approach that appears fruitful is to combine the spectrum of the saron with
a harmonic spectrum, in much the same way that slendro was approached as a com-
bination of the bonang and a harmonic sound. To get a close match between the
minima of the dissonance curve and the scale, however, it is not enough to use a
saron averaged over all of the gamelans. Rather, the spectrum of the sarons actually
used in the gamelan must be employed. For instance, a typicalsaron from gamelan
Swastigitha was given in previous sections as

� 	 � � H � � 	 � � H � � 	 * � + � �
. Drawing the

dissonance curve for this� along with a harmonic
2

containing five partials gives
the dissonance curve of Fig. 10.11. Unlike the slendro scale, only half of this curve
contains scale steps of the desired scale, so only this half is shown. Observe the close
relation between the minima of the curve and the scale steps of the Swastigitha pelog
scale.

1                                                                   

1.0               1.18           1.38 1.48 1.57         1.77     1.98ratio
cents      0                  289            558  674  786          988     1176         
pelog      0      119      274            556  675  783          955     1199
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Fig. 10.11.Dissonance curve generated by the spectrum of the Swastigitha saron combined
with a harmonic sound has minima near many of the scale steps of the Swastigitha pelog scale.

Although the first step of the scale is missing from the dissonance curve, the oth-
ers are clearly present. Some of the scale steps are not aligned exactly, for instance,
the second scale step is 289 cents on the curve but is averagedto 274 for the gamelan.
Actual values over the three octaves of the gamelan are 245, 286, and 289, so the 289
is actually reasonable. The largest discrepancies occur inthe last two steps. The next
to last step is the only one that occurs on a broad minimum (theothers all occur at
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the sharp, well-defined kind), and so it is not surprising that this value would have
the largest variance. Indeed, the value of this step varies by more than 40 cents over
the three octaves of the gamelan. The last step (near the octave) is understandable by
the same mechanism as in the slendro scales. Looking over thewhole curve (and not
just this half), there are minima at 1.98, 2.0, and 2.14, and the three actual octaves of
the gamelan occur at 1.98, 1.99, and 2.01. Again, this may be interpreted in terms of
the stretching and/or compressing of the octaves. Certainly, it is reasonable that the
actual scales used should reflect the uncertainty of this placement of the “octave.”

The sarons of Gamelan Kyai Kaduk Manis have somewhat more complex spec-
tra, and the generic saron with partials at� 	 � � � + � 	 � � H � � 	 � � H * � 	 * � � � � 	 * � + � �
can be combined with a sound

2
with five harmonics to give the dissonance curve of

Fig. 10.12. This displays the same qualitative features as the previous figure: The first
scale step is missing, and the seventh step (the octave) is not completely certain.32

By a numerical coincidence, the next to last step is very close, but it again falls on a
broad minimum and the exact value cannot be taken too seriously. Overall, however,
the match between the minima of the dissonance curve and the measured values are
good.

1                                                                                   2

ratio     1               1.19         1.39  1.49 1.58     1.78      1.98  
cents   0                306           571   689  794     1000    1187
pelog   0      157    310           576   686  812       995       1212 
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Fig. 10.12.Dissonance curve generated by the spectrum of the generic saron of Gamelan Kyai
Kaduk Manis combined with a harmonic sound has minima near many of the scale steps of
the Kyai Kaduk Manis pelog scale.

This does not imply that gamelan tuners actively listen to the partials of their
instruments and sculpt them consciously so as to match the spectrum and the scale.
Gamelan tuners view their task much differently; as a cycle of listening and filing that
repeats until the gamelan “sounds right.” Nonetheless, gamelan tuners like Suhirdjan,
while listening holistically, do manipulate the partials as they tune. They do so in an
intuitive way that is the result of a long period of apprenticeship, considerable skill
in the techniques of tuning, and a deep insight into the way that gamelans “should”$ #

There are again three “octaves” in the full curve. These occur at 1.98, 1.99, and 2.09.
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sound. Tuners like Purwardjito, by listening to the “supporting” tones as he tunes,
may be listening and tuning more analytically. Purwardjitosees himself as tuning
“from the heart.” I believe him.

10.6 Summary

A few general observations:

(i) In almost all cases, the lowest spectral peak is the largest. It is reasonable to call
this lowest spectral peak the “fundamental,” because it corresponds closely to its
pitch.

(ii) The gamelan orchestras are “in-tune” with themselves in the sense that whenever
two instruments occupy the same “note” of the scale, the fundamentals are rarely
more than a few Hertz apart.

(iii) The relative amplitudes of the partials are heavily dependent on the angle, po-
sition, and force of the strike. The frequency of the partials is (comparatively)
insensitive to the excitation.

(iv) The slendro tunings are very close to 5-tet, although the octave (or more prop-
erly, the pseudo-octave) of the scales are often slightly stretched or compressed
from a perfect 2:1 octave.

(v) There are two classes of metallophones that are simple enough to understand:
the bar-shaped instruments (saron and gender) and the kettle-shaped instruments
(bonang and kenong). The acoustic behavior of the gongs, which is very com-
plicated, is an area for further research.

(vi) The spectra of the bar-like instruments of the gamelan differ from the theoreti-
cally ideal bar. The differences are consistent enough to beconsidered purpose-
ful.

(vii) The temporal evolution of the spectra of all bar-like instruments is simple... all
partials decay. The higher partials decay faster.

(viii) There is no simple theoretical shape to which the spectrum of the kettle instru-
ments can be compared. The partials of the keys are consistent across each game-
lan.

(ix) The temporal evolution of the kettle spectra is more complex than that of the
bar instruments. The cluster of high partials dies away quickly, whereas the par-
tials near

� � * �
grow (with respect to the fundamental) as time evolves, in many

cases becoming the dominant (largest) partial and the most prominent part of the
sound.

The method of dissonance curves can be used to correlate the spectra of instru-
ments of the gamelan with the slendro and pelog scales in muchthe way that they
can be used to correlate harmonic instruments with certain Western scales. The slen-
dro scale can be viewed as a result of the spectrum of the bonang in combination
with a harmonic sound, whereas the pelog scale can be (slightly less surely) viewed
as resulting from a combination of the spectrum of the saron and a harmonic sound.
Thus, gamelan scales exploit the unique features of the spectra of the inharmonic
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instruments of which they are composed, and yet retain a basic compatibility with
harmonic sounds like the voice.
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Consonance-Based Musical Analysis

The measurement of (sensory) consonance and dissonance
is applied to the analysis of music usingdissonance scores.
Comparisons with a traditional score-based analysis of a
Scarlatti sonata show how the contour and variance of the
dissonance score can be used to concretely describe the
evolution of dissonance over time. Dissonance scores can
also be applied in situations where no musical score exists,
and two examples are given: a xenharmonic piece by Carlos
and a Balinese gamelan performance. Another application,
to historical musicology, attempts to reconstruct probable
tunings used by Scarlatti from an analysis of his extant work.

11.1 A Dissonance “Score”

There are many ways to analyze a piece of music. Approaches include the chord
grammars and thematic processes of functional harmony as inPiston [B: 137], the
harmonic and melodic tensions of Hindemith [B: 72], the harmonic and intervallic
series of Schoenberg [B: 164], or in terms of the harmonic motion and structural
hierarchy of Schenker [B: 163]. In most such musical analyses, the discussion of
(functional) consonance and dissonance is based directly on the score, by an exam-
ination of the intervals, the harmonic context, and the tonal motion. This chapter
introduces a way to explore the sensory consonance of a pieceof music by calculat-
ing the performed dissonance at each time instant. The result is a graph called the
dissonance scorethat shows how dissonance changes throughout the piece; theflow
from consonance to dissonance (and back again) is directly displayed.

Consonance and dissonance are only one aspect of harmony, which is itself only
one part of a complete analysis that must include melody and rhythm. Furthermore,
sensory consonance and dissonance are not identical to the more traditional func-
tional consonance and dissonance, and hence the dissonancescore must be inter-
preted carefully. Nonetheless, the dissonance score is capable of conveying useful
information that cannot be obtained in other ways. For instance, different perfor-
mances of the same piece differ by virtue of the instruments used, idiosyncrasies
of the musicians, and of the acoustic space in which the performance occurs. Dis-
sonance scores reflect these differences and allow a comparison between various
performances of the same piece. Dissonance scores can also be drawn for music for
which no musical score exists, and hence, they are applicable to a wider range of
musics than those based on a formal score.
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11.1.1 Drawing Dissonance Scores

Suppose that a musical piece has been recorded and digitized. The piece is parti-
tioned into small segments, and the sensory dissonance of the sound in each segment
is calculated by the techniques of the previous chapters. The dissonance score plots
these values over time. Details are shown in Fig. 11.1.
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Fig. 11.1.Dissonance scores are calculated from a musical performance by windowing, ap-
plying an FFT, simplifying to a line spectrum, calculating the dissonance between all pairs of
partials in the line spectrum, and then summing.

For example, one composer known for his innovative use of dissonance is the
eighteenth century harpsichordist Domenico Scarlatti (1685–1757). Claude Roland-
Manuel, in the liner notes to [D: 42], comments:

Scarlatti’s audaciously original harmonies, and his acciaccaturas–clusters
and blocks of chords inherited from the Spanish guitar, taking dissonance
almost to its ultimate limits...

Whether “ultimate” or not, there is no doubt that Scarlatti’s sonatas were innovative
in both their harmonic motion and their use of dissonance. They provide an interest-
ing case study for the use of dissonance scores.

Figure 11.2 shows four versions of the dissonance score for the first half (40
measures) of Scarlatti’s sonata1 K380 in @ major. In all cases, the horizontal axis
represents time, which is indicated in measures by the numbers above the curves,
whereas the vertical axis is the calculated2 sensory dissonance. The top score was
calculated from a standard MIDI file, assuming a single idealized harpsichord timbre
for each note. Data for the other three performances were obtained by direct digital
transfer from harpsichord performances on CD by [D: 30], [D:37], and [D: 42] using
the technique of Fig. 11.1.

For the Scarlatti sonata, the data were partitioned into½ � � ¼ segments and the
FFT of each segment was calculated. The most significant spectral frequencies (and�

The prefix K stands for the harpsichordist Ralph Kirkpatrick, author of the standard catalog
of Scarlatti’s sonatas.#
In each curve, the point of maximum dissonance is normalizedto unity.
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Fig. 11.2.Dissonance scores for several harpsichord performances ofScarlatti’s sonata K380.
Numbers indicate measures.

their magnitudes) were then used to calculate the dissonance of each segment.3 Each
plotted point represents about 0.2 seconds, and the darker central lines are a moving
average of the dissonance values over 10 points, or about 2 seconds. It is easy to plot
the curves. But what do they mean?

11.1.2 Interpreting Dissonance Scores

To interpret the dissonance scores, it will help to correlate them with other, more
traditional kinds of musical analysis. Figure 11.3 presents the musical score of the
first 40 measures of Scarlatti’s sonata K380. The piece begins with four repetitions
(with slight variations in register and dynamics) of aª , ó pattern, each ending in a
trilled open fifth. These four repetitions appear in each of the dissonance scores as
the first four little hills. In the idealized MIDI performance, the first pair of hillocks
are identical and the second pair are identical, but larger.This reflects the fact that
lower octaves have greater sensory dissonance than higher.4 Measures 9 to 12 consist
of descending runs that outlineó , ª , ó . In the idealized performance, this is a short$

This simplification to the “most important” frequency components is not completely
straightforward. An algorithm is discussed in Appendix C. Details of the calculations are
given in Appendix E in equation E.6.%
This is a direct result of the widening of the sine wave dissonance curves at lower frequen-
cies.
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Sonata K380

Domenico Scarlatti

Fig. 11.3.Musical score to Scarlatti’s sonata K380 (part one of two).

V-shaped segment, reflecting the fact that measures 9 and 11 contain bass notes,
whereas the run is unaccompanied in the middle measure.

In measure 12, the melodic line begins the first of four repetitions. Underlying
this repetitive figure is an@ chord in measures 12 and 14, a� z dominantH in mea-
sure 13, and an? z diminished in measure 15. Although these may be mild compared
with (say) passages from Stravinsky’sRites of Spring, they are considerably more
dissonant than the previous sections. Besides the dissonance inherent in the bass clef
chords, there is the

� z neighboring tone in the melody, which forms a major seventh
with the drone-like@ . In addition, the? z ’s in the thirteenth and fifteenth measures
form a repeated tritone. The dissonance of these four measures is clearly visible in
the idealized MIDI performance as the large hump beginning at measure 12.

Scarlatti extricates himself from this dissonance by resolving from n major,
through@ major, and then to� z , with a trilled suspension resolving down to the
third. The melodic figure, which is transposed down twice, ties this to the previous
four measures, and the journey into dissonance and back is completed by the end of
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Fig. 11.3.Musical score to Scarlatti’s sonata K380 (continued).

measure 18. In the idealized performance, this return is apparent in the fluctuating
low-level dissonances leading into measure 19.

Similarly, the remainder of the dissonance score can be interpreted in terms of
the intervals, chords, and density of notes present in the original score. For instance,
the two small bumps beginning at measure 19 are caused by the rhythmic “hunting
horn” motif, whereas the large plateau starting at measure 23 is a result of the strong
bass chords that again include an? z diminished. When repeated at measures 27
and 31, the idealized dissonance score repeats almost exactly, just as in the musical
score. When the first half of K380 ends in measure 40 by resolving to three octaves
of n , the dissonance decreases toward zero. Thus, dissonance scores directly display
some of the same qualitative information that can be interpreted indirectly from the
musical score.
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11.1.3 Comparing Dissonance Scores

Recall that sensory dissonance depends not only on the intervals, but also on the
spectrum of the sound and its amplitude.5 As dissonance scores can be drawn directly
from a recorded performance, they can be used to compare different renditions of
the same piece. For instance, where one performer might execute a phrase lightly,
another might strike boldly. The brighter tone with more high harmonics will have
greater dissonance, and it will appear differently on the dissonance score.

Figure 11.2 shows three different interpretations of the first half of K380 played
by Newman, Ross, and Sgrizzi. Newman plays the “Magnum Opus Harpsichord”
built by Hill and Tyre. At almost 11 feet, this lavishly illustrated three-manual instru-
ment has five sets of strings and “may be the largest harpsichord ever constructed.”6

It has a full, lush sound. Ross plays the harpsichord of Anthony Sidey, which is a
more traditional double-manual instrument. Sgrizzi playsthe Neupert harpsichord at
the Cathédrale San Lorenzo. Although the liner notes contain no information about
the instrument, it clearly has at least two manuals, and the timbre of the two are
different: One is bright, and the other is subdued and harp-like.

Performances of a piece can vary in many dimensions, including tempo, dynam-
ics, tone color of the instrument, ornamentation, and properties of the recording envi-
ronment such as reverberation, microphone placement, and equalization. These will
all effect the dissonance score. For instance, a hall with large reverberation time (or
equivalently, a long artificial reverberation added to the recording) will cause notes
to sound longer. When sustained tones overlap, the dissonance increases because
the spectra from all simultaneously sounding partials contributes to the dissonance
calculation. Similarly, a faster rendition will tend to have more dissonance than a
slower one, all else being equal, because successive notes overlap more. Although
the dynamics of a harpsichord are relatively fixed (approximately the same force is
applied each time a note is plucked), differences between instruments are significant,
and differences between manuals and registers on the same instrument are inevitable.
Thus, the performer has considerable control over nuances that effect the perceived
dissonance of the rendition.

Dissonance scores display detailed information about the performance. For in-
stance, the first eight measures appear as the first four bumpson the dissonance
curves. Newman’s version parallels the idealized MIDI performance; the first two
bumps are both small, and the second two bumps are larger. Ross is similar, except
that the fourth repetition is played with less dissonance than the third. The musical
score marks dynamics for these phrases:] �

for the first and third,! ! for the sec-
ond and fourth. Ross faithfully interprets these dynamic markings by reducing the
dissonance.

In contrast, Sgrizzi decreases dissonance throughout the four phrases. The timbre
of the instrument changes noticeably in the lower octave repetitions; presumably,
Sgrizzi has changed manuals, and the effect is to decrease the dissonance despite the,

Other factors being equal, a louder sound has greater sensory dissonance than a softer
sound.-
According to the liner notes of [D: 30].
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lowering of the octave. In measures 9 to 12, Sgrizzi returns to the brighter register.
By playing these measures legato, the notes of the runs overlap, and these become
the most dissonant passage in the piece.

One of the most obvious features of the dissonance scores is the rapid change in
the instantaneous dissonances, which form a fuzzy halo about the averaged curve.
These fluctuations can be quantified by calculating the sum squared deviation of the
raw dissonance values from the averaged values. The standard deviations are:

Sgrizzi
� � � � �

Newman
� � � � �

Ross
� � � * *

In contrast to the human performances, the MIDI performancehas very little fluc-
tuation, with a standard deviation of only 0.063. This is because the MIDI disso-
nance score assumes an idealized harpsichord timbre containing exactly nine har-
monic partials, an idealized instrument in which each note was identical except for
transposition, and an idealized (quantized) performance.7 Such a performance does
not, of course, constitute an ideal performance, but it doesprovide a skeleton of the
expected flow of consonance and dissonance throughout the piece.

Sgrizzi’s low standard deviation is especially apparent inhis careful handling of
the dissonant chords in measures 12 through 19. Part of the low overall dissonance of
this portion is likely due to the slow pace of the rendition, but the low variance also
demonstrates a meticulous attention to the constancy of themusical flow. In contrast,
Ross maintains both a high level of dissonance and a large variance throughout the
phrase. This is due in part to the faster pace, but the high variance is caused by the
rhythmic expression of the bass chords, which are played with deliberate attacks and
an almost staccato articulation. The variance of Newman’s performance is midway
between Sgrizzi and Ross, but it is notable for its coherence. Observe how the third
and fourth hills (measures 5–6 and 7–8) are almost exactly the same. Similarly, the
“hunting horn” phrase in measures 19–27 is almost identicalto the repeat in measures
27–34. Both Ross and Sgrizzi approach the two appearances ofthis motif differently.
Ross builds tension by slowly incrementing the dissonance,whereas Sgrizzi slowly
relaxes throughout the phrase.

Scarlatti’s sonatas, although written for harpsichord, have often been adapted for
piano, and many have been transcribed for classical guitar.Figure 11.4 shows the
dissonance score for a performance of K380 on piano by [D: 33]and on guitar by
[D: 14]. Pogorelich exploits the greater dynamic range of the piano to emphasize cer-
tain aspects of the piece. The first theme, for instance, follows Kirkpatrick’s dynamic
markings closely, and the dissonance follows the volume andthe register. Pogorelich
races through measures 12-19, but does so very softly. This controls the dissonance
so that it peaks in the repeated hunting call of measures 19 and 27. This dissonance
is due more to sheer volume than to the intervallic makeup of the chords. It is a
sensible, although not inevitable, approach..

The standard MIDI file is currently available on the Internetat the Classical Music Archives
[W: 4].
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Fig. 11.4.Dissonance scores for two renditions of Scarlatti’s sonataK380. Pogorelich per-
forms on piano, and Fisk plays guitar.

Fisk’s realization is almost as fast overall as Pogorelich’s, but the tempo is more
even. Where Pogorelich lingers in the first few measures and then charges through
the next few, Fisk trods along with toe-tapping steadiness.Fisk’s interpretation is
unique among the performances because he treats the whole 40measures as one
long phrase. Observe how the dissonance score slowly rises and falls over the course
of the piece, indicating this fluidity of motion. All other performances are segmented
into (more or less) eight measure phrases, and the dissonance score rises and falls
in synchrony. Although dissonance scores can give a quantitative assessment, they
cannot pass judgment on the desirability of such interpretive decisions.

Dissonance scores must not be viewed carelessly. For instance, larger variance
of the dissonance score might imply a more expressive performance, but it might
also indicate a sloppiness of execution. Smaller variance points to more careful con-
trol, perhaps more “technique,” but it might also correspond to a more “mechanical”
rendition. When comparing two dissonance scores of the samepiece, the variation
in dissonance due to the performance is more significant thanthe amount of disso-
nance, because both are normalized to unity. For instance, points of maximum or
minimum dissonance might occur at different places, indicating those portions of the
piece the performer wishes to emphasize or de-emphasize. Similarly, the contour of
the dissonance curve carries much of the important information, but it requires an act
of judgment to determine what contour is most desirable for agiven piece.

Thus, dissonance scores can display unique information about a piece, and they
may be used as an analytical tool to help concretely describethe motion from con-
sonance to dissonance, and back again.

11.1.4 When There Is No Score

The dissonance score is not a notation, but a tool for analysis. Although it cannot
supply as much information as a musical score, it is applicable in situations (to xen-
harmonic, aleatoric, serial, or ethnic musics, for example) where no scores exist and
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where traditional analytic techniques cannot be applied. To demonstrate the poten-
tial, this section briefly examines a short movement from Carlos’ Beauty in the Beast
and a segment from a Balinese gamelan performance. The dissonance scores are
drawn, and they are related to various aspects of the music and the performances.

Beautiful Beasts

The title track of the symphonicBeauty in the Beastby Carlos [D: 5] is played in two
xenharmonic scales. Thealpha and beta scales are nonoctave-based tunings with
equal steps of 78 and 63.8 cents, respectively. Although both scales can support
recognizable triads, neither allows a standard diatonic scale, and neither repeats at
the octave. Hence, it is not obvious how to apply standard analytical techniques,
even if a score was available.

Figure 11.5 shows the dissonance score of the first 84 secondsof Beauty in the
Beastalong with the waveform, and an indication of how it might be divided into
thematic sections. Section? is the “beast” motif, which is repeated with variations
in ? { . n is a soft transition section featuring wind chimes, which slowly builds into
the “beauty” theme3 . 3 { repeats the theme with melody, and in3 { { the melody
slowly fades into the background.
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Fig. 11.5.First 1:24 of Carlos’Beauty in the Beastshowing dissonance score, amplitude of
waveform, and thematic structure.

Both the beauty theme and the beast theme have an internal structure that is
displayed by the dissonance score; each theme contains two dissonance bumps. In
both ? and ? { , the paired humps are roughly the same size. The bimodal structure
of the beauty theme is less obvious because of the amplitude changes, which are
apparent from the waveform. The long-termflow of the piece shows the characteristic
motif of motion from consonance, through dissonance, and back again.
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The variance of the performance from its average is 0.955. Although this is
smaller than any of Scarlatti performances (except for the idealized MIDI version), it
would be rash to draw any conclusions from this. Perhaps the small variance is due to
the synthesized nature of the work, which might lend precision to the performance.
Perhaps it is due to the slower overall motion of the piece, orperhaps it is something
inherent in the unusual tuning.

Gamelan Eka Cita

The gamelan, an “orchestra” of percussive instruments, is the primary indigenous
musical tradition of Java and Bali. Music played by the gamelan is varied and com-
plex, with styles that change over time and vary by place in much the way that styles
wax and wane in the Western tradition.Gong Kebyar, which means “gong burst-
ing forth,” is a vibrant form of gamelan playing that began inBali in the middle of
the century, and it has flourished to become one of the dominant styles. Each year,
the Bali State Arts Council sponsors the “All Bali Gong Kebyar Festival” in which
gamelans from across the island compete. Eka Cita, an orchestra from the village of
Abian Kapas Kaja near Denpassar, won the competition several years in a row, and
a recording was made of their concert in [D: 18].

I. Wayan Beratha basedBandrangan, the second track on the CD, on the ritual
spear danceBaris Gede. This energetic piece contains large contrasts in sound den-
sity, volume, and texture. The primary form of the piece consists of a short cycle,
each beginning with a deep gong stroke, and each midpoint accented by a higher
gong. The first 87 seconds (the complete piece is over 15 minutes) are displayed
in Fig. 11.6, which shows the dissonance score and the waveform. The cycles are
marked by the grid at the bottom, and they are aligned with theprimary gong hits.
Many of the gong strokes are visible in the waveform, but theyfigure prominently
throughout the segment even when they are not visible.

Indonesia currently maintains a series of Institutes (called STSI8 or ASTI) and
Universities9 that support and promote traditional culture, and they offer degrees in
traditional music, dance, and painting, as well as courses in ethnomusicology and
other “modernized” approaches to the study of the arts. Lacking immersion in the
culture, it is difficult to analyze this (or any other) gamelan piece in more than a
superficial manner. As with the analyses of Western music in the previous sections,
the intention is to show how the technique of the dissonance score may be applied.
Any conclusions drawn from this analysis must be consideredtentative.

The first part ofBaris Gede Bandrangan, shown in Fig. 11.6, can be thought of
as containing several sections.? is a soft introduction that sets the pace. Inn , the
drummer (who is also the leader of the ensemble) crescendos,introducing the major
“theme” in 3 along with the first gong strokes. These gong hits continue through-
out the segment, delineating the cycles shown in the bottom grid. In

�
, a series of

matching chords overlays the cycle, and this is repeated. In@ and � , two different
“melody” lines occur, again starting and stopping at cycle boundaries./

Skola Tinggi Seni Indonesian.0
Such as Gadjah Mada University.
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Fig. 11.6.First 1:27 ofBaris Gede Bandranganby I. Wayan Beratha, showing dissonance
score, amplitude of waveform, and rhythmic structure.

The dissonance score reflects some of these changes. Both dissonance peaks
markedn are caused by the drum, which marks the beginning and/or end of a sec-
tion. The peaks at

�
are a result of the raucous chording, and the smaller peaks@ and � are produced by the rapid melodic motion of the higher pitched metallo-

phones. Perhaps the most striking aspect of this score, at least in comparison with
the Western pieces analyzed earlier, is that the dissonancepeaks are episodic. That
is, each cycle has a roughly constant dissonance, which changes abruptly at cycle
boundaries.

In the pieces by Scarlatti and Carlos, the contour of the dissonance score de-
lineates the major phrases as it slowly rises and falls. Apparently, in the gamelan
tradition, (sensory) dissonance is used completely differently. Abrupt changes in
dissonance are the norm, and these changes seem to reflect theentrance and exit
of various instruments at cycle boundaries. If this patternholds (for more than this
single segment of a single composition), then this may be indicative of a fundamental
difference in the musical aesthetic between the gamelan andWestern traditions.

The standard deviation of the dissonance score of Fig. 11.6 about its mean (again,
the average is drawn as the darker line) is 0.094. If this can be interpreted (as in the
Western context) as a measure of the consistency of the performance, then this is a
remarkable figure. It is considerably smaller than any of theScarlatti performances,
despite the fact that the gamelan is played by several musicians simultaneously.

11.2 Reconstruction of Historical Tunings

In 12-tet, there is no difference between various musical keys, there are no restric-
tions on modulation, and key tonality is not a significant structure in music. Three
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hundred years ago, the musical context was different. Untilabout 1780, keyboard
instruments were tuned so that commonly used intervals werepurer (closer to just)
than less-used intervals. The resulting nonequal semitones gave a different harmonic
color to each musical key, and these colors were part of the musical language of the
time, both philosophically and practically. To understandthe musical language of
early keyboard composers, the tuning in which their music was conceived and heard
is important.

However, few composers documented the exact tunings used intheir music. Al-
though there is sufficient historical evidence that the period and nationality of a
composer can narrow the choice considerably, there are often significant variances
between historically justifiable tunings for any specific piece of music. The tuning
preferences of Domenico Scarlatti are particularly uncertain, because he was born
and trained in Italy, but spent most of his career in Portugaland Spain, and did all
of his significant composing while under strong Spanish influence. A method that
might infer information concerning his tuning preferencessolely from his surviving
music would therefore be of value to musicians and musicologists.

This section discusses a quantitative method based on a measure of the sensory
consonance and dissonance of the intervals in a tuning and their frequency of occur-
rence within the compositions. The presumption is that the composer would avoid
passages using intervals that are markedly out-of-tune or dissonant (such as wolf
fifths) except in passing, and would tend on average to emphasize those intervals
and keys that are relatively pure. This investigation first appeared in an article co-
authored with John Sankey called, “A consonance-based approach to the harpsichord
tuning of Domenico Scarlatti” [B: 160], which finds tunings that minimize the dis-
sonance over all intervals actually used by Scarlatti in hissonatas, and compares the
results to several well-known historical tunings.

The method is equally applicable to other early keyboard composers. Barnes
[B: 11] conducts a statistical analysis of the intervals that appeared in Bach’s pieces
to try and determine which tunings Bach was most likely to have used. This is sim-
ilar in spirit to the present approach, but the optimizationproceeds under a culture-
dependent interval selection and classification scheme, rather than a psychoacoustic
measure.

11.2.1 Total Dissonance

There are four basic steps to find the most consonant tuning for a piece (or collection
of pieces) of music. These are:

(i) Specify the spectrum of each sound
(ii) Find (or count) the number of occurrences of each interval class, and

weight by their duration
(iii) Choose an initial “guess” for the optimization algorithm
(iv) Implement a gradient descent (or other local optimization algorithm) to

find the nearest “least dissonant” set of intervals
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The bulk of this section describes these steps in detail.
As the Scarlatti sonatas were composed for harpsichord, a spectrum was chosen

that approximates an idealized harpsichord string. The sound is assumed to contain
32 harmonic partials at frequencies� 	 � � 	 � � 	 � � � 	 � � �
where

�
is the fundamental. The amplitude of the partials is assumedto die away

at a rate of� H * �
, where � is the partial number. Surviving historical harpsichords

vary considerably in these parameters. The low strings of some have more than 80
discernible partials, decreasing with an exponent as high as 0.9, whereas the high
strings of others display as few as 8 partials with a more rapid decay. The amplitudes
of the partials also vary due to the position at which the string is plucked (which may
vary even on the same harpsichord), and from interactions among the strings. The
chosen spectrum is a reasonable approximation to the average sound of a harpsichord
in the portion of its range in which a musician is most sensitive to questions of tuning.
Three typical harpsichord timbres are shown in Fig. 11.7 forcomparison.
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Fig. 11.7. Spectra of three notes of a
harpsichord with fundamentals at 104
Hz, 370 Hz, and 1048 Hz (correspond-
ing to notes5 E , G E , and A ). All par-
tials lie close to a harmonic series, and
the higher notes have fewer harmonics
than the lower notes.

The sonatas of Scarlatti recordings have been encoded by John Sankey in Stan-
dard MIDI File (SMF) format,10 which is a widely accepted standard for encoding
the finger motions of a keyboard player as a function of time. These finger motions� 1

The files are currently available on the Internet at [W: 4].
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can be used to (re)synthesize the performance. A program waswritten to parse the
SMF files and to collate the required information about frequency of occurrence of
intervals and their duration in performance.

Recall that the sensory dissonance
� 
 � � 
 6 � � � between two notes with funda-

mentals
� � and

� 

is the sum of all dissonances11 between all pairs of sine wave

partials. The Total Dissonance (£ �
) of a musical passage of] notes is defined to be

the sum of the dissonances weighted by the duration over which the intervals overlap
in time. Thus £ � � | � ��� ô � |�
 ô � ß � � 
 � � 
 6 � � � a � � 	 � �
wherea � � 	 � �

is the total time during which notes� and� sound simultaneously. Al-
though the amplitude of a single held note of a harpsichord decreases with time, it
increases significantly each time a succeeding note is played due to coupling via their
shared soundboard. Given the high note rates in the sonatas,this rectangular sound
intensity distribution is a reasonable approximation.

An � -note tuning based on the octave contains� g �
distinct intervals between

1:1 and 2:1. Observe that the£ �
for a musical composition depends on the tuning

because the different intervals have different values of
� 
 � � 
 6 � � �

. By choosing the
tuning properly, the total dissonance of the passage can be minimized, or equiva-
lently, the consonance can be maximized. Thus, the problem of choosing the tuning
that maximizes consonance can be stated as an optimization problem: Minimize the
“cost” (the £ �

of the composition) by choice of the intervals that define thetuning.
This optimization problem can be solved using a variety of techniques; perhaps the
simplest is to use a gradient descent method. This is similarto the adaptive tuning
method, but the£ �

maintains a history of the piece via thea � � 	 � �
terms. Adaptive

tunings can be considered a special (instantaneous) case.
Let ª �

be the initial “tuning vector” containing a list of the intervals that define
the tuning. A (locally) optimalª ¯ can be found by iteratingª Ú ß � � ª Ú g Ô � £ �� ª Ú
until convergence, whereÔ is a small positive stepsize and

Ó
is the iteration counter.

The algorithm has “converged” when the change in each element of the update term
has the same sign. Calculation is straightforward, although somewhat tedious. In
most cases, the algorithm is initialized at the 12-tone equal-tempered scale; that is,ª �

is a vector in which all adjacent intervals are 100 cents.
A tuning for which a desired composition (or collection of compositions) has

smaller£ �
is to be preferred as far as consonance is concerned. In the context of

attempting to draw historical implications, the measure£ �
may provide reason for

rejecting tunings (those that are overly dissonant) or reconsidering tunings (those
with near-optimal values of£ �

). Such judgments cannot be made mechanically,
they must be tempered with musical insight. The variation invalues of the£ �

for� �
See equation E.7 for details of the calculation ofF õ r & ö 8 & ± s .
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different tunings is small, less than
� 4 between musically useful tunings, and are

therefore expressed in parts per thousand (
� 6 � �

) difference from 12-tet. A difference
of 1

� 6 � �
is clearly audible to a trained musical ear in typical musical contexts.12

Music of course does not consist solely of consonances. Baroque music is full of
trills and similar features that involve overlapped seconds in real performance, and
Scarlatti made heavy use of solidly overlapped seconds, deliberate dissonances, as a
rhythmic device. Consequently, all intervals smaller thanthree semitones were omit-
ted from the calculations of the£ �

. This had surprisingly little effect on the values
of the convergent tunings; the precaution may be unnecessary with other composers.

11.2.2 Tunings for a Single Sonata

As harpsichords (in contrast to organs) were tuned frequently, usually by the per-
former, it is likely that composers might have changed theirpreferred tuning over
the course of their lifetime, or used more than one tuning depending on the music
to be played. Both of these are well documented in the case of Rameau. One way to
investigate this is to initialize the tuning vectorª �

to the intervals of 12-tet, and find
the optimum tuningsª ¯ that minimize the£ �

for each sonata individually.
A histogram of all tunings obtained is shown in Fig. 11.8. Theheight of a bar

shows the number of sonatas for which the optimum tuning contains a note of the
given pitch. As can be seen, for most of the 11 pitches, there are two strong prefer-
ences. The location of the pure fifths13 ascending and descending from3 is shown
below the frequency bars. The minimization process for samples as small as one
sonata often “locks on” to the predominately nonunison minimum at pure fifths.
This effect continues to dominate even when groups of up to ten sonatas are evalu-
ated. Although baroque musicians often refined the tuning oftheir instruments before
performing suites of pieces using a consistent tonality set, it is impractical to com-
pletely retune an instrument every 5 or 10 minutes, the length of a typical sonata pair
with repeats and variations.

The primary formal structure of most of the sonatas follows two symmetries:
Tonalities are mirrored about a central double bar, and thematic material repeats
after the double bar (although not always in exactly the sameorder). For example,
K1 begins in

�
minor, progresses to? major at the double bar 14, and ends in

�
minor bar 31; thematically, bar 1 matches bar 14; 2–5, 22–25;7, 17; 9, 18; 13, 31.
One expects that Scarlatti’s tuning(s) would have complemented and been consistent
with these symmetries. Many of the single-sonata tunings found by this optimization
method are not. For example, bars 9 and 18 in K1 are symmetrically designed to
strongly establish the tonalities

�
minor and � major, respectively, but the pure� g ? fifth on which bar 9 is based is inconsistent with the� g 3 fifth of bar

18, a very audible 15 cents smaller than pure in this tuning. By comparison, these
intervals differ by only 4 cents in the Vallotti? tuning. Using optimized tunings to� #

For this reason, a numerical precision of nine decimal places or greater is advisable for the
calculations of÷ F .� $
e.g.,> � ' t mod 1200 forh u � ) ) to 11.
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Fig. 11.8.The relative distribution of “optimal” tunings when considering each of the sonatas
individually. Observe the clustering at the Pythagorean (pure) fifths.

retune sections of music of sonata length does not, therefore, seem to be a reliable
guide to the practice of Scarlatti, nor to be useful in detecting changes in tuning
preferences over his oeuvre.

11.2.3 Tunings for All Sonatas

When all of the sonatas are treated as a set, this kind of overspecialization to particu-
lar intervals does not occur, but there are a large number of minima of the£ �

within
a musically useful range.

One tuning obtained while minimizing from 12-tet (labeled TDE in Table 11.1)
has several interesting features. Many theorists, in the past and still today, consider
the numerical structure of a scale to be important, often favoring just scales that
consist of the simplest possible number of ratios. The 12-tet-refined tuning is one
of this class: Take four notes� � �

, ^ � + 6 �
,

� � � 6 �
, and

� � � 6 � . Then
� �� ^ 6 �

and
� � + � 6 ^ , so every note is just with respect to all others. Three such

groups overlap to make a 12-note scale3 g � g � g 2
, @ g � z g ? g n , ? o gn o g � o g @ o . The tuning TDE found to be optimal for the sonatas contains two

of these quartets. However, unlike many just tunings, this one is specially designed
for use with an extended body of music, namely, the sonatas. There is no historical
evidence that any influential performer or composer actually used such a tuning,
but it is worth listening to by anyone wishing to hear the sonatas in a different but
musical way. The technique of minimizing£ �

is a fertile source of new tunings
for modern keyboard composers—there are many musically interesting tunings that
have not been explored.

The relative14 £ �
of a number of tunings that are documented in the musical

literature of Scarlatti’s time are shown in Table 11.2. The tunings are defined in
Table L.1 of Appendix L. Meantone tuning, in which all fifths are equal except one
wolf fifth

2 z g @ o , was the most common tuning at the close of the Middle Ages.
It was considered to be in the key of

�
, and it was modified steadily toward equal

temperament by increasing the size of the equal fifths as timeprogressed. However,� %
All ÷ F values are normalized so that the÷ F of 12-tet is zero.
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Table 11.1. Derived tunings. All values rounded to the nearest cent.

Label cents
TDE 98 200 302 402 506 605 698 800 900 1004 1104
TDA1 86 193 291 386 498 585 697 786 889 995 1087
TDA2 88 200 294 386 498 586 698 790 884 996 1084

as only one note needs to be retuned to transpose any meantonetuning into the tuning
for an adjacent fifth (e.g., to add or subtract one sharp or flatfrom the key signature),
many performers did so to improve the sound of their favoritekeys.

Table 11.2. Total Dissonance÷ F (in
1 8 1 1 deviation from 12-tet) and strength� of various

historical and derived tunings over all Scarlatti’s sonatas.

Tuning ÷ F �
12-tet 0 0
Bethisy -0.4 4.1
Rameau b -0.5 7.1
Werkmeister 5 -0.6 2.6
d’Alembert -0.8 4.1
Barca -1.0 2.4
Werkmeister 3 -1.9 3.1
Kirnberger 3 -1.9 3.4
Corrette -2.2 6.8
Vallotti A -2.5 2.9
Chaumont -3.3 7.7
RameauE -4.0 7.1
1/4 Comma A -5.8 10.3
Kirnberger 2 -6.0 4.5
TDE -1.6 2.2
TDA1 -2.3 4.6
TDA2 -7.1 5.6

The £ �
for the set of all Scarlatti sonatas is shown in Fig. 11.9 versus the size

of the equal fifths and the position of the wolf fifth. There is asharp maximum with
fifths 3.42 cents less than 12-tet when the wolf is between@ o andn o or between@ o
and

2 z , precisely the medieval 1/4-comma tunings in the keys of? and
�

. There is
another broader maximum with fifths 1.8 cents larger than 12-tet, which is close to
the ancient Pythagorean tuning with pure fifths. The generalshape of the meantone£ �

of the entire keyboard oeuvre of Scarlatti is, therefore, inaccord with historical
musical practice.

Many historical harpsichord tunings have been quantified byAsselin [B: 8]; the
tunings used in this study are shown in Table L.1 of Appendix L. As the harpsi-
chord scale has 11 degrees of freedom, it is desirable to characterize each tuning
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Fig. 11.9.The relation between consonance, size of equal fifths in a meantone-type tuning,
and position of the unequal wolf fifth, for all sonatas as one unit.

by a smaller number of musically useful parameters. The meanabsolute difference
between the various tunings and 12-tet gives a kind of “strength” parameter. Defineb � a � �

mean Õ � � Ó 	 K � g � � Ó 	 a � Õ
where

� � Ó 	 K �
is the pitch in cents of note

Ó
from the first note of the 12-tet scale,� � Ó 	 a �

the corresponding pitch of tuninga , and the function
�

has been normalized
so that

mean
� � Ó 	 K � �

mean
� � Ó 	 a �

to remove the pitch scale dependence of the dissonance function. Historically, the
value of b � a �

has decreased with time, from 10 cents for the medieval 1/4-comma
meantone tuning to essentially zero for modern piano tunings. In general, a low value
of b is associated with tunings that work in a wide variety of keys, a high value with
tunings placing many restrictions on modulation.

Figure 11.10 plots the TD of each tuning (in
� 6 � �

of the TD of 12-tet) versus the
strength of the tuning. If a series of meantone-type tuningsin ? is constructed, with
the size of the equal fifths decreasing from 12-tet (100 cents) to 96 cents, the locus of£ �

and b is the solid line shown. (It is the same curve as that for the wolf between@ o and n o in Fig. 11.9.) In Fig. 11.10, a decrease of both the£ �
and b represents

an improvement in both consonance and in modulatability. A decrease in the£ �
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associated with an increase inb requires a choice based on musical context, because
any improvement in consonance will be offset by a reduction in the range of keys in
which the consonance will occur.
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Fig. 11.10.The vertical axis plots the TD of all sonatas when played in the tunings of Ta-
ble 11.2 as a percentage of the TD of all sonatas when played in12-tet. The horizontal axis
gives the mean absolute deviation of each tuning from the 12-tet scale.

In general, French tunings sought to purify the sound of major thirds, whereas
Italian and German tunings were more closely derived from the fifth-based mean-
tone. The two schools may be separated by the dotted line in Fig. 11.10; again, the£ �

is in accordance with historical knowledge. Both Italian tunings in? show supe-
rior consonance to those in

�
, and Rameau’s “sharp” tuning has greater consonance

than that inn o . (Modulated versions of any tuning have the same strengthb .) The
expectation from this figure is that Kirnberger 2 should be byfar the best tuning
for the sonatas, with meantone (1/4 comma) second except perhaps in some remote
tonalities due to its strength. Next should be the sharp tuning of Rameau (again with
possible difficulties in some tonalities), followed by Vallotti ? , and then Barca? .
Unfortunately, other factors intervene.

A primary phrase pattern widely used in Western music, and particularly by Scar-
latti in the sonatas, is a gradual increase of musical tension culminating in a musical
steady state (stasis) or a release of tension (resolution).Increasing pitch, volume,
rapidity, harmonic density, and harmonic dissonance are techniques of increasing
musical tension. A skilled composer will use these various techniques in a mutually
supporting way, in consistent patterns. If, therefore, useof a particular tuning en-
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hances the ebb and flow of musical tension, it may be the tuningthat the composer
used to hear music. As such a small proportion of potential intervals can be simul-
taneously in perfect tune in one tuning, it is likely that an erroneous tuning at least
occasionally results in a glaring mismatch of musical shape.

The £ �
predictions fail with the second tuning of Kirnberger when this tension

structure is taken into account—the consonances in this tuning often fall in Scar-
latti’s relatively long tonal transition passages and all too frequently come to abrupt
halts with unacceptably dissonant stases. For example, sonata K1 begins the second
section with an? major triad ascent to an@ in the treble, and then repeats the fig-
ure in the bass under the sustained@ . With Kirnberger 2,? g @ is almost 11 cents
smaller than just, one of the most dissonant fifths in the tuning. In both the Vallotti?
and d’Alembert tunings, by comparison,? g @ is a bit less than 1/4 comma smaller
than just, precisely right for an interim pause in the overall-upward passage of which
the ? to @ phrase forms a part. Besides frequently failing the tension-topology cri-
terion and the symmetry criteria discussed earlier, the 1/4-comma meantone tuning
too often produces phrases that stay consistently out of tune for too long at a time
(although obviously not long enough to affect the£ �

sufficiently), for example, the
chromatic passages in bars 10–14 and 35–38 of K3. In fact, these bars together with
their symmetric pair 58–63 and 84–87 cannot be played in consistent tune with any
placement of a 1/4-comma-tuning wolf fifth.

However, although the tonal colors of Rameau are clearly in evidence, so are the
consonances, which fall in the right places, and the tuning is particularly evocative in
many of Scarlatti’s slow plaintive melodic passages (K11, for example). The smooth
matches of the Vallotti? tonal structure with those implicit in the music are very
consistent, if unremarkable. The French tunings do indeed mostly have problems
with dissonances in many places (the chromatic passages of K3, for example).

The historical instructions for some tunings are uncertain, even deliberately am-
biguous, so modern numeric reconstructions may be slightlyin error. This is almost
certainly the case for the tuning of d’Alembert, which was described and redescribed
in remarkably varied terms by several authors (e.g., Bethisy) of the time. The gradi-
ent algorithm was again applied to successively reduce the£ �

in small steps for the
set of all sonatas, beginning with d’Alembert’s tuning (instead of initializing with
12-tet), with the hope that this might correct minor errors in what is basically a good
tuning. Two routes the algorithm took are shown by dashed lines in Fig. 11.10. The
longer (right) curve shows the route when the only criterionfor the change inª was
lower £ �

. The shorter curve emanating from d’Alembert’s tuning resulted whenª was optimized for lowerb and lower£ �
simultaneously. The first minimization

proceeded well beyond the optimum musical point along the path, ending up at a
tuning (TDA2 in Fig. 11.10) that made the most common intervals perfectly conso-
nant but far too many lesser used musically important ones unacceptably dissonant
(for example, the repeated high

� g ? fifths of K1, 17 cents flat).
Furthermore, if this optimization from the d’Alembert tuning is applied individ-

ually to the few sonatas where the TDA1 tuning has residual difficulties, a similar
behavior is observed. At first, the sound improves, and then,with further iteration,
the tuning becomes “overspecialized.” For example, the fifths ending many phrases
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of K328, and the chords closing each half, are a bit more discordant with TDA1 than
one would wish, although consistently so. Applying the refinement procedure for
this sonata alone produces the tuning included in Table 11.1—the fifths and chords
all improve in consonance compared with TDA1, without changing the sound of the
rest of the sonata adversely or changing the basic color of the tuning. This is in ac-
cordance with historical practice, where a basic tuning would be “touched up” for a
while to play a group of pieces that benefited from it (as opposed to the minimum-£ �

tunings that varied too much between sonatas to be practical).

11.3 What’s Wrong with This Picture?

The music hall is austere—it is exactly the kind of place a Scarlatti or a Rameau
might have played. The harpsichord is an immaculate reproduction made by the
finest craftsmen from a historically authenticated model. The performer is well
versed in the ornamentation and playing techniques of the period and is perhaps
even costumed in clothes of the time. The music begins—in 12-tet.

What’s wrong with this picture is the sound. 12-tet was not used regularly in
Western music until well into the eighteenth century, and yet even performers who
strive for authentic renditions often ignore this.15 Perhaps this is excusable for Scar-
latti, whose tuning preferences are uncertain, but no such excuse is possible for
Rameau, whose treatise [B: 145] is one of the major theoretical works of his cen-
tury. Imagine taking a serial piece by Schoenberg or Babbit,and “purifying” it for
play in a major scale. Is the damage to Scarlatti’s vision anyless?

Although firm conclusions about tunings actually used by Scarlatti await his res-
urrection, the total dissonance of a large volume of music isa useful tool for studies
of 12-tone keyboard tunings in a historical context, although it is insufficient by it-
self. Use of total dissonance to optimize a 12-tone tuning for a historical body of
music can produce musically valuable results, but it must betempered with musical
judgment, in particular to prevent overspecialization of the intervals.

This chapter has shown how to apply the idea of sensory dissonance to musical
analysis. For instance, there are many possible tunings in which a given piece of mu-
sic might be performed. By drawing dissonance scores for different tunings (12-tet,
just, meantone, adaptive, and so on), their impact can be investigated, at least in terms
of the expected motion of dissonance. Dissonance scores might also be useful as a
measure of the “distance” between various performances. For instance, the area be-
tween the averaged curves of two renditions provides an objective criterion by which
to say that two performances are or are not similar. One subtlety is that the disso-
nance scores must be aligned (probably by a kind of resampling) so that measures
and even beats of one performance are coincident with corresponding measures and
beats in the other. Most likely, this alignment must be done by hand because it is not
obvious how to automatically align two performances when they differ in tempo.� ,

Few recordings of Scarlatti’s sonatas are performed in nonequal tunings. There are dozens
in 12-tet, many played on beautiful period harpsichords andboasting authentic-sounding
blurbs on the cover.
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From Tuning to Spectrum

The related scale for a given spectrum is found by
drawing the dissonance curve and locating the minima. The
complementary problem of finding a spectrum for a given
scale is not as simple, because there is no single “best”
spectrum for a given scale. But it is often possible to find
“locally best” spectra, which can be specified as the solution
to a certain constrained optimization problem. For some kinds
of scales, such asø -tet, properties of the dissonance curves
can be exploited to directly solve the problem. A general
“symbolic method” for constructing related spectra works
well for scales built from a small number of successive
intervals.

12.1 Looking for Spectra

Given a tuning, what spectra are most consonant? Whether composing in � -tet, in
some historical or ethnic scale, or in some arbitrarily specified scale, related spectra
are important because they provide the composer and/or performer additional flexi-
bility in terms of controlling the consonance and dissonance of a given piece.

For example, the Pythagorean tuning is sometimes criticized because its major
third is sharp compared with the equal-tempered third, which is sharper than the just
third. This excessive sharpness is heard as a roughness or beating, and it is espe-
cially noticeable in slow, sustained passages. Using a related spectrum that is specifi-
cally crafted for use in the Pythagorean tuning, however, can ameliorate much of this
roughness. The composer or performer thus has the option of exploiting a smoother,
more consonant third than is available when using unrelatedspectra.

12.2 Spectrum Selection as an Optimization Problem

Any set of] scale tones specifies a set of] g �
intervals (ratios)_ � 	 _ � 	 � � � 	 _ | � �

. The
naive approach to the problem of spectrum selection is to choose a set of� partials� � 	 � � 	 � � � 	 � �

and amplitudes� � 	 � � 	 � � � 	 � �
to minimize the sum of the dissonances

over all] g �
intervals. Unfortunately, this can lead to “trivial” timbres in two ways.

Zero dissonance occurs when all amplitudes are zero, and dissonance can always be
minimized by choosing the_ � arbitrarily large. To avoid such trivial solutions, some
constraints are needed.
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Recall that the dissonance between two tones is defined as thesum of the dis-
sonances between all pairs of partials, weighted by the product of their amplitudes.
(Now would be an excellent time to review the sectionDrawing Dissonance Curves
on p. 95 in the chapterRelating Spectrum and Scaleif this seems hazy.) If any ampli-
tude is zero, then that partial contributes nothing to the dissonance; if all amplitudes
are zero, there is no dissonance. Thus, one answer to the naive minimization problem
is that the dissonance can be minimized over all the desired scale steps by choosing
to play silence—a waveform with zero amplitude! The simplest way to avoid this
problem is to forbid the amplitudes� � to change.1

Constraint 1:Fix the amplitudes of the partials.

A somewhat more subtle way that the naive minimization problem can fail to pro-
vide a sensible solution is a consequence of the second property of dissonance curves
(see p. 115), which says that for sufficiently large intervals, dissonance decreases as
the interval increases. Imagine a spectrum in which all partials separate more and
more widely, sliding off toward infinity. Such infinitely sparse spectra minimize the
dissonance at any desired set of scale steps and give a second“trivial” solution to the
minimization problem. The simplest way to avoid this escapeto infinity is to con-
strain the frequencies of all partials to lie in some finite range. The cost will then be
reduced by spreading the partials throughout the set, whiletrying to keep it especially
low at the scale steps_ � .

Constraint 2:Force all frequencies to lie in a predetermined region.

Fixing the amplitudes and constraining the frequencies of the partials are enough
to avoid trivial solutions, but they are still not enough to provide good solutions. Al-
though the resulting scale steps do tend to have reasonably small dissonance values,
they often do not fall at minima of the dissonance curves. Consider an alternative
“cost” that counts how many minima occur at scale steps. Minimizing this alterna-
tive cost alone would not be an appropriate criterion because it only reacts to the
existence of minima and not to their actual value. But combining this with the orig-
inal (constrained) cost encourages a large number of minimato occur at scale steps
and forces these minima to have low dissonance.

The final revised and constrained optimization problem is asfollows: With the
amplitudes fixed, select a set of� partials

� � 	 � � 	 � � � 	 � �
lying in the region of interest

so as to minimize the cost3 � � � Y sum of dissonances
of the] g �

intervalsZ " � � Y number of minima
at scale steps Z

where the� �
and � �

are weighting factors. Minimizing this cost tends to place the
scale steps at local minima as well as to minimize the value ofthe dissonance curve.�

Although not appealing, such a condition is virtually necessary. For instance, suppose theM ± for ã u ) ¥ ( ( ( ¥ h � ) were fixed whileM t was allowed to vary. Then the cost could always
be reduced by choosingM t u � . An alternative might be to fix the sum of theM ± , say,ù M ± u M Í . Again, the cost could be reduced by settingM ö u ú Í andM ± u � for all ã ûu ü .
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Numerical experiments suggest that weightings for which the ratio of � �
to � �

is
about a 100 to 1 give reasonable answers.

12.3 Spectra for Equal Temperaments

For certain scales, such as the] -tone equal-tempered scales, properties of the disso-
nance curve can be exploited to quickly and easily sculpt spectra for a desired scale,
thus bypassing the need to solve this complicated optimization problem.

Recall that the ratio between successive scale steps in 12-tet is the twelfth root
of 2,

} ~� � , or about 1.0595. Similarly,] -tet has a ratio ofb � ý� � between succes-
sive scale steps. Consider spectra for which successive partials are ratios of powers
of b . Each partial of such a sound, when transposed into the same octave as the
fundamental, lies on a note of the scale. Such a spectrum isinducedby the] -tone
equal-tempered scale.

Induced spectra are good candidate solutions to the optimization problem. Recall
from the principle of coinciding partials2 that minima of the dissonance curve tend
to be located at intervals_ for which

� � � _ � 

, where

� � and
� 


are partials of the
spectrum of� . As the ratio between any pair of partials in an induced spectrum isb Ú

for some integer
Ó
, the dissonance curve will tend to have minima at such ratios:

these ratios occur precisely at steps of the scale. Thus, such spectra will have low
dissonance at scale steps, and many of the scale steps will beminima: Both terms in
the cost function are small, and so the cost is small.

This insight can be exploited in two ways. First, it can be used to reduce the
search space of the optimization routine. Instead of searching over all frequencies in
a bounded region, the search need only be done over induced spectra. More straight-
forwardly, the spectrum selection problem for equal-tempered scales can be solved
by careful choice of induced spectra.

12.3.1 10-Tone Equal Temperament

As an example, consider the problem of designing sounds to beplayed in 10-tone
equal temperament. 10-tet is often considered one of the worst temperaments for har-
monic music, because the steps of the 10-tone scale are significantly different from
the (small) integer ratios, implying that harmonic tones are very dissonant. These in-
tervals will become more consonant if played with speciallydesigned spectra. Here
are three spectra related to the 10-tet scale� 	 b � � � 	 b � S � 	 b � � � 	 b � V � 	 b � T � 	 b R � � 	� 	 b S � 	 b � W � 	 b � � � 	 b � U � 	 b � T � 	 b R S � 	 and� 	 b � � � 	 b � W � 	 b � � � 	 b � R � 	 b � W � 	 b � T � 	 b R � � 	 b R � � 	 b R V � 	 b R W � 	
whereb � } °� � . As expected, all three sound reasonably consonant when played in
the 10-tet scale, and very dissonant when played in standard12-tet. But each has its
own idiosyncrasies.#

The fourth property of dissonance curves from p. 117.



238 12 From Tuning to Spectrum

 12-tet scale steps:          tritone                            octave 
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Fig. 12.1.Dissonance curves for spectra designed to be played in the 10-tone equal-tempered
scale. Minima of the curves coincide with steps of the 10-tetscale and not with steps of 12-tet.

The dissonance curves of all three spectra are shown in Fig. 12.1, assuming the
amplitude of the� th partial is

� � + �
. Observe that only the fifth scale step in 10-tet

closely corresponds to any scale step in 12-tet; it is identical to the 12-tet tritone.3 In
all three spectra, the dissonance curve exhibits a minimum at the tritone, but only the
top curve has a deep minimum there. This is caused by interaction of the partials atb � � �

, b � V �
, andb R � �

, which differ by a tritone.
The dissonance curve for the middle spectrum has no minimum at the octave.

This might be predicted by looking at the partials, because none of the pairs in this
spectrum are separated by a factor ofb � � � � . On the other hand, both the top and
bottom spectra have partials atb � � �

, b � � �
, and b R � �

, which helps the octave retain
its familiar status as the most consonant interval other than the unison. The middle
spectrum would be less suitable for octave-based music thanthe others.

The top spectrum was chosen so that intervals 2, 3, 5, 7, 8, and10 appear as ratios
of the partialsb R �b � T � b � 	 b � Tb � V � b R 	 b � Vb � � � b V 	 b � Sb � � � b S 	 b � Tb � � � b T 	
and several pairs differ byb � �

. Consequently, these appear as minima of the dis-
sonance curve and hence define the related scale. Similarly,when specifying the
partials for the bottom spectrum, all 10 possible differences were included. Conse-
quently, almost all scale steps occur at minima of the dissonance curve, except for$

This is becauser } °� ' s , u r } ~� ' s - . In fact, the tritone is a feature of every octave based
tuning with an even number of scale steps, becauser ~ þ� ' s ÿ u � ' for any � .
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the first scale step, which is formed by the ratio of the partials at b R W
and b R V

. This
exception may occur because the intervalb is close to one-half of the critical band,4

or it may be because the amplitudes of the last two partials are significantly smaller
than the others, and hence have less effect on the final dissonance.

Thus the three spectra have different sets of minima, and different related scales,
although all are subsets of the 10-tet steps. Each spectrum has its own “music the-
ory,” its own scales and chords. Each sound plays somewhat differently, with the
most consonant intervals unique to the sound: scale steps 3,5, 8, and 10 for the top
spectrum, but 3, 5, 7, and 9 for the middle. Moreover, keepingin mind that scale
steps tend to have minima when the partials are specified so that their ratio is a scale
step, it is fairly easy to specify induced spectra for equal temperaments, and to sculpt
the spectra and scales toward a desired goal. Much of this discussion can be sum-
marized by the observation that dissonance curves for induced spectra often have
minima at scale steps. When the ratio of the partials is equalto a scale step, a partial
from the lower tone coincides with a partial from the upper tone, causing the dip in
the dissonance curve.

Of course, far more important than how the dissonance curveslook is the musical
question of how the resulting spectra and scales sound. The pieceTen Fingerson
track [S: 102] of the accompanying CD uses the third 10-tet spectrum, and it exploits
a number of possible chords. The particular tone quality used is much like a guitar,
and the creation of such instrumental tones is discussed in the “Spectral Mappings”
chapter. A possible “music theory” for such 10-tet sounds ispresented in Chap. 14.

Observe that this sound has no problems with fusion as heard earlier with the
2.1 stretched (and certain other) spectra. Indeed, isolated notes of the spectrum do
not sound particularly unusual, despite their inharmonic nature. This is because the
difference between the partials of this spectrum and the partials of a harmonic tone
are not large. Looking closely at the locations of the partials shows that each one is
as close as possible to an integer. In essence, it is as close to harmonic as a 10-tet-
induced spectrum can be. Concretely:b � � � � 	 b � W X � 	 b � � � � 	 b � R X * 	 b � W X � 	b � T X H 	 b R � � � 	 b R � X + 	 b R V X � � 	 and b R W X � � �

The overall effect is of music from another culture (or perhaps another planet).
The chord patterns are clearly unusual, and yet they are smooth. The xentonal motion
of the piece is unmistakable—there is chordal movement, resolution, and tensions,
but it is not the familiar tonal language of Western (or any other) extant music.

How important is the sculpting of the spectrum? Perhaps justany old sound will
be playable in 10-tet with such striking effect. To hear thatit really does make a dif-
ference, track [S: 103] demonstrates the first few bars ofTen Fingerswhen played
with a standard harmonic tone. WhenTen Fingersis played with the related spec-
trum, many people are somewhat puzzled by the curious xentonalities. Most are de-
cidedly uncomfortable listening toTen Fingersplayed with a harmonic spectrum.%

Over a large range of fundamental& , � $ -
and � $ ,

lie in the region where the critical band
is a bit larger than a 12-tet whole step. See Fig. 3.4 on p. 43.
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The difference between tracks [S: 102] and [S: 103] is not subtle. The qualitative
effect is similar to the familiar sensation of being out-of-tune. But the tuning is a
digitally exact ten equal divisions of the octave, and so theeffect might better be
described asout-of-spectrum.

12.3.2 12-Tone Equal Temperament

Recall that most musical instruments based on strings and tubes are harmonic; their
partials are closely approximated by the integer ratios of the harmonic series. Such
spectra are related to the just intonation scale, and yet aretypically played (in the
West, anyway) in 12-tet. Although this is now considered normal, there was con-
siderable controversy surrounding the introduction of 12-tet, especially because the
thirds are so impure.5 In terms of the present discussion, advocates of JI wish to play
harmonic sounds in the appropriate related scale. An alternative is to design spectra
especially for play in 12-tet.

As the above example moved the partials from their harmonic series to an in-
duced 10-tet spectrum, the consonance of 12-tet can be increased by moving the
partials away from the harmonic series to a series based onb � } ~� � . For instance,
the set of partials� 	 b � � � 	 b � q � 	 b � U � 	 b � T � 	 b R � � 	 b R U � 	 b R W � 	 b R T �
is “almost” harmonic, but each of the integer partials has been quantized to its nearest
12-tet scale location. The effect on the dissonance curve iseasy to see. Figure 12.2
compares the dissonance curve for a harmonic tone with nine partials to the 12-tet
induced spectrum above (the amplitudes were the same in bothcases). The disso-
nance curve for the induced spectrum has the same general contour as the harmonic
dissonance curve but with two striking differences. First,the minima have all shifted
from the just ratios to steps of the 12-tet scale: Minima occur at steps two through
ten. Second, many of the minima are deeper and more clearly defined.

Thus, an alternative to playing in a just intonation scale using harmonic tones is
to manipulate the spectra of the sounds so as to increase their consonance in 12-tet.
To state this as an imprecise analogy: 12-tet with induced sounds is to 12-tet with
harmonic sounds as just intonation with harmonic sounds is to 12-tet with harmonic
sounds. Both approaches eliminate the disparity between 12-tet and harmonic tones,
one by changing to the related scale, and the other by changing to related spectra.

Some electronic organs (the Hammond organ) produce induced12-tet spectra
using a kind of additive synthesis. Sound begins in 12 high-frequency oscillators.
A circuit called a “frequency divider” transposes these 12 frequencies down by oc-
taves, and these are combined as partials of the final sound. In effect, this quantizes
the frequencies of the partials to steps of the 12-tet scale.Such organs are the first
electronic example of matching spectrum and scale using induced timbres.,

For a discussion of this controversy, see [B: 198] or [B: 78].This controversy has recently
been revived now that the technical means for realizing JI pieces in multiple keys is avail-
able [B: 43].
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Fig. 12.2.Comparison of dissonance curve for harmonic spectrum with dissonance curve for
spectrum with specially designed “12-tet” partials. Both spectra have nine partials, with am-
plitudes decreasing at the same exponential rate.

12.4 Solving the Optimization Problem

Minimizing the cost3 of p. 236 is a� -dimensional optimization problem with a
highly complex error surface. Fortunately, such problems can often be solved ad-
equately (although not necessarily optimally) using a variety of “random search”
methods such as “simulated annealing” [B: 87] or the “genetic algorithm” [B: 65].
After briefly reviewing the general method, a technique for reducing the search space
is suggested.

12.4.1 Random Search

In the simplest kind of “global optimization” algorithm, a spectrum is guessed, and
its cost is evaluated. If the new cost is the best so far, then the spectrum is saved. New
guesses are made until the optimum is found, or until some predetermined number
of iterations has passed. Although this can work well for small � , it is inefficient
when searching for complex spectra with many partials. For such high-dimensional
problems, even the fastest computers may not be able to search through all possibil-
ities. The algorithm can be improved by biasing new guesses toward those that have
previously shown improvements.

12.4.2 Genetic Algorithm

The genetic algorithm (GA) is modeled after theories of biological evolution, and it
often works reasonably well for the spectrum selection problem. Goldberg [B: 65]
gives a general discussion of the algorithm and its many uses. The GA requires that
the problem be coded in a finite string called the “gene” and that a “fitness” function
be defined. Genes for the spectrum selection problem are formed by concatenating
binary representations of the

� � . The fitness function of the gene
� � 	 � � 	 � � � 	 � �

is
measured as the value of the cost, and spectra are judged “more fit” if the cost is
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lower. The GA searches� -dimensional space measuring the fitness of spectra. The
most fit are combined (via a “mating” procedure) into “child spectra” for the next
generation. As generations pass, the algorithm tends to converge, and the most fit
spectrum is a good candidate for the minimizer of the cost. Indeed, the GA tends to
return spectra that are well matched to the desired scale in the sense that scale steps
tend to occur at minima of the dissonance curve, and the totaldissonance at scale
steps is low. For example, when the 12-tet scale is specified,the GA often converges
near induced spectra. This is a good indication that the algorithm is functioning and
that the free parameters have been chosen sensibly.

12.4.3 An Arbitrary Scale

As an example of the application of the genetic algorithm to the spectrum selec-
tion problem, a desired scale was chosen with scale steps at 1, 1.1875, 1.3125, 1.5,
1.8125, and 2. A set of amplitudes was chosen as 10, 8.8, 7.7, 6.8, 5.9, 5.2, 4.6,
4.0, and the GA was allowed to search for the most fit spectrum.The frequencies
were coded as 8-bit binary numbers with 4 bits for the integerpart and 4 bits for the
fractional part. The best three spectra out of ten trial runsof the algorithm were� 	 � � � � 	 � � + � 	 � � � 	 + � � H � 	 � � � � � � 	 � � � � 	 � � � + � 	� 	 � � * � 	 � � � � 	 � � � � � 	 H � � � 	 H � � + � 	 � � * � � 	 � � � H � 	 and� 	 � � � + � 	 + � + � H * � 	 H � * � � 	 � � � � � 	 � � + + � 	 � � � H � 	 � � � � � �
The dissonance curve of the best spectrum is shown in Fig. 12.3. Clearly, these spec-
tra are closely related to the specified scale, because minima occur at many of the
scale steps. The cost function applies no penalty when thereare extra minima, and
each curve has a few minima more than were specified.

 12-tet scale steps:                                                   octave 

0

1

frequency ratio

1               1.19     1.31      1.51      1.67           1.99    2.12
            1.15     1.28     1.4      1.56         1.79           2.09
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Fig. 12.3.Dissonance curve for the third spectrum has minima that align with many of the
specified scale steps. The extra minima occur because no penalty (cost) is applied.

12.4.4 Reducing the Search Space

The algorithms suggested above conduct a structured randomsearch for partials over
all frequencies in the region of interest, and they calculate the dissonance of the
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intervals for each candidate spectrum. One way to simplify the search is to exploit
the principle of coinciding partials (property four of dissonance curves6 by restricting
the search space to spectra containing intervals equal to the scale steps. For equal
temperaments, this was as simple as choosing partial locations at scale steps, but in
general, it is necessary to consider all possible intervalsformed by all partials.

Let the candidate spectrum� have � partials at frequencies
� � 	 � � 	 � � � 	 � �

with
fixed amplitudes. Since scale steps can occur at any of the ratios of the

� � , let _ � Ï � �§ Ù � }§ Ù be all the ratios between successive partials,_ � Ï � � § Ù � ~§ Ù be the ratios between

partials twice removed, and_ 
 Ï � � § Ù � �§ Ù be the general terms. Any of the_ 
 Ï � may
become minima of the dissonance curve, and the problem reduces to choosing the

� �
so that as many of the_ 
 Ï � as possible lie on scale steps.

The inverse problem is more interesting. Given a scale� with desired stepsb � 	 b � 	 � � � 	 b | , select an_ 
 Ï � to be equal to each of theb Ú . Solve backward to find
the candidate partial

� � giving such _ 
 Ï � . The cost3 of this spectrum can then be
evaluated and used in the optimization algorithm. The advantage of this approach
is that it greatly reduces the space over which the algorithmsearches. Rather than
searching over all real frequencies in a region, it searchesonly over the possible
ways that the_ 
 Ï � can equal theb Ú .

To see how this might work in a simple case, suppose that a spectrum with � � *
partials is desired for a scale with] � �

steps. The set of all possible intervals
formed by the partials

� � 	 � � 	 � � � 	 � V is:_ � Ï � � § ~§ } _ � Ï R � § �§ ~ _ R Ï U � § �§ � _ U Ï V � § �§ �_ � Ï R � § �§ } _ � Ï U � § �§ ~ _ R Ï V � § �§ �_ � Ï U � § �§ } _ � Ï V � § �§ ~_ � Ï V � § �§ }
The desired scale steps are

� � 	 b � 	 b � 	 b R �
. To choose a possible spectrum, pick one of

the _ � Ï
 from each column, and set it equal to one of theb Ú . For instance, one choice
is _ � Ï U � b � 	 _ � Ï U � b � 	 _ R Ï V � b R 	 and _ U Ï V � b � 	
which leads to the following set of equations:b � � � U� � 	 b � � � U� � 	 b R � � V� R 	 and b � � � V� U
These can be readily solved for the unknowns

� � in terms of the known values ofb Ú .
For this example, setting the first partial equal to some unspecified fundamental

�
gives � � � b �b � � 	 � R � b � b �b R � 	 � U � b � � 	 and

� V � b � b � � �
Assuming that the scale is to be octave based (i.e., thatb R � � ), then the actual
frequencies of the partials may be moved freely among the octaves. The cost of this
spectrum is then evaluated, and the optimization proceeds as before.-

Recall the discussion on p. 117.
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12.5 Spectra for Tetrachords

The problem of finding spectra for a specified scale has been stated in terms of a con-
strained optimization problem that can sometimes be solvedvia iterative techniques.
Although these approaches are very general, the problem is high dimensional (on the
order of the number of partials in the desired spectrum), thealgorithms run slowly
(overnight, or worse), and they are not guaranteed to find optimal solutions (except
“asymptotically”). Moreover, even when a good spectrum is found for a given scale,
the techniques give no insight into the solution of other closely related spectrum
selection problems. There must be a better way.

This section exploits the principle of coinciding partialsto transform the problem
into algebraic form. A symbolic system is introduced along with a method of con-
structing related spectra. Several examples are given in detail, and related spectra are
found for a Pythagorean scale and for a diatonic tetrachordal scale. A simple pair of
examples then shows that it is not always possible to find suchrelated spectra. The
symbolic system is further investigated in Appendix I, where several mathematical
properties are revealed.

Earlier in this chapter, the principle of coinciding partials was used to straightfor-
wardly find spectra for 10-tet. Other equal temperaments areequally straightforward.
To see why spectrum selection is more difficult for nonequal tunings, consider the
Pythagorean diatonic scale, which was shown in Fig. 4.2 on p.53 mapped to the
“key” of 3 . Recall that this scale is created from a series of just 3/2 fifths (translated
back into the original octave whenever necessary), and all seven of the fifths in the
diatonic scale (the white keys) are just. An interesting structural feature is that there
are only two successive intervals, a “whole step” of� � + 6 �

and a “half step” of^ � � * � 6 � � �
. This whole step is 4 cents larger than the equal-tempered version,

whereas the half step is 10 cents smaller than in 12-tet.
In attempting to mimic the “induced spectrum” idea of the previous sections, it

is natural to attempt to place the partials at scale steps. Unfortunately, the intervals
between scale steps are not necessarily scale steps. For instance, if one partial oc-
curred at the seventh (

� � � � � � 6 � � �
) and the other at the third (

� 
 � � 6 �
), then a

minimum of the dissonance curve might occur at_ � � � 6 � 
 � � R � H � + 6 * � � , which
is not a scale step. Similarly, the ratio between a partial at4/3 and another at 81/64 is� * � 6 � � � � ^ , which again is not a scale step. Almost any nonequal scale has similar
problems.

12.5.1 A Symbolic System

This section presents a symbolic system that uses the desired scale to define an op-
eration that generates “strings” representing spectra, i.e., sets of partials. Admissible
strings have all ratios between all partials equal to some interval in the scale, and
thus they are likely to be related spectra, via the property of coinciding partials.
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Basic Definitions

A desired scale� can be specified either in terms of a set of intervalsb � 	 b � 	 b � 	 � � � 	 b |
with respect to some fundamental frequency

�
or by the successive ratios_ � �b � 6 b � � �

. b �� � } b �� � � ~ b �� � � � b R� � � � �® ® ® b | � �� � � ý b |�
For instance, for the Pythagorean major scale of Fig. 4.2 of p. 53,� � � 	 + 6 � 	 � � 6 � � 	 � 6 � 	 � 6 � 	 � H 6 � � 	 � � � 6 � � � 	 � 6 � 	
and _ � is either� � + 6 �

or ^ � � * � 6 � � �
for all � . The intervalsb � in � are called the

scale intervals.
A spectrum� is defined by a set of partials with frequencies at

� � 	 � � 	 � � � 	 � �
.

The property of coinciding partials suggests that related spectra can be constructed
by ensuring that the ratios of the partials are equal to scalesteps. The following
definitions distinguish the situation where all ratios of all partials are equal to some
scale step, from the situation where all scale steps occur asa ratio of some pair of
partials.

Complementarity: If for each � and� there is a
Ó

such that§ Ù§ � � b Ú , then the spectrum
is calledcomplementaryto the scale.

Completeness: If for each
Ó

there is at least one pair of� and � such thatb Ú � § Ù§ � ,
then the spectrum is calledcompletewith respect to the scale.

If a spectrum is both complete and complementary, then it is calledperfectwith
respect to the given scale. Of course, scales and spectra need not be perfect to sound
good or to be playable, and many scales have no perfect spectra at all. Nonetheless,
when perfect spectra exist, they are ideal candidates.

An Example

The simplest nonequal scales are those with only a small number of different suc-
cessive ratios. For example, one scale generated by two intervals � and ^ has scale
intervals b � � � 	 b � � � 	 b � � � ^ 	 b R � � � ^ 	 b U � � � ^ � 	b V � � R ^ � 	 and b W � � R ^ R � � 	
where� and ^ are any two numbers such that� R ^ R � � . Call this the� ^ -cubed scale.
For the� ^ -cubed scale,_ � � � 	 _ � � ^ 	 _ R � � 	 _ U � ^ 	 _ V � � 	 and _ W � ^ �



246 12 From Tuning to Spectrum

To see how it might be possible to build a perfect spectrum forthis scale, suppose
that the first partial is selected arbitrarily at

� �
. Then

� �
must be� � � 	 � ^ � � 	 � � ^ � � 	 � � ^ � � � 	 � R ^ � � � 	 or � � �

because any other interval will cause§ ~§ } to be outside the scale intervals. Suppose,

for instance, that
� � � � � ^ � �

is selected. Then
� R must be chosen so that§ �§ } and§ �§ ~ are both scale intervals. The former condition implies that

� R must be one of the

intervals above, whereas the latter restricts
� R even further. For instance,

� R � � R ^ � � �
is possible becauseÃ � � ~ § }Ã ~ � § } � � ^ is one of the scale intervals. But

� R � � R ^ R � �
is not

possible becauseÃ � � � § }Ã ~ � § } � � ^ �
is not one of the scale intervals. Clearly, building

complementary spectra for nonequal scales requires more care than in the equal-
tempered case where partials can always be chosen to be scalesteps. For some scales,
no complementary spectra may exist. For some, no complete spectra may exist.

Symbolic Computation of Spectra

This process of building spectra rapidly becomes complex. Asymbolic table called
the

�
-table (pronounced “oh-plus”) simplifies and organizes thechoices of possible

partials at each step. The easiest way to introduce this is tocontinue with the example
of the previous section.

Let the scalar intervals in the� ^ -cubed scale be written
� � 	 � �

,
� � 	 � �

,
� � 	 � �

,� � 	 � �
,

� � 	 � �
, and

� � 	 � �
, where the first number is the exponent of� and the sec-

ond is the exponent of^ . As the scale is generated by a repeating pattern, i.e., it is
assumed to repeat at each octave,

� � 	 � �
is equated with

� � 	 � �
. Basing the scale on

the octave is not necessary, but it simplifies the discussion. The
�

-table 12.1 repre-
sents the relationships between all scale intervals. The table shows, for instance, that
the interval� � ^ combined with the interval� ^ gives the scale interval� R ^ �

, which is
notated

� � 	 � � � � � 	 � � � � � 	 � �
.

Table 12.1. � -table for theM L -cubed scale.	
(0,0) (1,0) (1,1) (2,1) (2,2) (3,2)

(0,0) (0,0) (1,0) (1,1) (2,1) (2,2) (3,2)
(1,0) (1,0) * (2,1) * (3,2) *
(1,1) (1,1) (2,1) (2,2) (3,2) (0,0) (1,0)
(2,1) (2,1) * (3,2) * (1,0) *
(2,2) (2,2) (3,2) (0,0) (1,0) (1,1) (2,1)
(3,2) (3,2) * (1,0) * (2,1) *

The
å

indicates that the given product is not permissible becauseit would result
in intervals that are not scalar intervals. Thus,� � ^ � � � 	 � �

cannot be
�

-added to� � � � 	 � �
because together they form the interval� R ^ , which is not an interval
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of the scale. Observe that the “octave” has been exploited whenever the product
is greater than� . For instance,

� � 	 � � � � � 	 � � � � � 	 � �
. When reduced back into

the octave,
� � 	 � �

becomes
� � 	 � �

as indicated in the table, expressing the fact thatÃ � � �Ã � � � � � � ^ �
. At first glance, this set of intervals and the

�
operator may appear to

be some kind of algebraic structure such as a group or a monad [B: 93]. However,
common algebraic structures require that the operation be closed, that is, that any
two elements (intervals) in the set can be combined using theoperator to give another
element (interval) in the set. The presence of the

å
’s indicates that

�
is not a closed

operator.

Construction of Spectra

The
�

-table 12.1 was constructed from the scale steps given by the� ^ -cubed scale;
other scales� define analogous tables. This section shows how to use such

�
-tables

to construct spectra related to a given scale.
Let � be a set of scale intervals with unit of repetition or “octave” b ¯ . Let £ �
 � 	 b ¯ " � 	 � b ¯ " � 	 � b ¯ " � 	 � � � � be a concatenation of� and all its octaves. (The

symbol “+” is used here in the normal sense of vector addition). Each element ofb
in � represents an equivalence classb " � b ¯ of elements in£ . Said another way,�
does not distinguish steps that are one or more “octaves”b ¯ apart.
Example:For the� ^ -cubed scale,� � 
 � � 	 � � 	 � � 	 � � 	 � � 	 � � 	 � � 	 � � 	 � � 	 � � 	 � � 	 � � �
with octaveb ¯ � � � 	 � �

. Thenb ¯ " � � 
 � � 	 � � 	 � � 	 � � 	 � � 	 � � 	 � * 	 � � 	 � * 	 * � 	 � � 	 * � � 	� b ¯ " � � 
 � � 	 � � 	 � H 	 � � 	 � H 	 H � 	 � � 	 H � 	 � � 	 � � 	 � + 	 � � � 	
and so on, and£ is a concatenation of these.

The procedure for constructing spectra can now be stated.

Symbolic Spectrum Construction

(i) Choosea �
in £ , and letb �

in � be the corresponding representative
of its equivalence class.

(ii) For � � � 	 � 	 � � � 	 choosea � in £ with correspondingb � in � so that
there are_ � Ï � � 


with b � � b 
 � _ � Ï � � 

for � � � 	 � 	 � � � 	 � g �

.

The equation in the second step is called the
�

-equation. The result of the procedure
is a string ofa � , which defines a set of partials. By construction, the spectrum built
from these partials is complementary to the given scale. If,in addition, all of the scale
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steps appear among either theb or the _ , then the spectrum is complete and, hence,
perfect.

The
�

-equation expresses the desire to have all of the intervals between all of the
partials § Ù§ � be scale intervals. A set ofb 


are given (which are defined by previous
choices of thea 
 ). Solving this requires finding a singleb � such that the

�
-equation

holds for all � up to � g �
. This can be done by searching allb 


columns of the
�

-
table for an elementb � in common. If found, then the corresponding value of_ � Ï � � 

is given in the leftmost column. Whether this step is solvable for a particular� 	 �
pair depends on the structure of the table and on the particular choices already made
for previousb � . Solution techniques for the

�
-equation are discussed at length in

Appendix I.
It is probably easiest to understand the procedure by working through an exam-

ple. One spectrum related to the the� ^ -cubed scale is given in Table 12.2. This shows
the choice ofa � , the corresponding scale stepsb � (which are thea � reduced back into
the octave), and the_ � Ï Ú that complete the

�
-equation. As all of theb � and _ � Ï Ú are

scale steps, this spectrum is complementary. As all scale steps can be found among
the b � or _ � Ï Ú , the spectrum is complete. Hence the spectrum of Table 12.2 is perfect
for this scale. To translate the table into frequencies for the partials, recall that the
elementsa � express the powers of� and ^ times an unspecified fundamental

�
. Thus,

the first partial is
� � � � R ^ R �

, the second is
� � � � V ^ V �

, and so on.

Table 12.2. A spectrum perfect for theM L -cubed scale.ã 1 2 3 4 5 6 7 k� ± (3,3) (5,5) (6,6) (9,8) (10,9) (11,10) (13,12)� ± (0,0) (2,2) (0,0) (3,2) (1,0) (2,1) (1,0)� ± � 
 (2,2) (1,1) (3,2) (1,1) (1,1) (2,2) 1
(0,0) (1,0) (1,0) (2,2) (0,0) 2

(3,2) (2,1) (2,1) (1,1) 3
(1,0) (3,2) (1,0) 4

(2,1) (2,1) 5
(1,0) 6

12.5.2 Perfect Pythagorean Spectra

The Pythagorean major scale of Fig. 4.2 on p. 53 is constructed from two intervals�
and ^ in the order� 	 � 	 ^ 	 � 	 � 	 � 	 ^ . Thus, the scale steps are given by:�� � 	 � � �� � 	 � � � �� � 	 � � � � ^� � 	 � � � R ^� � 	 � � � U ^� � 	 � � � V ^� * 	 � � � V ^ � � �� * 	 � � � � � 	 � �
Typically, � � ^ is a pure fourth. Along with the condition that� V ^ � � � , this uniquely
specifies� � + 6 �

and ^ � � * � 6 � � �
, and so the scale contains two equal tetrachords
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separated by the standard interval
+ 6 �

. These exact values are not necessary for the
construction of the perfect spectra that follow, but they are probably the most com-
mon. The

�
-table for this Pythagorean scale is shown in Table 12.3. It is not even

necessary that
� * 	 � �

be an exact octave; any pseudo-octave or interval of repetition
will do.

Table 12.3. � -table for the Pythagorean scale.	
(0,0) (1,0) (2,0) (2,1) (3,1) (4,1) (5,1)

(0,0) (0,0) (1,0) (2,0) (2,1) (3,1) (4,1) (5,1)
(1,0) (1,0) (2,0) * (3,1) (4,1) (5,1) *
(2,0) (2,0) * * (4,1) (5,1) * *
(2,1) (2,1) (3,1) (4,1) * (0,0) (1,0) (2,0)
(3,1) (3,1) (4,1) (5,1) (0,0) (1,0) (2,0) *
(4,1) (4,1) (5,1) * (1,0) (2,0) * *
(5,1) (5,1) * * (2,0) * * *

Table 12.4. A spectrum perfect for the Pythagorean scale.ã 1 2 3 4 5 6 7 k� ± (5,2) (8,3) (10,4) (12,4) (14,5) (15,5) (17,6)� ± (0,0) (3,1) (0,0) (2,0) (4,1) (5,1) (2,0)� ± � 
 (3,1) (2,1) (2,0) (2,1) (1,0) (2,1) 1
(0,0) (4,1) (4,1) (3,1) (3,1) 2

(2,0) (1,0) (5,1) (0,0) 3
(4,1) (2,0) (2,0) 4

(5,1) (4,1) 5
(2,0) 6

Spectra can be assembled by following the procedure for symbolic spectrum con-
struction, and one such spectrum is given in Table 12.4. Observe that all of theb � and_ � Ï Ú are scale steps, and that all seven scale steps are present among theb � and the_ � Ï Ú . Hence, this spectrum is perfect for the Pythagorean scale.Assuming the stan-
dard values for� and ^ , this spectrum has its partials at� 	 � � 	 � � 	 � � 	 � �� � � 	 � H� � 	 � � �� � � 	 and

� �� � �
The first several partials are harmonic, and this is the “closest” perfect Pythagorean
spectrum to harmonicity. For example, there are no suitablepartials between

� � � 	 � � X* and
� � � 	 * � � � � H * and thus no way to closely approximate the sixth harmonic

partial
� �

. It is easy to check that
� � � 	 � �

and
� � � 	 � �

are not scale steps, and that
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forms the interval� ^ with

� � � 	 � �
. As � ^ is not a scale step,

� � � 	 * �
cannot occur in a complementary spectrum.7

The dissonance curve for this Pythagorean spectrum is shownin Fig. 12.4, under
the assumption that the amplitude of the� th partial is

� � + �
. As expected from the

principle of coinciding partials, this curve has minima that align with the scale steps.
Thus, there are significant minima at the just fourth and fifths, and at the Pythagorean
third 81/64 and the Pythagorean sixth 27/16, rather than at the just thirds and sixths
as in the harmonic dissonance curve. This spectrum will not exhibit rough beating
when its thirds or sixths are played in long sustained passages in the Pythagorean
tuning. There are also two extra minimum that are shallow andbroad. These are not
due to coinciding partials. The exact location and depth of these minima changes
significantly as the amplitude of the partials are changed. As is usual for such ex-
tra minima, they are only barely distinguishable from the surrounding regions of the
curve. Thus, perfect spectra, as constructed by the symbolic procedure, do give dis-
sonance curves with minima that correspond closely with scale steps of the desired
scale.

1/1       9/8     81/64 4/3        3/2      27/16  243/128 2/1

 12-tet scale steps:       fourth      fifth                       octave 
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Fig. 12.4.Dissonance curve for the spectrum specially designed for play in the Pythagorean
diatonic scale has minima at all of the specified scale steps.Two extra “broad” minima marked
by stars are not caused by coinciding partials.

12.5.3 Spectrum for a Diatonic Tetrachord

A more general diatonic tetrachordal scale is constructed from three intervals� , ^ ,
and

�
in the order� 	 � 	 ^ 	 � 	 � 	 � 	 ^ . The scale steps are:�� � 	 � 	 � � �� � 	 � 	 � � � ^� � 	 � 	 � � � � ^� � 	 � 	 � � � � ^ �� � 	 � 	 � � � R ^ �� � 	 � 	 � � � R ^ � �� � 	 � 	 � � � U ^ � � � �� � 	 � 	 � � � � � 	 � 	 � �

As before,� � ^ is a pure fourth that defines the tetrachord. The new interval
�

is
typically given by the interval remaining when two tetrachords are joined, and so

� �.
However,r ) 7 ¥ = s u ; can be used ifr ) ' ¥ 9 s is replaced byr ) ) ¥ 9 s u : 8 ' . This would then
sacrifice the accuracy of the fifth harmonic to increase the accuracy of the sixth. Tradeoffs
such as this are common.
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. There are no standard values for� and ^ . Rather, many different combinations

have been explored over the years. The
�

-table for this diatonic tetrachordal scale is
given in Table 12.5. As before, it is not necessary that

� � 	 � 	 � �
be an exact octave,

although it must define the intervals at which the scale repeats.

Table 12.5. � -table for the specified tetrachordal scale.	
(0,0,0) (1,0,0) (1,1,0) (2,1,0) (2,1,1) (3,1,1) (3,2,1)

(0,0,0) (0,0,0) (1,0,0) (1,1,0) (2,1,0) (2,1,1) (3,1,1) (3,2,1)
(1,0,0) (1,0,0) * (2,1,0) * (3,1,1) * (0,0,0)
(1,1,0) (1,1,0) (2,1,0) * * (3,2,1) (0,0,0) *
(2,1,0) (2,1,0) * * * (0,0,0) (1,0,0) (1,1,0)
(2,1,1) (2,1,1) (3,1,1) (3,2,1) (0,0,0) * * *
(3,1,1) (3,1,1) * (0,0,0) (1,0,0) * * (2,1,1)
(3,2,1) (3,2,1) (0,0,0) * (1,1,0) * (2,1,1) *

Table 12.6. A perfect spectrum for the specified tetrachordal scale.ã 1 2 3 4 5 6 7 k� ± (4,2,1) (6,3,2) (8,4,2) (11,5,3) (12,6,3) (14,7,4) (16,8,4)� ± (0,0,0) (2,1,1) (0,0,0) (3,1,1) (0,0,0) (2,1,1) (0,0,0)� ± � 
 (2,1,1) (2,1,0) (3,1,1) (1,1,0) (2,1,1) (2,1,0) 1
(0,0,0) (1,0,0) (0,0,0) (3,2,1) (0,0,0) 2

(3,1,1) (2,1,0) (2,1,1) (1,1,0) 3
(0,0,0) (0,0,0) (0,0,0) 4

(2,1,1) (2,1,0) 5
(0,0,0) 6

Spectra can be constructed by following the symbolic spectrum construction pro-
cedure, and one such spectrum is given in Table 12.6. Observethat all of theb � and_ � Ï Ú are scale steps and that all seven scale steps are present among the b � or _ � Ï Ú .
Hence, this spectrum is perfect for the specified tetrachordal scale.

In order to draw the dissonance curve, it is necessary to pickparticular values
for the parameters� , ^ , and

�
. As mentioned above,

� � + 6 �
is the usual difference

between two tetrachords and the octave. Somewhat arbitrarily, let ^ � � � 6 +
, which,

combined with the condition that� � ^ � � 6 �
(i.e., forms a tetrachord), imply that� � � � 6 * . With these values, the spectrum defined in Table 12.6 is� 	 � � 	 � � 	 � � 	 � � * H � 	 � � 	 � � � 	 and

� � � 	
and the resulting dissonance curve is given in Fig. 12.5 whenthe amplitude of the� th partial is

� � + �
. Minima occur at all scale steps except the first, the interval � .

Although this may seem like a flaw, it is normal for small intervals (like the major



252 12 From Tuning to Spectrum

second) to fail to be consonant; the Pythagorean spectrum ofthe previous section
was atypical in this respect. Again, although a few broad minima occur, they are
fairly undistinguished from the surrounding intervals. Thus, the symbolic method of
spectrum construction has again found a spectrum that is well suited to the desired
scale.

 12-tet scale steps:       fourth      fifth                       octave 

0

1

frequency ratio
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Fig. 12.5.The dissonance curve for the spectrum related to the diatonic tetrachord withM # u-, , L u � 10 , and« u 0/ , has minima at all scale steps except for the first. The broad minima at
the starred locations are not caused by coinciding partials.

12.5.4 When Perfection Is Impossible

The above examples may lull the unsuspecting into a belief that perfect spectra are
possible for any scale. Unfortunately, this is not so. Consider first a simple scale built
from three arbitrary intervals� , ^ , and

�
in the order� 	 ^ 	 � 	 � . The scale steps are:�� � 	 � 	 � � �� � 	 � 	 � � � ^� � 	 � 	 � � � ^ �� � 	 � 	 � � � � ^ � � �� � 	 � 	 � � � � � 	 � 	 � �

As suggested by the notation,
� � 	 � 	 � �

serves as the basic unit of repetition that would
likely be the octave. The

�
-table for this scale is given in Table 12.7.

Table 12.7. � -table for the scale defined by three intervals in the orderM ¥ L ¥ « ¥ M .	
(0,0,0) (1,0,0) (1,1,0) (1,1,1)

(0,0,0) (0,0,0) (1,0,0) (1,1,0) (1,1,1)
(1,0,0) (1,0,0) * * (0,0,0)
(1,1,0) (1,1,0) * * *
(1,1,1) (1,1,1) (0,0,0) * *

The difficulty with this scale is that the element
� � 	 � 	 � �

cannot be combined
with any other. The symbolic construction procedure requires at each step that theb �
be expressible as a

�
-sum of b 


and some_ � Ï Ú . But it is clear that the operation does
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not allow
� � 	 � 	 � �

as a product with any element (other than the identity) due tothe
column of

å
’s. In other words, if the interval

� � 	 � 	 � �
ever appears as a partial in the

spectrum or as one of the_ � Ï Ú , then the construction process must halt because no
more complementary partials can be added. In this particular example, it is possible
to create a perfect spectrum by having the element

� � 	 � 	 � �
appear only as the very

last partial. However, such a strategy would not work if there were two columns ofå
’s.

An extreme example for which no perfect spectrum is possibleis a scale defined
by four different intervals� , ^ , �

, and
�

taken in alphabetical order. The scale steps
are: �� � 	 � 	 � 	 � � �� � 	 � 	 � 	 � � � ^� � 	 � 	 � 	 � � � ^ �� � 	 � 	 � 	 � � � ^ � � � �� � 	 � 	 � 	 � � � � � 	 � 	 � 	 � �
As suggested by the notation,

� � 	 � 	 � 	 � �
serves as the basic unit of repetition that

would typically be the octave. The
�

-table for this scale is given in Table 12.8.

Table 12.8. � -table for a simple scale defined by four different intervals.	
(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)

(0,0,0,0) (0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)
(1,0,0,0) (1,0,0,0) * * *
(1,1,0,0) (1,1,0,0) * * *
(1,1,1,0) (1,1,1,0) * * *

Partials of a complementary spectrum for this scale can onlyhave intervals that
are multiples of the octave

� � 	 � 	 � 	 � �
due to the preponderance of disallowed

å
entries in the

�
-table. The only possible complementary spectrum is

� � 	 � 	 � 	 � � �
,� � 	 � 	 � 	 � � �

,
� � 	 � 	 � 	 � � �

, and so on, which is clearly not complete, and hence not
perfect. Thus, a given scale may or may not have perfect spectra, depending on the
number and placement of the

å
entries in the table.

12.5.5 Discussion

Do not confuse the idea of a spectrum related to a given scale with the notion of a
perfect (complete and complementary) spectrum for the scale. The former is based
directly on a psychoacoustic measure of the sensory dissonance of the sound, and
the latter is a construction based on the coincidence of partials within the spectrum.
The latter is best viewed as an approximation and simplification of the former, in the
sense that it leads to a tractable system for determining spectra via the principle of
coinciding partials. But they are not identical.

Some scale intervals that appear in the spectrum (i.e., among theb � or the_ � Ï Ú of
Tables 12.2, 12.4, or 12.6) may not be minima of the dissonance curve. For instance,
the tetrachordal spectrum does not have a minimum at the firstscale step even though
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it is complete. Alternatively, some minima may occur in the dissonance curve that
are not explicitly ratios of partials. Three such minima occur in Fig. 12.5; they are the
broad kind of minima that are due to wide spacing between certain pairs of partials.

The notion of a perfect spectrum shows starkly that the most important feature of
related spectra and scales is the coincidence of partials ofa tone—a result that would
not have surprised Helmholtz. Perhaps the crucial difference is that related spectra
take explicit account of the amplitudes of the partials, whereas perfect spectra do not.
In fact, by manipulating the amplitudes of the partials, it is possible to make various
minima appear or disappear. For instance, it is possible to “fix” the problem that the
tetrachordal spectrum is missing its first scale step� by increasing the amplitudes of
the partials that are separated by the ratio� . Alternatively, it is often possible to re-
move a minimum from the dissonance curve of a perfect spectrum by decreasing the
amplitudes of the partials separated by that interval. Moreover, although a minimum
due to coinciding partials may be extinguished by manipulating the amplitudes, its
location (the interval it forms) remains essentially fixed.In contrast, the broad type
minima that are not due to coinciding partials move continuously as the amplitudes
vary; they are not a fixed feature of a perfect spectrum.

As the number of different intervals in a desired scale increases, it becomes more
difficult to find perfect spectra; the

�
-tables become less full (i.e., have more disal-

lowed
å

entries) and fewer solutions to the
�

-equation exist. There are several sim-
ple modifications to the procedure that may result in spectrathat are well matched
to the given scale, even when perfection is impossible. One simple modification is
to allow the spectrum to be incomplete. As very small intervals are unlikely to be
consonant with any reasonable amplitudes of the partials, they may be safely re-
moved from consideration. A second simplifying strategy isto relax the requirement
of complementarity—although it is certainly important that prominent scale steps
occur at minima, it is not obviously harmful if some extra minima exist. Indeed, if an
extra minimum occurs in the dissonance curve but is never played in the piece, then
its existence will be transparent to the listener.

A third method of relaxing the procedure can be applied whenever the scale is
specified only over an octave (or over some pseudo-octave), in which case the com-
pleteness and complementarity need only hold over each octave. For instance, a par-
tial a � might be chosen even though it forms a disallowed interval with a previous
partial a 
 , providing the two are more than an octave apart. Thus, judicious relax-
ation of various elements of the procedure may allow specification of useful spectra
even when perfect spectra are not possible.

Perfect spectra raise a number of issues. For instance, a given nonequal scale
sounds different in each key because the set of intervals is slightly different. How
would the use of perfect spectra influence the ability to modulate through various
keys? Certain chords will become more or less consonant whenplayed with per-
fect spectra than when played with harmonic tones. What patterns of (non)harmonic
motion are best suited to perfect spectra and their chords? Will perfect spectra be
useful for some part of the standard repertoire, or will theybe only useful for new
compositions that directly exploit their strengths (and avoid their weaknesses)?
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12.6 Summary

Given a spectrum, what is the related scale?was answered completely in previous
chapters; draw the dissonance curve and gather the intervals at which its minima
occur into a scale. This chapter wrestled with the more difficult inverse question:
Given a scale, what is the related spectrum?One approach posed the question as a
constrained optimization problem that can sometimes be solved using iterative search
techniques. Reducing the size of the search space increasesthe likelihood that a good
spectrum is found. The second approach exploits the principle of coinciding partials
and reformulates the question in algebraic form.

Neither approach completely specifies a “best” spectrum forthe given scale. Both
stipulate the frequencies of the partials, but the optimization method assumes a set
of amplitudes a priori, whereas the algebraic procedure leaves the amplitudes free.
Thus, each answer gives a whole class of related spectra thatmay sound as different
from each other as a trumpet from a violin or a flute from a guitar. Neither method
gives any indication of how such sounds might be generated orcreated. One obvious
way is via additive synthesis, but unless great care is taken, additive synthesis can
result in static and lifeless sounds. An alternative is to begin with sampled sounds
and to manipulate the partials so that they coincide with thedesired perfect spectrum.
This technique, called “spectral mapping,” is discussed atlength in the next chapter.
A much more difficult question is how acoustic instruments might be given the kinds
of deviations from harmonicity that are specified by perfectand related spectra.
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Spectral Mappings

A spectral mapping is a transformation from a “source”
spectrum to a “destination” spectrum. One application is
to transform inharmonic sounds into harmonic equivalents.
More interestingly, it can be used to create inharmonic
instruments that retain much of the tonal quality of familiar
(harmonic) instruments. Musical uses of such timbres
are discussed, and forms of (inharmonic) modulation are
presented. Several sound examples demonstrate both the
breadth and limitations of the method.

13.1 The Goal: Life-like Inharmonic Sounds

A large number of different timbres can be created using onlysounds with a har-
monic spectrum. It should be possible to get at least as largea variety using inhar-
monic sounds. This chapter shows one way to make imitative inharmonic sounds,
ones that seem to come from real instruments. This is how an inharmonic trumpet or
guitar might sound.

Suppose a composer desires to play in some specified scale, say, in 11-tet. As fa-
miliar harmonic sounds are dissonant when played in 11-tet,it may be advantageous
to create a new set of sounds, with spectra that cause minima of the dissonance curve
to occur at the appropriate 11-tet scale steps. Figure 13.1,for example, shows the
dissonance curve for a spectrum that has major dips at many ofthe locations of the
11-tet scale steps. This spectrum was designed using the techniques of the previous
chapter, which specifies only a desired set of partials. But acomplete spectrum con-
sisting of magnitudes and phases must be chosen to draw the dissonance curve and
to transform the sound into a time waveform for playback. In the figure, all partials
are assumed equal, giving the sound a rich organish quality.

The most straightforward approach to the problem of sound synthesis from a
specified set of partials is additive synthesis, such as described in Risset [B: 150], in
which a family of sine waves of desired amplitude and phase are summed. Although
computationally expensive, additive synthesis is conceptually straightforward.A ma-
jor problem is that it is often a monumental task to specify all of the parameters (fre-
quencies, magnitudes, and phases) required for the synthesis procedure, and there is
no obvious or intuitive path to follow when generating new sounds. When attempting
to create sounds for new scales, such as the 11-tet timbre above, it is equally chal-
lenging to choose these parameters in a musical way. Making arbitrary choices often
leads to organ or bell-like sonorities, depending on the envelope and other aspects
of the sound. Although these can be striking, they can also belimiting from a com-
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Fig. 13.1.Dissonance curve for the spectrum with equal amplitude partials at [) M � � M � . M # #M # - M # / M $ � M $ $ M $ , M $ . M $ /
], whereM u � � � ' . The minima of this dissonance curve occur

at many of the 11-tet scale steps (bottom axis) and not at the 12-tet scale steps (top axis).

positional perspective. Is there a way to create a full rangeof tonal qualities that are
all related to the specified scale? For instance, how can “flute-like” or “guitar-like”
timbres be built that are consonant when played in this 11-tet tuning?

A common way to deal with the vast amount of information required by additive
synthesis is to analyze a desired sound via a Fourier (or other) transform, and then use
the parameters of the transform in the additive synthesis. In such analysis/synthesis
schemes, the original sound is transformed into a family of sine waves, each with
specified amplitude and phase. The parameters are stored in memory and are used
to reconstruct the sound on demand. In principle, the methods of analysis/synthesis
allow exact replication of any waveform. Of course, the sound to be resynthesized
must already exist for this procedure to be feasible. Unfortunately, 11-tet flutes and
guitars do not exist.

Once a sound is parameterized, it is possible to manipulate the parameters. For
example, the technique of Grey and Moorer [B: 64] interpolates the envelopes of har-
monics to gradually transform one instrumental tone into another. Strong and Clark
[B: 186] exchange the spectral and temporal envelopes amonga number of instru-
ments of the wind family and conduct tests to evaluate their relative significance.
Probably the first parameter-based analysis/synthesis methods were the vocoder
of Dudley [B: 45] and its modern descendant the phase vocoderof Flanagan and
Golden[B: 55], which were designed for the efficient encoding of transmitted speech
signals.

The consonance-based spectral mappings of this chapter area kind of analy-
sis/synthesis method in which the amplitudes and phases of the spectrum of the
“source” sound are grafted onto the partials of a specified “destination” spectrum,
which is chosen so as to maximize a measure of consonance (or more properly, to
minimize a measure of dissonance). The goal is to relocate the partials of the original
sound for compatibility with the destination spectrum, while leaving the tonal quality
of the sound intact. Musically, the goal is to modify the spectrum of a sound while
preserving its richness and character. This provides a way to simulate the sound of
nonexistent instruments such as the 11-tet flute and guitar.Figure 13.2 shows the
spectral mapping scheme in block diagram form. The input signal is transformed



13.2 Mappings between Spectra 259

into its spectral parameters, the mapping block manipulates these parameters, and
the inverse transform returns the signal to a time-based waveform for output to a
D/A converter and subsequent playback.
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Fig. 13.2.Block Diagram of a transform-based analysis-synthesis spectral mapping. If the
mapping is chosen to be the identity, then the input and output signals are identical.

13.2 Mappings between Spectra

A spectral mapping is defined to be a transformation from a setof � partialsb � 	 b � 	 � � � 	 b �
(called the “source spectrum”) to the partials

� � 	 � � 	 � � � 	 � �
of the

“destination spectrum” for which£ � b � � � � � for all � . Suppose that an� -point
DFT (or FFT) is used to compute the spectrum of the original sound, resulting in a
complex-valued vector¡ . The mapping£ is applied to¡ (which presumably has
partials at or near theb � ), and the result is a vector£ � ¡ �

, which represents a spec-
trum with partials at or near the

� � . This is shown schematically in Fig. 13.3 for an
“arbitrary” destination spectrum.

The simplest£ is a “straight-line” transformation

£ � b � � Y � � ß � g � �b � ß � g b � Z b " Y � � b � ß � g � � ß � b �b � ß � g b � Z b � k b k b � ß � �
Smoother curves such as parabolic or spline interpolationscan be readily used, but
problems occur with such direct implementations due to the quantization of the fre-
quency axis inherent in any digital representation of the spectrum. For instance, if
the slope of£ is significantly greater than unity, then certain elements of £ � ¡ �

will
be empty. More seriously, if the slope of£ is significantly less than unity, then more
than one element of¡ will be mapped into the same element of£ � ¡ �

, causing an ir-
retrievable loss of information. It is not obvious how to sensibly combine the relevant
terms.

A better way to think of the spectral mapping procedure is as akind of “resam-
pling” in which the information contained between the frequenciesb � and b � ß �

is
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Fig. 13.3.Schematic representation of a spectral mapping. The first nine partials of a harmonic
“source spectrum” are mapped into an inharmonic “destination spectrum” with partials at& ,' ( ) & , ' ( : & , 7 ( < & , = ( 9 & , = ( < & , > & , < ( 9 & , and< ( : & . The spectrum of the original sound (from
the 5 string of a guitar with fundamental at 194 Hz) is transformedby the spectral mapping
for compatibility with the destination spectrum. The mapping changes the frequencies of the
partials while preserving both magnitudes (shown) and phases (not shown).

resampled1 to occupy the frequencies
� � to

� � ß �
. Resampling is a standard digital

signal processing technique with a long history and a large literature. It generally
consists of two parts,decimationandinterpolation, which together attempt to repre-
sent the “same” information with a different number of samples.

One presumption underlying spectral mappings is that the most important infor-
mation (the partials of the sound) is located at or near theb � , and it is to be relocated
as ‘intact’ as possible near the

� � . Figure 13.4 shows an exaggerated view of what oc-
curs to a single partial when performing a straightforward resampling with a nonunity
spectral map£ . In essence, the “left half” of the spectrum becomes asymmetric from
the “right half,” and the transformed spectrum no longer represents a single sinusoid.
This is a kind of nonlinear distortion that can produce audible artifacts.

One way to reduce this distortion is to chose a window of width� � about theb �
that is mapped identically to a window of the same width about

� � . The remaining�
One implementation uses a polyphase algorithm with an anti-aliasing low-pass FIR filter
incorporating a Kaiser window. The examples in this chapterfilter ten terms on either side
of � ± and useâ u = as the window design parameter. These are the defaults ofMatlab ’s
built in “resample” function. An alternative is to use� ã h « r � s interpolation as discussed in
[W: 29].
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Fig. 13.4.Resampling causes asymmetries in the transformed spectrumthat may cause audible
anomalies.

regions, betweenb � " � andb � ß � g � , can then be resampled to fit between
� � " � and� � ß � g � . This is shown (again in exaggerated form) in Fig. 13.5. In this method of

Resampling with Identity Window(RIW), the bulk of the most significant information
is transferred to the destination intact. Changes occur only in the less important (and
relatively empty) regions between the partials. We have found that window widths
of about

� 6 �
to

� 6 * of the minimum distance between partials to be most effective
in reducing the audibility of the distortion.

Spectral mappings are most easily implemented in software (or in hardware to
emulate such software) in a program:

input spectrum = FFT(input signal)
mapped spectrum = T(input spectrum)
output signal = IFFT(mapped spectrum)

where the function� � £ � �
is the Discrete Fourier Transform or its fast equivalent,ª � � £ � �

is the inverse, and the RIW spectral mapping is represented by £ . Other
transforms such as the wavelet or constant-Q transform [B: 19] might also be useful.
Spectral mappings can be viewed as linear (but time-varying) transformations of the
original signal. Let the signal be

 
, and let� be the matrix that transforms

 
into its

DFT. Then the complete spectral mapping gives the output signal� � � � � £ � �  �
where£ is a matrix representation of the resampling procedure. This is clearly linear,
and it is time varying because the frequencies of signals arenot preserved. Often£ fails to be invertible, and the original signal

 
cannot be reconstructed from its

spectrally mapped version
� 
.
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Fig. 13.5.Resampling with identity windows reduces the asymmetry of the transformed spec-
trum.

There are many possible variations of£ . For instance, many instrumental sounds
can be characterized using formants, fixed linear filters through which variable exci-
tation passes. If the original samples are of this kind, thenit is sensible to modify the
amplitudes of the resulting spectra accordingly. Similarly, an “energy” envelope can
be abstracted from the original sample, and in some situations, it might be desirable
to preserve this energy during the transformation. In addition, there are many kinds
of resampling (interpolation and decimation), and there are free parameters (and fil-
ters) within each kind. Trying to choose these parameters optimally is a daunting
task.

It may be more efficient computationally to implement spectral mappings as a
filter bank rather than as a transform (a good modern approachto filter banks may
be found in [B: 185]), especially when processing a continuous audio signal. This
is diagrammed in Fig. 13.6, which shows a bank of filters carrying out the analysis
portion of the procedure, a spectral mapping to manipulate the parameters of the
spectrum, and a bank of oscillators to carry out the synthesis portion. This does not
change the motivation or goals of the mappings, but it does suggest an alternative
hardware (or software) approach.

13.2.1 Maintaining Amplitudes and Phases

The tonal quality of a harmonic sound is determined largely by the amplitudes of
its sinusoidal frequency components. In contrast, the phases of these sinusoids tend
to play a small role, except in the transient (or attack) portion of the sound, where
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Fig. 13.6.A filter-bank implementation of spectral mapping. The inputis bandpass filtered,
and the signal is parameterized intoh amplitude, phase, and frequency parameters. These are
transformed by the spectral mapping, and the modified parameters driveh oscillators, which
are summed to form the output.

they contribute to the envelope. The transformation£ is specified so as to keep each
frequency component (roughly) matched with its original amplitude and phase. This
tends to maintain the shape of the waveform in the attack portion. For example,
Fig. 13.7 shows a square wave and its transformation into the11-tet timbre specified
in Fig. 13.1. The first few pulses are clearly discernible in the mapped waveform. As
the first few milliseconds of a sound are important in terms ofthe overall sound qual-
ity, maintaining the initial shape of the waveform contributes to the goal of retaining
the integrity of the sound.
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Fig. 13.7.A square wave and its transformation
into a 11-tet version. Maintaining the phase rela-
tionships among the partials helps the attack por-
tion retain its integrity.

13.2.2 Looping

A common practice in sample-based synthesizers is to “loop”sounds, to repeat cer-
tain portions of the waveform under user control. Periodic portions of the wave-
form are ideal candidates for looping. Strictly speaking, inharmonic sounds such as
result from transformations like the 11-tet spectral mappings have aperiodic wave-
forms. Apparently, looping becomes impossible. On the other hand, the FFT induces
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a quantization of the frequency axis in which all frequency components are inte-
ger multiples of the frequency of the first FFT bin (for instance, about 1.3 Hz for
a 32K FFT at a 44.1 KHz sampling rate). Thus, true aperiodicity is impossible in a
transform-based system. In practice, it is often possible to loop the sounds effectively
using the standard assortment of looping strategies and cross fades, although it is not
uncommon for the loops to be somewhat longer in the modified waveform than in
the original.

To be concrete, suppose that the original waveform containsa looped portion. A
sensible strategy is to append the loop onto the end of the waveform several times,
as shown in Fig. 13.8. This tends to make a longer portion of the modified waveform
suitable for looping. It is also a sensible way of filling or padding the signal until
the length of the wave is an integer power of two (so that the more efficient FFT can
be computed in place of the DFT). The familiar strategy of padding with zeroes is
inappropriate in this application. Figure 13.9, for instance, shows the results of three
different mappings of the 4500 sample trumpet waveform of Fig. 13.8. Calculating
the DFT and applying the 11-tet spectral mapping of Fig. 13.1gives the waveform in
Fig. 13.9(a). This version consists primarily of the attackportion of the waveform,
and is it virtually impossible to loop without noticeable artifacts. An alternative is
to extend the waveform to 8K samples by filling with zeroes. This allows use of
the FFT for faster computation, but the resulting stretchedwaveform of Fig. 13.9(b)
is no easier to loop than the signal in 13.9(a). A third alternative is to repeatedly
concatenate the original looped portion until the waveformreaches the desired 8K
length. The resulting stretched version contains a longer sustain portion, and it is
correspondingly easier to loop.
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Fig. 13.8. (a) A 4500 sample trum-
pet waveform with looped region indi-
cated. (b) The same waveform using a
“fill with loop” rather than a “fill with
zeroes” strategy to increase the length
of the wave to 8K samples.
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13.2.3 Separating Attack from Loop

The attack portion of a sound is often quite different from the looped portion. The
puff of air as the flute chiffs, the blat of the trumpets attack, or the scrape of the
violins bow are different from the steady-state sounds of the same instruments. In-
deed, Strong and Clark [B: 186] have shown that it can often bedifficult to recognize
instrumental sounds when the attack has been removed.

Naive application of a spectral mapping would transform thecomplete sampled
waveform simultaneously. Because the Fourier transform has poor time localization
properties, this can cause a “smearing” of the attack portion over the whole sample,
with noticeable side effects. First, the smearing can sometimes be perceived directly
as artifacts: a high tingly sound, or a noisy grating that repeats irregularly throughout
the looped portion of the sound. Second, because the artifacts are nonuniform, they
make creating a good loop of the mapped sound more difficult.2

Thus, a good idea when spectrally mapping sampled sounds (for instance, those
with predefined attack and loop segments) is to map the attackand the loop portions
separately, as shown in Fig. 13.10. The resulting pieces canthen be pasted back
together using a simple crossfade. This tends to maintain the integrity of the attack
portion (it is shorter and less likely to suffer from phase and smearing problems), and
to reduce artifacts occurring in the steady state.

Often, a complete sampled “instrument” contains several different waveforms
sampled in different pitch ranges and at different dynamic ranges. The creation of a
spectrally mapped version should map each of these samples and then assign them
to the appropriate pitch or dynamic performance level. In addition, it is reasonable
to impose the same envelopes and other performance parameters such as reverb,
vibrato, and so on, as were placed on the original samples, because these will often
have a significant impact on the overall perception of the quality of the sound.#

Even the looping of familiar instrumental sounds can be tricky.
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Fig. 13.9. Spectrally mapped versions of the
trumpet waveform in Fig. 13.8. (a) Using a DFT
of the original wave. (b) Using an FFT and the
“fill with zeroes” strategy. (c) Using an FFT and
the “fill with loop” strategy. Version (c) gives a
longer, steadier waveform with more opportunity
to achieve a successful loop.
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tegrity of the sound.

13.3 Examples

This section presents examples of spectral maps in which theintegrity of the original
sounds is maintained, and others in which the perceptual identity of sounds is lost.
Examples include instruments mapped into a spectrum consonant with 11-tet and
with 88-cet, a cymbal sound mapped so as to be consonant with harmonic sounds,
and instruments mapped into (and out of) the spectrum of a drum. Spectrally mapped
sounds can be useful in musical compositions, and Table 13.1lists all of the pieces
on the CD that feature sounds mapped into the specified scales.

13.3.1 Timbres for 11-tone Equal Temperament

Familiar harmonic sounds may be dissonant when played in 11-tet because minima
of the dissonance curve occur far from the desired scale steps. By using an appropri-
ate spectral mapping, harmonic instrumental timbres can betransformed into 11-tet
versions with minima at many of the 11-tet scale steps, as shown in Fig. 13.1. These
can be used to play consonantly in a 11-tet setting. The mapping used to generate the
tones in the sound example maps a set of harmonic partials at� 	 � � 	 � � 	 � � 	 * � 	 � � 	 H � 	 � � 	 + � 	 � � � 	 � � �
to � 	 _ � � � 	 _ � S � 	 _ � � � 	 _ � W � 	 _ � T � 	 _ R � � 	 _ R R � 	 _ R V � 	 _ R S � 	 _ R T �
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Table 13.1. Musical compositions on the CD-ROM using sounds that are spectrally mapped
into the specified scale.

Name of Scale File For More
Piece Detail
88 Vibes 88-cet vibes88.mp3 [S: 16]
Anima 10-tet anima.mp3 [S: 106]
Circle of Thirds 10-tet circlethirds.mp3 [S: 104]
Glass Lake tom-tom glasslake.mp3 [S: 91]
Haroun in 88 88-cet haroun88.mp3 [S: 15]
Hexavamp 16-tet hexavamp.mp3 [S: 97]
Isochronism 10-tet isochronism.mp3 [S: 105]
March of the Wheel 7-tet marwheel.mp3 [S: 115]
Nothing Broken in Seven 7-tet broken.mp3 [S: 117]
Pagan’s Revenge 7-tet pagan.mp3 [S: 116]
Phase Seven 7-tet phase7.mp3 [S: 118]
Seventeen Strings 17-tet 17strings.mp3 [S: 98]
Sonork harmonic sonork.mp3 [S: 93]
Sympathetic Metaphor 19-tet sympathetic.mp3 [S: 101]
Ten Fingers 10-tet tenfingers.mp3 [S: 102]
The Turquoise Dabo Girl 11-tet dabogirl.mp3 [S: 88]
Truth on a Bus 19-tet truthbus.mp3 [S: 100]
Unlucky Flutes 13-tet 13flutes.mp3 [S: 99]

where _ � } }� � and
�

is the fundamental of the harmonic tone. All frequencies
between these values are mapped using the RIW method.

Sound example [S: 86] (and video example [V: 11]) contain several different in-
strumental sounds that alternate with their 11-tet versions.3

(i) Harmonic trumpet compared with 11-tet trumpet
(ii) Harmonic bass compared with 11-tet bass
(iii) Harmonic guitar compared with 11-tet guitar
(iv) Harmonic pan flute compared with 11-tet pan flute
(v) Harmonic oboe compared with 11-tet oboe
(vi) Harmonic “moog” synth compared with 11-tet “moog” synth

(vii) Harmonic “phase” synth compared with 11-tet “phase” synth

The instruments are clearly recognizable after mapping into their 11-tet counterparts.
There is almost no pitch change caused by this spectral mapping, probably because$

The waveforms were taken from commercially available sample CD-ROMs and transferred
to a computer running aMatlab program that performed the spectral mappings. After
looping (which was done manually, with the help ofInfinity looping software), the modified
waveforms were sent to an Ensoniq ASR-10 sampler. The performances were sequenced
and recorded to digital audiotape. In all cases, the same performance parameters (filters,
envelopes, velocity sensitivity, reverberation, etc.) were applied to the spectrally mapped
sounds as were used in the original samples.
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some partials are mapped higher, whereas others are mapped lower. Indeed, the third
partial is mapped lower than its harmonic counterpart (2.92vs. 3), but the fifth is
higher (5.14 vs. 5). Similarly, the sixth is lower (5.84 vs. 6), but the seventh is higher
(7.05 vs. 7).

Perhaps the clearest change is that some of the samples have acquired a soft high-
pitched inharmonicity. It is hard to put words to this, but wetry. In (i) it may almost
be called a “whine.” (ii) has a slight lowering of the pitch, as well as a feeling that
“something else” is attached. (iii) has acquired a high “jangle” in the transition. It
is hard to pinpoint any changes in (iv) and (vi). In (v), it becomes easier to “hear
out” one of the partials in the mapped sound, giving it an almost minorish feel. The
natural vibrato of (vii) appears to have changed slightly, but it is otherwise intact.

Despite the fact that all sounds were subjected to the same mapping, the per-
ceived changes differ somewhat from sample to sample. This is likely an inherent
aspect of spectral mappings. For instance, the bass has a strong third partial and a
weak fifth partial compared with the other sounds. As the third partial is mapped
down in frequency, it is reasonable to hypothesize that thiscauses the lowering in
pitch. Because the fifth partial is relatively weak, it cannot compensate, as might oc-
cur in other sounds. Similarly, differing amplitudes of partials may cause the varying
effects perceivable in (i)-(vii).

Such perceptual changes may be due to the way that inharmonicities are per-
ceived. For instance, Moore [B: 115] examines the question of how much detuning
is needed before an inharmonic partial causes a sound to break into two sounds rather
than remain fused into a single percept. Alternatively, thechanges may be due to arti-
facts created by the spectral mapping procedure. For instance, other choices of filters,
windows widths, and so on, may generate different kinds of artifacts. Poorly imple-
mented spectral mappings can introduce strange effects. For example, in some of the
earliest experiments with spectral mappings, many sounds acquired a high-pitched
jangling effect. The pieceSeventeen Strings[S: 98] features these sounds, and the
jangling provides an interesting high pitched background to the foreground harp. Al-
though this may be acceptable in a single piece as a special effect, it is undesirable
overall. This was the major impetus for separating the attack and looped portion of
the sounds in the mapping procedure—separation reduces theartifacts significantly.

Isolated sounds do not paint a very good picture of their behavior in more com-
plex settings. A short sequence of major chords are played insound example [S: 87]4:

(viii) Harmonic oboe in 12-tet
(ix) Spectrally mapped 11-tet oboe in 12-tet

As before, the individual sounds have only a small pitch shift. The striking difference
between (viii) and (ix) shows that the “out-of-tune” percept may be caused by the
structure of the partials of a sound, as well as by pitch or interval relationships.
Sound example [S: 87](ix) is not literally “out-of-tune” because its fundamental is
tuned to the accuracy of the equipment, which is about 1.5 cents. Rather, (ix) is “out-%

And presented in video format [V: 12].
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of-spectrum” or “out-of-timbre,” in the sense that the partials of the sound interfere
when played at certain intervals (in this case the 12-tet major third and fifth).

The next segments contain 11-tet dyads formed from scale steps 0-6 and 0-7, and
culminate in a chord composed of scale steps 0-4-6.

(x) Harmonic oboe in 11-tet
(xi) Spectrally mapped 11-tet oboe in 11-tet

Examples (x) and (xi) reverse the situation from (viii) and (ix). Because of the
extreme unfamiliarity of the intervals (observe that 11-tet scale steps 4 and 6 do not
lie close to any 12-tet intervals), the situation is perhapsless clear, but there is a
readily perceivable roughness of the 0-4-6 chord in (x) thatis absent from (xi). Thus,
after acclimation to the intervals, (xi) appears arguably less out-of-spectrum than (x).

Isolated chords do not show clearly what happens in genuine musical contexts.
The piece, theTurquoise Dabo Girl, is played two ways:

Sound example [S: 88] in 11-tet with all sounds spectrally mapped.

Sound Example [S: 89] in 11-tet with the original harmonic sounds (first 16
bars only).

The “out-of-spectrum” effect of [S: 89] is far more dramaticthan the equivalent iso-
lated chord effect of (x), illustrating that the more musical the context, the more
important (rather than the less important) a proper matching of the tuning with the
spectrum of the sound becomes.

Hopefully, theTurquoise Dabo Girlalso demonstrates that many of the kinds of
effects normally associated with (harmonic) tonal music can occur, even in strange
settings such as 11-tet, which is often considered among thehardest keys in which
to play tonal music. Consider, for instance, the harmonization of the 11-tet pan flute
melody that occurs in the “chorus.” Does this have the feeling of some kind of (per-
haps unfamiliar) “cadence” as the melody resolves back to its “tonic?” Does it not
sound “in-tune” even though there is only one truly familiarinterval (the octave) in
the whole piece?

Observe that many of the subtle oddities in the mapped timbres (as noted in (i)-
(vii) of sound example [S: 86]) seem to disappear when contextualized. Even with
careful listening, it is difficult (impossible?) to hear theinharmonicities and artifacts
that were so clear when presented in isolation. All the timbres used in theTurquoise
Dabo Girl (except the percussion) appear in (i)-(vii). This may be dueto a simple
masking of the artifacts. It may also be due to a kind of “capture” effect, in which the
artifact/inharmonicity of one note is captured by (or streamed with) other notes, and
thus it becomes part of the musical flow. In either case, the lessening of tonalness
(due to the inharmonicity) does not appear to play a large role in theTurquoise Dabo
Girl , whereas the dissonance predictions of the sensory theory are readily upheld.

13.3.2 Spectrum of a Drum

The spectral mapping of the previous example changes the partials only moderately.
In contrast, mapping from harmonic tones into the spectrum of a drum such as a
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tom tom changes the partials dramatically. The extreme inharmonicity of the sam-
ple is illustrated in Fig. 13.11, and the severe mapping is readily heard as drastic
changes in the tonal quality and pitch of the transformed instruments. A harmonic
spectrum ati 	 � i 	 � i 	 � i 	 * i is mapped to

� 	 � � � H � 	 � � � � � 	 � � � � 	 � � � �
(which is pre-

cisely � � * 	 � � � 	 � � � 	 H � � 	 + � � for
� � � � * ) using the RIW spectral mapping. Of the

guitar, bass, trumpet, and flute, only the flute is recognizable, and even this is not
without drastic audible changes. One listener remarked that the transformed sounds
were “glassy—like a finger nail scratching across a glass surface.” This description
makes a certain amount of physical sense, because glass surfaces and drums heads
are both two-dimensional vibrating surfaces.
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Fig. 13.11.A harmonic spectrum with
fundamental� is mapped into the tom
tom spectrum.

Sound example [S: 90] and video example [V: 13] contain several different in-
struments and their transformation into the spectrum of thetom tom shown in
Fig. 13.11.

(i) Harmonic flute compared with tom tom flute
(ii) Harmonic trumpet compared with tom tom trumpet
(iii) Harmonic bass compared with tom tom bass
(iv) Harmonic guitar compared with tom tom guitar

Clearly, this spectral mapping causes a large change in the character of the
sounds. As before, it is unclear what aspects of the resulting changes are due to
the way inharmonic sounds are perceived, and what may be due to the details of
the spectral mapping procedure. For instance, each of the sounds undergoes a pitch
change, but the pitch change is different for each sound. Presumably this is because
the partials of the mapped sounds inherit the amplitudes of the original sounds. This
is consistent with virtual pitch theory where the ear picks out different “harmonic
templates” (see Sect. 2.4.2 on p. 33) for each arrangement ofamplitudes.

Again, it is hard to describe in words the kind of effects perceived. (i) has a
noticeable pitch change, but it still sounds something likea flute. The trumpet under-
goes a huge pitch change, and it gains a kind of glassy texture. The single note of the
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bass becomes a minorish chord, and the guitar pluck also gains a chord-like sound
along with jangly artifacts.

Although the transformed timbres do not sound like the instruments from which
they were derived, they are not necessarily useless. Sound example [S: 91], theGlass
Lake, illustrates the transformed instruments (i)-(iv) playedin the related scale, with
steps defined by the dissonance curve of Fig. 13.12. This scale supports perceptible
“chords,” although they are not necessarily composed of familiar intervals. The piece
is thoroughly xentonal.
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Fig. 13.12.The dissonance curve for the tom tom spectrum has an 11-note related scale that
covers a little less than two octaves.

13.3.3 Timbres for 88-cet

Gary Morrison [B: 113] proposed a scale in which the intervalbetween adjacent
notes is 88 cents rather than 100 cents as in 12-tet. As 1200 isnot divisible by 88,
this scale has no real octaves. It can be interpreted as 14 equal divisions of a stretched
pseudo-octave with 1232 cents, which corresponds to a ratioof ! � � � � � H �

to
�
. One

way to specify timbres for this scale is to map from a set of harmonic partials to a set
of “88-cet” partials using the mapping��� � ��_ � U �

� ��_ � � � � ��_ � T � * ��_ R R �
� ��_ R W � H ��_ R q �

� ��_ U � �
+ ��_ U U �

� � ��_ U S �
where_ � } �� � � � � H �

and
�

is the fundamental of the harmonic tone. The locations
of the destination spectrum are taken from Table 13.2, although here the_ is based on
the pseudo-octave rather than the real octave. The dissonance curve for this timbre
is shown in Fig. 13.13; observe that the curve has many minimaat 88-cet scale steps
(as expected) and no obvious relationship to the 12-tet scale steps shown above. The
most consonant intervals occur at scale steps

�
, � ,

�
, H ,

+
,

� � , and
� � . This is a good

place to begin exploration of this unusual scale.
Two pieces demonstrate this timbre-scale combination in action. Haroun in 88

[S: 15] is fully orchestrated with 88-cet flute, bass, trumpets, and synths.88 Vibes
[S: 16] is performed on a spectrally mapped vibraphone.
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Fig. 13.13.The dissonance curve for the 88-cet spectrum has minima at many of the 88-cet
scale steps, which are 14 equal divisions of the 2.0373 pseudo-octave.

13.3.4 A Harmonic Cymbal

The previous examples transformed familiar harmonic timbres into unfamiliar tim-
bres and scales. This example uses spectral mappings to transform familiar inhar-
monic sounds into sounds maximally consonant with harmonicspectra. The spec-
trum of a cymbal contains many peaks spread irregularly through the whole au-
dible range. For the chosen cymbal sample, the� � � * largest peaks (labeled! � 	 � � � 	 � 	 � � � � ) were fit to a “nearby” harmonic templatea � � � � by finding
the fundamental

�
that minimizes �

�� ô � � ! � g a � � � �
The solution is

� � ù � � Ùù � ~ , and the! � (source) anda � (destination) define the spectral

mapping. The transformed sound retains some of the noisy character of the original
cymbal strike, but it has become noticeably more harmonic and has inherited the
pitch associated with the fundamental

�
. The two brief segments in sound example

[S: 92] are mirrored in video example [V: 14]:

(i) The original sample contrasted with the spectrally mapped version
(ii) A simple “chord” pattern played with the original sample, and then with

the spectrally mapped version

The transformed instrument supports both chord progressions and melodies even
though the original cymbal strike does not.

Sonork[S: 93] explores harmonic cymbals in a “prog-rock” setting.Except for
the drums, all of the instruments inSonorkwere created from spectrally mapped
cymbals. The origin of the bass, synth, and lead lines is completely disguised. Some
sounds in the quieter sections retain recognizable characteristics of the cymbals from
which they derive, and some have gained a kind of fluttery underwater ambience
from the spectral mapping.
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Another example of the mapping of inharmonic instruments into tonal counter-
parts is presented in sound examples [S: 94] through [S: 96].The first presents the
original drum sound, which is clearly incapable of supporting melody or harmony.
The second plays the spectrally mapped version of the drum into a harmonic sound;
it has attained a character similar to a xylophone, and it readily supports both melody
and harmony. The third example plays both simultaneously and is the most musical
of the three.

13.4 Discussion

The discussion begins with a consideration of various aspects of timbral change,
and then it suggests additional perceptual tests that mightfurther validate (or falsify)
the use of spectral mappings in inharmonic musical applications. Several types of
inharmonic musical modulations are discussed.

13.4.1 Robustness of Sounds under Spectral Mappings

How far can partials be mapped before the sound loses cohesion or otherwise changes
beyond recognition? It is clear from even a cursory listen that small perturbations in
the locations of the partials (i.e., mappings that are not too distant from the identity)
have little effect on the overall tonal quality of the sound.Flutes and guitars in 11-
tet timbres retain their identity as flutes and guitars. The consistency of such sounds
through various spectral mappings argues that perceptionsof tonal quality are not
primarily dependent on the precise frequency ratios of the partials. Rather, there is a
band in which the partials may lie without affecting the “fluteness” or “guitarness”
of the sound. Equivalently, the partials of such a sound can undergo a wide variety
of mappings without significantly affecting its inherent tonal gestalt.

Besides the sounds demonstrated here, the author has spectrally mapped a large
variety (over 100) of sounds into several different destination spectra, including
stretched timbres with stretch factors from 1.5 to 3.0 (see [B: 176] and [B: 100] for a
detailed discussion of stretched timbres), spectra designed to be consonant with� -tet
for � � � 	 � � � 	 � +

, and a variety of destination spectra derived from objects such as a
tom tom, a bell, a metal wind chime, and a rock. Many of these are used in the com-
positions and studies described in Table 13.1. Overall, there is a wide variation in the
robustness of individual sounds. For instance, the sound ofa tom tom or cymbal sur-
vives translation through numerous mappings, some of them drastic. Only the flute
still retains any part of its tonal identity when mapped intothe tom tom spectrum
of Fig. 13.11. Sounds like the guitar and clarinet can be changed somewhat without
losing their tonal quality, surviving the transformation into the� -tet spectra but not
into the more drastic tom tom spectrum. Other sounds, like the violin, are fragile,
unable to survive even modest transformations. Thus, not all mappings preserve the
perceptual wholeness of the original instruments, and not all instruments are equally
robust to spectral mappings.
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Using the RIW spectral mapping technique of the previous sections, the attack
portion is mapped separately from the looped portion, whichtends to maintain the
character of the attack. As the envelope and other performance parameters are also
maintained, changes in the timbral quality are likely due primarily to changes in the
spectrum of the steady-state (looped) portion of the sound.

As a general rule, the change in timbral quality of instruments with complex spec-
tra tends to be greater than instruments with relatively simple spectra. The flute and
tom tom have fairly simple spectra (only four or five spectralpeaks) and are the most
robust of the sounds examined, retaining their integrity even under extreme spectral
maps. Sounds with an intermediate number of significant spectral peaks, such as the
guitar, bass, and trumpet, survive transformation throughmodest spectral mappings.
In contrast, sounds like the violin and oboe, which have verycomplex spectra, are
the most fragile sounds encountered, because they were changed significantly by a
large variety of spectral mappings.

Perhaps the most familiar ‘spectral mapping’ is transposition, which modulates
all partials up or down by a specified amount. As is well known,pitch transposition
over a large interval leads to distortions in tonal quality.For instance, voices raised
too far in pitch undergo “munchkinization.” It should not besurprising that other
spectral maps have other perceptual side effects.

13.4.2 Timbral Change

Is there a way to quantify the perceived change in a tone?
Even a pure sine wave can change timbre. Low-frequency sine waves are “soft”

or “round,” and high-frequency sine waves are “shrill” or “piercing.” Thus, one as-
pect of timbral change is frequency dependent, which may be responsible for timbral
changes caused by transposition. A second element of timbral change is the famil-
iar notion that tonal quality changes as the amplitudes of the (harmonically related)
partials change. This is likely responsible for the timbraldifferences between (say)
a clarinet and a flute playing the same pitch. Spectral mappings suggest a third as-
pect of timbral change, that modification of the internal structure of a sound (i.e., a
change in the intervals between the partials) causes perceptual changes in the sound.
Depending on the spectral mapping (and the partials of the sound that is mapped),
this may involve the introduction of (or removal of) inharmonicity.

Clearly, any measure of timbral change must account for all three mechanisms.
It is reasonable to hypothesize that perceptions of change are:

(i) Proportional to the amount of transposition
(ii) Proportional to the change in amplitudes of the partials
(iii) Proportional to the change in the frequencies of the partials
(iv) Proportional to the decrease (or increase) in harmonicity (i.e., propor-

tional to the change in tonalness)

Some general trends are suggested. Frequency shifts in a uniform direction (such
as those of a stretched map, or in a transposition mapping) may not be as damaging
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to timbral integrity as those that shift some partials higher and others lower (like the
11-tet mapping). Sounds with greater spectral complexity (like the oboe) seem to
undergo larger perceptual changes than simpler sounds likethe flute.

To minimize the amount of perceptual change, the mapping£ should be defined
so that all slopes are as close to unity as possible, that is, so that the mapping is as near
to the identity as possible, still consistent with the desire to minimize dissonance. For
instance, when specifying timbres for� -tone octave-based equal temperaments, it is
reasonable to place the partials at frequencies that are multiples of _ � �� � to ensure
that local minima of the dissonance curve occur at the appropriate scale steps. A
good rule of thumb is to define the mapping by transforming partials to the nearest
power of _ . Thus, an 11-tet timbre may be specified by mapping the first harmonic
to _ � � � � � �

, the second harmonic to_ � S � X � �
, the third harmonic to_ � � � � � �

, and
so on, as given in Fig. 13.1. Analogous definitions of timbresfor scales between 5
and 23 are given in Table 13.2. The spectrum defined by� � � � � � � * � � � H � � � + � � � � � � � � � �� � � � � � � � � � � �� _ � } � _ � ~ � _ � � � _ � � � _ � � � _ � � � _ � � � _ � � � _ � � � _ � } ° � _ � } } � _ � } ~
is an induced spectrum5 for � -tet, where

�
is the fundamental,_ � �� � , and the

exponents! � take on values from the� th row of Table 13.2.

13.4.3 Related Perceptual Tests

One way to investigate timbral change is to gather data from listener tests and apply
a multidimensional scaling technique as in [B: 139]. For instance, Grey and Gor-
don [B: 63] swapped the temporal envelopes of the harmonics of instrumental tones
and tested listeners to determine how different the modifiedsounds were from the
originals. Such a study could be conducted for sounds formedfrom various spectral
mappings, giving a quantitative way to speak about the degree to which sounds retain
their integrity under spectral mappings. The clustering technique used by Grey and
Gordon found three dimensions to the sounds, which were interpreted as a spectral
dimension, a dimension that represents the amount of changein the spectrum over
the duration of the tone, and a dimension determined primarily by the “explosive-
ness” or abruptness of the attack. Sounds that undergo modest spectral mappings
are likely to change in the first dimension and to remain more or less fixed in the
latter two. Instrumental sounds that are mapped so as to be consonant with 11-tet
(say) sound far more like the original instrumental samplesthan they sound like each
other. An interesting question is whether the spectrally mapped sounds might cluster
into a “new” dimension.

The sound examples of this chapter suggest caution in the interpretation of results
(such as the above), which rely on listening tests that lack musical context. Taken in
isolation, 11-tet mapped trumpet sounds are very similar toharmonic trumpet sounds,

The h -tet spectrum that lies closest to a harmonic spectrum.
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Table 13.2. Definitions of the “nearest” induced spectra consonant withh -tone equal-
tempered scales.

Steps per Partials
Octave

� � � # � $ � % � , � - � . � / � 0 � � 1 � � � � � #
5 0 5 8 10 12 13 14 15 16 17 17 18
6 0 6 10 12 14 16 17 18 19 20 21 22
7 0 7 11 14 16 18 20 21 22 23 24 25
8 0 8 13 16 19 21 22 24 25 27 28 29
9 0 9 14 18 21 23 25 27 29 30 31 32
10 0 10 16 20 23 26 28 30 32 33 35 36
11 0 11 17 22 26 28 31 33 35 37 38 39
12 0 12 19 24 28 31 34 36 38 40 42 43
13 0 13 21 26 30 34 36 39 41 43 45 47
14 0 14 22 28 33 36 39 42 44 47 48 50
15 0 15 24 30 35 39 42 45 48 50 52 54
16 0 16 25 32 37 41 45 48 51 53 55 57
17 0 17 27 34 39 44 48 51 54 56 59 61
18 0 18 29 36 42 47 51 54 57 60 62 65
19 0 19 30 38 44 49 53 57 60 63 66 68
20 0 20 32 40 46 52 56 60 63 66 69 72
21 0 21 33 42 49 54 59 63 67 70 73 75
22 0 22 35 44 51 57 62 66 70 73 76 79
23 0 23 36 46 53 59 65 69 73 76 80 82

and thus should cluster nicely with harmonic trumpet timbres. But in a 12-tet musical
context, the 11-tet trumpet will sound out of tune, for instance, when it is played in
concert with harmonic instruments. Similarly, the harmonic trumpet will sound out
of tune when played in 11-tet in an ensemble of 11-tet instruments. In this contextual
sense, similarly mapped instruments should tend to clusterseparately from harmonic
instruments.

13.4.4 Increasing Consonance

Much of the current xenharmonic music is written in just intonations and other scales
that are closely related to harmonic timbres. Many of the most popular equal temper-
aments (7, 17, 19, 21, and 31, for example) contain intervalsthat closely approximate
the intervals of scales related to harmonic timbres. There is, of course, a body of work
in tunings like 11-tet that are unrelated to harmonic timbres. Some of these pieces
revel in their dissonance, emphasizing just how strange xenharmonic music can be.

Other composers have sought to minimize the dissonance. Bregman [B: 18] re-
ports that the dissonance between a pair of sounds can be reduced by placing them in
separate perceptual streams. This implies that musical parts that would normally be
dissonant can sometimes be played without dissonance if thelistener can be encour-
aged to hear the lines in separate perceptual streams. Skilled composers can coax
sounds into streaming or fusing in several ways, including large contrasts in pitch,
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tone color, envelope, and modulation. These techniques have not gone unexploited in
xenharmonic music, and they can be viewed as a clever way of finessing the problem
of dissonance. They are a solution at the compositional level.

Spectral mappings provide an alternative answer at the timbral level. It is possi-
ble to compose consonant music in virtually any tuning by redesigning the spectra
of the instruments so that their timbre is related to the desired scale. Of course, it
is not always desirable to maximize consonance. Rather, thetechniques suggested
here are a way to achieve increased contrast in the consonance and dissonance of
inharmonic sounds when played in nonstandard tunings. Using spectra that have dis-
sonance curves with minima at the scale steps allows these intervals to be as con-
sonant as possible, thus giving the composer greater control over the perceived con-
sonance.6 That this is possible even for notorious scales such as 11-tet expands the
range of possible moods or feelings in these scales.

13.4.5 Consonance-Based Modulations

Morphing from one set of related scales and timbres to another is a new kind of
musical modulation. This might consist of a series of passages, each with a different
tuning and timbre. For instance, a piece might begin with harmonic timbres in 12-tet,
move successively through 2.01, 2.02, ... , 2.1 stretched octaves, and then return to
harmonic sounds for the finale. Such consonance-based modulation can be extremely
subtle, as in the modulation from 2.01 to 2.02 stretched. It can also be extremely
dramatic, because it involves the complete timbre of the notes as well as the scale
on which the notes are played. Alternatively, such modulations might move between
various� -tet structures. By carefully choosing the timbres, the “same” instruments
can play in different tunings and the dissonance can be tightly controlled.

It is also possible to morph from one spectrum to another in the evolution of a
single sustained sound. This can be done by partitioning thewaveform into a series
of overlapping segments, calculating a Fourier transform for each segment, applying
a different spectral mapping to each segment, and then rejoining the segments. Such
consonance-based morphing of individual tones can be used to smooth transitions
from one tuning/timbre pair to another, or it can be used directly as way to control
timbral evolution.

At a point when the mapping becomes too severe, individual notes can lose co-
hesion and fission into a cluster of individually perceptible partials. Bregman [B: 18]
suggests several methods of tonal manipulation that can be used to control the de-
gree to which inharmonic tones fuse. Simultaneous onset times and common fluc-
tuations in amplitude or frequency contribute to fusing, whereas independent fluctu-
ations tend to promote fissioning. These can be readily used as compositional tools
to achieve a desired amount of tonal coherence. For instance, a sound can be “mod-
ulated” from perceptual unity into a tonal cluster and then back again by judicious-

It is easy to increase the dissonanceby playing more notes ormore tightly clustered chordal
structures; the hard part is to decrease the dissonancewithout removing notes or simplifying
the spectra.
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choice of such tools.7 As spectral maps directly affect the amount of inharmonicity
of a tone, a series of spectral maps can be used to approach or cross the boundaries
of tonal fusion in a controlled manner.

Another form of modulation involves the boundary between melody and rhythm.
For instance, when the cymbal of sound example [S: 92] is played using the original
sample, it is primarily useful as a rhythm instrument. When the same sound is trans-
formed into a harmonic spectrum, it can support melodies andharmonies. Consider
a series of spectral mappings that smoothly interpolate between these two. At some
point, the melodic character must disappear and the rhythmic character predomi-
nate. Careful choice of spectral mapping allows the composer to deliberately control
whether the sound is perceived as primarily unpitched and rhythmic or as primarily
pitched and harmonic, and to modulate smoothly between the two extremes.

13.5 Summary

Most of the sounds of the orchestra (minus certain members ofthe percussion family)
and most of the common sounds of electronic synthesizers have harmonic spectra. As
the tonal quality of sounds is not destroyed under many kindsof spectral mappings,
whole orchestras of sounds can be created from inharmonic spectra. These sounds
can retain much of the character of the sound from which they were derived, although
they are not perceptually identical. For example, 11-tet sounds were created that
clearly reflect their origin as guitar and flute samples. These are clearly perceived as
instrumental in nature, and they can be played consonantly in 11-tet.

It is not necessary to abandon the familiar sound qualities of conventional musical
instruments to play in unusual scales. The spectral mappings of this chapter provide
a way to convert a large family of well-established, musically useful sounds into
timbres that can be played consonantly in a large variety of scales. Musical tastes
change slowly, and it can be difficult for audiences to appreciate music in which
everything is new. The creation of “familiar” sounds that can be played in unusual
scales may help to ease the transition to music not based on 12-tet.

Alternatively, extreme spectral mappings can be used to generate genuinely new
sounds using familiar instrumental tones as raw material. When played in the related
scales, these tend to retain familiar musical features suchas consonance even though
the timbres and intervals of the scale are unfamiliar.

Spectral mappings can also be used to transform inharmonic sounds (such as cer-
tain cymbals and drums) into harmonic equivalents. Using these sounds, it is possible
to play familiar chord patterns and melodies using this new class of harmonic percus-
sion instruments. Consonance-based spectral mappings make it possible to explore a
full range of tonal possibilities for many different spectra.

.
Inharmoniqueby Risset [D: 36] explores this type of modulation using an additive synthe-
sis approach.
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A “Music Theory” for 10-tet

Dissonance curves provide a starting point for the exploration
of inharmonic sounds when played in unusual tunings by
suggesting suitable intervals, chords, and scales. This chapter
makes a first step toward a description of 10-tet, using
dissonance curves to help define an appropriate “music
theory.” Most previous studies explore equal temperaments
by comparing them with the just intervals or with the
harmonic series. In contrast, this new music theory is
based on properties of the 10-tet scale and related 10-tet
spectra. Possibilities for modulations between 10-tet “keys”
are evident, and simple progressions of chords are available.
Together, these show that this xentonal 10-tet system is rich
and varied. The theoretical ideas are demonstrated in several
compositions, showing that the claimed consonances exist,
and that the xentonal motions are perceptible to the ear.

14.1 What Is 10-tet?

In the familiar 12-tet, the octave is divided into 12 equal-sounding semitones, which
are in turn divided into 100 barely perceptible cents. Instead, 10-tet divides the oc-
tave intoten equal sounding pieces. Each scale step contains 120 cents, which is
noticeably larger than a normal semitone. Figure 14.1 showshow 12-tet and 10-tet
relate.

Because the 10-tet intervals are unusual, it does not make sense to give them the
familiar sharp and flat names: Instead we adopt an “alphabetical” notation in which
each successive tone is labeled with a successive letter of the alphabet.1 Thus, the
scale begins with an A note, continues with B, and proceeds alphabetically through
the J note.

The 10-tet tuning has no fifth, no third, no major seconds, andno dominant sev-
enths. The only interval common to both 10-tet and 12-tet (other than the octave) is
the 600-cent interval normally called the tritone, augmented fourth, or diminished
fifth. This is due to the numerical coincidence that:�

steps
å � � �

cents
� * steps

å � � �
cents

� � � �
cents

Although there are no major, minor, or seventh chords in 10-tet, there are new
“chords” that do not have “real” thirds or fifths. All of the comforting scales and inter-�

Although not an ideal solution to the notation problem, the alphabetical approach has the
advantage that it can be readily applied to any tuning systemthat repeats at regular intervals.
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Fig. 14.1.The 10-tet and 12-tet scales have only the octave and tritonein common. When
the scale steps of the 10-tet tuning are mapped consecutively along a standard keyboard, the
octaves precess (as shown by the blackened keys). The black and gray keys combine to outline
the D -neutral scale.

vals have vanished, replaced by weird-sounding melodic intervals and even stranger
xenharmonies. Nothing you learned in music class is true!

14.2 10-tet Keyboard

How shall the 10-tet scale be laid out across the keyboard? Unfortunately, the familiar
12-key-per-octave design is poorly suited to tunings like 10-tet. One option is to
choose a subset of the 12 keys, and to map the 10-tet pitches toonly this subset,
leaving two extra keys “empty.” The primary advantage of this method is that each
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“octave” of keys still plays an octave. The disadvantage is that the normal flow of
10-tet steps is artificially interrupted by the silent keys.

The keyboard layout I prefer is one that assigns successive notes of the 10-tet
scale to successive keys. With this 10-tet keyboard, a 10-tet chromatic scale encom-
passes only ten steps. If the scale starts at middle3 , then it ends at then o key ten
steps up or at the

�
key ten steps down. Thus, each interval normally fingered as a

dominant seventh is actually an octave. Figure 14.1 shows how this nonoctave rep-
etition plays out across the keyboard by blackening all E notes. Observe how the
sounding octaves precess through the key-octaves at a rate of two keys per octave.
This pattern can be exploited without great difficulty, given a bit of practice.

14.3 Spectra for 10-tet

If 10-tet is so cool, why don’t more people already use it? Thefacile answer is that
there are no 10-tet guitars, flutes, or pianos, hence no musicians versed to play in
10-tet, and no repertoire for them to perform. But there may be an underlying reason
for this lack—that harmonic tones sound out-of-tune (or dissonant) when played in
10-tet. For instance, as shown in Fig. 14.1, the 10-tet interval from E to A is 720
cents. In contrast, a perfect 12-tet fifth is 700 cents. Hence, the 10-tet interval from E
to A is likely to be heard as a sharp, out-of-tune 12-tet fifth.The full E neutral chord
is even worse.

The problem is not simply that harmonic sounds are dissonantin 10-tet. As we
know, the motion from consonance to dissonance (and back again) plays an important
role in most music. The problem is that most of the intervals in 10-tet are dissonant,
assuming harmonic sounds. It is thus very difficult to achieve the kinds of contrasts
needed for tonal motion.

Using the ideas of the previous chapters, it is easy to designspectra for sounds
that will appear consonant in the 10-tet intervals.2 For instance, the dissonance curve
for the mapping from a harmonic spectrum� � � � � � � * � � � H � � � + � � � � � � � � � �� � � � � � � � � � � �� _ � � � _ � W � _ � � � _ � R � _ � W � _ � T � _ R � � _ R � � _ R R � _ R V � _ R W �
into a “10-tet spectrum” defined with_ � } °� � , is shown in Fig. 14.2. The minima of
this curve are aligned with many of the 10-tet scale steps. Intervals such as the 720-
cent “sharp fifth” and the 480-cent “flat fourth” need not sound dissonant and out-
of-tune when played with sounds that have this spectrum, even though they appear
very out-of-tune when played with normal harmonic sounds.

The above spectral mapping was applied to a sampled guitar, to create the “virtual
10-tet guitar” that is featured in the pieceTen Fingersin sound example [S: 102]. The
overall impression ofTen Fingersis of a strange plucked instrument, like a sitar or a
pipa, played in a musical style from an unknown musical tradition.#

Figure 12.1 on p. 237 contains three such spectra.
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 12-tet scale steps:                                 octave 
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Fig. 14.2.The dissonance curve for a spectrum designed to be played in 10-tet. Minima coin-
cide with many of the steps of the 10-tet scale and not with steps of 12-tet. The notes of the
scale are named using the “alphabetical” notation, starting on E.

Close observation reveals that much of this piece centers around the 10-tet inter-
val E to B (seven scale steps) and its inverse from B to E (threescale steps). These
intervals are 360 and 840 cents, which are distinct from anything available in 12-tet,
and dissonant when played with harmonic sounds. As often occurs, this dissonance
is perceived primarily as an eerie out-of-tuneness, as demonstrated in sound exam-
ple [S: 103], which plays the first few measures ofTen Fingersbut with the original
harmonic sampled guitar rather than with the spectrally mapped 10-tet version. More
properly, this should be called “out-of-timbre” or “out-of-spectrum,” because the ac-
tual tuning is precisely 10-tet. The contrast between examples [S: 102] and [S: 103]
is not subtle.

14.4 10-tet Chords

Of course, 10-tet does not have major and minor chords. It does not have real I-IV-
V progressions. It does not have a circle of fifths, because itdoes not really have
“fifths.” But there are chords, and these chords can be playedin sensible musical
progressions. These 10-tet sound patterns are just new kinds of progressions.

Dissonance curves suggest where to begin. Figure 14.2 showsthat 10-tet scale
steps 0, 3, 4, 6, 7, 9, and 10 occur at the narrow minima caused by coinciding partials.
These are the most consonant intervals in this 10-tet setting. The most consonant
chords are found by drawing the 3-D dissonance curve, which is shown in Fig. 14.3.
As usual with such curves, the very highest peaks (and the deepest valleys) occur
near unisons. These create the two irregular far walls. The long bumpy strip along the
diagonal is similarly caused by the (near) coincidence of the second and third notes.
The most musically interesting areas of the terrain are the three smaller mountainous
regions marked A, B, and C.

To get a closer look, the contour plot is drawn in Fig. 14.4, and the axes are
labeled in increments of the steps of the 10-tet scale. The left edge and the bottom
strip correspond to the two far walls of the 3-D version, whereas the jeweled stripe



14.4 10-tet Chords 283

1

2

1
2

s
e

n
s
o

ry
 d

is
s
o

n
a

n
c
e

interval between the first and second notes

in
te

rv
a
l b

e
tw

e
e
n
 t
h
e

fir
st

 a
n
d
 t
h
ir
d
 n

o
te

s

A B C

Fig. 14.3.Dissonance curve for three note chords using the spectrum designed for 10-tet has
minima that define the most important 10-tet chords. Three regions of interest are indicated.

across the diagonal represents the second and third notes merging together. The three
regions of interest are again labeled A, B, and C, and it is apparent that each of these
regions actually contains three distinct minima. The intervals in these chords can be
read directly from the figure. The chord featured inTen Fingersappears in region C,
containing the intervals 1,_ S

, and 2. Its complement (the chord containing 1,_ R
, and

2) is in region B.
The chords in region A are the most like standard triads. As_ W

is the closest
10-tet interval to a 12-tet fifth, the chord 1,_ R

, _ W
is an obvious candidate.

14.4.1 Neutral Chords

Play middle3 , the@ o above, and the� z above that. In the alphabetical notation for
10-tet, these are the E, H, and A notes.

F H A C E H
D E G I J B D F G�
“middle 3 ”

Assuming that the timbre is built from the 10-tet spectrum given in the above spectral
mapping, this will likely sound smooth, but a bit strange. The chord is completed by
closing the octave with then o key above (but not below). Thisn o key is the E an
octave above the first E, because it is ten steps up. The complete chord
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Fig. 14.4.Dissonance curve for three-note chords using the spectrum designed for 10-tet has
minima that define the most important 10-tet chords. Three regions of interest are indicated.

F H A C E H
D E G I J B D F G

is called the Eneutral chord.
Recall that a normal major chord begins on its root (say3 ), adds the third (the

note@ four semitones above the root) and then the fifth (the note
2

three semitones
higher) to complete the3 major chord3 -@ -

2
. In 10-tet, the neutral chord begins on

its root (say E), adds the note that is three 10-tet scale steps higher (the H note), and
then the note that is three more 10-tet scale steps higher (completing the E neutral
chord E-H-A). Of course, any note can be used as the root. As there are ten different
notes, there are ten possible neutral chords.

In 12-tet, chords are called major or minor depending on whether the first interval
in the chord is a major third (four semitones = 400 cents) or a minor third (three
semitones = 300 cents). The interval used to build the neutral chord in 10-tet is three
10-tet scale steps, which is 360 cents. As 360 is about halfway between the major
and minor thirds, it is neither major nor minor: hence the term “neutral.”

Refer back to Fig. 14.4. There are three chords in region A that correspond to
minima of the dissonance curve that are approximately equally deep. Perhaps there
are other interesting chords or theoretical structures that can be built up around the 1,
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, _ S

chord or the 1,_ R
, _ S

chord. Unfortunately, this is not so, because all three are
intimately related. For instance, suppose the root of the neutral chord was transposed
an octave up, while leaving the other two tones fixed. Then thethree tones would be
in the relationship_ R

, _ W
, _ � �

, which is just a relabeling of 1,_ R
, and _ S

. Similarly,
if the upper tone was transposed down an octave, the three tones would be in the
relationship 1,_ U

, _ S
. Thus, all three chords in region A are different inversionsof

the “same” neutral chord.

14.4.2 Circle of Thirds

There is a very interesting and beautiful chord pattern in 10-tet that is analogous to
(but very different from) the traditional circle of fifths.

Observe that by changing only one note, it is possible to modulate from the E
neutral chord (containing E-H-A) to a B neutral chord (containing B-E-H). One way
to finger this is to simply move the A to a B while holding the E and H constant.
Thus, it is possible to move from the E chord

F H A C E H
D E G I J B D F G

to the B chord

F H A C E H
D E G I J B D F G

by moving only one finger. But now it is possible to modulate toan I chord (I-B-E)
by raising the H note one step.

F H A C E H
D E G I J B D F G

Raising E to F
F H A C E H

D E G I J B D F G

gives the F neutral chord, and raising B to C

F H A C E H
D E G I J B D F G

gives the C neutral chord... and so on. After 10 chord changes, the progression has
moved

E J B J I J F J C J J J G J D J A J H J E

completely around the circle of thirds and back to its starting point. Because the
root of each chord in this progression is a neutral third below the previous root,
the complete cycle is called the circle of thirds. The songCircle of Thirds(sound
example [S: 104]) plays around and around this circle of thirds: first fast, then slow,
and then fast again.
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14.4.3 “I-IV-V”

In 10-tet, the nearest interval to a fourth is 480 cents (instead of the familiar 500
cents) and the nearest interval to a fifth is 720 cents (instead of the normal 700 cents.)
Thus, a I-IV-V progression is not really possible. But, using the flat fourth and sharp
fifth in place of the familiar intervals does lead to musically sensible results. For
instance, moving from E to I is as easy as playing

F H A C E H
D E G I J B D F G

followed by
F H A C E H

D E G I J B D F G

The A chord, which is only a few keys away, can be fingered either as

F H A C E H
D E G I J B D F G

or as
F H A C E H

D E G I J B D F G

These three chords form the basis ofIsochronism[S: 105].

14.4.4 The Tritone Chord

The tritone, also called the augmented fourth and the diminished fifth, is an interval
of 600 cents. It plays a very special role in conventional harmony when it appears in
dominant seventh chords: It helps to define the finality of cadences, and it is often
used as an “engine” that drives modulation from one key to another. For instance, the
typical ó H J ª progression

tritone

[ � J @n J 3 c major third2 J 2� J 3
contains a tritone that resolves to a major third. Is there a 10-tet analog?

The tritone is the only interval (other than the octave) thatis common to both the
10-tet and 12-tet systems. In fact, the tritone can functionin much the same ways in
the 10-tet system as it does in traditional harmony: It helpsto define the finality of
cadences and can be used to modulate between keys.

The chord that does this, calledthe tritone chord, is built from a root (say G), the
note 5 steps above (B), and the note 3 steps above that (E).3$

Observe that this= y 7 construction leaves only two steps until the octave. Thus, the note
does have something of the character of a dominant seventh.
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F H A C E H

D E G I J B D F G

This G tritone chord feels as if it wants to resolve. The most natural resolution is to
move the lower note of the tritone up one step, the upper note of the tritone down
one step, and to leave the third note fixed.@ J @

tritone

[ n J ?2 J � c neutral third

Thus, the G tritone chord resolves to a E neutral chord.

F H A C E H
D E G I J B D F G

So far, the tritone chord has made a nice analogy with the dominant seventh chord
of traditional harmony. But there is another kind of tritonechord that is built from a
root (say D), the note 5 scale steps above (I) and the note 2 scale steps above (A).

F H A C E H
D E G I J B D F G

This tritone chord also wants to resolve. The bottom note of the tritone pulls upwards,
the middle note of the tritone pushes down, and the third noteremains fixed.? J ?

tritone

[ ª J �� J @ c neutral third

so the (second kind of) D tritone also wants to resolve to the Eneutral chord.

F H A C E H
D E G I J B D F G

Thus, in the 10-tet system, there are two different tritone chords, both of which
function analogously to the dominant seventh chord of traditional harmony. There
are two different ways to approach any given neutral chord, there are two different
cadences resolving to any neutral chord, and there are consequently a far greater
number of ways to modulate from one 10-tet key to another. So,although the 10-
tet system lacks the dichotomy between minor and major chords,4 it contains richer
possibilities of modulation due to the greater number of tritone xentonalities.%

Having only neutral chords.
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14.5 10-tet Scales

The traditional major scale is intimately related to major chords. For instance, the3 ,� , and
2

chords contain exactly the notes of the3 major scale. Similarly, one can
think of building 10-tet scales from the notes of certain 10-tet chords.

One approach is to choose a neutral chord (say E with notes E-H-A) and the two
tritone chords that lead to it (G with G-B-E, and D with D-I-A). Collecting all of
these notes together gives the 7-note E neutral scale

F H A C E H
D E G I J B D F G

which is shown spread out across the keyboard in Fig. 14.1 on p. 279. Alternatively,
one could begin with the analogs of I-IV-V (for instance, theE, I, and A neutral
chords) and define the scale from these notes. This leads to the exact same 7-note
scale. Finally, this scale is also the same as the minima of the dissonance curve
(Fig. 14.2) with the addition of the G note.

14.6 A Progression

There are many ways to play in 10-tet. The use of 10-tet is not limited to any par-
ticular style of music—it is no morefor jazz than it isfor rock or any other style.
Think of it as an expansion of tonality. The 10-tet xentonal musical language is not
intended to replace the familiar harmonic 12-tet, but to complement it. Lilies are not
intended to replace roses, and the world would be a poorer place without either.

This section ends with a simple 10-tet chord pattern that I have grown fond of.
It begins by moving back and forth between E and I. Then there is a short D tritone,
followed by a G tritone, and finally a resolution back to E. Then repeat. It is simple,
and maybe even a little catchy.

Begin by alternating the E chord

F H A C E H
D E G I J B D F G

with the I chord.

F H A C E H
D E G I J B D F G

Then, the resolution begins with a D tritone chord (the second kind),

F H A C E H
D E G I J B D F G

moves through the G tritone chord (the first kind)
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F H A C E H

D E G I J B D F G

and finally resolves back to E.

F H A C E H
D E G I J B D F G

This chord pattern is used throughoutAnima[S: 106], which also demonstrates that
it is possible to sing in 10-tet.

14.7 Summary

Dissonance curves for a 10-tet spectrum were helpful in pinpointing useful intervals,
chords, and scales. These can be combined in numerous ways into coherent patterns
that, although unfamiliar, are perceivable as sensible xentonal progressions. “Neu-
tral” chords occupy a place in 10-tet somewhat analogous to major chords in 12-tet,
and two kinds of “tritone” chords can be used as engines of modulation and reso-
lution, analogous to the familiar dominant seventh chord. These are just a start; it
would be impossible to exhaust an intricate system like 10-tet in a single chapter.

There is nothing magic about 10-tet, nor about this particular spectrum for 10-tet.
Each of the� -tet tunings has its own kinds of related spectra, its own intervals and
scales, its own chords and chord progressions, and its own character and moods.5

There are new patterns of sound that can subtly (and not so subtly) entice and en-
trance, repel, and repulse. Unlike 12-tet, where it is virtually impossible to create
a genuinely new chord pattern or scale, almost nothing is known about these� -tet
worlds. Similarly, other divisions of the octave (and divisions of non-octaves as well)
have their own timing, intervals, consonances, dissonances, and their own music the-
ories. Each tuning has its own song to sing.

,
Darreg [B: 36] was the first to point out the existence of thesemoods.





15

Classical Music of Thailand and 7-tet

Thai classical music is played on a variety of indigenous
instruments (such as the xylophone-likerenatandpong lang)
in a scale containing seven equally spaced tones per octave.
This chapter shows how the timbres of these instruments (in
combination with a harmonic sound) are related to the 7-tet
scale, and then explores a variety of interesting sounds and
techniques useful in 7-tet.

15.1 Introduction to Thai Classical Music

Thai culture has been in contact with other civilizations for centuries. Thai music
and instruments reflect influences from China, Indonesia, and India, as well as influ-
ences from the indigenous Khmer, who were conquered when theThai invaded from
southern China. The primary ensembles in Thai court music are a kind of percussion
orchestra containing wooden xylophones (therenat ek, the lower pitchedrenat thum,
thepong lang), gong-circles reminiscent of Javanese bonangs, melody instruments
such as thepi, a multiple reed aerophone, the zither-likejakeh, and a variety of drums
and cymbals.

Morton [B: 119] describes the music with evocative mixed metaphors:

The sound of traditional Thai ensemble music might be likened to a stream...
here and there little eddies and swirls come suddenly to the surface to be
seen momentarily, then to disappear as suddenly... the various threads of
seemingly independent melodies of the instruments bound together in a long
never-ending wreath.

Morton is describing the technique ofpolyphonic stratificationor heterophonic lay-
ering of parts in which variations of a single melody are played simultaneously on
a number of different instruments. Some play faster, some slower, some syncopated,
and some with elaborate ornamentation.

One striking aspect of traditional Thai music is that it is played in a scale that is
very close to 7-tet. In the liner notes to [D: 12], Sorrell comments:

Theoretically, the Thai scale has seven equidistant notes,which means that
the intervals are “in the cracks” between our semitone and whole tone, and
are equal, though in practice some are more equal than others!

A number of recordings of Thai music are currently available. Instrumental
Music of Northeast Thailand[D: 45], Classical Instrumental Traditions: Thailand
[D: 9], andThailand-Ceremonial and Court Music[D: 39] give an overview of the
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instrumental techniques, whereasSleeping Angel[D: 12] and theNang Hong Suite
[D: 13] mix traditional music with modern music in both traditional and nontradi-
tional styles.

This chapter explores the relationship between the 7-tet scale of Thai classical
music and the timbres of the traditional instruments. As will be shown, two different
timbres (that of an ideal bar like the renat and a harmonic sound) combine to create
a dissonance curve that has minima at many of the 7-tet scale steps. Later sections
show how to create “new” instrumental timbres with analogous spectra, and explore
some compositional techniques for 7-tet.

15.2 Tuning of Thai Instruments

How close is the actual tuning of Thai instruments to the theoretical 7-tet scale?
Many traditional Thai pieces begin with a musical figure played by the renats alone.
This isolates the sound of the renat and makes it possible to measure the tuning with
reasonable accuracy directly from musical recordings. Thexylophone-like renat is
ideal for this because it is a fixed pitch instrument unlike the aerophones and stringed
instruments, whose pitches may vary each time a note is played.

The somewhat tedious is illustrated in sound example [S: 108], which begins
with the first ten seconds ofSudsabounfrom [D: 39], up to the point where the pi
enters. Each of the seven notes present in this introductionare then separated (by
a kind of audio cut-and-paste) and played individually. Thepitch is determined by
finding the sine wave that has the same pitch as the individualnotes (recall that, for
inharmonic instruments, this is how pitch is defined). The sound example alternates
each struck note of the renat with the appropriate sine wave,and the frequencies for
each are recorded in Table 15.1. These are then translated into cents (equating the
lowest note with 0 cents) for comparison with the theoretical 7-tet scale.

Table 15.1. Tuning of the renats inSudsabounfrom [D: 39].

Note Frequency (Hz) Cents 7-tet
1 307 0 0
2 337 161 171
3 375 346 343
4 416 526 514
5 456 686 686
6 505 862 857
- - - 1028
7 614 1200 1200

By listening carefully to sound example [S: 108], it becomesclear that each of
the renat strikes is not really a single note; rather, it is two notes being struck at an
octave interval.
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15.3 Timbre of Thai Instruments

Thepong langis a wooden xylophone-like instrument from Northeast Thailand. Like
the boat-shapedrenat, it is tuned to (approximately) 7-tet. The modes of vibration of
keys of the pang lang and renat, like those of the Javanese gambang (recall Fig. 10.9),
are very close to those of an ideal bar.1 Figure 15.1 shows the spectrum of the pong
lang taken from the introduction toLam Sithandonon [D: 45].
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Fig. 15.1.The spectrum of a typical lower register strike of a pong langhas four partials close
to those of an ideal bar.

The four largest partials compare closely to those of the ideal bar:

frequency Hz: � � � � � � � � � � � � + � � � H �
ratio:

� � � � H � � � � * � * � � � � � � � � �
ideal bar:

� g � � H � � * � � � � � + �
The spectra of higher pitched notes have less prominent higher partials: The partial
near

� � + �
disappears completely, and the partial near* � � �

is often greatly attenuated.
The partial at

� � � Hz (near
� � � H �

) is somewhat anomalous. It occurs in several (but
not most) of the spectral measurements of the pong lang but none of the renat spectra.

Section 6.7 shows how dissonance curves can be drawn when twosounds with
nonidentical spectra are played. Combining the spectrum ofan ideal bar (an idealized
renat) with a harmonic sound

2
containing six partials (such as might result from the

pi or jakeh) gives the dissonance curve shown in Fig. 15.2.
This dissonance curve has minima at or near all of the steps ofthe 7-tet scale,

except for the fifth step (the nearest minimum to 1.64 is at 1.62, but it is one of the
broad flat minima):

minima s
� � � � � � + � � � � � � � * � � � + � � � �

minima r
� � � � � � � � � � � � � �

7-tet ratio
� � � � � � � � � � � � � � * � � � + � � � � � � � � � � �

7-tet cents
� � H � � � � * � � � � � � * H � � � � � � � ��

The spectrum of the ideal bar is discussed in Chap. 2 (see p. 22and Fig. 2.7), and scales
for the ideal bar are shown in Fig. 6.11 on p. 110.
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7-tet scale steps
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Fig. 15.2.An ideal bar and a harmonic sound with six partials generate adissonance curve
with many minima close to the steps of 7-tet, which is shown for comparison.

Hence this dissonance curve provides a concrete correlation between the spectrum
of the traditional xylophone-like instruments and the 7-tet Thai scale.

As is obvious from even casual listening, Thai classical music is stylistically
very different from Western music. It does not contain “harmonies” or “chords” in
the Western sense. Rather, it is built linearly by juxtaposing a number of melody
lines simultaneously. Often there is a single underlying melodic pattern that no sin-
gle musician actually plays; the melody is stated (and restated with many kinds of
variations) in a collective performance. Morton [B: 119] comments about the use of
consonance and dissonance in Thai music:

The motor power driving this type of music forward is the alternation of
relative consonance at structural points of unison (or octaves) with relative
dissonances between those points, through the idiomatic treatment of the
lines.

How are these variations in consonance and dissonance achieved without har-
mony or chords? The various melodic lines overlap each otherin very complex ways,
and thus many different notes occur simultaneously. These clusters of notes clearly
have different amounts of sensory dissonance, and this may be one source of the
driving power Morton perceives in the music.

As the dissonance curve in Fig. 15.2 shows, the instruments can provide a range
of consonances and dissonances as they combine the spectrumof an idealized xylo-
phone with a harmonic spectrum. As more notes are added, the differences can be
even more dramatic. To investigate this, Figs. 15.3 and 15.4draw contour plots of the
dissonance surfaces for three simultaneously sounding notes. These are analogous to
the contour plots of Fig. 6.21 on p. 123.

Dissonance surfaces are drawn assuming three notes, each with known spectrum.
One note is held fixed, and the other two vary over a range of twooctaves, from an
octave below the fixed note to an octave above. As there are twodifferent timbres
to consider (that of the ideal bar and a harmonic spectrum), there are four possible
surfaces depending on which spectra are assigned to which notes. In Fig. 15.3, for
instance, the fixed note is harmonic, the second has the spectrum of the bar, and the
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Fig. 15.3.This contour plot of a dissonance surface assumes three notes. The fixed note has
a harmonic spectrum, the second has the spectrum of the idealbar, and the third is harmonic.
Minima of the dissonance curve occur at many of the scales steps of 7-tet, which is shown for
reference on both axes. The x’s represent locations where minima occur.

third is harmonic. In Fig. 15.4, the fixed note is again harmonic, whereas the second
and third both have the spectrum of the bar.2

The prominent horizontal stripe in Fig. 15.3 reflects the degenerate case where
the first and third notes are tuned the same (in an interval of aunison), and this
gives (to close approximation) a copy of the one-dimensional dissonance curve in
Fig. 15.2. Similarly, the horizontal stripes at_ � � and b � � depict the situa-
tion where the two harmonic tones form octave intervals, again replicating the one-
dimensional dissonance curve. In Fig. 15.4, the prominent diagonal stripe represents
the degenerate case where the second and third notes (with identical spectra) are
tuned the same and the stripe again repeats the one-dimensional dissonance curve.

Far more interesting are the deep isolated minima that occurthroughout the fig-
ures. For example, on Fig. 15.3, locate the fourth scale stepbetween the first and
second notes (the tick mark just below the letter_ on the horizontal lattice). Look-
ing down the graph reveals minima (marked byx ’s) at or near more than two-thirds
of the scale steps. Similarly, many other columns (and rows)in both figures show#

There are two other possibilities, and the corresponding figures are inpdf form on the
CD in the folderpdf/ . In the figure in1bar2harm3bar.pdf , the fixed note has the
spectrum of the bar, the second note is harmonic, and the third has the spectrum of the bar.
In the file1bar2harm3harm.pdf , the fixed note has the spectrum of the bar, whereas
the other two are harmonic. These figures are qualitatively like Figs. 15.3 and 15.4, showing
minima at many “chords” with intervals drawn from 7-tet.
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7-tet scale steps
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Fig. 15.4.This contour plot of a dissonance surface assumes three notes. The fixed note has a
harmonic spectrum, and the two varying notes have the spectrum of the ideal bar. Minima of
the dissonance curve occur at many of the scales steps of 7-tet, which is shown for reference
on both axes. The x’s represent locations where minima occur.

a large number of highly consonant chords (more properly, three-note clusters) that
use intervals in the 7-tet scale.

Let’s oversimplify. Figures 15.3 and 15.4 show that, to a first approximation,
almost any three-note cluster in 7-tet is reasonably consonant. So the contrast be-
tween consonance and dissonance that drives Thai music is unlikely to be caused by
differences in the chordal structure. For example, numbering the notes of the 7-tet

scale numerically, the dissonance of note clusters such as

�� *�� �� ,

�� ��� �� , and

�� *�� ��
does not differ greatly. Reinforcing this, there is no notion in Thai music theory that

specific combinations of notes perform specific functions; thus,

�� *�� �� does not nec-

essarily play a different role than

�� ��� �� . This is very different from music of the

common practice period where, for example, the tonic, dominant and subdominant
serve highly prescribed and conventionalized roles.

This suggests that the contrast driving Thai music must arise in some other way.
One possibility grows out of the layering of melodic lines (the polyphonic stratifi-
cation). Consider a simplified example of a melody that repeats four notes

� � � �
at three levels separated by a factor of two in tempo. The slowest layer performs the
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melody once during the time the middle layer plays it twice. Meanwhile, the fastest
layer repeats the same melody four times. This can be represented schematically as

fastest level:
� � � � � � � � � � � � � � � �� g � g � g � g � g � g � g � g

slowest level:
� g g g � g g g � g g g � g g g (15.1)

where time proceeds horizontally. The initial three notes in unison are highly con-
sonant. Similarly, the final stroke is consonant because it contains the last stroke of
the fastest layer plus whatever sound remains from the

�
’s in the slower layers. In

between is a rising and falling dissonance proportional (more or less) to the number
of different notes sounding simultaneously. For this particular pattern, the greatest
dissonance would occur at the second stroke (of the slowest layer) where all three
different notes occur simultaneously. Thus, even in this highly idealized setting, there
is a journey from consonance into dissonance and back again.This is dictated, not by
chord placement or differences in dissonance between clusters, but by the temporal
layering of the melodic lines.

To investigate this more concretely, the dissonance score3 in Fig. 15.5 shows the
first two minutes ofLam Sithandon[D: 45], which uses the “happy soundingsan
mode type” according to the liner notes. The introductory solo, played on the pong
lang, is evident in the first large hump in the dissonance thatculminates at about 14
seconds. The bulk of the analysis shows a large number of small peaks of varying
heights that coincide with the phrase length. Each phrase isperformed slightly dif-
ferently: with different instruments, with different ornamentation, and with different
density of orchestration. The drop in the dissonance at 80 seconds coincides with the
end of the first major section and a return to the main theme. AsMorton [B: 119] sug-
gests, the relative consonance occurs at points of structural unison, and dissonance
increases between.
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Fig. 15.5.Dissonance score for the first two minutes ofLam Sithandon. The dark line averages
the raw dissonance calculations over 1 second.

$
Drawn using the method of Sect. 11.1.



298 15 Classical Music of Thailand and 7-tet

15.4 Exploring 7-tet

Inspired by traditional Thai music, this section explores compositional techniques
and sound design strategies for 7-tet. The first section discusses a variation on the
spectral mapping techniques of Chap. 13 for the sculpting ofa variety of instrumental
sounds that have the same spectrum as an ideal bar. Succeeding sections discuss
variations on the technique of polyphonic stratification that are applied to several
musical compositions that can be heard on the accompanying CD.

15.4.1 Sounds for 7-tet

As the previous sections showed, two kinds of sounds combineto form dissonance
curves with minima at steps of the 7-tet scale: harmonic sounds and bar sounds (those
with the spectrum of an ideal bar). There is no shortage of interesting harmonic
sounds, but there is no obvious source of timbres with the spectrum of a bar other
than the bar instruments themselves (xylophone, glockenspiel, renat, gambang, and
so on).

In principle, the spectral mapping approach of Sect. 13.2 (refer back to Fig. 13.3
on p. 260) can transform one spectrum into another by choosing a mapping from the
source spectrum into the destination spectrum. This implicitly requires that there be
the same number of partials in the destination as in the source. But the spectrum of
a bar is sparse compared with (say) harmonic sounds; the firstfour partials of the
bar (

�
, � � H � �

, * � � �
, and

� � + �
) span the same range of frequencies as the first nine

partials of a harmonic sound. A naive mapping like

harmonic spectrum:
� � � � � � � � � �� � � �

spectrum of bar:
� � � H � � * � � � � � + � � � �

can cause significant oddities in the resulting mapped sounds, more akin to the trans-
formation from a harmonic sound into the spectrum of a tom-tom (sound exam-
ple [S: 90]) than to the milder transformation into the nearby 11-tet spectrum (as in
sound example [S: 86]).

One variation is to transform from the harmonic spectrum to the bar spectrum by
mapping only the harmonic partials nearest the desired partial of the bar spectrum:

harmonic spectrum:
� � � * � + �� � � �

spectrum of bar:
� � � H � � * � � � � � + �

But what happens to� �
, � �

,
� �

, H �
,

� �
, and

� � �
and above? If they are left un-

changed, then the sound is very likely to retain a large part of its harmonic character
and it is no longer the kind of sound that is related to the 7-tet scale. Figure 15.6
suggests the simplest approach: to “simplify” the spectrumby removing the extra
partials.
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Fig. 15.6. Mapping rich harmonic sounds
(such as this spectrum of a guitar pluck) into
the spectrum of a bar can be done by sim-
plifying the spectrum to contain only those
partials nearest the destination. The result-
ing sound has (in this case) a bell-like ring.

For example, sound example [S: 109] plays several harmonic sounds and their
mapped versions under the transformation of Fig. 15.6. Partials 1, 3, 5, and 9 are
mapped using the resampling with identity window (RIW) method of Fig. 13.5, and
the remaining partials are attenuated. Three instruments are demonstrated: three dif-
ferent notes of a bouzouki, three different notes of a harp, and a pan flute. Each
harmonic tone is followed immediately by the 7-tet spectrally mapped tone, and it is
easy to hear the differences. Overall there is some shift of the pitch and the sounds
become simpler and cleaner, more like the strike of a bell than the pluck of a guitar.
The next sections place these sounds in their intended 7-tetmusical context.

15.4.2 A Naive Approach to 7-tet

The seven equidistant tones of the 7-tet scale (which are compared with 12-tet in
Fig. 15.7) lie outside the conventional tonal system. Indeed, with the exception of
the octave, there are no familiar intervals. But as there areseven tones in the diatonic
scale, perhaps 7-tet can be viewed as a regularization of themajor (or minor) scale
in which the alternating whole and half steps are equalized.Essentially this suggests
a naive mapping

diatonic scale: 3 � @ � 2 ? n 3� � � � � � � �
7-tet scale:

� � � � * � H � (15.2)

which equates the seven equal steps of the 7-tet scale to the seven unequal steps of
the diatonic scale.

This idea is explored in several sound examples. The “simpletheme” of [S: 2]
is repeated in [S: 110]; first in 12-tet and then in 7-tet usingthe identification of
notes in (15.2). It is played with harmonic timbres in [S: 110] and with bar timbres
in [S: 111]. Scarlatti’s K380 sonata (which has already beenpresented in a variety of
historical tunings in sound examples [S: 17] through [S: 22]) is performed in 7-tet in
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C         0 cents

C#   100 cents

D     200 cents

D#   300 cents

E     400 cents

F     500 cents

F#   600 cents

G     700 cents

G#   800 cents

A     900 cents

A#  1000 cents

B    1100 cents

C    1200 cents

 0 cents        1

171 cents     2

373 cents     3

514 cents     4

686 cents     5

857 cents     6

1028 cents   7

1200 cents   1

7-tet12-tet Fig. 15.7.The only interval that appears in both 7-tet and
12-tet is the octave. There is no easy way to exploit diatonic
musical intuitions in the 7-tet tuning.

[S: 112]. Both pieces sound flat (in literal and figurative senses) when transformed
into 7-tet. Besides the uneasy out-of-tuneness is the problem of uniformity of dis-
sonance: What begins in 12-tet as structural elements (for instance, the motion from
I-IV-V-I in [S: 110]) is transformed into a series of tonal clusters with no distinguish-
able points of rest. Similarly, the melodic motions in [S: 112] appear aimless in 7-tet
because they no longer end at a sensible place of repose. Whether the 7-tet version of
K380 is played with harmonic timbres (as in [S: 112]) or with spectrally mapped bar
timbres (as in [S: 113]), it regains neither the normality nor the flow of the original.
The idea of equating 7-tet to some subset of 12-tet is probably a mistake.

15.4.3 Composing in 7-tet

A wiser direction is to follow those with experience. Thai traditional music does not
distinguish the functionality of different 7-tet chords, as [S: 110] through [S: 114]
attempt. Rather, it exploits the possibilities of consonance and dissonance in 7-tet by
rhythmic means, by superimposing various melodic lines. Denser lines give greater
dissonance; sparser lines give greater consonance. Of course, this oversimplifies con-
siderably, but it may be useful in the spirit of finding a reasonable rule of thumb.

Sound examples [S: 115] through [S: 118] explore this rule ofthumb for 7-tet
in a variety of ways. Inspired by the idea that there is not a large distinction in the
dissonance of the various 7-tet chords,4 March of the Wheels[S: 115] begins with
a MIDI drum pattern, like the one shown in the piano role notation of Fig. 15.8.
In this representation, time moves along the horizontal axis. Each row represents
a different instrument (in the general MIDI drum definition,for instance, the row
corresponding to3 �

is the bass drum,
� �

is the snare, and� z �
, 3 z � , and

� z �
are various kinds of cymbals). These are labeled. The relevant idea is to exploit the
feature that such MIDI data can represent any kind of sound. In particular, the right-
hand side of Fig. 15.8 shows one possible mapping from the MIDI data into a 7-tet
scale. Thus, the (original) performance of a drum set is replaced event by event with
a 7-tet instrument such as those of [S: 109].%

In 7-tet, all chords are created equal!
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Fig. 15.8.A standard MIDI drum track is shown in piano roll notation. The track need not
trigger drum sounds; the right margin suggests a possible mapping of the MIDI events into the
seven tones of the 7-tet scale.

If an interesting drum track is chosen, then there is a good chance that the result-
ing 7-tet performance will be rhythmically interesting. More variety can be added by
changing the notes. Editing by hand is easy (although tedious), and many MIDI se-
quencers5 have advanced editing capabilities that can manipulate thedata in sophis-
ticated ways. For example, Fig. 15.9 shows a selective randomization of the track
in Fig. 15.8 in which the pitch of each note is randomized by a small amount. This
preserves the register of the notes; the rhythmic pattern ofthe bass drum and snare
becomes a bass line, and the cymbals are randomized within the more active upper
registers. Such formal manipulations are ideal for generating segments or phrases
that can be combined to create larger scale pieces.March of the Wheels[S: 115] is
one such composition. By selective editing, it is easy to create denser and/or sparser
sections that reliably increase or decrease the dissonance. Using cut-and-paste meth-
ods, whole sections can be constructed. By orchestrating with various timbres, repe-
titions can be disguised and differences can be unified. The wheel is repetitive, and
yet has a clear sense of forward motion.

There is no need to begin the compositional process with a percussive track.Pa-
gan’s Revenge[S: 116] starts with a standard MIDI file of one of Niccolò Paganini’s
(1782–1840)Caprices(No. 24 as performed by D. Lovell) from the Classical MIDI
archives [W: 4]. The translation from the original 12-tet file to 7-tet was the same as
in Figs. 15.8 and 15.9: each 12-tet half step is mapped to a step of the 7-tet scale.
Thus, the 7-tet version covers several more octaves than theoriginal because each
fifth (seven half steps) is converted into an octave. Even before editing and orches-
tration, the Caprice is utterly unrecognizable.

The first half of the standard MIDI file worked well in 7-tet. After deleting the
second half, I created “new” material by time-reversing thefirst half. This process,

Such as Cakewalk for PC and Digital Performer for Mac.
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is demonstrated in Fig. 15.10, which takes the first half of the drum sequence in
Fig. 15.8, reverses it in time, and concatenates it to the end. This creates a point of
rhythmic symmetry (the axis of time symmetry in Fig. 15.10).In Pagan’s Revenge,
the point of symmetry occurs midway through the piece at 1:58, forming a kind
of musical palindrome in which the theme proceeds forward and then backward;
eventually ending on the first note. The piece is lavishly orchestrated with a variety
of sounds with spectra derived from both the bar and the harmonic series. Globally,
there is a tension between the frenetic pace and the solemn, near ritual quality and
depth of the timbres.

The technique of polyphonic stratification interlocks melodic lines at different
tempos, usually separated by a factor of two as schematized in (15.1). A modern
technique pioneered by Steve Reich [D: 35] plays a single melodic line simultane-
ously at slightly different tempos. At first, the two lines are in-phase and the attacks
are simultaneous. The faster version soon pulls ahead and anticipates the slower in a
sequence of rapid double attacks. Later, the two break apartinto a galloping rhythm.
At the midpoint, the two are evenly spaced and are perceived as a hocketed melody
moving twice as fast as the original tempo. As time proceeds,the same set of per-
ceptions are repeated (although in reverse order) until they eventually resynchronize.
This is shown schematically in Fig. 15.11, which indicates several regimes of rhyth-
mic perception.

Nothing Broken in Seven[S: 117] applies this phasing idea in the 7-tet setting
by playing the same isorhythmic six note melody throughout.Phase Seven[S: 118]
uses an eight note melody. In both examples, the melody line is played against itself
at five different tempos, two of which are speeded up (by 1% and2%) and two of
which are slowed down (also by 1% and 2%). This creates raw material that repeats
fully only after several days. In order to create more manageable pieces, selected
bits are culled, orchestrated using various 7-tet sounds, and then rejoined. In both
cases, although the original pattern is monotonously simple, the result increases and
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Fig. 15.9.The notes of the standard MIDI drum track in Fig. 15.8 are selectively randomized,
creating more interesting “melodic” and “chordal” patterns.
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Fig. 15.10.The notes of the first half of the standard MIDI drum track in Fig. 15.8 are reversed
in time, creating related but distinct rhythms.

time
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double
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Fig. 15.11.Two rhythms performed at near identical tempos are perceived differently depend-
ing on their relative phase.

decreases in complexity as the melodies phase against themselves. When there are
five phasing lines, a very large number of “different” rhythms are perceptible.

15.5 Summary

The 7-tet tuning of Thai traditional music is related to the sounds of certain Thai
instruments (those with the spectrum of an ideal bar and a harmonic spectrum) in
much the same way that the tuning of the gamelan orchestras ofIndonesia are related
to the spectra of the traditional metallophones. The 7-tet musical universe is rich,
although it is based on different principles than 12-tet. Chords do not have specified
harmonic meanings or functions; rather, clusters of notes create dissonances that are
proportional to the density of the sound. The technique of polyphonic stratification,
in which different instruments perform various levels of rhythmic diminution over a
structural melodic pattern, is the traditional way to create motion from consonance
to dissonance (and back again) in the 7-tet system. But thereare other ways, some of
which are explored and illustrated in the compositions (especially [S: 115] through
[S: 118]) of the previous section.
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Speculation, Correlation, Interpretation, Conclusion

Tuning, Timbre, Spectrum, Scalebegan with a review of
basic psychoacoustic principles and the related notion of
sensory dissonance, introduced the dissonance curve, and
then applied it across a range of disciplines. Most of the book
stays fairly close to “the facts,” without undue speculation.
This final chapter ventures further.

16.1 The Zen of Xentonality

Max Mathews says in an interview in [B: 153]:

It’s clear that inharmonic timbres are one of the richest sources of new
sounds. At the same time they are a veritable jungle of possibilities so that
some order has to be brought out of this rich chaos before it isto be musi-
cally useful.

The organizing principle of this book, the relatedness of spectra and scales expressed
in dissonance curves, brings order to this rich chaos by giving the composer con-
trol over the amount of sensory consonance or dissonance in apassage. By playing
sounds in their related scales, it is possible to realize theentire range from unusual
consonances to startling dissonances.

Risset [B: 149] comments:

the interaction of the components of two (or more) such [inharmonic] tones
can give rise to privileged “consonant” intervals that are not the octave and
fifth... an intriguing relation exists between the inner structure of inharmonic
sounds–which can be arbitrarily composed–and the melodic and harmonic
relation between such sounds.

Dissonance curves give concrete form to this “intriguing relation.” The spectrum/scale
connection provides the same kind of xentonal framework forinharmonic sounds
that tonality provides for harmonic sounds. These xentonalsystems vary immensely.
Some have few partials, few scale steps, and a simple music theory. Others have
complex sounds and amazingly complex internal structures.

Although timbres with harmonic spectra are only one kind of sound, they thor-
oughly dominate the Western musical idiom. Modern electronic musical instruments
are now capable of playing inharmonic sounds, and many include some form of tun-
ing table that allows the user to specify the pitch of the noteplayed by each key. This



306 16 Speculation, Correlation, Interpretation, Conclusion

makes it easy for the musician or composer to retune in any desired way.1 It is now
possible to play “any possible sound in any possible tuning.”2

When working in an unfamiliar system, the composer cannot rely on musical
intuition developed in the context of 12-tet. In 10-tet, forinstance, there are no inter-
vals near the familiar fifths or thirds, and it is not obvious what intervals and chords
make musical sense. The deepest minima of the dissonance curve (or the dissonance
surface) suggest intervals and chords, many of which can be used fruitfully in com-
positions.

Dissonance curves suggest that the formation of scales and the web of harmony
is a collaboration between artistic invention and the timbre (or spectrum) of musical
sounds. As the palette of accessible tones expands, the attractiveness of alternative
musical scales and tunings increases. Most likely, they will slowly seep into public
awareness along with the new timbral palettes afforded by computers, audio signal
processing devices, and electronic musical instruments. Composers and musicians
will slowly become more adept at moving between xentonal systems, just as they
became more adept at modulation through keys when equal temperament first ap-
peared.

Adaptive tunings constantly adjust the pitches of notes to minimize sensory dis-
sonance, freeing music from any fixed scale: tonics wander, chords slither up and
down, intervals compress and stretch in a patterned and fascinating way. No doubt
there is an undiscovered art to composing with adaptive tunings just as there is an art
to composing fugues or canons. As with many of the kinds of manipulations of spec-
trum and tunings in this book, this technology could be readily built into electronic
keyboards, making the annoying calculations transparent to the musician.

16.2 Coevolution of Tunings and Instruments

The harmonic series is related to the just scales; the familiar 12-tet system can be
viewed as a practical approximation to these just scales. Similarly, the spectrum of a
Javanese bonang in combination with a harmonic tone generates a dissonance curve
with minima near the steps of an idealized slendro scale. Pelog scales can be viewed
as a result of the spectrum of a saron in combination with a harmonic sound. The 7-tet
scale of Thai classical music can be derived by combining thespectrum of an ideal
bar (an approximation to the spectrum of the renat) with a harmonic sound, as shown
in Chap. 15. In each case,the scales are related to the spectra of the instruments used
by the culture.

This leads to a musical chicken-and-egg paradox. Which camefirst, the tuning
or the instruments?

In biology, the process by which two interdependent speciescontinuously adapt
to changes in each other is calledcoevolution. For example, suppose that in order
to more effectively catch flies, a species of frog evolves sticky tongues. Then, in�

For a practical introduction to synthesizer retuning, see Aiken [B: 3].#
From the liner notes of Carlos’Beauty in the Beast[D: 5].
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order to avoid sticky tongues, a species of flies evolve slippery feet. The spectra of
instruments and their tunings may have similarly coevolved. It is easy to imagine a
scenario in which the spectrum of a sound influences the tuning of an instrument,
which impacts the design of newer instruments, which in turneffects the tuning of
the ensemble.

As any group of instruments that are played together must be tuned in some
coherent way, once a tuning is established, only compatiblenew instruments are
viable. The Western method of pitch standardization is one possible approach, and
the Javanese method of tuning each gamelan ensemble as a distinct musical unit3 is
another. Perhaps this explains why the gamelan tradition has survived and thrived
while other equally vibrant forms of music have been absorbed or co-opted. Because
gamelan scales and timbres are so different from those of theWest, they cannot be
effectively combined in the same ensemble.

Perlman [B: 131] calls the belief that there is a natural, biological, or physical
reason underlying the use of certain intervals and scales “intonational naturalism,”
and traces it though history:

The seventeenth century scientist Christian Huygens conjectured that, since
“the Laws of [Western] Musick are unchangeably fix’d by Nature,” they
should hold not only for the entire earth, but for the inhabitants of other
planets as well.

Almost 300 years later, Bernstein [B: 14] echoes this, claiming that the laws of music
apply not only pangalactically, but pantemporally as well:

All music–whether folk, pop, symphonic, modal, tonal, atonal,polytonal,
microtonal, well-tempered or ill-tempered, music from thedistant past or
imminent future–all of it has a common origin in the universal phenomenon
of the harmonic series.

As we have seen, the harmonic series is by no means “universal.” Harmonic sounds
are only one kind of common sound; there are as many kinds of sounds as there are
distinct kinds of vibrating objects. Musical systems have been built on many of these,
and many others are undoubtedly possible.

The counter claim to intonationalnaturalism, that intervals and scales are purely a
cultural construct, might be called “intonational relativism.” After demonstrating the
foolishness of discussing the gamelan in terms of just intonation and the harmonic
series, Perlman [B: 131] examines the Javanese concept ofembat, which refers to
“any particular realization of a tuning system,” although it can also refer to the into-
national preferences and practices of individuals. Perlman summarizes:

embat is a matter of feeling (rasa), not number; its source is the human
voice, not necessary laws of nature; and it is individual,

echoing the beliefs of gamelan tuners who consider intonation to be a matter “of the
heart.”4$

Gamelan instruments are not used separately, and the ensembles are not “mix-and-match.”%
Recall Purwardjito’s comments on p. 206.
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The naturalist vs. relativist debate in intonation resembles the “nature vs. nurture”
controversy. The naturalist view claims that there is a physical, biological, acoustical,
or psychoacoustical explanation for intervals and scales,whereas the relativist view
denies that such an explanation exists. The analysis inTuning, Timbre, Spectrum,
Scaledoes not fit neatly into this classification, because it is neither fully naturalist
nor fully relativist. To the extent that (sine wave) dissonance curves are universal
across cultures, and to the extent that music exploits the contrast between sensory
consonance and dissonance, the analysis is naturalistic. To the extent that particular
instruments and tunings have coevolved along distinct paths in different cultures, it
is relativistic.

Throughout history, many Eurocentric writers have described the music of other
cultures as slowly evolving toward the “higher” Western forms, which are suppos-
edly based on immutable laws of nature and the harmonic series. The fact that related
spectra and scales apply cross culturally belies this, because the traditional musi-
cal instruments and scales of Indonesia and Thailand can be described in terms of
the same “underlying laws” as Western instruments and scales. In fact, because the
Asian forms use two spectra (rather than a single one as in theWestern tradition),
it is tempting to reverse the direction of the evolutionary arrow. As Western music
evolves to include more than one “kind” of sound, it may well take on more of the
characteristics of the Asian traditions.

16.3 To Boldly Listen

Are there limits to the kinds of sounds humans can appreciateas music?
There are obvious limits to perception. A “piece of music” that is never louder

thang � � �
dB is inaudible.5 The same piece played at� � �

dB is not perceived as mu-
sic, but as pain. A melody that always stays within a single JND of pitch is heard as a
single tone. A symphony performed exclusively at megahertzfrequencies is indistin-
guishable from silence. But assuming that such perceptual limits are not exceeded,
are there limits to the human ability to appreciate sounds asmusic? Are there limits
to possible musical styles?

The amazing diversity of musical cultures and styles to be found throughout the
world shows that any such limits are very broad. The history of musical styles sug-
gests constantly changing sensibilities of rhythmic, melodic, harmonic, tonal, and
timbral materials, and it seems undeniable that there are musical styles, undreamed
of today, that will develop in the future.

The only truly universal aspects of music are those based on biological or per-
ceptual facts. By understanding the human auditory system,it should be possible
to differentiate those aspects of music inherent in our nature from those that are
learned. There are clear cultural biases toward certain kinds of sounds, certain kinds
of rhythmic patterns, particular kinds of scales, but any true limits to appreciation
must transcend cultural differences.,

Although John Cage did not perceive this as a limitation.
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A simple analogy may help bring this into perspective. The “ear” (the ear canal,
eardrum, oval window, basilar membrane, etc.) is like “hardware” that is relatively
invariant from person to person and culture to culture. The “brain” (higher levels
of auditory processing) is like programmable “software” that implements cultural
conditioning. Those aspects dictated by the hardware are universal, whereas the soft-
ware is rewritten with each new person in each new generationin each new culture.
Thus, aspects of musical style that violate my software are unacceptable to me, but
they may well be acceptable to someone from another time, place, or with a different
background. On the other hand, aspects that violate the hardware are unacceptable
to everyone.

In reviewing the sound examples presented here, there are two kinds of passages
that may approach limits: those where the partials will not fuse together, and those
where the spectrum is sufficiently mismatched from the tuning.

In the first, the notes have lost their perceptual integrity,each being perceived as
two or more separate sounds. “Notes” have become “chords.” Some compositions6

in modern music have begun to exploit the boundary where notes fission and tonal
clusters fuse, and it may be possible to learn to appreciate unfused sound masses,
although they are not currently used in any common musical style.

In Plastic City(audio track [S: 38]), the same theme is played in 2.0, 2.2, 1.9,
and 2.1 stretched and compressed tunings, each with relatedtimbres. Although it is
difficult for me to listen to the piece with naive ears, many people feel that 2.2 is
stretched too far, and that 1.9 is compressed too much. Aftertaking such torturous
excursions, many first-time listeners hear the 2.1 stretched section and comment,
“now we’re back to normal, right?” although of course 2.1 stretched is far from
“normal.” After repeated exposure, however, the 2.2 and 1.9sections become less
strange, more capable of supporting perceptions analogousto chordal motion, yet
each retains its own timbral character.

While recording these sections, a process that requires many listenings, I “heard”
the passages as more tonally coherent than I typically do now. Moreover, I have
learned to switch between perceptual modes (where I hear thepiece as either a sound
mass or as notes in a chord), although I have no way of knowing if either of these
corresponds to a naive listener’s perceptions. This arguesagainst (lack of) fusion
being a true limit to appreciation. In a musical culture thatused various stretched
timbres and tunings, members might develop such a switchingstrategy as part of
normal listening. That I was able to overcome this aspect of my musical conditioning
suggests that certain aspects of the fusion mechanism are part of the software of the
brain.

The second candidate for a limit to appreciation is the mismatch between tuning
and spectrum. In audio tracks [S: 2] to [S: 5], the same brief passage is played in
standard and stretched 2.1 tunings, each with both standardand stretched timbres.
When matched (i.e., 2.0 timbres with 2.0 tunings or 2.1 timbres with 2.1 tunings), the
passage is inoffensive, if somewhat bland. The two mismatched segments, however,
are more strident than inoffensive, more irritating than bland. Most likely this is-

For instance, [D: 36] and [D: 8].
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because they are uniformly dissonant. The driving force behind many styles of music
is the motion from consonance to dissonance and back again. In the mismatched
versions, no such motion occurs, and so the piece appears static.

Similarly, the 10-tet pieceTen Fingersis a fine, if somewhat unusual sound-
ing piece when played with related timbres. Most first-time listeners (in the United
States) feel that it must be foreign, maybe “Indian.” But when played with standard
harmonic sounds, it takes on an out-of-tune character, which is more properly called
out-of-spectrum. Even after numerous performances and listenings, it still sounds
out-of-kilter, suggesting that the perceptual mechanism responsible for the essen-
tial wrongness of the mismatched tuning and spectra (i.e., sensory consonance and
dissonance) is at least partially in the hardware of the brain.7

Whatever part of such perceptions that are in the hardware ofthe ear may provide
limits to the human ability to appreciate sound passages, pointing toward aesthetic
principles that may be directly correlated with a perceptual mechanism.

16.4 New Musical Instruments?

Tuning, Timbre, Spectrum, Scalehas shown how several kinds of instruments in sev-
eral different cultures follow a simple pattern; The instruments play pitches that cor-
respond to minima of an appropriate dissonance curve. When designing and tuning
new kinds of musical instruments, it may be advantageous to exploit this idea.

In the simplest case, the instrument will sound with a particular spectrum. The
dissonance curve of this spectrum will have certain minima,and the instrument can
be tuned to play these pitches. An orchestra of such instruments will then be able to
play as consonantly as possible. If there are large intervals in the dissonance curve
with no minima, then it may be advantageous to augment the scale with some inter-
mediate pitches so that melodies can be more cogent.

A slightly more complex scenario is when a new instrument (i.e., one with a
“new” spectrum) is to be added to an existing orchestra. In this case, the dissonance
curve can be drawn for the two spectra. The new instrument canbe tuned to the
appropriate minima, but the old instruments may also need tobe adjusted for com-
patibility. This is the coevolutionary process in action.

The inverse problem is trickier. Given a desired spectrum, how can acoustic in-
struments be designed (or redesigned) so as to have that spectrum?

Strings:Uniform strings have harmonic partials as in a guitar or a piano.
However, if the contour of the string is changed, or if the density of the
string is not uniform, or if the string is weighted at strategic points, then
the partials can deviate significantly from harmonicity. Devising a method
for readily specifying the kinds of physical manipulationsthat correspond
to useful spectral deviations is an important first step..

Indeed, recall that the binaural presentation of the original dissonance curve (audio track
[S: 12]) can also be interpreted this way.
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Air Columns:Instruments with a uniform air column make harmonic sounds
and play in scales that are essentially overtones of a singlefundamental
(such as the unfingered scale of a cornet). When the column deviates from
uniformity (for example, varying widths or flares or the addition of small air
chambers), then the scale will change, but the spectrum remains primarily
harmonic. On the other hand, many wind instruments like the saxophone
can be played inharmonically using extended techniques such as multiphon-
ics. How to (re)design such an instrument to encourage particular kinds of
multiphonics is not obvious. Finding patterned ways to relate physical and
spectral changes is an important area for the design of such inharmonic in-
struments.

Bars and Beams:Whether the bars are fixed at an end, or whether they are
free to vibrate at both, bars and beams already have inharmonic partials.
The exact placement of these partials is an interesting issue. Answers are
available for only a handful of simple geometries.

Others:There are many kinds of oscillators and many kinds of resonators
that can be used to create audible vibrations. Finding shapes and topologies
that will generate a specific spectrum is no trivial task.

In some cases, modal frequencies can be determined from firstprinciples. Perturba-
tion methods can sometimes be applied. Finite element methods can almost always
be applied, but they are not generalizable, because solvingone problem does not
usually give any insight into the solution of related problems. In short, the design of
fine musical instruments is no easier now than it was in ancient times.

16.5 Silence Hath No Beats

Consonance and dissonance are only part of the musical landscape. Even in the realm
of harmony (and ignoring musically essential aspects such as melody and rhythm),
sensory consonance and dissonance do not tell the whole story. Indeed, progressions
that are uniformly consonant tend to be uniformly dull. The distinction between sen-
sory and functional consonance and dissonance is not insignificant. Although they
often coincide (the minima of dissonance curves for harmonic timbres agrees with
just scales, the dissonance score for the Scarlatti sonata correlates reasonably well
with more standard analyses), they often do not. For instance, the functional con-
sonance of a silent phrase is not meaningfully defined; yet silence has the greatest
sensory consonance. Such extreme cases highlight limitations of the model.

Any model is based on abstractions that limit the scope of itsconclusions. When
relating an imprecise understanding of the human organism to a complex cultural ac-
tivity, when relating an imperfect understanding of the auditory system to the com-
plex behavior called music, limitations are manifest. Evenat the simplest levels,
much is unknown. For instance, when dealing with inharmonicsounds, the partials
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may fuse into one perceptual entity, or they may fission into many. Understanding
this perceptual dichotomy is not trivial, and our ignoranceis not for lack of effort. It
underscores the gross nature of the additivity assumption in dissonance calculations;
by clustering sounds differently, it is possible to change their apparent dissonance.
Unfortunately, quantification of this phenomenon is well beyond the current state of
psychoacoustic knowledge.

The model used throughoutTuning, Timbre, Spectrum, Scaleuses linear combi-
nations of the psychoacoustic data of Plomp and Levelt [B: 141]. Refinements such
as the inclusion of masking effects or of amplitude effects8 would enhance the model.
In any case, the conclusions of the model (dissonance curves, surfaces, and scores)
are qualitative rather than quantitative. It would be a mistake to place too much trust
in small details and little dips in the curves: Only the majorfeatures that are readily
audible need be taken seriously.

16.6 Coda

In retrospect, a connection between the way musical instruments sound and the way
they are tuned seems obvious. Almost 100 years ago, Helmholtz recognized the con-
nection between harmonic sounds and the just intervals of the diatonic scale. Because
most Western instruments have primarily harmonic partials, theorists and composers
tended to limit their theorizing and composing to musical structures based on this
one “kind” of sound. But there are many “kinds” of sounds.

It was not until the advent of electronic musical instruments that it became easy
to create a variety of inharmonic sounds and to play them in a variety of scales
and tunings. One conclusion is inescapable: Certain scalessound good with some
timbres and not with others, and certain timbres sound good in some scales and
not in others.Tuning, Timbre, Spectrum, Scaleproposes a way to understand this
relationship: to interpret “timbre” as “spectrum,” and to interpret “sounds good” in
terms of a measure of “sensory consonance.” In this framework, dissonance curves
codify those intervals that have the greatest (sensory) consonanceas a function of the
spectrum of the sound. It is now possible to systematically choose a tuning related to
a given sound, or to choose a sound that is related to a given tuning. In both cases, the
intervals arein-tuneandin-spectrum. Compositions in nonstandard scales can easily
enjoy contrasts in consonance and dissonance by proper sculpting of the spectra.
Nonstandard sounds can be played consonantly or dissonantly by proper choice of
interval.

Many nonwestern musical cultures use inharmonic instruments. In at least two
cases (the Indonesian gamelan and the percussion orchestras of Thailand), the same
kind of reasoning that relates harmonic sounds to just intonations can be used to
relate the tone quality of the instruments to the nonwesternscales. Thus, the sensory
dissonance approach enjoys a cultural independence that israre in musical theories.

/
For instance, the Fletcher–Munson curves.



Appendices

The appendices contain information that does not fit well
within the normal flow of the text.

A. Mathematics of Beats: trigonometric formulas describe how beats occur physi-
cally, in contrast to how they are perceived.

B. Ratios Make Cents: formulas (and computer programs) describe how to convert
between two of the most common kinds of representations of musical intervals.

C. Speaking of Spectra: subtleties in the calculation of spectra and application of
the FFT (Fast Fourier Transform program).

D. Additive Synthesis: a brief overview (andMatlab program.)
E. How to Draw Dissonance Curves: a theoretical presentation of how to parame-

terize dissonance curves and a description ofMatlab programs that carry out
the needed calculations.

F. Properties of Dissonance Curves: formal statements and demonstrations of the
various results from Chap. 7 “Related Spectra and Scales.”

G. Analysis of the time-domain sensory dissonance model of Sect. 3.6.
H. Behavior of Adaptation: details on the results presentedin Chap. 8.
I. Symbolic Properties of

�
-Tables: a method of solving the timbre selection prob-

lem, of finding a related timbre for a given tuning.
J. Harmonic Entropy: a measure of harmonicity.

K. Lyrics to Fourier’s Song.
L. Tables of Scales: details several historical and gamelantunings.
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Mathematics of Beats

A basic trigonometric identity relates the sum of two sine waves to the product of a
sine and cosine: Å Æ Ç �  � " Å Æ Ç � e � � � � � Å �  g e� � Å Æ Ç �  " e� � � (A.1)

Suppose that two sine waves of the same frequency have a constant phase differ-
ence! . Then the above identity implies that the sum of the two wavesis expressible
as Å Æ Ç �  a � " Å Æ Ç �  a " ! � � � � � Å � !� � Å Æ Ç �  a " !� � 	 (A.2)

which is a sine wave of frequency , amplitude� � � Å � "� �
, and phase
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near

�
, the waves are in phase and the interference isconstructive, because the am-

plitude of the sum is near its maximum at� � Å � � � � �
. As ! increases, the amplitude

decreases until at! � #
, the amplitude has shrunk to zero. This is calleddestructive

interference.
When the frequencies differ by an amount

æ  , their sum isÅ Æ Ç �  a � " Å Æ Ç � �  " æ  � a � � � � � Å � æ  � a � Å Æ Ç � �  " æ  � � a � � (A.3)

When
æ  is small, the cosine term is slowly varying compared with thesine term,

and the resulting signal can be viewed as a sine of frequency " $ %� with a slowly
varying envelope of frequency

æ  .
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Ratios Make Cents

This appendix presents formulas for conversion between
ratios and cents.Matlab functions are available on the CD
to carry out the calculations.

Cents were first introduced by Ellis (see his annotations to Helmholtz’sOn the Sen-
sations of Tone) as a way of simplifying comparisons between various scalesand
temperaments. As perceptions of musical pitch are approximately proportional to the
logarithm of the frequency (rather than the frequency itself), it is sensible to use a
log-based measuring system. Ellis chose to define the octaveas equal to 1200 cents,1

and so it is necessary to scale by a factor of
� � � �� � � � � � when converting to cents.

ratio
� © � _ © � � © �

log ratio
� � � � � _ � � � � � � �

cents
� & � � � �� � � � � � ' � � � � _ � � � � �

Said more simply, a cent is 1/100 of a semitone, and there are 100 cents in a semitone
and 1200 cents in an octave.2

There are two reasons to prefer cents to ratios: Where cents are added, ratios are
multiplied; and it is always obvious which of two intervals is larger when both are
expressed in cents. For instance, an interval of a just fifth,followed by a just third
is (3/2) (5/4) = 15/8, a just seventh. In cents, this is 702+386=1088. Is this larger or
smaller than the Pythagorean seventh 243/128? Knowing thatthe latter is 1110 cents
makes the comparison obvious.

Because ratios and cents ultimately contain the same information, it is possible
to convert from one to the other. Given a ratio_ , the number of cents is� � Y � � � �� � � � � � � � Z � � � � � � _ � X � + � � � � � � � � � � � � _ � 	
where

� � � � �
is the logarithm3 base 10.�

Others have chosen different conventions. For instance, 1000 steps per octave gives the
“millioctave” system.#
In other words, one cent is equal to an interval of

} ~ ° °� ' ¿ ) ( � � � = > > > : to 1.$
Any logarithm base can be used. For instance, with the natural log (often abbreviated “ln”),
the formula becomes« u � # 1 1( ) Û # Ý * + r � s ¿ ) > 7 ) ( ' 7 9 * + r � s .
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To convert from cents back into ratios, let
�

be the number of cents. Then the
ratio _ is4 _ � � � , - . / 0 } ° 1 ~ 2} ~ ° ° 3 X � � � ® � � � � V � T W � �

These formulas are the heart of the twoMatlab functionscent2rat.m 5 and
rat2cent.m ,6 which can be found on the CD in thesoftware folder. As sug-
gested by their names, these convert from ratios to cents andback again. Both are
general enough to accept a vector of inputs. For instance, tofind the cent equivalent
of the JI major scale, enter the desired ratios as a vector4 � 
 ç 	 5 6 6 	 é 6 è 	 è 6 í 	 í 6 ì 	 é 6 í 	 ç é 6 6 	 ì � 	
and then call the routinerat2cent by c=rat2cent(r) . The program should
reply 7 � 
 ê 	 ì ê í � 5 	 í 6 ï � í 	 è 5 6 	 î ê ì 	 6 6 è � è 	 ç ê 6 6 � í 	 ç ì ê ê � �
As the two functions are inverses, enteringr=cent2rat(c) gives back the JI
major scale, although in decimal form.

%
Using natural logs, this is� ¿ 8 1 9 1 1 1 , . . - # $ :

.,
TheMatlab functioncent2rat.m converts from cents into (the decimal equivalent of)
ratios:

function ratio=cent2rat(cents)
ratio=10.ˆ((log10(2)/1200)*cents);-

TheMatlab functionrat2cent.m converts from ratios into cents:

function cents=rat2cent(ratio)
cents=1200/log10(2)*log10(ratio);
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Speaking of Spectra

Beware thy methods of musical analysis. Their power to blind
is proportional to their power to enlighten. –B. McLarenin
Tuning Digest 120.

In the early part of the nineteenth Century, Jean Baptiste Joseph Fourier showed how
any periodic signal (for instance, a sound with a steady tone) can be decomposed into
(and rebuilt from)1 a sum of sine wave partials. Such a decomposition is called the
spectrumof the sound, and it is usually graphed with the frequency of each sine wave
partial on one axis and the magnitude on the other. Although this is useful in many
fields, it is particularly appropriate to analyze sounds in this way because the ear acts
as a kind of “biological” spectrum analyzer.2 When listening “analytically,” so as to
“hear out” the partials of a sound,3 the ear carries out a similar decomposition, and
the tonal quality of the sound can often be correlated with measurable features of the
spectrum.

This is not the place for a technical discussion4 of the mathematics of spectra,
of Fourier transforms, nor of the details of how they are calculated using the FFT.5

Rather, this appendix supposes the availability of a software routine or command
to calculate the FFT and discusses the tradeoffs and compromises that are inherent
when evaluating the spectrum of a sound. In other words, the focus is on how to use
and interpret the FFT, rather than on worrying about how it works or the underlying
mathematics.

A digitized sound is a string of real numbers (orsamples) that represent the am-
plitude of the sound at each instant. Suppose that one periodof a waveform contains� samples. The spectrum is found by applying the FFT, and the output of the FFT�

Appendix D details how to implement this rebuilding procedure.#
Different portions of the basilar membrane respond to different frequencies. Recall Fig. 2.4
on p. 16.$
Recall the discussion of analytic vs. holistic listening onp. 24.%
There are already many books in the engineering literature such as [B: 60] that do this quite
well. TheElements of Computer Musicby Moore [B: 117] has an extensive discussion of
FFTs from a musical perspective and includes program listings in the C language. TheDig-
ital Signal Processing Primerof Steiglitz [B: 182] is less complete but equally compelling.,
The “Fast Fourier Transform” is the name of an efficient algorithm or computer program
that carries out the necessary calculations to find the spectrum. Chapter 7 of [B: 76] has a
comprehensive set of worked out examples andMatlab routines for spectral analysis.
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is a string of� complex numbers that are usually written as a magnitude and a
phase.6 The magnitude spectrum is important to the ear because it specifies the size
of the sine wave partials of the sound. The phase spectrum is relatively unimportant
in many applications because it is often impossible to hear the difference between
two sounds that have the same magnitude spectrum, even if thephase spectra differ.

The FFT has two remarkable properties. First, it is invertible. This means that it is
possible to calculate the spectrum from the waveform, or to calculate the waveform
from the spectrum.7 Said another way, the waveform and the spectrum contain the
same information. Certain aspects of the sound are more clearly viewed in one form
or the other. For instance, the envelope of the sound is clearer from the waveform,
whereas the partials are clearer from the spectrum.

Second, the FFT is linear, implying that the FFT of the sum of two signals is the
same as the sum of the FFT of the two signals separately. In symbols,� � £ � � " f � � � � £ � � � " � � £ � f � 	
where� and f are two signals. More generally, if a sound consists of a number of
partials, then the FFT of the complete sound is equal to the sums of the FFTs of all
partials. Thus, many of the subtleties of using and understanding the FFT occur even
in the simplest setting when taking the FFT of a single sine wave.

C.1 Spectrum of a Sine Wave

When there is only a single partial in the sound, then the spectrum contains only this
one partial. In an ideal setting, the spectrum of a pure sine wave is zero everywhere
except at the frequency of the sine wave. But the actual FFT ofa real sine wave is not
exactly zero, and there are two different kinds of errors, roundoff (numerical) errors
and artifacts (“edge effects”), that cause the representation of a sine wave to “leak”
or “smear out” to other frequencies. Figure C.1 shows a portion of a sine wave in
part (a) and its spectrum, as calculated by the FFT8 in part (b). The frequency of the
wave is given by the location of the peak in (b), and the balance of the spectrum, with
magnitude about

� � � � V
, is due to numerical roundoff errors in the computations.-

The magnitude vector is symmetric about the midpoint, and the phase is antisymmetric
about the midpoint. Thus, half of each vector is redundant and is typically discarded..
This latter operation is often called the Inverse FFT, and itis abbreviatedIFFT./
TheMatlab code used to generate (a) and (b) is:

c=(2*pi)/128; % c defines the frequency of the sine wave.
wave=sin(c*(0:1023)); % the sine wave is 1024 samples long.
plot(wave) % generates the plot in part (a).
magspec=abs(fft(wave)); % ‘‘FFT’’ returns the FFT in compl ex form.

% ‘‘abs’’ takes the magnitude of the FFT.
semilogy(magspec(1:50)) % plots (b) with logarithmic vert ical axis.
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Fig. C.1. Figures (b) and
(d) show the spectra of the
sinusoidal segments in (a)
and (c). Observe the wildly
different scales of the two
spectra; (b) is very close to
zero except at the frequency
of the sine wave, whereas
(d) never sinks below 10. (e)
shows several copies of (c)
pasted together.

Contrast this with the sine wave shown in part (c) and its spectrum9 in (d). The
peak defining the frequency of the wave is again clearly visible, but the remainder of
the spectrum only falls below 10 at high frequencies.

The sine waves (a) and (c) differ only slightly in frequency.What causes the dra-
matic difference in their spectra? As mentioned before, theFFT always assumes that
the � samples represent exactly one period of a periodic waveform. Concatenating
several copies of (a) does indeed give a longer sine wave. Butconcatenating several
copies of (c) gives the waveform shown in (e), which is not at all sinusoidal. Thus,
the spectrum (d) really shows how to decompose one period of the (nonsinusoidal)
signal (e) into sine waves. It is unlikely that this is what was really intended when
thinking of the frequency content of (c). Thus, there is a complex interplay between
the periodicity of the waveform and the length of the FFT.

Given this, it might seem like a good idea to choose the lengthof the FFT to
match the period of the partials. Unfortunately, this is almost never possible when
analyzing real sounds, because choosing this length requires knowing the frequencies
of the partials, and finding these frequencies is the reason for taking the FFT in the
first place.

Think of it another way. The problem (the large magnitude at frequencies dif-
ferent from the “obvious” frequency of the sine wave) occursbecause the “ends” do
not line up; abrupt changes in the waveform cause the spectrum to smear. One way
to force the ends to line up is to preprocess the data so that itdies away to zero at
both ends. Then, no matter what the underlying periodicity,there will be no abrupt
changes in the waveshape.

One popular approach is to use aHammingwindow,10 which is shown in part (a)
of Fig. C.2. Multiplying this window point by point times part (b) (which is the same0

Parts (c) and (d) were generated by identical code, except that the parameter c was changed
slightly so that an integer number of periods do not fit into the sample length.� 1
Named after Richard Hamming, this is a single cycle of a scaled and shifted cosine wave.
The formula is´ r � s u � ( = 9 � � ( 9 ; ; < = r ' > � 8 r ? � ) s s for � @ � � ? . The Hamming
window has been enshrined in aMatlab function called “hamming,” but is only one of
many possible windowing functions. Steiglitz [B: 182] and Moore [B: 117] discuss several
alternatives, each with their own properties.
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waveform as in Fig. C.1(c)) gives the windowed version in part (c). The spectrum of
(c) is shown in (d).
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Fig. C.2. A hamming window (a)
is multiplied point by point times a
segment of a sinusoid (b), resulting
in (c). The spectrum, shown in (d),
has significantly lower sidelobes than
in the unwindowed version, although
the peak is somewhat wider.

Compare the spectrum of this windowed version with the spectrum of the unwin-
dowed version in Fig. C.1(d). In both, the frequency of the sinusoid is given by the
location of the peak. The windowed version has attenuated the smearing by a factor
of almost 10, although the peak is about twice as wide. This isfairly typical of the
windowing process.

When should a window be used? Windowing is unnecessary when dealing with
a short isolated sound whose start and end are known. In a typical musical synthe-
sizer or sampler, each sound has a well-defined start (attack) and a definite steady-
state looped portion. As the loop is periodic, it is an ideal place to apply the FFT
without windowing.11 In many other circumstances, when a continuously changing
signal is analyzed, windows are used to reduce end effects.12 Figure C.3 shows this
schematically. A series of offset windows in (a) are multiplied point by point times
the waveform (b), giving the smaller segments (c). The segments can then be readily
analyzed, giving spectral “snapshots” of the evolution of the partials of the sound.

...

...

x

=
...

...

(a)

(b)

(c)

Fig. C.3. Overlapping windows ap-
plied to a continuos waveform give
smaller segments that can be ana-
lyzed easily.

End effects are a consequence of the fact that Fourier’s theorem (and hence all
techniques based on the Fourier transform) apply only to periodic signals. To calcu-� �

The innards of a typical musical synthesizer are discussed on p. 30.� #
Although it is true that windows help to reduce artifacts, itis worth remembering that this
is, in effect, lying about the data.
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late the FFT of a “real” signal requires “pretending” that itis periodic with period
equal to the length of the sample. Although this can often be done without gross
distortion, careful choice of sample lengths and windowingtechniques are needed to
reduce the likelihood of misleading results.

C.2 Steady State Analysis

You somehow shake a waveform, and the partials come tumblingout.13

Consider a spectral analysis of the sound of a vibrating string that has a fundamental
pitch of 100 Hz, approximately the

2
an octave below middle3 . Assume the stan-

dard CD sampling rate of 44.1K samples per second, and that the sound of the string
lasts about three seconds. This gives about 128K samples, and it is impractical to
calculate an FFT of this length. The data should be broken up into chunks that can
be analyzed separately. For example, 32K chunks representing 3/4 second of sound
are reasonable.14

First, consider the simple case when the sample is very closeto periodic, as
occurs during the sustained steady-state portion of the sound. Because strings vibrate
harmonically, there would ideally be a peak at 100 Hz, another at 200 Hz, another
at 300 Hz, and so on, each with an appropriate amplitude. But the output of the
FFT program does not look like this, not exactly. The FFT algorithm outputs a 32K
magnitude vector and a 32K phase vector. As only half of each vector is meaningful,
the remainder is discarded.

Each element in the (nonredundant) 16K magnitude vector represents the mag-
nitude of a sine wave at some frequency. In this case, the firstnumber represents the
magnitude of the DC (zero frequency, or bias term). The second element represents
the magnitude of the sine wave at

sample rate
sample length

� � � � � �� � H � � � � � � � �
Hz.

The next number is the magnitude of the sine wave at frequency2.69 Hz. Thus,
the output of the FFT cannot represent the sine wave at 100 Hz exactly, because
there is no slot in this representation for 100 Hz. In fact, the 74th bin represents
99.59 Hz and the 75th slot represents 100.94 Hz, so the energythat should be at
100 Hz is spread out near the 74th and 75th slots. Similarly, none of the other “real”
frequencies are exactly represented. This quantization offrequency is a direct result
of the assumption that the signal is periodic, that it repeats every 32K. Of course, this
is just a convenient fiction, because the signal from the string continues to die away
for more than 128K samples.

Thus, there are two notions of “period,” and this can be a source of confusion.
First is the notion of the period of the fundamental and its harmonics. As the funda-
mental of the string is 100 Hz, there will also typically be string vibrations at 200 Hz,� $

Paraphrased from Marion M. inTuning Digest 314.� %
For sounds that change more rapidly, smaller chunks should be used.
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300 Hz, 400 Hz, 500 Hz, and so on. The second notion of “period”that enters into
the FFT analysis is that all frequencies of the analyzed signal appear to be multiples
of 1.346 Hz, which is a direct result of the choice of a 32K FFT.Had the analysis
used 8K FFTs, everything would have been a multiple of 5.38 Hz, and the representa-
tion of the 100 Hz fundamental would have been even worse. Thus, the resolution of
the spectral analysis is directly proportional to the “width” of frequency bins, which
determines how accurately the sine wave components can be represented. This is
similar to the “smearing” observed when analyzing single sine waves in the previous
section.

These two ideas of period suggest two interpretations of thespectral analysis.
One is literally correct (but useless), and the other is an approximation (that is often
useful). A literal interpretation of this FFT data suggeststhat the fundamental of the
string is vibrating at 1.346 Hz, and that the 74th, 75th, 148th, 149th (and so on)
harmonics are large. While literally true, this is not a particularly useful way to think
of the vibrating string. Observe that using an 8K FFT, the same signal would be
interpreted as a fundamental at 5.38 Hz along with some largeharmonics: the 18th,
19th, 37th, 38th, and so on. Clearly, a true interpretation of the strings motion should
not depend on the size of the FFT used in the analysis.

A better interpretation of the string data is as a fundamental between 99.59 Hz
and 100.96 Hz, with a second partial near 200 Hz, and so on. Butthis does require
that a judgment be made, because the location of the peaks must be determined. Al-
though the peaks are obvious in some situations, in others there is ambiguity between
peaks caused by the instrument (the string) and those due to noises, disturbances, and
artifacts. A later section discusses an algorithm for automatic peak detection.

C.3 Analysis of the Attack

The previous section showed that Fourier analysis of a nearly periodic sound (such as
the steady-state portion of the string vibrations) is feasible. Learning about the attack
portion of a sound using Fourier analysis is trickier due to akind of auditory uncer-
tainty principle. The more accurately the frequency content of a sound is known, the
harder it is to tell exactly when it occurs. The more accurately specified an event is
in time, the less can be said about the actual frequencies.

To see this in a simple setting, consider a sound that consists of a one-half sec-
ond sinusoid with frequency 100 Hz followed by a one-half second sinusoid with
frequency 200 Hz. Taking a single FFT over the complete wave shows two large
peaks at 100 Hz and 200 Hz, along with smearing due to end effects and to the tran-
sition between the two halves. An FFT of the first half shows just the peak near 100
Hz (plus the inevitable artifacts), whereas an FFT of the second half shows just the
peak at 200 Hz, again with artifacts. This is called the “averaging” property of the
FFT and is inevitable when analyzing a sound that changes over time. Larger win-
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dows give more accurate locations for the partials,15 but it becomes impossible to
resolve when the various partials actually occur.

Because of this, a sensible strategy is to use several different FFTs on the same
data. The larger FFTs help to resolve the actual frequencies, and the shorter FFTs
help to locate when the partials occur. Such techniques are detailed in several places
in Chap. 7 “A Bell, A Rock, A Crystal” in the context of analyzing the spectra of
inharmonic musical sounds. The auditory uncertainty principle is also “discussed”
in the last verse of Appendix K.

C.4 Pads and Windows

This section briefly describes a number of techniques for preprocessing the data be-
fore applying the FFT. None of these should be applied indiscriminately, but they
may prove useful, especially when trying to analyze a singlesound as accurately as
possible.

Padding with Zeroes

The FFT requires that the number of samples be a power of two (or some highly
composite number). One common technique is to “pad” the datawith zeroes until
the length reaches the next highest power of two. This can also increase the accuracy
of the representation of the frequencies of the partials, because a longer FFT is used.

Reverse the Waveform

Another way to sensibly lengthen the waveform is to reverse and concatenate. Instead
of taking the FFT ofb � 	 b � 	 � � � 	 b Ú , the data can be augmented tob � 	 b � 	 � � � 	 b Ú � � 	 b Ú 	 b Ú � � 	 b Ú � � 	 � � � 	 b � 	 b � �
The rationale for this is that the forward and reversed data have the same (magnitude)
spectrum. If the “splice point” is chosen carefully so that the data varies smoothly
nearb Ú , then the artifacts can be reduced.

One-Sided Window

When analyzing a sound (such as from a musical synthesizer orsampler) that has
explicit attack and looped portions, no window should be applied to the loop. (In-
deed, this is the one place where Fourier techniques shine—the loop genuinely is
periodic.) The attack portion has a definite beginning, but its end mingles with the
start of the loop. Applying a standard Hamming (or other symmetric) window to the� ,

For instance, to the nearest 1.346 Hz for a 32K FFT instead of to the nearest 5.38 Hz for an
8K FFT.
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attack portion will destroy much of the desired informationat the start of the sound.
Yet applying no window may encourage artifacts due to the abrupt change where the
loop begins. A convenient compromise is to apply a one-sidedwindow, that is, only
the decaying (second) half of the window.16 This leaves the initial portion unaltered,
yet discourages artifacts caused by interface between the loop and attack portions.

C.5 Finding Spectral Peaks

Humans are very good at recognizing patterns. For instance,when looking at spectral
plots such as Fig. 7.6 on p. 136, it is easy to visually “pick out” the most significant
peaks, and in most cases, these peaks are indeed the most auditorily significant as-
pects of the sound. Machines are notoriously bad at this kindof task, for instance,
reading text is a similar kind of pattern recognition problem that has not been com-
pletely solved, despite intense effort.

A naive approach to the “peak picking” problem is to find the largest term in
the magnitude vector and call it the first peak, find the secondlargest element and
call it the second peak, and so on. Unfortunately, few peaks are isolated outliers;
they usually look like small mountains, with foothills and subpeaks. For example,
the naive approach would find the highest peak in the middle spectrum of Fig. 7.6
on p. 136, at 5066 Hz, but it would then find the second highest element at 5063 Hz,
and the third at 5069 Hz. A slightly more sophisticated approach would require that
candidate peaks be larger than their immediate neighbors. But consider the complex
of peaks near 5553 Hz on Fig. 7.1 of p. 130. Even a combination of the size and
neighbor criteria would declare there to be many peaks here,even though only one
(or maybe two) is sensible. Clearly, a more sophisticated approach is required.

The defining aspect of a peak is that it must be larger than the surrounding re-
gions. The “competitive filtering” ideas of [B: 122] suggestdividing the search for
peaks into three regions: to the left of the candidate peak, to the right, and the value of
the candidate peak itself. If the candidate is larger than (aconstant times) the sum of
the average to the left plus the average to the right, then a peak is successfully found.
This simple algorithm can be effective, but there are two parameters that must be
chosen. First is the constant, which is typically near one. This parameter is roughly
proportional to the steepness of the peak, with larger values requiring steeper peaks.
The second parameter is the length of the averages. This mustbe chosen based on the
size of the FFT and using any a priori knowledge of how close together two peaks
can be. For instance, if the frequencies of the FFT differ by 1.34 Hz (as in a 32K
FFT) and the closest expected peaks are 50 Hz apart, then the averages should be
taken over no more than 20 values to the left and right.

� -
This can be analyzed as a zero (pre)padding, followed by application of a complete Ham-
ming window, but it is simpler to implement directly as a halfwindow.
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Additive Synthesis

A brief discussion of someMatlab programs that implement
additive synthesis and resynthesis.

Additive synthesis is the process of summing a collection ofsine wave partials so as
to make a complex, and hopefully interesting, sound. For example, suppose we wish
to generate sounds with the same partials (the same spectrum) as the Chaco rock of
Fig. 7.6 on p. 136. The most important partials of the sound can be read directly from
the figure or from the composite spectrum of Fig. 7.7 on p. 137.These are� � * � 	 � � � � 	 � � � H 	 � � � � 	 * � � � 	 andH � � � �
Letting these be the frequencies of the] partials and labeling them� �

through� | ,
a new sound can be built as

� � a � � |�� ô � � � env� � a � � � Å � � � a " ! � � 	
where the� � define the amplitudes associated with each partial and the! � are some
(usually arbitrarily specified) phases. The function env� � a �

represents the envelope of
partial � , and it can be chosen to help define the character of the sound.For instance,
if all envelopes are constant, env� � a � � �

, then the sound will be steady like an organ
tone. Envelopes that die away exponentially, like env� � a � � K � l , tend to mimic the
character of a struck, plucked, or percussive timbre.

By construction, the waveform� � a �
has partials at the� � , and hence, it has a

dissonance curve with minima at many of the same locations asthe original sound.
This is one way of generating “new” sounds that are compatible with an existing tim-
bre. For instance, the high percussive tones in theChaco Canyon Rock(audio track
[S: 44]) were generated with exponentially decaying envelopes, and the sustained
organish tones of the middle section were created using constant envelopes.

TheMatlab programaddsynth.m , which generates.wav files via additive
synthesis, appears on the CD in thesoftware folder. The frequencies (in Hertz)
are placed in the vectorfreq and the corresponding amplitudes and decay rates are
specified inamp anddecay .1 The program generates a waveformtime seconds�

The three vectorsfreq andampanddecay must all be the same length.
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long at a sampling ratesr . If there is a soundcard available on the computer, the
sound can be previewed using the command

sound(wave, sr)

which plays the vectorwave at the sampling ratesr . With its default parameters,
addsynth.m generates a harmonic sound with five partials of equal amplitude. The
sound is somewhat different each timeaddsynth.m is run because the decay rates
change (due to therandn function in the definition ofdecay ).

One common technique is to use data from the spectrum to resynthesize a sound.
In the simplest case, the spectrum may be calculated and thentransformed back into a
waveform without loss of information. This is demonstratedin theMatlab program
resynth.m (also available in thesoftware folder of the CD), which calculates
the spectrum of a sound and then carries out a direct resynthesis of the sound from
the FFT decomposition. With no additional processing, the outputx is identical to
the inputy , at least to numerical precision.

Alternatively, the sound can be sculpted or shaped as desired by manipulating
the magnitude and/or phase values prior to the resynthesis.This would occur at the
place in the code marked with the comment:

% Frequency domain processing goes here:

One possibility is to “move” the most prominent partials to make them compatible
with some desired reference spectrum. This is the idea exploited in the “Spectral
Mappings” chapter, although the more efficient inverse FFT is used instead of an
additive resynthesis approach.

The programs given here are not computationally efficient; rather, they are in-
tended to present the ideas as clearly as possible. For instance, a better way of car-
rying out additive synthesis is given in Steiglitz [B: 182],and a reasonable imple-
mentation of the related phase vocoder is presented in Moore[B: 117]. Finally, an
important discussion of the impact of additive synthesis onelectronic music is given
in Risset [B: 150].
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How to Draw Dissonance Curves

This appendix describes a parameterization of Plomp and
Levelt’s dissonance curves and computer programs that carry
out the calculations. It is not necessary to follow the math in
detail to make use of the computer programs. Contrariwise, it
is not necessary to program the computer to understand the
math.

The Plomp–Levelt curves of Fig. 3.7 on p. 46 can be conveniently parameterized by
a model of the form � �  � � A � � } Ä g A � � ~ Ä (E.1)

where
 

represents the absolute value of the difference in frequency between two
sinusoids, and the exponents^ �

and^ �
determine the rates at which the function rises

and falls. Using a gradient minimization of the squared error between the (averaged)
data and the curve

� �  �
gives values of̂

� � � � * and ^ � � * � H * .1

The dissonance function
� �  �

can be scaled so that the curves for different base
frequencies and with different amplitudes are representedconveniently. If the point
of maximum dissonance occurs at

 ¯ , then the dissonance between sinusoids at fre-
quency

� �
with loudness

� �
and at frequency

� �
with loudness

� �
(for

� �   � �
)

is � � � � 	 � � 	 � � 	 � � � � � � � 
 A � � } B � § ~ � § } � g A � � ~ B � § ~ � § } � � (E.2)

where b �  ¯b � � � " b � (E.3)

and � � � � C Æ Ç � � � 	 � � � � (E.4)

The point of maximum dissonance
 ¯ � � � � � is derived directly from the model

(E.1) above. Theb parameters in (E.3) allow a single functional form to interpolate
between the various curves of Fig. 3.8 on p. 46 by sliding the dissonance curve along
the frequency axis so that it begins at

� �
, and by stretching (or compressing) it so�

An alternative parameterization of the Plomp–Levelt curves, proposed by Lafrenière
[B: 92], replaces the difference between exponentials in (E.1) with ² r � s u 8 D Û ( E F Û G H Ý Ý ~ ,
where â is chosen so thatâ � occurs at the point of maximum dissonance and where� u Þ ~ D Þ }Þ } is the normalized frequency. The resulting dissonance curves are qualitatively
similar to the ones presented here, although the corners aremore rounded. Another func-
tional form that may also be useful in this context is² r � s u � 8 D G H .
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that the maximum dissonance occurs at the appropriate frequency. A least square fit
was made to determine the valuesb � � � � � � �

and b � � � +
.

The form of equation (E.4) ensures that softer components contribute less to the
total dissonance measure than louder components. For instance, if either

� �
or

� �
ap-

proaches zero, then
� � �

decreases and the dissonance in (E.2) vanishes. Conversely, if
the volume of the partials increases, the dissonance increases. This form is discussed
in Appendix G, and is a refinement of the model in [B: 165], which assumed that the
loudnesses were multiplicative.

Calculating loudness is not completely trivial as the discussions in [B: 85],
[B: 154] and [B: 187] suggest. If! � a �

represents a simple harmonic planar wave with
period£ , then the effective pressure is the powerP I � J �£ K L� ! � � a � � a
of the wave. For a sine wave,! � a � � ? Å Æ Ç � � # � � a " ! �

with frequency
� �

and
amplitude? ,

P I � MN � . The sound pressure level in decibels (dB) is SPL
�

� � � � � � � � Q OQ þ O P �
, where

P � I § is the standard reference of� � Ô Pa2 for SPL in air, which
corresponds to the SPL of a barely audible sine wave of frequency 1000 Hz. Finally
(and somewhat crudely), the loudness can be approximated as� � �� � � SPL} ° � (E.5)

The loudness
�

is measured insones. The form of (E.5) originates from the observa-
tion that an increase of 10 dB corresponds (approximately) to a doubling of loudness.
The fraction

� 6 � �
normalizes the loudness so that 40 dB corresponds to one sone.

More accurate models than (E.5) would include the effects ofthe Fletcher–Munson
curves of equal loudness [B: 154], would sum the loudnesses differently depending
on whether they occupy the same critical band, and would takeinto account masking
effects.

To calculate the dissonance of more complex sounds, let� be a collection of� sine wave partials with frequencies
� �   � �   � � �   � �

and loudnesses
� 


for� � � 	 � 	 � � � 	 � . The partials will typically be displayed as the� -tuple
� � 	 � � 	 � � � 	 � �

.
The dissonance of� can be calculated as the sum of the dissonances of all pairs of
partials � 
 � ��

��� ô � ��
 ô � � � � � 	 � 
 	 � � 	 � 
 � 	 (E.6)

which is called the intrinsic or inherent dissonance of� . When two notes with spec-
trum � are played simultaneously at an interval

É
, the resulting sound has a disso-

nance that is the same as that of a single timbre with frequencies
� � and

É � � by the
additivity assumption. Thus, (E.6) can be used directly to calculate the dissonance#

One Pascal (Pa) is one? 8 x #
.
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between intervals (and chords) as well as the dissonance of isolated timbres. Defin-
ing the spectrum

É � to contain the frequencies
É � � 	 É � � 	 � � � 	 É � �

(with loudnesses� 

), the dissonance of� at an interval

É
is� 
 � É � � � 
 " � à 
 " ��� ô � ��
 ô � � � � � 	 É � 
 	 � � 	 � 
 � 	 (E.7)

and the dissonance curve generated by the timbre� is defined as the function
� 
 � É �

over all intervals of interest
É

.
The dissonance of a chord of three notes at the intervals

� 	 _ 	 and b can be simi-
larly calculated by adding the dissonances between all partials� 
 � _ 	 b � � � 
 � _ � " � 
 � b � " � � 
 � b 6 _ � 	
where

� 
 � _ �
is the dissonance of� at the interval_ ,

� 
 � b �
is the dissonance of� at the intervalb , and

� � 
 � b 6 _ �
is the dissonance between_ � and b � . General-

izations to] sounds, each with their own spectrum, follow the same philosophy of
calculating the sum of the dissonances between all simultaneously sounding partials.

Two computer programs that carry out these calculations arelocated in the
software folder on the CD. The first,Dissonance(Basic) , is written in Mi-
crosoft’s version of BASIC, and the other is inMatlab . Both programs encapsulate
the equations of this section and can be used to draw dissonance curves for a tim-
bre withn partials, at frequencies specified in the arrayfreq with corresponding
amplitudes in the arrayamp.

Some details of the implementation might help to follow the program logic. In
the BASIC program, thei and j loops calculate the dissonance of the timbre at a
particular intervalalpha , and thealpha loop runs through all intervals of interest.
The first few lines set up the frequencies and amplitudes of the timbre. The variable
n must be equal to the number of frequencies in the timbre. Running the program
with its default values generates the dissonance curve for aharmonic timbre with
six partials. To change the start and end points of the intervals, usestartint and
endint . To make the intervals further apart, increaseinc . All dissonance values
are stored in the vectordiss . Do not changedstar or any of the variables with
numbers.

The Matlab programs are modular, one defining aMatlab function called
dissmeasure.m , which calculates the dissonance of any set of partialsf with
loudnessamp (the partials can be in any order). The main routinedissmain.m
callsdissmeasure.m for each interval of interest to draw the dissonance curve.
A FORTRAN version is also listed in [B: 92].
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Properties of Dissonance Curves

For certain simple timbres, dissonance curves can be completely characterized. This
appendix derives bounds on the number and location of minimaof the dissonance
curve and reveals some general properties, as discussed in Chap. 6. Two simplifica-
tions are made to streamline the discussion. A single dissonance function is assumed
for all frequencies, and all partials are presumed to have unit amplitudes. Thus the
simpler model (E.1) is used in place of the more complete model (E.2)-(E.4) when-
ever convenient.

When � is a spectrum with partials at frequencies
� � 	 � � 	 � � � 	 � �

, the intrinsic
dissonance (in this simplified setting) is� 
 � ��

��� ô � ��
 ô � � � � � 	 � 
 �
(F.1)

where
� � � � 	 � 
 �

is really a function of a single variable; that is,
� � � � 	 � 
 � Q � �  �

as

defined in (E.1) with
 � R § Ù � § � RS T U � § Ù Ï § � � , and where the last two (amplitude) terms of

(E.2) are assumed unity. Because of the form of
 
,

� � É � � 	 É � 
 � � � � � � 	 � 
 �
, and so� 
 � � à 


for any
É

. In other words, the simplification has removed the depen-
dency on absolute frequency from the dissonance measure.

Using these notations, the dissonance curve (E.7) becomes� 
 � É � � � 
 " � à 
 " ��� ô � ��
 ô � � � � � 	 É � 
 � � (F.2)

The first result gives a precise statement of property two from p. 115, describing the
behavior of the dissonance curve as the interval

É
grows large.

Theorem F.1.For any timbre� with partials at
� � 	 � � 	 � � � 	 � �

,� Æ C à V W � 
 � É � � � 
 " � à 

.

Proof: Clearly,
� �  � J �

as
 J ä . Thus,

� � � � 	 É � 
 � J �
for all � 	 � as

É J ä ,
which implies that the double sum in (F.2) approaches zero. X
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Thus, the dissonance decreases as the interval
É

grows larger, approaching a value
that is no more than the dissonances of the timbres

� 

and

� à 

.

Various aspects of the dissonance curve (E.1) become important when investi-
gating the locations of possible minima of the dissonance curve. Several of these are
given here, most following from a direct application of calculus. Taking the derivative
of (E.1), setting it to zero, and solving shows that the pointof maximum dissonance
occurs when  ¯ � � Ç � ^ � 6 ^ � �^ � g ^ � � (F.3)

Two partials
� � and

� 

are said to beseparated by

 ¯ if � Õ � � g � 
 ÕC Æ Ç � � � 	 � 
 � j  ¯ �
The change in dissonance at

 � �
is� { � � � � g ^ � A � � } Ä " ^ � A � � ~ Ä Õ Ä ô � � ^ � g ^ � � (F.4)

For
 j  ¯ , the maximum change in the derivative occurs when

� { �  ¯ ¯ �
is minimum.

As � { { �  � � ^ �� A � � } Ä g ^ �� A � � ~ Ä 	 (F.5) ¯ ¯ � � � U � � } Y � ~ �� � } � � ~ � is where the minimum occurs. After some simplification, the value
of

� { at
 ¯ ¯ is � { �  ¯ ¯ � � ^ � Y ^ �^ � Z

~ Z ~Z } [ Z ~ g ^ � Y ^ �^ � Z
~ Z }Z } [ Z ~ � (F.6)

When needed, the values^ � � � � * and ^ � � * � H * are used, so that
 ¯ X � � � � ,� { � � � X � � � * ,

 ¯ ¯ X � � � � , and
� { �  ¯ ¯ � X g � � � + � , although generallŷ

� j ^ � j �
is enough.

The next result finds conditions under which the unison
É � �

is a minimum of
the dissonance curve

� 
 � É �
.

Theorem F.2.Let � have partials
� �   � �   � � �   � �

that are all separated by at
least

 ¯ . Then
É � �

is a minimum of
� 
 � É �

.

Proof: As
� 


and
� à 


are fixed and equal for all
É

, only the terms in the double
sum (F.2) change the value of

� 
 � É �
. There are� terms of the form

� � � � 	 É � � � in
the sum, and for each of these there are� g �

terms of the form
� � � � 	 É � 
 �

with� Ë� � . We show that the change in
� � � � 	 É � � � is greater than the sum of all changes

in
� � � � 	 É � 
 �

for � Ë� � when
É

is suitably close to 1.
The change in

� � � � 	 É � � �
for

É X �
is proportional to

� { � � �
, which is given in

(F.4) as^ � g ^ �
(because

É � �
corresponds to

 � �
). The largest possible value

for any of the
� � � � 	 É � 
 �

occurs when
� �

and
É � 


define an
 

with
 �  ¯ ¯ . Then� { �  ¯ ¯ �

is given in (F.6). Because the
� 


are assumed separated by at least
 ¯ , and

because
 ¯ ¯ � �  ¯ , the next largest derivative is at most

� { � �  ¯ �
. We now claim that

the sum of all derivatives
ù �� ô � Õ � { � �  ¯ � Õ is less than

� { � � �
. Observe that



F Properties of Dissonance Curves 335� { � �  ¯ � � ^ � Y ^ �^ � Z Ù Z ~Z } [ Z ~ g ^ � Y ^ �^ � Z Ù Z }Z } [ Z ~ Q ^ � a �� g ^ � a ��
and that ��� ô � Õ � { � �  ¯ � Õ k W�� ô � Õ � { � �  ¯ � Õ �
As the

� { � �  ¯ �
are all of the same sign, drop theÕ � Õ. Combining the two previous

expressions yields W�� ô � � ^ � a �� g ^ � a �� � � ^ � a �� g a � g ^ � a �� g a � Q a 	
which is approximatelya � g � � H * �

. Since the
� 


need not be spaced evenly,ù �� ô � Õ � { � � � Õ could be as large asÕ a Õ " Õ � { �  ¯ ¯ � Õ X � � � * . In the general case,� � � � 	 É � 
 �
, the

É � 

could occur both above and below the

� � ; hence, the
ù �� ô � Õ � { � � � Õ

could be as large as� � Õ a Õ " Õ � { �  ¯ ¯ � Õ � X � � � . In all cases, the change in the diag-
onal terms

� � � � 	 É � � � dominates the sum of the changes in all off-diagonal terms� � � � 	 É � 
 �
, giving the required inequality. X

The requirement in theorem F.2 that the partials be separated by
 ¯ is sufficient

but is certainly not necessary. If� k H , then the same arguments show that no re-
quirements are needed on the spacing of the

� � , because the change in each
� � � � 	 É � � �

is over seven times the largest possible value of the change in
� � � � 	 É � 
 �

, for � Ë� �
(i.e.,

� { � � � 6 � { �  ¯ ¯ � X H � H ).
Minima of dissonance curves tend to occur at ratios of the partials.

Theorem F.3.Let timbre� have partials at
� � 	 � �

that are separated by at least
 ¯ .

Then the dissonance curve
� 
 � É �

has a minimum at
É ¯ � � � 6 � �

.

Proof: Let timbre
2

have partials
� i � 	 i � � � � É � � 	 É � � �

. Then
� 
 � � \ � � à 


,
and any change in

� 
 � É �
must originate from the double sum in (F.2), which con-

tains the terms
� � � � 	 i 
 �

for � � � 	 � and � � � 	 � . For
É ¯ � � � 6 � �

,
� i � 	 i � � �� � � 	 É � � �

. As
É

is perturbed from
É ¯ , the contribution from the term

� � � � 	 i � � �� � � � 	 É � � �
increases, because at

É ¯ , É ¯ � � � � �
and so

� � � � 	 i � � � � � � � 	 � � � � �
.

Thus, the result can be demonstrated by showing that the increase in
� � � � 	 i � �

is
greater than the decrease in the other three terms combined.The increase in

� � � � 	 i � �
is proportional to

� { � � �
. As

� �
and

� �
are separated by

 ¯ , the decrease in each of the
other three terms is no greater than

� { �  ¯ ¯ �
. As Õ � { � � � Õ j H Õ � { �  ¯ ¯ � Õ, this proves the

desired result. X
Thus, the dissonance curve generated by a timbre with partials at

� � 	 � �
has a

minimum when
É ¯ � � � � �

. For example, for the timbre with partials at (500, 750),É ¯ � � � * . The result asserts that the timbre
É ¯ � , with frequencies (750, 1125) is

locally a most consonant interval. In symbols,
� 
 � É ¯ g Î � j � 
 � É ¯ �

and
� 
 � É ¯ "Î � j � 
 � É ¯ �

for small
Î
. Thus, both (748, 1122) and (752, 1128) are less consonant

than (750, 1125). This result is intuitively reasonable because when
É � � Ë� � �

, the
dissonance between the partials at

É � �
and

� �
is large, but when

É � � � � �
, this term
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disappears from the dissonance measure. Interestingly, the result can fail when
� �

and
� �

are too close.

Theorem F.4.Let timbre� have partials
� � 	 � �

. Then there is a
Î j �

such that forÕ � � g � � Õ   Î
, the point

É ¯ � � � 6 � �
is not a minimum of

� 
 � É �
.

Proof: Define
2

as in theorem F.3. Again, any change in
� 
 � É �

is a result of the
four terms in the sum of (F.2). For small

Î j �
, note that

� � � � 	 i � " Î � j � � � � 	 i � � j� � � � 	 i � g Î �
,

� � � � 	 i � " Î � j � � � � 	 i � � j � � � � 	 i � g Î �
,

� � � � 	 i � " Î � j � � � � 	 i � � j� � � � 	 i � g Î �
, and

� � � � 	 i � " Î � j � � � � 	 i � �
. On the other hand,

� � � � 	 i � g Î � j� � � � 	 i � � � � � � � 	 � � � � �
. For small

Î
, the change in all four terms is approximatelyÎ � ^ � g ^ � �

in magnitude. Thus, the dissonance value is decreased as
2

is moved
Î

closer to� , and
É ¯ � � � 6 � �

is not a minimum. X
In essence, if the partials

� �
and

� �
are too close, then the minimum at

� � 6 � �
disappears. Theorem F.3 shows that a minimum occurs when partials coincide with
each other. Minima can also occur when the partials are widely separated. For a
two-partial timbre� , suppose that

� �
and

� �
are separated by at least�  ¯ . Then

there is an interval of maximum dissonance near
É � � � � � "  ¯ , and another nearÉ � � � � � g  ¯ . Consequently, there must be a minimum for some

É
between

É ] �� � � "  ¯ � 6 � �
and

É ^ � � � � g  ¯ � 6 � �
. The full range of possible dissonance curves

for two-partial timbres is shown in Fig. 6.15 on p. 116.
Theorem F.4 suggests that minima of the dissonance curve areunlikely for inter-

vals smaller than about half the interval
 ¯ at which maximum dissonance occurs.

Plomp and Levelt estimate that
 ¯ corresponds to a little less than

� 6 �
of the critical

bandwidth. Thus, theorem F.4 predicts that scale steps closer together than about
� 6 �

of the critical bandwidth should be rare.
The next result describes minima of the dissonance curve fortimbres with three

partials.

Theorem F.5.Let timbre� have partials
� � 	 � � 	 � R . Then there are

� � j �
and

� � j�
such that whenever

� �
and

� �
are separated by at least

 ¯ " � �
, and

� �
and

� R
are separated by at least

 ¯ " � �
, then minima of the dissonance curve occur atÉ � � � � 6 � �

,
É � � � R 6 � �

, and
É R � � R 6 � �

.

Proof: Let
2

have partials
� i � 	 i � 	 i R � � � É � � 	 É � � 	 É � R �

. Suppose first that
� � g� � j � R g � � " � �

. Consider the candidate minimum
É �

. For small
Î
, the most

significant terms in
� 
 � É " Î � g � 
 � É �

are
� � � � 	 i � �

and
� � � R 	 i � �

, because all others
are separated by at least

 ¯ " � �
. For

Î j �
,

� � � � 	 i � " Î � j � � � � 	 i � �
,

� � � R 	 i � " Î � j� � � R 	 i � �
, and

� � � � 	 i � g Î � j � � � � 	 i � �
. On the other hand,

� � � R 	 i � g Î �   � � � R 	 i � �
.

But
� { � � � � ^ � g ^ �

and
� { { � � � � ^ �� g ^ ��   �

, so the slope is decreasing. Hence,Õ � � � � 	 i � g Î � Õ j Õ � � � R 	 i � g Î � Õ. Consequently,
� 
 � É � " Î � j � 
 � É � �

and
� 
 � É � gÎ � j � 
 � É � �

, showing that
É �

is a local minimum. The case
� R g � � j � � g � � " � �

follows identically. The proofs for
É �

and
É R are similar. X

Figures 6.16 and 6.17 on pp. 118 and 118 show theorem F.5 graphically. The
final result specifies the maximum number of minima that a dissonance curve can
have in terms of the complexity of the spectrum of the sound.
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Theorem F.6.Let timbre� have partials
� � 	 � � 	 � � � 	 � �

. Then the dissonance curve
generated by� has at most� � �

local minima.

Proof: Consider the portion of
� 
 � É �

due to the partial
�

interacting with a fixed
partial

� 

. For both very small

É
(
É X �

) and very large
É

(
É J ä ),

� � É � 	 � 
 � X �
.

At
É � � 
 6 �

,
� � É � 	 � 
 � � �

. For the two intervals where
É �

and
� 


are separated
by

 ¯ (one with
É �   � 


and one with
É � j � 


),
� � É � 	 � 
 �

attains its maximum
value. Thus,

�
interacting with a fixed

� 

has two maxima and one minima. Each

� �
can interact with each

� 

, and there are� �

possible pairs. As
� 
 � É �

consists of� �
such curves added together, there are at most� � �

maxima. Consequently, there can
be no more than� � �

minima. The two extreme minima at
É � �

and
É � ä are not

included. X
Despite the detail of this presentation, its main conclusion is not inaccessible:

The most (musically) useful minima of the dissonance curve tend to be located at
intervals

É
for which

� � � É � 

, where

� � and
� 


are arbitrary partials of the timbre� .
The theorems of this appendix assume that all partials are ofequal amplitude.

The effect of nonequal amplitudes is that some minima may disappear, some may
appear, and others may shift slightly in frequency. Fortunately, these changes occur
in a structured way. To be concrete, let the timbre� have partials

� � 	 � � 	 � � � 	 � �
with

amplitudes� � 	 � � 	 � � � 	 � �
and let

�� have the same set of partials but with amplitudes� 	 � 	 � � � 	 �
.As discussed above, the dissonance curve for

�� will have up to� �
minima

due to coinciding partials that occur at the intervals
É � 
 � � � 6 � 


. As the amplitudes� 

of � move away from unity, the depth of the dissonance curve at

É � 
 may change
and the minima at some of the

É � 
 may disappear (an
É � 
 that is a minimum of� _
 may not be a minimum of

� 

), and other

É � 
 may appear (an
É � 
 that is not

a minimum of
� _
 may be a minimum of

� 

). Thus, amplitude variations of the

partials tend to affect which of the
É � 
 happen to be minima. The dissonance curve

also contains up to� �
minima of the “broad” type. The location of these equilibria

are less certain, because they move continuously with respect to variations in the� 

.
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Analysis of the Time Domain Model

This appendix expands the model of Sect. 3.6 to account for
more complex sounds and to reproducethe generaldissonance
curves (such as Figs. 6.1, 6.2, and 6.7) of Chap. 6. The model
is then examined in some detail. This appendix is based on
collaborative work with Marc Leman of IPEM [W: 16].

Recent time domain models of the pitch extraction mechanism(such as those of Pat-
terson and Moore [B: 130] and Meddis [B: 111]) can successfully predict listeners’
performance in a number of areas, including the pitch of the missing fundamental,
pitch shift due to certain kinds of inharmonic components, repetition pitch, detection
of the pitch of multiple tones sounding simultaneously, andmusical applications
such as harmony and tone center perception [B: 95]. These models typically consist
of four steps:

(i) A critical band filtering that simulates the mechanical filtering in the
inner and middle ear

(ii) A half wave rectification that simulates the nonlinear firing of hair cells

(iii) A periodicity extraction mechanism such as autocorrelation
(iv) A mechanism for aggregation of the within-band information

Similarly, the modeling of amplitude-modulationdetectorthresholds such as those of
[B: 37] (and references therein) replace the third step (thepitch extraction schemes)
with a “temporal modulation transfer function” and a “detector.” The resulting sys-
tems can predict various masking effects and have been used to examine how the
auditory system trades off spectral and temporal resolutions.

In contrast, models designed to predict the sensory dissonance of a collection
of complex tones (such as in Chap. 6) typically begin with a spectral analysis that
decomposes the sound into a collection of partials. When these partials are close to
each other in frequency (but not identical), they beat in a characteristic way; when
this roughness occurs at certain rates, it is called sensorydissonance. This appendix
shows how sensory dissonance can be modeled directly in the time domain with
a method that is closely related to the first two (common) steps of current pitch
extraction and amplitude-modulation models.

The computational model of Sect. 3.6 contains an envelope detector followed by
a bandpass filter. The simulations shown in Fig. 3.10 demonstrate that the model can
account for the dissonance curve generated from two pure sine waves. But this sim-
ple model breaks down when confronted with more complex wideband inputs. The
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source of the problem is that the envelope detector (the rectification nonlinearity fol-
lowed by the LPF) only functions meaningfully on narrowbandsignals.1 In keeping
with (i)-(iv) above, Fig. G.1 suggests passing the input through a collection of band-
pass filters (such as those in Fig. 3.5) that simulate the critical bands. This generates
a series of narrowband signals to which the envelope detector can be applied, and
it gives an approximation to the sensory dissonance within each critical band. The
overall sensory dissonance can then be calculated by summing up all dissonances in
all critical bands.

f

b

input sound

critical band 
(bandpass) filters

f1

f2

fn

rectification LPF
f

b

BPF

rectification
noninearity g(x)

LPF BPF

enveloperectified signal

{
envelope detector

rectification LPF
f

b

BPF

.

.

.

.

.

.
+

sensory dissonance
in high frequencies

overall
sensory

dissonance

sensory dissonance
in low frequencies

Fig. G.1. The h filters separate the input sound into narrowband signals with bandwidths
that approximate the critical bands of the basilar membrane. The envelope detectors outline
the beating within each critical band and the final bandpass filters accumulate the energy.
Summing over all bands gives the overall sensory dissonanceof the sound.

The core of the model lies in the rectification nonlinearity (wherei �  �
is defined

by equation (3.1) on p. 48). Physically, this originates from the hair cells of the basi-
lar membrane, which are mechanically constrained to certain kinds of oscillation,
and for which there is considerable neurophysiological evidence [B: 156]. The effect
of the subsequent bandpass filtering is to remove both the lowest frequencies (which
correspond perceptually to slow, pleasant beats and the sensation of loudness) and
the higher frequencies (which correspond to the fundamentals, overtones, and sum-
mation tones). The energy of the signal in the passband is then proportional to the
amount of roughness, or sensory dissonance due to the interactions of frequencies
within the given critical band. Summing these energies fromall critical bands gives
an overall measure of the sensory dissonance of the sound.

To see how this model works, consider the case where two sine waves at fre-
quencies� �

and � �
pass through the same critical band filter at equal intensities.�

This generic property of envelope detectors is discussed in[B: 76].
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For � �
near (but not equal) to� �

, this results in beats as shown in Fig. G.2(a). After
passing through the rectification stage, this becomes the_ � a �

as shown in G.2(b). To
be concrete, suppose that the input

 � a �
is the sum of the two sinusoidsÅ Æ Ç � � � a �

andÅ Æ Ç � � � a " # �
. The rectification nonlinearityi �  �

of (3.1) can be rewritteni �  � a � � � ��  � a � " �� Õ  � a � Õ
and so _ � a � � i � Å Æ Ç � � � a � " Å Æ Ç � � � a " # � �� �� � Å Æ Ç � � � a � " Å Æ Ç � � � a " # � � " �� Õ Å Æ Ç � � � a � " Å Æ Ç � � � a " # � Õ� �� Å Æ Ç � � � a � " �� Å Æ Ç � � � a " # � " Õ Å Æ Ç � f � a � Å Æ Ç � f � a " #� � Õ
wheref � � ` } � ` ~� and f � � ` } ß ` ~� are assumed commensurate.

(a)

(b)

(c)

(d)

E max

E min

r(t)

envelope

Fig. G.2. The beating of sine waves.
(a) shows the sum of two sine waves
of equal amplitude, which is rectified to
give (b). (c) shows the sum of two sine
waves of unequal amplitude, which is
rectified to give (d).

Accordingly, the magnitude spectrum of_ � a �
can be calculated as� Ð _ � a � Ò � �� � Ð Å Æ Ç � � � a � Ò " �� � Ð Å Æ Ç � � � a " # � Ò " � Ð Õ Å Æ Ç � f � a � Õ Ò å � Ð Õ Å Æ Ç � f � a " #� � Õ Ò 	

where
å

is the convolution operator. The Fourier series forÕ Å Æ Ç � f � a � Õ is�# g �# W�� ô � � � Å � � _ f � a �� _ � g � 	
and so the magnitude spectrum consists of spikes at the even harmonics off �

. Sim-
ilarly, the Fourier series ofÕ Å Æ Ç � f � a " a� � Õ has a magnitude spectrum consisting of
spikes at the even harmonics off �

. As � � X � �
, f �     f �

and the convolution
of

� Ð Õ Å Æ Ç � f � a � Õ Ò with
� Ð Õ Å Æ Ç � f � a " a� � Õ Ò consists of a cluster of spikes near zero

(these have magnitude
Ua � U � ~ � � � at frequencies� � f �

) and similar clusters near� f �
for all integers� .
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From Fig. G.1, the rectification is followed by a bandpass filter with passband
frequencies considerably less than� �

, � �
, and f �

. Hence, only the spikes near zero
contribute significantly to the energy ofn P � Ð _ � a � Ò . Summing these terms over the
frequency region of interest gives� � f � � � �P }~ b } c � c P ~~ b } �# � � � � g � � 	 (G.1)

where
� �

and
� �

define the cutoff frequencies of the bandpass filter and� f �
is the

difference frequency. This function
� � f � �

represents the energy of the beating sinu-
soids within the critical band. Clearly,

� � f � �
is a function of the (difference between

the) frequencies of the two input sine waves.
The following heuristic argument explains how (G.1), whichprovides a time do-

main analog of (E.2), qualitatively reproduces sensory dissonance curves. Forf � � �
(equivalently,� � � � �

), there are no terms in the sum and
� � f � � � �

. Consider fix-
ing � �

and varying� �
. As � �

increases,f �
increases and more terms (initially)enter

into the sum (G.1), increasing
� � f � �

. Eventually, however,f �
increases past some

critical value and the range
� § }� d } 	 § ~� d } �

compresses so that fewer and fewer terms are
summed in (G.1). Asymptotically,

� � f � �
returns to zero. Hence,

� � f � �
has a shape

that is qualitatively like the measured dissonance curves such as shown in Fig. 3.7.
The cutoff frequencies

� �
and

� �
of the bandpass filter must therefore be chosen so

that the maximum of this sum occurs at the measured value
� ¯ of maximum sensory

dissonance.
Next, suppose that the two input waves are of unequal amplitudes,b � a � � É � A 
 ` } l " É � A 
 ` ~ l 	

where again the frequencies of the (complex) sinusoids are� �
and � �

, and � � j� � j j � � g � �
. If n � � �

represents the frequency response of the critical band (and
other pre-rectification) filters then the signal entering the rectification isÉ � n � � � � A 
 ` } l " É � n � � � � A 
 ` ~ l� A 
 ` } l 
 É � n � � � � " É � n � � � � A 
 � ` ~ � ` } � l � �
The

A 
 ` } l term is the “carrier” and the bracketed term is the envelope,which achieves
its maximum and minimum at@ max

� �� � Õ É � n � � � � Õ " Õ É � n � � � � Õ �
@ min

� �� � Õ Õ É � n � � � � Õ g Õ É � n � � � � Õ Õ �
as shown in Fig. G.2(c).

The previous analysis can now be repeated with_ � a �
redefined as_ � a � � @ min

e � a � " � @ max g @ min
�  � a � e � a � �
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As the Fourier Series of a sum is the sum of the Fourier Series,the net effect is to
increase the amplitudes of the spikes at� f �

and to scale the sum in (G.1) by the
constant@ max g @ min.

This weighting is incorporated into the dissonance model (E.2) by assuming that
the roughness is proportional to the loudness of the beating. The amplitude of the
beats is proportional to@ max g @ min, ignoring the effect of the filtersn � � �

.2 IfÉ � j É �
, then @ max g @ min

� �� � É � " É � � g �� � É � g É � � � É �
. Similarly, ifÉ � j É �

, @ maxg @ min

� �� � É � " É � � g �� � É � g É � � � É �
. Hence@ maxg @ min

�C Æ Ç � É � 	 É � �
. Thus, the amplitude of the beating is given by the minimum ofthe two

amplitudes.
As the disparity in the amplitudes of the partials increases, the dissonance

� � f � �
decreases and the maximum sensory dissonance occurs when the partials have equal
amplitudes. Thus, the time-based model of sensory dissonance naturally accounts for
the varying amplitudes of the partials of a sound.

To summarize this analysis: The time-based model of sensorydissonance can
qualitatively reproduce the sensory dissonance curves such as are found in Plomp
and Levelt [B: 141] and [B: 79] and makes concrete predictions regarding amplitude
effects. Details of the shape of the dissonance curves will depend on the cutoff fre-
quencies of the bandpass filters, their shape, and the integration time. As the model
uses many of the building blocks of standard auditory models, it is not unreasonable
to view sensory dissonance as a byproduct (or coproduct) of these neural elements.

#
This is reasonable because the important beating (from the point of view of the dissonance
calculation) is at the low frequencies near DC.
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Behavior of Adaptive Tunings

This appendix derives concrete expressions for the update terms of the adaptive tun-
ing algorithm and gives detailed statements and proofs of the results. The cost func-
tion � � �� Ï
 � 
 � � �� 
 �

(H.1)

can be rewritten as� � �� |�e ô � |�Ú ô � ��� ô � ��f ô � � � � � � e 	 � f � Ú 	 f � 	 f f � � (H.2)

Only the terms in
�

that include
� � need to be considered when calculating the

gradient× Ø× § Ù . Thus, × Ø× § Ù is equal to�� � � g �� |�Ú ô � ��� ô � ��f ô � � � � � � � 	 � f � Ú 	 f � 	 f f � " �� |�Ú ô � ��� ô � ��f ô � � � � � � Ú 	 � f � � 	 f � 	 f f � h
� |�Ú ô � ��� ô � ��f ô � �� � � � � � � � � 	 � f � Ú 	 f � 	 f f �

(H.3)

because
� � � 	 i 	 f 	 � � � � � i 	 � 	 f 	 � �

and the derivative commutes with the sums.
Calculating the derivative of the individual terms×× § Ù � � � 	 i 	 f 	 � �

in (H.3) is compli-
cated by the presence of the absolute value and

C Æ Ç functions in (E.2) and (E.3). The
function is not differentiable at

� � i and changes depending on whether
� j i

or i j �
. Letting

 ¯ be the point at which maximum dissonance occurs, define the
function ×× § � � � 	 i 	 f 	 � �

asC Æ Ç � f 	 � � i � � } Ä j� § B } ß B ~ � K , Z } k j 1 P [ l 2P m } � m ~ 3 " � ~ Ä j� § B } ß B ~ � K , Z ~ k j 1 P [ l 2P m } � m ~ 3 n
if

� j iC Æ Ç � f 	 � � i � } Ä j � ¨ B } ß B ~ �� § B } ß B ~ � ~ K , Z } k j 1 P [ l 2P m } � m ~ 3 g � ~ Ä j � ¨ B } ß B ~ �� § B } ß B ~ � ~ K , Z ~ k j 1 P [ l 2P m } � m ~ 3 n
if

�   i�
if

� � i
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which is a close approximation to the desired derivative. Then an approximate
gradient is readily computable as the triple sum (H.3) of elements of the form×× § � � � 	 i 	 f 	 � �

.
To streamline the results, the same simplifications and notations are made as in

the previous appendices. The first theorem demonstrates thebehavior of the algo-
rithm when adapting two notes of equal loudness, each consisting of a single partial.
Figure 8.5 on p. 159 shows this pictorially.

Theorem H.1.Let
� �

and i �
be the frequencies of two sine waves, with

� �   i �
.

Apply the adaptive tuning algorithm. Then
(i) i � j � � g b � � � � g b �

implies thatÕ i Ú ß � g � Ú ß � Õ j Õi Ú g � Ú Õ for all
Ó
,

(ii) i �   � � g b � � � � g b �
implies thatÕ i Ú ß � g � Ú ß � Õ   Õ i Ú g � Ú Õ for all

Ó
.

Proof: From the form of×× § � � � 	 i 	 f 	 � �
, the updates for

�
andi are:

� Ú ß � � � Ú g Ô  ¯ � i Ú b � " b � �� � Ú b � " b � � � g ^ � K & Z } k j 1 P o [ l o 2P o m } � m ~ ' g ^ � K & Z ~ k j 1 P o [ l o 2P o m } � m ~ ' h
i Ú ß � � i Ú " Ô  ¯� � Ú b � " b � � g ^ � K & Z } k j 1 P o [ l o 2P o m } � m ~ ' g ^ � K & Z ~ k j 1 P o [ l o 2P o m } � m ~ ' h

The terms in brackets are positive whenever

ln
� ^ � � " ^ �  ¯ � � Ú g i Ú �� Ú b � " b � j

ln
� ^ � � " ^ �  ¯ � � Ú g i Ú �� Ú b � " b � �

Rearranging gives
ln

� ^ � � g ln
� ^ � �^ � g ^ � j  ¯ � � Ú g i Ú �� Ú b � " b � �

As the left-hand side is equal to
 ¯ , this can be rewritten� Ú b � " b � j � Ú g i Ú �

Thus,i Ú j � � g b � � � Ú g b �
implies thati Ú ß � j i Ú . Similarly,

� Ú ß �   � Ú , which
together show (a). On the other hand, ifi Ú   � � g b � � � Ú g b �

, an identical argument
shows thati Ú ß �   i Ú and

� Ú ß � j � Ú for all
Ó
. X

The next result is the theoretical counterpart of Fig. 8.6 onp. 159.

Theorem H.2.Consider two notes� and
2

. Suppose that� consists of two partials
fixed at frequencies

�
and

É �
with

É j �
, and that

2
consists of a single partial at

frequencyi �
that is allowed to adapt via the adaptive tuning algorithm. Assuming

that all partials are of equal loudness:

(i) There are three stable equilibria: ati � �
, at i � É �

and at i �� � " É � � 6 � .
(ii) If i �     �

, then Õ i Ú ß � g � Õ j Õ i Ú g � Õ for all
Ó
.

(iii) If i � j j É �
, then Õ i Ú ß � g É � Õ j Õ i Ú g É � Õ for all

Ó
.
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Proof: The total dissonance for this case includes three terms:
� l p l Ã e � � � � 	 i � "� � � 	 É � � " � � i 	 É � �

. As
É

and
�

are fixed,
� � � 	 É � �

is constant, and minimizing� l p l Ã e is the same as minimizing
� � � 	 i � " � � i 	 É � �

. Using the simplified dissonance
measure (E.1) in place of the more complete model (E.2)-(E.4), and assuming

�  i   É �
, the update fori isi Ú ß � � i Ú g Ô q ^ � A � � } � à § � ¨ o � g ^ � A � � ~ � à § � ¨ o � g ^ � A � � } � ¨ o � § � " ^ � A � � ~ � ¨ o � § � r �

This has an equilibrium when
É � g i Ú � i Ú g �

, that is, wheni � � � ß à �� �
. Cal-

culation of the second derivative shows that it is positive at this point as long as� 6 � � É g � � j j �
, which holds for all reasonable

�
and

É
. Hence this is a stable

equilibrium. (Note that if the complete model is used, then amuch more complex
update develops fori . This will have an equilibrium near, but not at,

� � " É � � 6 � .)
Due to the nondifferentiability of the dissonance functionat

� � i , it is not
possible to simply take the derivative at this point. The strategy to show that

� � i
is stable is to show that ifi � � " Î

for some small
Î j �

then the update decreasesi , whereas ifi � � g Î
for some small

Î j �
then the update increasesi . Supposing

that i j �
, and assuming that

� � É g � � j j �
, the gradient is approximately^ � A � � } § � à � � � g ^ � A � � ~ § � à � � � g ^ � " ^ � �

As ^ �
is about twice the size of^ �

, this is positive. Similarly, fori � � g Î
, the

gradient is approximately^ � A � � } § � à � � � g ^ � A � � ~ § � à � � � " ^ � g ^ � 	
which is negative. Consequently,

� � i is a local stable point. The point whereÉ � � i is analyzed similarly. Analogous arguments to those used intheorem H.1
show that fori     �

, i decreases, and fori j j É �
, g increases. X
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Symbolic Properties ofs -Tables

Although
�

-tables do not form any recognizable algebraic structure, they do have
several features that would be familiar to an algebraist. For instance, the tables have
an identity element, the operation

�
is commutative, and it is associative when it is

well defined. These are used to derive a set of properties thatcan help make intelli-
gent choices in the symbolic timbre construction procedure.

Given any set of scale intervals� , the
�

-table derived from� has the following
characteristics.

Identity: The “octave” or unit of repetitionb ¯ acts as an identity element,
i.e., b ¯ � b � b � b ¯ � b t b u � �
Commutativity:The

�
-table is symmetric, i.e.,b � � b � � b � � b � t b � 	 b � u � � (I.1)

If one side of (I.1) is undefined (is “equal” to
å
), then so is the other. Commutativity

of
�

follows directly from the commutativity of products of powers of real numbers.

Associativity:The
�

operator is associative whenever it is well defined. Thus� b � � b � � � b R � b � � � b � � b R � t b � 	 b � 	 b R u � 	 (I.2)

provided that both sides of (I.2) exist.

It is indeed possible for one side of (I.2) to exist but not theother.
Example:Consider the tetrachordal scale with

�
-table 12.5 on p. 251. Observe that� � � 	 � 	 � � � � � 	 � 	 � � � � � � 	 � 	 � �

is well defined and equals
� � 	 � 	 � �

, but that
� � 	 � 	 � � �� � � 	 � 	 � � � � � 	 � 	 � � �

does not exist because
� � 	 � 	 � � � � � 	 � 	 � �

is disallowed. To
further emphasize how unusual this construction is, observe that by commutativity,� � 	 � 	 � � � � � 	 � 	 � � � � � 	 � 	 � � � � � 	 � 	 � �

. Substituting this in the above calculation
gives

� � � 	 � 	 � � � � � 	 � 	 � � � � � � 	 � 	 � �
, which is indeed equal to

� � 	 � 	 � � � � � � 	 � 	 � � �� � 	 � 	 � � �
, because both sides are

� � 	 � 	 � �
.
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The remaining properties of
�

-tables concern “solutions” to the
�

-equation de-
fined in the symbolic timbre construction procedureb � � b 
 � _ � Ï � � 
 � (I.3)

Recall that in the procedure, a set ofb 

are given (which are defined by previous

choices of thea 
 ). The goal is to find a singleb � such that the equation (I.3) is well
defined for all� up to � g �

. The properties of
�

-tables can help pinpoint viable
solutions to (I.3).

Theorem I.1. Suppose thatb 
 u � have been chosen for all�   Ó
. Let v w be the set

of all non-
å

entries in theb 

column of the

�
-table. Then for all� x Ó

, b � must be an

element of y
 z Ú v 

.

Proof: First consider the case� � Ó � � , with b �
specified. Then (I.3) requires

choice of b �
such thatb � � b � � _ � Ï � for some_ � Ï � . Such _ � Ï � will exist exactly

when b � u v { . For � j � , b � � b � � _ � Ï � � 

must be solvable, which again requires

that b � u v { . The general caseb � � b 
 � _ � Ï � � 

is similarly solvable exactly whenb � u v w . As this is true for every�   Ó

, b � u y
 z Ú v 

. X

Thus, when building timbres according to the procedure, theset| Ú � y
 z Ú v 

de-

fines the allowable partials at the
Ó
th step. Clearly,| Ú

can never grow larger because| Ú } | Ú ß � t Ó
, and it may well become smaller as

Ó
increases. This demonstrates

that the order in which the partials are chosen is crucial in determining whether a
perfect timbre is realizable.

The easiest way to appreciate how the theorem I.1 simplifies (and limits) the
selection problem is by example.
Example:In Table 12.1 on p. 246, onceb � � � � 	 � �

for some� , then for all
Ó j � , b Ú

must be
� � 	 � �

,
� � 	 � �

, or
� � 	 � �

.
Example:In Table 12.3 on p. 249, onceb � � � � 	 � �

has been chosen, then for allÓ j � , b Ú must be either
� � 	 � �

,
� � 	 � �

, or
� * 	 � �

. In particular, nob Ú can be the
identity

� � 	 � �
.

Corollary I.2. Suppose that an element
�b u � appears in every column of the

�
-

table. Then for any choice ofb 

, �   � , (I.3) is always solvable withb � � �b .

Proof: As
�b is in every column of the table,

�b u v 
 t � and hence
�b u y
 z Ú v 


for anyÓ
. X

In other words, for anyb u � , there is always a_ u � such that
�b � b � _ , and

so
�b is always permissible.
Example:In Table 12.5 on p. 251, the identityb ¯ � � � 	 � 	 � �

appears in every
column. Thus, it is always possible to choose a partiala � with the equivalence classb ¯ at any step.

Suppose, on the other hand, that an element~b u � appears nowhere in the
�

-
table other than in the column and row of the identity. Then~b cannot be used to
define one of theb � because~b 6u v Ú for any

Ó
and so for anyb � Ë� b ¯ , b � � ~b " _ has
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no solution. Although~b cannot occur among theb � , it is still possible that it might
appear among the_ � Ï Ú . Indeed, it will need to in order to find a complete timbre.
Example:The element~b � � � 	 � �

appears nowhere in
�

-table 12.3 (from p. 249)
defined by the Pythagorean scale. The timbre was made complete by ensuring that~b
appears among the_ � Ï Ú of Table 12.4 of p. 249.

Another property of
�

-tables is that elements are arranged in “stripes” from
southwest to northeast. For instance, in Table 12.3 of p. 249, a stripe of

� � 	 � �
ele-

ments connects the� 	 �
entry with the

� 	 � entry. Similarly, a stripe of
� � 	 � �

elements
connect the

� 	 �
with the

� 	 �
entries, although the stripe is broken up by a

å
. The fact

that such (possibly interrupted) stripes must exist is the content of the next theorem.
Given an] note scale� , the entries of the corresponding

�
-table can be labeled

as a matrixÐ � 
 Ï Ú Ò for � � � 	 � 	 � � � 	 ] and
Ó � � 	 � 	 � � � 	 ] . Let

P � denote the� th stripe
of the

�
-table, that is,

P � � Ð � 
 Ï Ú Ò for all � and
Ó

with � " Ó � � " �
.

Example:For the Pythagorean
�

-table:P � � Ð � � 	 � � Ò 	 P � � Ð � � 	 � � 	 � � 	 � � Ò 	 P R � Ð � � 	 � � 	 � � 	 � � 	 � � 	 � � Ò 	P U � Ð � � 	 � � 	 å 	 å 	 � � 	 � � Ò 	 P U � Ð � � 	 � � 	 � � 	 � � 	 å 	 � � 	 � � 	 � � 	 � � 	 Ò 	 etc.

Theorem I.3. For each� , all non-
å

elements of the stripe
P � are identical.

Proof: By construction, the elementsb � and b � ß � u � are integer vectors, and
they may be ordered so that b � ß � � b � " K 
 Ï � t � 	 (I.4)

where K 
 Ï � is a unit vector with zeroes everywhere except for a single
�

in the � th
entry. Let � � b � �

represent the sum of the entries inb � � � � � 	 � � 	 	 � � � 	 � � �
, i.e.,� � b � � � ù �
 ô � � 


, and let� ¯ represent the sum of the entries in the element that
forms the unit of repetition. Because the

�
operation adds powers of the generating

intervals, � � b 
 � b Ú � � � � b 
 � " � � b Ú � �
mod � ¯ �

(I.5)

wheneverb 
 � b Ú is well defined. Because of the ordering, the entries in the stripeP � can be written b 
 � b Ú 	 b 
 � � � b Ú ß � 	 b 
 � � � b Ú ß � 	 � � �
for all positive� and

Ó
with � " Ó � � " �

. Hence,� � b 
 � b Ú � � � � b 
 � � � b Ú ß � � � � � �
(I.6)

whenever these are defined. From (I.4),� � b 
 � � � � b Ú �
implies thatb 
 � b 


. Hence
(I.6) shows thatb 
 � b Ú � b 
 � � � b Ú ß � � � � �

whenever the terms are defined, and
hence all well-defined elements of the stripe are identical. X

This is useful because stripes define whether a given choice for thea � (and henceb � ) is likely to lead to complete timbres. Suppose that�b is a candidate forb � at the� th step. Whether�b will “work” for all previous b 

(i.e., whether�b � b 
 � _ has
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solutions for allb 

) depends on whether�b appears in all correspondingv 


. Theorem
I.3 pinpoints exactly where�b must appear; at the intersection of the columnv 


and
the stripe containing�b . Thus, the procedure can be implemented without conducting
a search for�b among all possible columns.

A special case is when a column is “full,” i.e., when it contains no
å

entries.

Theorem I.4. Let v § be a full column corresponding tob § u � . Thenb � � b § � _ �
is solvable for allb � u � .

Proof: As there are] entries in the columnv § and there are] different b � , it is
only necessary to show that no entries appear twice. Using the ordering (I.4) of the
previous proof,v § has elementsb � � b § 	 b � � b § 	 � � � 	 b | � b § 	 (I.7)

which are well defined by assumption. Now proceed by contradiction, and suppose
that the� th and� th elements of (I.7) are the same, i.e.,b � � b § � b 
 � b § . Then� � b � � b § � � � � b 
 � b § � �

mod � ¯ �
(where� and� ¯ were defined in the previous proof). This implies that� � b � � " � � b § � � � � b 
 � " � � b § � �

mod � ¯ �
which implies that� � b � � � � � b 
 � �

mod � ¯ �
. By the same argument as in the proof

of theorem I.3, this implies thatb � � b 

. But eachb � appears exactly once in (I.7),

which gives the desired contradiction. X
Thus, when a column is full, it must contain every element. Inthis case, equation

(I.3) puts no restrictions on the choice ofb � . Let Ð b 
 Ò be all elements of� that have
full columns. Then a

�
-subtable can be formed by theseÐ b 
 Ò that has no illegal

å
en-

tries. For example, Table 12.1 on p. 246 is generated by the the � ^ -cubed scale. The
elements

� � 	 � �
,

� � 	 � �
, and

� � 	 � �
have full columns and hence can be used to form

a full
�

-subtable. It is easy to generate perfect timbres for such full
�

-subtables be-
cause equation (I.3) puts no restrictions on the choice of partials for a complementary
timbre. Whether these extend to all elements of the scale, however, depends heavily
on the structure of the non-full part of the table. Finding timbres for full subtables
is exactly the same as finding timbres for equal temperaments, whose

�
-tables have

no disallowed
å

entries. In fact, full
�

-tables form a commutative group, which may
explain why the equal-tempered case is relatively easy to solve.

All of the above properties were stated in terms of the columns of the
�

-table. By
commutativity, the properties could have been stated in terms of the corresponding
rows.

From a mathematical point of view, the symbolic timbre selection procedure
raises a number of interesting issues. The operation

�
defined here is not any kind of

standard mathematical operator because of the disallowed
å

entries. Yet
�

-tables
clearly have a significant amount of structure. For instance, any

�
-table can be

viewed as a subset of the commutative group of integer] vectors
� � � 	 � � 	 � � � 	 � | �
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where the� th entry is taken mod� � , from which certain elements have been removed.
Can this structure be exploited? Another obvious question concerns the possibility
of decomposing

�
-tables in the same kind of ways that arbitrary groups are decom-

posed into normal subgroups. Might such a decomposition allow the building up of
spectra for larger scales in terms of spectra defined for simpler scales?
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Harmonic Entropy

Harmonic entropy is a measure of the uncertainty in pitch
perception, and it provides a physical correlate of tonalness,
one aspect of the psychoacoustic concept of dissonance. This
Appendix shows in detail how to calculate harmonic entropy
and continues the discussion in Sect. 5.3.3.

Harmonic entropy was introduced by Erlich [W: 9] as a refinement of a model by van
Eck [B: 125]. It is based on Terhardt’s [B: 196] theory of harmony, and it follows in
the tradition of Rameau’s fundamental bass [B: 145]. It provides a way to measure
the uncertainty of the fit of a harmonic template to a complex sound spectrum. As
a major component of tonalness is the closeness of the partials of a complex sound
to a harmonic series, high tonalness corresponds to low entropy and low tonalness
corresponds to high entropy.

In the simplest case, consider two harmonic tones. If the tones are to be under-
stood as approximate harmonic overtones of some common root, they must form a
simple-integer ratio with one another. One way to model thisuses the Farey series� �

of order� , which lists all ratios of integers up to� . For example,
� W

is�� 	 �� 	 �* 	 �� 	 �� 	 �* 	 �� 	 �* 	 �� 	 �� 	 �* 	 *� 	 �� �
A useful property of the Farey series is that the distance between successive terms is
larger when the ratios are simpler. Let the� th element of the series be

� 
 � Ã �� � . Then

the region over which
� 


dominates goes from the mediant1 below to the mediant
above, that is, fromÃ � [ } ß Ã �� � [ } ß � � to Ã � ß Ã � � }� � ß � � � } . Designate this region_ 


. Figure J.1 plots
the length of_ 


vs.
� 


for
� V �

, the Farey series of order* �
. Observe that complex

ratios cluster together, and that the simple ratios tend to separate. Thus, simple ratios
like 1/2, 2/3, and 3/4 have wide regions with large_ 


, and complex ratios tend to
have small regions with small_ 


.
For any interval� , a Gaussian distribution (a bell curve) is used to associatea

probability! 
 � � � with the ratio
� 


in
� �

. The probability that interval� is perceived
as a mistuning of the� th member of the Farey series is! 
 � � � � �� � � # K l � � � K � � l � � � ~ Y � � ~ � a ��

Recall that the mediant of two ratios�� and
:� is the fraction � w :� w � .
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Fig. J.1.The mediant distances between entries (the length of the� ö ) are plotted as a function
of the small integer ratios& ö drawn from the Farey series of order= � . The simplest ratios
dominate.

Thus, the probability is high when the� is close to
� 


and low when� is far from� 

. This is depicted in Fig. J.2 where the probabilities that� is perceived as

� 
 ß �
,� 
 ß �

, and
� 
 ß R are shown as the three regions under the bell curve. Erlich refines

this model to incorporate the
� � �

of the intervals and mediants, which is sensible
because pitch perception is itself (roughly) logarithmic.

The harmonic entropy (HE) of� is then defined (parallel to the definition of en-
tropy used in information theory) as� @ � � � � g �
 ! 
 � � � � � � � ! 
 � � � � �
When the interval� lies near a simple-integer ratio

� 

, there will be one large proba-

bility and many small ones. Harmonic entropy is low. When theinterval � is distant
from any simple-integer ratio, many complex ratios contribute many nonzero prob-
abilities. Harmonic entropy is high. A plot of harmonic entropy over an octave of
intervals� (labeled in cents) appears in Fig. 5.5 on p. 89. This figure used

� V �
and� � � � � � H . Clearly, intervals that are close to simple ratios are distinguished by

having low entropy, and more complex intervals have high harmonic entropy.
Generalizations of the harmonic entropy measure to consider more than two

sounds at a time are currently under investigation; one possibility involves Voronoi
cells. Harmonic series triads with simple ratios are associated with large Voronoi
cells, whereas triads with complex ratios are associated with small cells. This nicely
parallels the dyadic case. Recall the example (from p. 96 andsound examples
[S: 40]–[S: 42]), which compares the clusters 4:5:6:7 with 1/7:1/6:1/5:1/4. In such
cases, the harmonic entropy model tends to agree better withlistener’s perceptions
of the dissonance of these chords than does the sensory dissonance approach. Paul
Erlich comments that the study of harmonic entropy is a “public work in progress”
at [W: 9].
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fj fj+1 fj+2 fj+3 fj+4

rj+1 rj+2 rj+3

i

this area gives the probability pj+1(i) 

that the interval i is perceived as

the simple integer ratio fj+1

probability pj+2(i) that 

i is perceived as fj+2

probability pj+3(i) that 

i is perceived as fj+3

mediant between

 fj and fj+1 mediant between

 fj+1 and fj+2

mediant between

 fj+2 and fj+3

Fig. J.2. Each region� ö w � extends from the mediant between& ö and & ö w � to the mediant
between& ö w � and & ö w # . The interval ã specifies the mean of the Gaussian curve, and the
probabilities

� ö r ã s are defined as the disjoint areas between the axis and the curve.
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Fourier’s Song

Also known asTable 4.1: Properties of the Fourier Transform,
Fourier’s Songwas written by Bob Williamson and Bill
Sethares “because we love Fourier Transforms, and we know
you will too.” Perhaps you have never taken a course where
everything is laid out in a single song. Well, here it is...a song
containing 17% of the theoretical results, 25% of the practical
insights, and 100% of the humor of ECE330: Signals and
Systems. The music is played in an additive (overtone) scale
that consists of all harmonics of 100 Hz. It appears on the
CD in sounds/Chapter04/fouriersong.mp3 ; see
[S: 34]. There will be a test in the morning.

Integrate your function times a complex exponential.
It’s really not so hard you can do it with your pencil.
And when you’re done with this calculation,
You’ve got a brand new function—the Fourier Transformation.

What a prism does to sunlight, what the ear does to sound,
Fourier does to signals, it’s the coolest trick around.
Now filtering is easy, you don’t need to convolve,
All you do is multiply in order to solve.

From time into frequency—from frequency to time

Every operation in the time domain
Has a Fourier analog – that’s what I claim.
Think of a delay, a simple shift in time,
It becomes a phase rotation—now that’s truly sublime!

And to differentiate, here’s a simple trick.
Just multiply by�  , ain’t that slick?
Integration is the inverse, what you gonna do?
Divide instead of multiply—you can do it too.

From time into frequency—from frequency to time

Let’s do some examples... consider a sine.
It’s mapped to a delta, in frequency—not time.
Now take that same delta as a function of time,
Mapped into frequency, of course, it’s a sine!
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Sine
 

on
 

is handy, let’s call it a sinc.
Its Fourier Transform is simpler than you think.
You get a pulse that’s shaped just like a top hat...
Squeeze the pulse thin, and the sinc grows fat.
Or make the pulse wide, and the sinc grows dense,
The uncertainty principle is just common sense.

Exercise K.1.Find as many Fourier transform pairs as you can in the lyrics to
Fourier’s Song.

Exercise K.2.Find as many properties of the Fourier transform in the lyrics to
Fourier’s Songas you can.

Exercise K.3.Mathematically define the function that looks like a “top hat” and
explain why its transform is the sinc.

Exercise K.4.Explain what property of the Fourier transform is used in thelast verse
when the sinc “grows fat” and “grows dense.” Why does this relate to the uncertainty
principle?
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Tables of Scales

This appendix provides tables of several historical and ethnic
tunings. Others can be found throughout the text. A number
of meantone tunings are defined on p. 64, and several well
temperaments appear on p. 65. A large variety of tunings
and scales are derived and defined throughout the chapter
“Musical Scales.”

Table L.1. Historical tunings, with all values rounded to the nearest cent.

Tuning cents
12-tet 100 200 300 400 500 600 700 800 900 1000 1100
1/4 Comma A 76 193 310 386 503 580 697 772 890 1007 1083
Barca 92 197 296 393 498 590 698 794 895 996 1092
Barca A 92 200 296 397 498 594 702 794 899 998 1095
Bethisy 87 193 289 386 496 587 697 787 890 993 1087
Chaumont 76 193 289 386 503 580 697 773 890 996 1083
Corrette 76 193 289 386 503 580 697 783 890 996 1083
d’Alembert 87 193 290 386 497 587 697 787 890 994 1087
Kirnberger 2 90 204 294 386 498 590 702 792 895 996 1088
Kirnberger 3 90 193 294 386 498 590 697 792 890 996 1088
Marpourg 84 193 294 386 503 580 697 789 890 999 1083
Rameau b 93 193 305 386 503 582 697 800 890 1007 1083
RameauE 76 193 286 386 498 580 697 775 890 993 1083
Valloti 90 196 294 392 498 588 698 792 894 996 1090
Vallotti A 90 200 294 396 498 592 702 792 898 996 1094
Werkmeister 3 90 192 294 390 498 588 696 792 888 996 1092
Werkmeister 4 82 196 294 392 498 588 694 784 890 1004 1086
Werkmeister 5 96 204 300 396 504 600 702 792 900 1002 1098
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Table L.2. Tuning of each slendro instrument of Gamelan Swastigitha. All values are rounded
to the nearest Hertz.

Gamelan Swastigitha: Slendro
I II III

Instrument 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2
gender 118 133 155 178 206 236 271
gender 121 135 155 178 205 234 271 310 358 412 471 542 623 719
gender 236 265 310 358 412 471 542 623 719 825 950 1093 1266
saron 272 310 358 412 472 544
saron 544 626 719 828 951 1094 1268
bonang 271 308 355 413 472 544 622 717 825 954 1094 1250
bonang 472 545 622 717 825 954 1094 1268
kenong 357 412 472 623
gambang 238 272 311 361 415 475 545 626 725 828 956 1106 1276

median 120 134 155 178 205 236 271 310 358 412 472 544 623 719 825954 1094 1268

Table L.3. Tuning of each slendro instrument of Gamelan Kyai Kaduk Manis. All values are
rounded to the nearest Hertz.

Gamelan Kyai Kaduk Manis: Slendro
I II III

Instrument 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2
gender 120 140 160 183 210 241 279 320 367 420 480 557 639 733
gender 241 279 320 366 420 482 556 638 733 838 968 1114 1279
gender 120 139 159 182 209 240 277
saron 241 280 322 367 421 482 557
saron 244 281 322 369 423 482 557
saron 482 559 651 738 840 968 1113
saron 484 560 643 738 841 978 1129 1283
saron 483 569 641 739 853 985 1139
bonang 281 322 367 423 484 560 641 736 837 966 1114 1268
bonang 557 643 736 838 972 1113 1281
kenong 242 320 369 421 478 557
gambang 155 180 206 237 275 319 366 415 474 556 637 725 844 961 1112 1266

median 120 140 159 182 209 241 279 320 367 421 482 557 641 738 840968 1114 1278
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Table L.4. Tuning of each pelog instrument of Gamelan Swastigitha. Allvalues are rounded to the nearest Hertz.

Gamelan Swastigitha: Pelog
I II III

Instrument 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4
gender 120 151 160 174 222 234 299 324 354 443 471 599 643 709
gender 240 300 322 354 444 474 600 642 709 887 950 1203 1305 1414
gender 151 160 174 207 222 236 258
saron 300 326 354 415 445 472 524
saron 602 645 709 829 890 953 1052
saron 1205 1312 1427 1674
bonang 300 324 353 415 444 472 525 599 645 711 820 886 950 1042
bonang 602 643 708 828 887 950 1052 1205 1311 1427 1676
gambang 157 178 215 234 258 328 354 444 471 522 645 712 892 961 1047

median 120 151 160 174 207 222 235 258 300 324 354 415 444 472 524600 644 709 828 887 950 1050 1205 1311 1427 1675
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Table L.5. Tuning of each pelog instrument of Gamelan Kyai Kaduk Manis.All values are rounded to the nearest Hertz.

Gamelan Kyai Kaduk Manis: Pelog
I II III

Instrument 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3
gender 120 149 164 180 225 241 303 332 361 451 480 604 661 717
gender 149 164 179 210 223 241 264
gender 241 266 334 359 452 479 537 661 717 891 972 1073 1311 1427
gender 240 304 332 361 451 480 606 662 717 892 972 1213 1307 1425
gender 120 135 166 180 226 241 269 332 361 452 480 538 661 717
saron 306 334 362 423 452 482 540
saron 362 421 452 483 538
saron 618 672 733 860 898 988 1082
saron 612 668 729 844 904 991 1082
saron 974 1116 1233 1453
saron 608 665 727 838 892 977 1101
bonang 310 336 362 424 445 482 538 606 668 728 844 892 973 1074
bonang 604 682 732 840 892 976 1077 1219 1323 1428
kenong 242 332 362 454 478 536 611

median 120 135 149 164 180 210 225 241 266 305 332 361 423 452 480538 607 665 727 844 892 975 1082 1219 1311 1428
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mistuning and harmonic mistunings.]

[B: 147] J. W. S. Rayleigh,The Theory of Sound, Dover Pubs., New York (1945), original
edition (1894). [Complete survey of the field of acoustics asof 1894 by one of the men
who created it.]

[B: 148] W. H. Reynolds and G. Warfield,Common-Practice Harmony, Longman, New York
(1985). [Standard music theory text.]

[B: 149] J. C. Risset, “The development of digital techniques: a turning point for electronic
music?” Rapports IRCAM 9/78 (1978). [New directions in electronic music. Worth read-
ing even though it’s no longer new.]

[B: 150] J. C. Risset, “Additive synthesis,” inThe Psychology of Music, ed. Diana Deutsch,
Academic Press, New York (1982). [How additive synthesis works.]

[B: 151] J. C. Risset and D. L. Wessel, “Exploration of timbreby analysis and synthesis,” in
The Psychology of Music,ed. Diana Deutsch, Academic Press, New York (1982). [How
and why additive synthesis/resynthesis techniques have changed the way we look at mu-
sical sound.]

[B: 152] C. Roads, “A tutorial on nonlinear distortion or waveshaping synthesis,” Computer
Music Journal 3, No. 2, 29-34 (1979). [A technique for digital sound synthesis.]

[B: 153] C. Roads, “Interview with Max Mathews,” Computer Music Journal 4, No. 4, Winter
(1980). [Mathews says, “It’s clear that inharmonic timbresare one of the richest sources
of new sounds. At the same time they are a veritable jungle of possibilities so that some
order has to be brought out of this rich chaos before it is to bemusically useful.”]

[B: 154] J. G. Roederer,The Physics and Psychophysicsof Music, Springer-Verlag, New York
(1994). [Emphasizes importance of perception. The title should not dissuade those with-
out mathematical expertise.]

[B: 155] P. Rosberger,The Theory of Total Consonance, Associated University Presses Inc.,
Cranbury, NJ (1970). [Proposal for an adaptive tuning “ratio machine” that maintains
simplest possible integer ratio intervals at all times.]

[B: 156] J. E. Rose, J. E. Hind, D. J. Anderson, and J. F. Brugge, “Some effects of stimulus
intensity on response of auditory nerve fibers in the squirrel monkey,” Journal of Neuro-
physiology 34, 685-699 (1971). [Among other things, includes solid physical evidence
for the presence of nonlinearities in models that incorporate the hair cells of the basilar
membrane.]

[B: 157] T. D. Rossing,Acoustics of Bells, Van Nostrand-reinhold, Stroudsberg, PA (1984).
[Everything you always wanted to know about bells, and a bit more.]

[B: 158] T. D. Rossing,The Science of Sound, Addison Wesley Pub., Reading, MA (1990).
[One of the best all around introductions to the Science of Sound. Comprehensive, read-
able, and filled with clear examples.]

[B: 159] T. D. Rossing and R. B. Shepherd, “Acoustics of gamelan instruments,” Percussive
Notes 19, No. 3, 73-83 (1982). [The only published investigation of the spectra of gamelan
instruments.]
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tuning of Domenico Scarlatti,” J. Acoust. Soc. Am. 101,No. 4, 2332-2337, April (1997).
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[B: 161] P. Schaeffer,Traite des Objets Musicaux, Paris: Editions de Seuil (1968). [Attempts
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[B: 162] R. M. Schafer,The Tuning of the World, Univ. of Pennsylvania Press, Philadelphia
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[B: 164] A. Schoenberg,Structural Functions of Harmony, Norton, New York (1954). [Stan-
dard technique for the analysis of music.]
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curves for arbitrary spectra, and how to construct spectra for arbitary scales.]

[B: 166] W. A. Sethares, “Relating tuning and timbre,” Experimental Musical Instruments IX,
No. 2 (1993). [A more popular version of the JASA article withsimilar name. No math.]
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1, 10-19, July (1994). [How to use consonance/dissonance ideas to design adaptive or
dynamic tunings that respond to the spectrum of the sound being played.]
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Australia, Aug. (1994). [Used the Chaco rock to demonstratescale and spectrum issues.]
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No. 4, Oct. (1997). [Presents a method of specifying the spectrum of a sound so as to
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sensory dissonance.]

[B: 174] W. A. Sethares and T. Staley, “Sounds of crystals,” Experimental Musical Instru-
ments VIII, No. 2, Sept. (1992). [Uses data from x-ray crystallography to generate inter-
esting sounds.]

[B: 175] W. Slawson,Sound Color, University of California Press, Los Angeles, CA. (1985).
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[B: 176] F. H. Slaymaker, “Chords from tones having stretched partials,” J. Acoust. Soc. Am.
47, No. 2, 1469-1571 (1970). [Asks how musical stretched tones can be.]

[B: 177] N. Sorrell,A Guide to the Gamelan, Faber and Faber Ltd., London (1990). [A solid
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[B: 186] W. J. Strong and M. Clark, “Perturbations of synthetic orchestral wind instrument
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sounds.]

[B: 189] J. Sundberg,The Science of Musical Sounds,Academic Press, New York (1991).
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cal principles, not for its theoretical contributions.]

[B: 192] J. Tenney,A History of ‘Consonance’ and ‘Dissonance,’Excelsior Music Pub., New
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(1982). [Gives an algorithm for finding the virtual pitch of acomplex tone.]

[B: 198] C. D. Veroli, Unequal Temperaments, Artes Graphicas Farro, Argentina (1978).
[Emphasizes historical uses, musical characteristics, and the practice of unequal temper-
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References in the body of the text to the discography are
coded with[D:] to distinguish them from references to the
bibliography, sound and video examples, and websites.

[D: 1] S. Alexjander,Sequencia,Science and the Arts, Berkeley, CA (1994). [Uses data from
DNA sequences to generate interesting tunings.]

[D: 2] J. M. Barbour and F. A. Kuttner,Theory and Practice of Just Intonation, Musurgia
Records, Jackson Heights, NY (1958). [This recording givesnumerous examples of how
bad Just Intonation can sound if played incorrectly. For instance, “Auld Lang Syne” is
played inA in a JustA scale, and it is then played inG � without changing the tuning.]

[D: 3] J. M. Barbour and F. A. Kuttner,Meantone Temperament in Theory and Practice,
Musurgia Records, Jackson Heights, NY (1958). [Meantone bad. Equal temperament
good.]

[D: 4] E. Blackwood,12 Microtonal Etudes for Electronic Music Media(1976). [A sort of
“ill-tempered synthesizer” with pieces in all equal temperaments from 13 to 24].

[D: 5] W. Carlos,Beauty in the Beast, SYNCD 200, Jem Records, Inc. South Plainfield, NJ
(1986). [“Puts aside the traditional equally tempered scale, and also the standard acoustic
and electronic timbres” to create one of the greatest xenharmonic piecesso far.]

[D: 6] W. Carlos,Secrets of Synthesis, CBS Records MK 42333 (1987). [Carlos introduces
and explains synthesizer technology. In “Alternative Tunings–The Future,” Carlos says,
“... not only can we have any possible timbre but these can be played in any possible
tuning... that might tickle our ears.”]

[D: 7] W. Carlos,Switched on Bach 2000, Telarc Int. Co. CD-80323, Cleveland, OH (1992).
[The classic album revisited. With modern synthesizer technology, Carlos performs in
“authentic Bach tunings.”]

[D: 8] J. Chowning,Turenas, Stria, Phone, SabelitheWER 2012-50 Wergo, Mainz, Germany
(1988). [Use of inharmonic materials in a “western” style.]

[D: 9] Classical Instrumental Traditions: Thailand, JVC World Sounds, VICG-5262, Tokyo,
Japan (1993). [Focuses on solo pieces for a variety of indigenous Thai instruments.]

[D: 10] I. Darreg,Detwelvulate, Ivor Darreg Memorial Fund (1995). [Encourages use of non-
12-tet tunings. Each tuning has its own “feel.”]

[D: 11] D. Doty, Uncommon Practice: Selected Compositions 1984-1995,Frog Peak Music
[B: 57]. [Compositions in just intonation.]

[D: 12] Fong Naam,Sleeping Angel, Nimbus Records, NI 5319 (1991). [Thai classical music
is played in a close approximation to 7-tet.]

[D: 13] Fong Naam,Nang Hong Suite, Nimbus Records, NI 5332 (1992). [Thai funeral mu-
sic, in 7-tet, is livelier than you might think.]
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[D: 14] E. Fisk,Baroque Guitar, MusicMasters 0612-67130-2, Ocean, NJ (1993). [Scarlatti
performed on classical guitar.]

[D: 15] Gamelan Batel Wayang Ramayana, CMP Records, NY CMP CD 3003 (1990).
[Gamelan music accompanying the Ramayana saga.]

[D: 16] Gamelan of Cirebon, King Records, KICC 5130, Tokyo, Japan (1991). [An iron
gamelan from Cirebon, played in the slendro tuning.]

[D: 17] Gamelan Gong Gede of Batur Temple, King Records, KICC 5153, Tokyo, Japan
(1992). [A Balinese gamelan.]

[D: 18] Gamelan Gong Kebyar of “Eka Cita,” Abian Kapas Kaja, King Records, KICC 5154,
Tokyo, Japan (1992). [Award-winning gamelan from Denpassar, Bali.]

[D: 19] Gender Wayang of Sukawati Village, King Records, KICC 5156, Tokyo, Japan
(1992). [The gamelan that accompanies the shadow puppet.]

[D: 20] The Gyuto Monks,Freedom chants from the roof of the world,Rykodisc (1989).
[Overtone singing is common in the Tibetan tradition.]

[D: 21] A. J. M. Houtsma, T. D. Rossing, and W. M. Wagenaars,Auditory Demonstrations
(Phillips compact disc No. 1126-061 and text) Acoustical Society of America, Woodbury
NY (1987). [A wealth of great sound examples: thorough and thought provoking.]

[D: 22] Huun-Huur-Tu, “60 horses in my herd,” Shanachie 64050 (1993). [Throat singing is
integral to these traditional Tuvan songs.]

[D: 23] On the Edge, Selections of the 1996 International Computer Music Society, Hong
Kong (1996).

[D: 24] E. Katahn,Beethoven In The Temperaments, Gasparo Records, No. 332 (1998). [Per-
formances of several Beethoven piano sonatas in authentic temperaments.]

[D: 25] Klênêngan Session of Solonese Gamelan, King Records, KICC 5185, Tokyo, Japan
(1994). [Gamelan from the palace (kraton) in Solo, played bymusicians from the National
Broadcasting Company (RRI).]

[D: 26] E. Lyon,Red Velvet, Smart Noise Records (1996) [Music that “hypernavigates a com-
pressed informational world.” Thanks, Eric.]

[D: 27] Music from the Morning of the World,Elekctra/Asylum/Nonesuch Records, 9 79196-
2, Rockefeller Plaza, NY (1988). [Balinese gamelan and the Ramayana monkey chant.]

[D: 28] T. Murail, Gondwana/Désintégrations/Time and Again, performed by Y. Prin and P.
Plissier, Salabert, Scd8902. [Spectral compositions.]

[D: 29] Music for the Gods, Ryko RCD 10315 (1992). [Recorded in 1941 and recently reis-
sued. Compare the early sound of the gamelan with what it has become today.]

[D: 30] A. Newman,Scarlatti SonatasNCD 60080, Newport Classic, RI (1989). [Scarlatti
played on the “Magnum Opus” harpsichord, “maybe the largestharpsichord ever built.”]

[D: 31] H. Partch,The Bewitched, Performed by members of the University of Illinois Mu-
sical Ensemble, CRI CD7001, 179 W. 74th St. NY (1990). [Partch’s dance-satire is per-
formed with a variety of his instruments tuned to his 43-tonejust scale.]

[D: 32] H. Partch,Music of Harry Partch, CRI CD7000, New York (1989). [A “best of”
Partch: new scales, new instruments, a new listening experience.]

[D: 33] I. Pogorelich, Domenico Scarlatti Sonaten, Deutsche Grammophon 435-855-2
(1992). [Scarlatti adapted for piano.]

[D: 34] L. Polansky,Simple Harmonic Motion, Artifact Recordings, Berkeley, CA (1994).
[Works for instruments in just intonation.]

[D: 35] S. Reich,Phase PatternsRobi Droli/Newtone, No. 5018, (2000). [Exploits rhythmic
phasing.]

[D: 36] J. C. Risset,Sud, Dialogues, Inharmonique,Mutations, INA C 1003, INA.GRM Paris,
France (1987). [Use of inharmonic materials in a “western” context.]
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[D: 37] S. Ross,Scarlatti, Best SonatasErato, 2292-45423-2, Erato-Disques, Radio France
(1988). [Scarlatti recorded at the Chapelle du Chateau d’Assas.]

[D: 38] I. W. Sadra,Karya, Lyrichord LYRCD 7421. [New music from an influential Indone-
sian composer.]

[D: 39] Thailand-Ceremonial and Court Music.
[D: 40] W. A. Sethares,Xentonality, Odyssey Records XEN2001 (1997). [A variety of equal

and unequal temperaments played with related timbres. Adaptively tuned and found-
sound pieces. Thoroughly xentonal. Available from Frog Peak Music, Box 1052, Lebab-
non NH 03766 and from amazon.com.]

[D: 41] W. A. Sethares,Exomusicology, Odyssey Records EXO2002 (2002). [A variety of
equal and unequal temperaments played with related timbres. Adaptively tuned and
found-sound pieces. Thoroughly xentonal. Available from amazon.com.]

[D: 42] L. Sgrizzi, Vingt-quatre Sonates pour Clavecin,Accord, 1491014, France (1984).
[Scarlatti played on the harpsichord at the Cathedrale San Lorenzo.]

[D: 43] J. Teller,My Inner Ear, The Tyte Institute, Hesselogado 4,3 DC-2100, Copenhagen,
Denmark. [Concert for three samplers in the spiral corridorof the Roundtower.]

[D: 44] F. Terenzi,Music from the Galaxies,Island Records, Inc., New York (1991). [Maps
from interstellar radio telescope data into sound waves, creating interesting outer space
sounds.]

[D: 45] Instrumental Music of Northeast Thailand, King Records, KICC 5124, Tokyo, Japan
(1991). [Pong langis a kind of wooden xylophone and a style of music.]





S: Sound Examples on the CD-ROM

The sound files on the CD-ROM are saved in the.mp3 format,
which is readable usingWindows Media Player or
Quicktime . Navigate toTTSS/sounds/Chapter/ and
launch the*.mp3 file by double clicking, or by opening the
file from within the player. References in the body of the textto
sound examples are coded with[S:] to distinguish them from
references to the bibliography, discography, video examples,
and web links. The sound examples may also be accessed
using a web browser. Open the fileTTSS/Contents.html
in the top level of the CD-ROM and navigate using the html
inteface.

Sound Examples for Chapter 1

[S: 1] Challenging the octave(challoct.mp3 0:24 ). The spectrum of a sound is con-
structed so that the octave between& and ' & is dissonant while the nonoctave& to ' ( ) &
is consonant. See p. 2 and video [V: 1].

[S: 2] A simple tune(simptun1.mp3 0:47 ). Harmonic timbres in the 12-tet scale set the
stage for the next three examples. Chord pattern is taken from Plastic City, sound example
[S: 38]. See pp. 3 and 309.

[S: 3] The “same” tune(simptun2.mp3 0:47 ). Harmonic timbres in the 2.1-stretched
scale appear uniformly dissonant. See p. 3.

[S: 4] The “same” tune(simptun3.mp3 0:47 ). 2.1-stretched timbres are matched to the
2.1-stretched scale. See p. 3.

[S: 5] The “same” tune(simptun4.mp3 0:47 ). 2.1-stretched timbres in 12-tet appear
uniformly dissonant. See p. 3.

Sound Examples for Chapter 2

[S: 6] Virtual pitch ascending(virtpitchup.mp3 0:22 ). Harmonic and inharmonic
timbres alternate with sine waves at the appropriate virtual pitch. See Table 2.2 on p. 35
for a listing of all frequencies in this example.

[S: 7] Virtual pitch descending(virtpitchdown.mp3 0:22 ). Harmonic and inharmonic
timbres alternate with sine waves at the appropriate virtual pitch. Comparing this example
with [S: 6] shows how virtual pitch may be influenced by context. See Table 2.2 on p. 35
for a listing of all frequencies in this example.
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Sound Examples for Chapter 3

[S: 8] Beating of sine waves I(beats1.mp3 0:24 ). See p. 40 and video [V: 5].
(i) A sine wave of 220 Hz (4 seconds)
(ii) A sine wave of 221 Hz (4 seconds)

(iii) Sine waves (i) and (ii) together (8 seconds)
[S: 9] Beating of sine waves II(beats2.mp3 0:24 ). See p. 40 and video [V: 6].

(iv) A sine wave of 220 Hz (4 seconds)
(v) A sine wave of 225 Hz (4 seconds)

(vi) Sine waves (iv) and (v) together (8 seconds)
[S: 10] Beating of sine waves III(beats3.mp3 0:24 ). See p. 40 and video [V: 7].

(vii) A sine wave of 220 Hz (4 seconds)
(viii) A sine wave of 270 Hz (4 seconds)
(ix) Sine waves (vii) and (viii) together (8 seconds)

[S: 11] Dissonance between two sine waves(sinediss.mp3 1:06 ). A sine wave of fixed
frequency 220 Hz is played along with a “sine wave” with frequency that begins at 220 Hz
and slowly increases to 470 Hz. See p. 45 and video [V: 8]. Figure 3.6 on p. 45 provides
a visual representation.

[S: 12] Dissonance between two sine waves: Binaural Presentation(sinedissbin.mp3
1:06 ). The same as [S: 11], except the sine wave of fixed frequency is panned completely
to the right and the variable sine wave is panned completely to the left. Using headphones
will ensure that only one channel is audible to each ear. The dissonance percept is still
present, although diminished. See p. 49.

Sound Examples for Chapter 4

[S: 13] Dream to the Beat(dreambeat.mp3 5:28 ). A 19-tet pop tune with a bass that
beats like the heart. A microtonal love song. See p. 58.

[S: 14] Incidence and Coincidence(incidence.mp3 5:23 ). What happens when you
play simultaneously in different tunings? Each note in this19-tet melody is “harmonized”
by a note from 12-tet, resulting in some unusual inharmonic sound textures. The distinc-
tion between “timbre” and “harmony” becomes confused, although the piece is by no
means confusing. See p. 58.

[S: 15] Haroun in 88(haroun88.mp3 3:36 ). In all 12-tet instruments (like the piano),
there are 100 cents between adjacent steps.Haroun in 88uses a tuning in which there are
88 cents between adjacent steps, a scale first explored by Gary Morrison [B: 113]. One
feature of this scale is that it does not repeat at the octave;instead, it has 14 equal steps
in a stretched “pseudo-octave” of 1232 cents. One way to exploit such “strange” tunings
is to carefully match the tonal qualities of the sounds to theparticular scale. See pp. 59,
267, and 272.

[S: 16] 88 Vibes(vibes88.mp3 3:47 ). Also in the 88-cent-per-tone tuning,88 Vibesfea-
tures a spectrally mapped “vibraphone.” See pp. 59, 267, and272.

[S: 17] Sonata K380 by Scarlatti(k380tet12.mp3 1:29 ). Performed in 12-tet in the key
of A . See pp. 60 and 216.

[S: 18] Sonata K380 by Scarlatti(K380JImajC.mp3 1:29 ). Performed in just intonation
centered in the key ofA . See p. 60.

[S: 19] Sonata K380 by Scarlatti(K380JIC+12.mp3 1:29 ). Performed in just intonation
centered in the key ofA and 12-tet simultaneously. The notes where the differencesare
greatest stand out clearly. See p. 60.
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[S: 20] Sonata K380 by Scarlatti(K380JImajC+.mp3 1:29 ). Performed in just intona-
tion centered in the key ofA E . See p. 62.

[S: 21] Sonata K380 by Scarlatti(K380JImeanC.mp3 1:29 ). Performed in the quarter
comma meantone tuning centered in the key ofA . See p. 66.

[S: 22] Sonata K380 by Scarlatti(K380JImeanC+.mp3 1:29 ). Performed in the quarter
comma meantone tuning centered in the key ofA E . See p. 66.

[S: 23] Imaginary Horses(imaghorses.mp3 3:58 ). This sequence contains the har-
monic spectra of a piano and a “perc flute,” which are matched to the simple integer
ratios ) 8 ) ; 8 = 9 8 7 7 8 ' < 8 = : 8 = ' 8 )
to form a Just Intonation scale that was called “solemn procession” by Lou Harrison. The
consequence is a piano and synth duet with galloping piano riff and bucking synth lines
that does not sound solemn to me. See p. 62.

[S: 24] Joyous Day(joyous.mp3 4:35 ). This uses the just intonation) 8 ) : 8 < = 8 9 7 8 ' = 8 7 ) = 8 < ' 8 )
created by Lou Harrison. To my ears, it is a majestic, extra-major sounding tuning. See
p. 62.

[S: 25] What is a Dream?(whatdream.mp3 3:51 ). Although the ancient Greeks did not
record their music, they did write about it. They noticed therelationships between musical
pitches and mathematical ratios. Some of the ancient scalesfell into disuse, among them
the “aeolic” scale, which uses the justly tempered pitches) 8 ) : 8 < 7 ' 8 ' > 9 8 7 7 8 ' ) ' < 8 < ) ) ; 8 : ' 8 ) (
Lyrics expertly crafted by a non-ancient Greek, George Sethares. See p. 62.

[S: 26] Just Playing(justplay.mp3 2:52 ). In this piece, the 12 notes of the keyboard
are mapped:

cents: � ) : ' � = ' ; > 7 < ; 9 : < = < 7 > � ' > ; ; < < 9 : ; : ) � < <
mapped to: A A E F F E D G G E 5 5 E C C E B
interval: ) ( � ) ( � ) ) ) ( ) ' = ) ( ) ; > ) ( ' = ) ( 7 7 ) ( 9 ) ( = ) ( = ; ) ( ; > ) ( > = ) ( < >
ratio: ) 8 ) x/x : 8 < > 8 ; = 8 9 9 8 7 > 8 = 7 8 ' ) ) 8 > = 8 7 > 8 9 ) = 8 <

This includes all ratios of the JI major scale, along with a few extras. The small interval
betweenA andA E , for which there is no (small integer) just ratio, was used primarily for
trills. See p. 62.

[S: 27] Signs(signs.mp3 3:41 ). One of the more prolific ancient Greeks (from the point
of view of discovering and codifying musical scales) was Archytas, who lived about 400
B.C. Although his music has been lost, his tunings have survived. This song is played
in one of Archytas’ chromatic scales that is based on equal “tetrachords” (a set of four
descending notes, see p. 55) with the intervals' < 8 ' > ' 9 7 8 ' ' 9 7 ' 8 ' > (
It is rather amazing that the sonorous beauty of scales such as this were surrendered by the
European musical tradition for centuries in exchange for a keyboard that could be played
equally in all keys. See p. 62.

[S: 28] Immanent Sphere(imsphere.mp3 4:17 ). Each note is an overtone of a single
underlying fundamental. See p. 68.
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[S: 29] Free from Gravity(freegrav.mp3 3:28 ). The melodic and harmonic motion
conform to a simple additive scale, a regular lattice that organizes pitch space additively
in frequency. See p. 68.

[S: 30] Intersecting Spheres(intersphere.mp3 3:33 ). The basic timbre is harmonic,
and all partials of all tones are integer multiples of 50 Hz. The tuning is similarly a
spectral scale consisting of all multiples of 50 Hz (although only a small subset are ac-
tually used.) The timbres were created using additive-style synthesis with the program
Metasynth [W: 23], and the results were passed through various nonlinearities in Mat-
lab [W: 21]. This causes many new overtones at ever higher frequencies that eventually
hit the fold over frequency (22050 for normal CD recording) and begin descending. Be-
cause 22050 is divisible by 50, when the partials fold back, they still lie on the same 50
Hz lattice—they just augment (or decrease) the amplitude ofthe partials. So no matter
how many nonlinearities are used, the sound remains within the same harmonic template.
Much of the character (the “hair-raising on end”) of the timbres is due to this unorthodox
method of creating the sounds. See p. 68.

[S: 31] Over Venus(overvenus.mp3 4:25 ). This melody floats above a single low tone,
playing on the multidimensional harmonics. See p. 68.

[S: 32] Pulsating Silences(pulsilence.mp3 3:33 ). A single living note that changes
without moving, that grows while remaining still. Even if there was only one note, there
would still be music. See p. 68.

[S: 33] Overtune(overtune.mp3 3:54 ). Additive synthesis can create very precise and
clean sounds. All partials are from the same harmonic series. See p. 68.

[S: 34] Fourier’s Song(fouriersong.mp3 3:54 ). Also known asTable 4.1: Properties
of the Fourier Transform, this song was written by Bob Williamson and Bill Sethares
“because we love Fourier Transforms, and we know you will too.” Perhaps you have
never taken a course where everything is laid out in a single song. Well, here it is...a song
containing 17% of the theoretical results, 25% of the practical insights, and 100% of the
humor of ECE330: Signals and Systems. The music is played in an additive (overtone)
scale that consists of all harmonics of 100 Hz. See p. 68 or visit the web pages at [W: 8].
Lyrics appear in Appendix K.

Sound Examples for Chapter 6

[S: 35] Tritone dissonance curve(tridiss.mp3 1:06 ). This is the auditory version of
Fig. 6.2. See p. 97 and video [V: 9].

[S: 36] Tritone chime(trichime.mp3 0:37 ). First, you hear a single note of the “tritone
chime.” Next, the chime plays the three chords from Fig. 6.3.The chords are then repeated
using a more “organ-like” tritone timbre. See p. 98 and video[V: 10].

[S: 37] Tritone chord patterns(trichord.mp3 0:52 ). This sound example presents two
chord patterns, each repeated once. Which passage appears more consonant, the major or
the diminished?

(a) G major,A major,5 major,A major
(b) A dim, F dim, F E dim, A dim

Which of the next two patterns feels more resolved?

(c) A dim, A major,A dim, A major
(d) A major, A dim, A major, A dim

Musical scores for these four segments are given in Fig. 6.4.See p. 99.
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[S: 38] Plastic City: A Stretched Journey(plasticity.mp3 6:00 ). The “same” piece is
played with harmonic sounds in 12-tet, with 2.2-stretched sounds, with 1.87-compressed
sounds, and finally with 2.1-stretched sounds, all in their respective stretched or com-
pressed tunings. See pp. 59, 104, and 309.

[S: 39] October 21st(october21.mp3 1:42 ). There are no real octaves (defined as a fre-
quency ratio of 2 to 1) anywhere in this piece. The sounds inOctober 21stare constructed
so that the octave between& and ' & is dissonant, whereas the nonoctave between& and' ( ) & is consonant. Thus, the unit of repetition is a “stretched pseudo-octave” with a fre-
quency ratio of 2.1 to 1. As the structure of the timbres are matched to the structure of the
scale, these nonoctave intervals can be consonant, even as the (real) octave is dissonant.
The same 2.1-stretched tones were demonstrated in [S: 4]. See pp. 59 and 105.

[S: 40] A note with partials at 4:5:6:7(4567.mp3 0:08 ). This note/chord is built from
four sine wave partials with frequencies 400, 500, 600, and 700 Hz. See p. 96.

[S: 41] A note with partials at 1/7:1/6:1/5:1/4(7654.mp3 0:08 ). This note/chord is built
from four sine wave partials with frequencies 400, 467, 560,and 700 Hz. See p. 96.

[S: 42] 4:5:6:7 vs. 1/7:1/6:1/5:1/4(4567 7654.mp3 0:16 ). The two notes from sound
examples [S: 40] and [S: 41] alternate. Which is more consonant? See p. 96.

Sound Examples for Chapter 7

[S: 43] Tingshaw(tingshaw.mp3 4:03 ). The tingshaw is a small handbell with a bright
and cheerful ring, and it is played in a scale determined by the spectrum of the bell itself.
Tingshawis discussed extensively in Chap. 7. See p. 127.

[S: 44] Chaco Canyon Rock(chacorock.mp3 3:38 ). Piece based on the rock described
at length in Chap. 7. See pp. 135 and 327.

[S: 45] Duet for Morphine and Cymbal(morphine.mp3 3:21 ). Each angle in an x-ray
diffraction pattern can be mapped to an audible frequency, transforming a crystalline
structure into sound. In this piece, complex clusters of tones derived from morphine crys-
tal resonances are juxtaposed over a rhythmic bed supplied by the more percussive timbre
of the cymbal. The mapping technique is described at length in Chap. 7. See p. 141.

Sound Examples for Chapter 8

[S: 46] Adaptation of stretched timbres: minor chord(streminoradapt.mp3 0:06 ).
Stretched timbres play a 12-tet minor chord. After adaptation, this converges to the
stretched minor chord detailed in Table 8.2. See p. 162.

[S: 47] Adaptation of stretched timbres: major chord(stremajoradapt.mp3 0:06 ).
Stretched timbres play a 12-tet major chord. After adaptation, this converges to the
stretched major chord detailed in Table 8.2. See p. 162.

[S: 48] Circle of fifths in 12-tet(circle12tet.mp3 0:38 ). The circle of fifths moves
through all 12 keys, demonstrating one of the great strengths of 12-tet: reasonable conso-
nance in all keys. See p. 162.

[S: 49] Circle of fifths inA major just intonation(circleJICmaj.mp3 0:38 ). The circle
of fifths demonstrates one of the liabilities of JI: keys thatare distant from the tonal center
are unuseable. See p. 162.
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[S: 50] Circle of fifths in adaptive tuning(circleadapt.mp3 0:38 ). Applying adapta-
tion to the circle of fifths allows all chords to maintain the simple integer ratios, combining
the best of 12-tet (modulation to all keys) with the consonance of JI. See p. 162.

[S: 51] Syntonic comma example: JI(syntonJIdrift.mp3 0:43 ). Each repeat of the
phrase in Fig. 8.7 the tuning drifts lower. See p. 164.

[S: 52] Syntonic comma example: 12-tet(synton12tet.mp3 0:21 ). The phrase of
Fig. 8.7 is performed in 12-tet. See p. 164.

[S: 53] Syntonic comma example: adaptive tuning(syntonadapt.mp3 0:21 ). The
phrase of Fig. 8.7 does not drift yet maintains fidelity to thesimple integer ratios when
played in adaptive tuning with harmonic sounds. See p. 164.

[S: 54] Listening to adaptation(listenadapt.mp3 0:32 ). Each note has a spectrum
containing four inharmonic partials at& ¥ ) ( 9 ) 9 & ¥ ) ( > & ¥ and ' & . Three notes are initial-
ized at the ratios 1, 1.335, and 1.587 (the 12-tet scale stepsA , G , and5 p ) and allowed
to adapt. The final adapted ratios are) , ) ( 9 ) 9 , and ) ( > � 7 . The adaptation is done three
times:

(i) With extremely slow adaptation (very small stepsize)
(ii) Slow adaptation

(iii) Medium adaptation
See pp. 95 and 166.

[S: 55] Scarlatti’s K1 Sonata in 12-tet. (k001tet12.mp3 0:32 ). The first phrase of the
sonata. See Fig. 8.10 on p. 167.

[S: 56] Scarlatti’s K1 Sonata in adaptive tuning(k001adaptX.mp3 0:32 ). Poor choice
of stepsizes can lead to wavering pitches in the adaptive tuning. See Fig. 8.10 on p. 167.

[S: 57] Scarlatti’s K1 Sonata in adaptive tuning. (k001adapt.mp3 0:32 ). Better choices
of stepsizes can ameliorate the wavering pitches. See Fig. 8.10 on p. 167.

[S: 58] Wavering pitches(waverpitch.mp3 0:21 ). The second measure of Domenico
Scarlatti’s harpsichord sonata K1 is played three ways:

(i) Scarlatti’s K1 sonata in 12-tet.
(ii) Scarlatti’s K1 sonata with adaptation. Observe the wavering pitch under-

neath the trill at the end of the second measure.
(iii) Scarlatti’s K1 sonata with adaptation, modified so that “new” notes are

adapted ten times as fast as held notes. The wavering pitch isimpercep-
tible.

See p. 167.
[S: 59] Sliding pitches(slidepitch.mp3 0:45 ). The kinds of pitch changes caused by

the adaptive tuning algorithm are often musically intelligent responses to the context of
the piece.

(a) A simple chord sequence fromG major to 5 major is transformed by the
adaptive tuning algorithm. The sliding pitch of one note stands out. Each mea-
sure is played separately, then together.
(b) The adaptive tuning algorithm “changes” the chord on thefourth beat.

See p. 169.
[S: 60] Three Ears(three ears.mp3 4:24 ). As each new note sounds, its pitch (and

that of all currently sounding notes) is adjusted microtonally (based on its spectrum) to
maximize consonance. The adaptation causes interesting glides and microtonal pitch ad-
justments in a perceptually sensible fashion. Listen for the two previous segments from
[S: 59]. Many similar effects occur throughout. See pp. 170,181, and 182.
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Sound Examples for Chapter 9

[S: 61] Adaptive Study No. 1(adapt study1.mp3 2:36 ). Example of the pitch glides
and wavering pitches usingAdaptun . See p. 177.

[S: 62] Adaptive Study No. 2(adapt study2.mp3 2:28 ). Using Adaptun ’s context
feature, the wandering of the pitch is reduced. See pp. 177 and 179.

[S: 63] Compositional technique: example 1(breakdrums1.mp3 0:10 ). A standard
MIDI drum file from the Keyfax Software [W: 17] “Breakbeat” collection is performed
using drum sounds. See Fig. 9.3 on p. 182.

[S: 64] Compositional Technique: example 2(breakdrums2.mp3 0:10 ). The same
MIDI file as in [S: 63] is reochestrated with guitar and bass guitar. See p. 182.

[S: 65] Compositional technique: example 3(breakmap1.mp3 0:20 ). Editing the MIDI
data in Fig. 9.3 leads to the sequence in Fig. 9.4 on p. 183. Theoriginal cymbal part is
time stretched and offset in pitch.

[S: 66] Compositional technique: example 4(breakmap2.mp3 0:20 ). A variant of
[S: 65]. See p. 183.

[S: 67] Compositional technique: example 5(breakmap3.mp3 0:20 ) Another variant of
[S: 65]. See p. 183.

[S: 68] Compositional technique: example 6(breakadapt1.mp3 0:23 ). Adaptation the
standard MIDI file of Fig. 9.4 using no context and default settings in Adaptun . See
p. 182.

[S: 69] Compositional technique: example 7(breakrand1.mp3 0:20 ). The sequence in
Fig. 9.4 and sound example [S: 65] is transformed by randomizing the bass line over an
octave. See p. 183.

[S: 70] Compositional technique: example 8(breakrand2.mp3 0:20 ). Randomization
of the “fast” line in Fig. 9.4 leads to this arpeggiated guitar. See p. 183.

[S: 71] Compositional technique: example 9(breakrand3.mp3 0:20 ). Randomization
of the “slow” line in Fig. 9.4 leads to this synthesized melody. See p. 183.

[S: 72] Compositional technique: example 10(breakadapt2.mp3 0:21 ). After adapta-
tion, example [S: 71] sounds very different. See p. 183.

[S: 73] Compositional technique: example 11(breakadapt3.mp3 0:47 ). Sound exam-
ple [S: 71] is adapted with full convergence of the algorithm. The sound example is played
twice: first without the melody, and then with. See p. 183.

[S: 74] Adventiles in a Distorium(adventiles.mp3 4:46 ). An adaptively tuned com-
position featuring frenetically distorted guitars. See p.181.

[S: 75] Aerophonious Intent(aerophonious.mp3 3:24 ). An adaptively tuned composi-
tion orchestrated using an extreme form of hocketing. See p.181.

[S: 76] Story of Earlight(earlight.mp3 3:53 ). An adaptively tuned recitation of whis-
pers and flutes. See p. 181.

[S: 77] Excitalking Very Much(excitalking.mp3 3:32 ). An adaptively tuned conver-
sation between a synthetic bass and a synthetic clarinet. See p. 181.

[S: 78] Inspective Liquency(inspective.mp3 3:46 ). An adaptively tuned piece where
no note remains fixed. See p. 181.

[S: 79] Local Anomaly(localanomaly.mp3 3:27 ). This piece was created from a stan-
dard MIDI drum track, which was randomized and orchestratedusing various percussive
stringed sounds such as sampled guitars and basses. The extremely dissonant but highly
rhythmic soundscapewas input intoAdaptun , and the notes adapted toward consonance.
No context was used. See pp. 181 and 184.

[S: 80] Maximum Dissonance(maxdiss.mp3 3:24 ). Instead of minimizing the disso-
nance, this piece maximizes the dissonance at every time instant. See pp. 181 and 186.
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[S: 81] Persistence of Time(persistence.mp3 4:54 ). Polyrhythms beat three against
two, a paleo-futuristic audio conundrum where all intervals adapt to maximize instanta-
neous consonance. See pp. 180 and 181.

[S: 82] Recalled Opus(recalledopus.mp3 3:45 ). At each instant in time, these “vio-
lins” strive to minimize dissonance. See pp. 177, 181, and 184.

[S: 83] Saint Vitus Dance(saintvitus.mp3 3:32 ). Begin with a MIDI drum pattern.
Use the pattern to trigger a sampled guitar sound; it is wildly dissonant becausethe pitches
are essentially random. At each time instant, perturb the pitches of all currently sounding
notes to the nearest intervals that maximize consonance. Thus is born an adaptively tuned
dance.

[S: 84] Simpossible Taker(simpossible.mp3 3:20 ). An adaptively tuned composition
that began as a hip hop drum pattern. See pp. 181 and 182.

[S: 85] Wing Donevier(wing.mp3 3:17 ). An adaptively tuned composition in seven beats
per measure. See pp. 181 and 184.

Sound Examples for Chapter 13

[S: 86] 11-tet spectral mappings: before and after(tim11tet.mp3 1:20 ). Several differ-
ent instrumental sounds alternate with their 11-tet spectrally mapped versions:

(i) Harmonic trumpet compared with 11-tet trumpet
(ii) Harmonic bass compared with 11-tet bass

(iii) Harmonic guitar compared with 11-tet guitar
(iv) Harmonic pan flute compared with 11-tet pan flute
(v) Harmonic oboe compared with 11-tet oboe

(vi) Harmonic “moog” synth compared with 11-tet “moog” synth
(vii) Harmonic “phase” synth compared with 11-tet “phase” synth

See p. 266 and video [V: 11].
[S: 87] 12-tet vs. 11-tet(tim11vs12.mp3 0:37 ). A short sequence of major chords are

played:
(viii) Harmonic oboe in 12-tet
(ix) Spectrally mapped 11-tet oboe in 12-tet
(x) Harmonic oboe in 11-tet

(xi) Spectrally mapped 11-tet oboe in 11-tet
See p. 268 and video [V: 12].

[S: 88] The Turquoise Dabo Girl(dabogirl.mp3 4:16 ). Many of the kinds of effects
normally associated with (harmonic) tonal music can occur,even in such strange settings
as 11-tet (which is often considered among the hardest tunings in which to play tonal mu-
sic). Consider, for instance, the harmonization of the 11-tet pan flute melody that occurs
in the “chorus.” Does this have the feeling of some kind of (perhaps unfamiliar) “cadence”
as the melody resolves back to its “tonic?” Spectral mappingof the instrumental sounds
allows such xentonal motion. See pp. 58 and 269.

[S: 89] The Turquoise Dabo Girl (first 16 bars)(dabogirlX.mp3 0:29 ). In 11-tet, but
using unmapped harmonic sounds. The “out-of-timbre” percept is unmistakable. See
p. 269.

[S: 90] Tom Tom Spectral Mappings: Before and After(tomspec.mp3 0:37 ). Several dif-
ferent instrumental sounds alternate with versions mappedinto the spectrum of a tom tom:

(i) Harmonic flute compared with tom tom flute
(ii) Harmonic trumpet compared with tom tom trumpet
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(iii) Harmonic bass compared with tom tom bass
(iv) Harmonic guitar compared with tom tom guitar

See p. 270 and video [V: 13].
[S: 91] Glass Lake(glasslake.mp3 3:08 ). Instruments that are spectrally mapped “too

far” can lose their tonal integrity. When guitars, basses, and flutes are transformed into
the partial structure of a drum (a tom tom), they are almost unrecognizable. But this does
not mean that they are useless. All sounds in this piece (except for the percussion) were
demonstrated in [S: 90]. The “tom tom” scale supports perceptible “chords,” though the
chords are not necessarily composed of familiar intervals.Tom Staley played a key role
in writing and performingGlass Lake. See pp. 267 and 271.

[S: 92] A harmonic cymbal(harmcym.mp3 0:23 ). A cymbal is spectrally mapped into a
harmonic spectrum. The resulting sound is pitched and capable of supporting melodies
and chords.

(i) The original sample contrasted with the spectrally mapped version
(ii) A simple “chord” pattern played with the original sample, and then with

the spectrally mapped version
See p. 272 and video [V: 14].

[S: 93] Sonork(sonork.mp3 3:15 ). The origin of each sound is a cymbal, spectrally
mapped to nearby harmonic templates to create the bass, synth, and other instrumental
sounds. See pp. 267 and 272.

[S: 94] Inharmonic drum(inharmdrum.mp3 0:59 ). This drum sound is incapable of
supporting melody or harmony. See p. 272.

[S: 95] Harmonic drum(harmdrum.mp3 1:29 ). The drum sound from [S: 94] is spec-
trally mapped to the nearest harmonic template. It can now support both melody or har-
mony. See p. 272.

[S: 96] Harmonic and inharmonic drum(harm+inharm.mp3 1:29 ). The sounds from
[S: 94] (the original inharmonic drum) and [S: 95] (the spectrally mapped version) are
combined. See p. 272.

[S: 97] Hexavamp(hexavamp.mp3 3:22 ). A “classical” guitar is spectrally mapped into
16-tet and overdubbed with itself. See pp. 58 and 267.

[S: 98] Seventeen Strings(17strings.mp3 3:22 ). A sampled Celtic harp is transformed
for compatibility with 17-tet. See pp. 58, 268, and 267.

[S: 99] Unlucky Flutes(13flutes.mp3 3:51 ). Flutes, guitars, bass, and keyboards are
spectrally mapped into 13-tet. All instruments clearly retain their tonal identity, and yet
sound harmonious even on sustained passages. Compare with the 13-tet demonstration
on Carlos’Secrets of Synthesis[D: 6], which is introduced, “But the worst way to tune is
probably this temperament of 13 equal steps.” See pp. 58 and 267.

[S: 100] Truth on a Bus(truthbus.mp3 3:22 ). A 19-tet guitar piece that is unabashedly
diatonic. If you were not listening carefully, you might imagine that this was a real guitar,
tuned normally, and played skillfully. You would be very wrong. See pp. 267 and 58.

[S: 101] Sympathetic Metaphor(sympathetic.mp3 3:59 ). This guitar has 19 tones in
each octave, and the melody dances pensively on a delicatelybalanced timbre. Peter Kidd
plays the excellent fretless bass. See pp. 58 and 267.

Sound Examples for Chapter 14

[S: 102] Ten Fingers(tenfingers.mp3 3:18 ). Demonstrates the kind of consonance
effects achievable in 10-tet. The guitar-like 10-tet timbre is created by spectrally mapping
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a sampled guitar into an induced spectrum. The full title of this piece isIf God Had
Intended Us To Play In Ten Tones Per Octave, Then He Would HaveGiven Us Ten Fingers.
See pp. 58, 239, 267, 281, and 310.

[S: 103] Ten Fingers: harmonic guitar(tenfingersX.mp3 0:28 ). The first 16 bars of
Ten Fingers[S: 102] are played with a harmonic (sampled) guitar. Theout-of-spectrum
effect is unmistakable. See p. 281.

[S: 104] Circle of Thirds(circlethirds.mp3 3:41 ). There is an interesting and beau-
tiful chord pattern in 10-tet that is analogous to (but very different from) the traditional
circle of fifths. This piece cycles around theCircle of Thirdsover and over: first fast, then
slow, and then fast again. See p. 285.

[S: 105] Isochronism(isochronism.mp3 3:55 ). When there are ten equal tones in each
octave, special tone colors are needed to align the partialsinto consonant patterns. See
p. 267 and p. 286 for a description of the 10-tet chord patterns.

[S: 106] Anima (anima.mp3 4:03 ). Uses modified timbres to effect a balance between
coherence and chaos, between the obvious and the obscure. See p. 267. Exploits the 10-
tet tritone chords described starting on p. 288.

[S: 107] Swish(swish.mp3 3:20 ). Timbres constructed inMetasynthswirl and mutate as
the piece evolves in 5-tet, which is analogous to a wholetonescale inside 10-tet. See p. 58.

Sound Examples for Chapter 15

[S: 108] Tuning of a classical Thai piece(thai7tet.mp3 0:28 ). Demonstrates the pro-
cedure whereby the tuning of a piece can be found from the recording. Begins with the
first 10 seconds ofSudsabounfrom [D: 39] and then separates the melody into individual
notes, each of which is compared with a sine wave to determineits pitch. See Sect. 15.2
on p. 292.

[S: 109] Comparison of harmonic sounds and their spectrally mapped 7-tet versions
(7tetcompare.mp3 0:25 ). Three instruments are demonstrated:

(i) Three different notes of a bouzouki
(ii) Three different notes of a harp

(iii) A pan flute
See pp. 298 and 300.

[S: 110] Comparison between 7-tet and a 12-tet major scale(7vs12.mp3 1:19 ). The
theme of the simple tune from sound example [S: 2] is played first in 12-tet and then
in 7-tet, using the “naive” mapping between 7-tet and the diatonic (major) scale defined
in (15.2) and using harmonic timbres. See p. 299.

[S: 111] Comparison between 7-tet and a 12-tet major scale(7vs12bar.mp3 1:19 ). The
theme of the simple tune from sound example [S: 2] is played first in 12-tet and then in
7-tet, using the “naive” mapping between 7-tet and the diatonic (major) scale defined in
(15.2) with timbres have been mapped to the spectrum of an ideal bar. See p. 299.

[S: 112] Scarlatti’s K380 in 7-tet(K380tet7.mp3 1:29 ). Using the “naive” mapping be-
tween 7-tet and the diatonic (major) scale of (15.2), Scarlatti’s theme looses its harmonic
meaning. More conventional tunings of K380 can be heard in sound examples [S: 17]
through [S: 22]. The timbres are harmonic. See p. 299.

[S: 113] Scarlatti’s K380 in 7-tet(K380tet7bar.mp3 1:29 ). Using the “naive” mapping
between 7-tet and the diatonic (major) scale of (15.2), Scarlatti’s theme loses its harmonic
meaning. More conventional tunings of K380 can be heard in sound examples [S: 17]
through [S: 22]. The timbres have been mapped to the spectrumof an ideal bar. See p. 299.
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[S: 114] Scarlatti’s K380 in 12-tet(K380tet12bar.mp3 1:29 ). This performance of
K380 uses timbres that have been mapped to the spectrum of an ideal bar. See p. 299.

[S: 115] March of the Wheels(marwheel.mp3 3:38 ). The notes of a standard MIDI drum
track are mapped into the 7-tet scale, creating the rhythmicfoundation for this piece. The
notes are randomized, creating a variety of serendipitous melodies. See pp. 58 and 300.

[S: 116] Pagan’s Revenge(pagan.mp3 3:55 ). The notes of a standard MIDI file (Pa-
ganini’s Caprice No.24 performed by D. Lovell) are mapped into 7-tet, creating the foun-
dation for this piece. At the halfway point, the MIDI data in the file was time reversed so
that the theme proceeds forward and then backward—finally ending on the first note. See
pp. 58 and 302.

[S: 117] Nothing Broken in Seven(broken.mp3 3:29 ). A single six-note isorhythmic
melody is repeated over and over, played simultaneously at five different speeds. See
pp. 58 and 302.

[S: 118] Phase Seven(phase7.mp3 3:41 ). A single eight-note isorhythmic melody is re-
peated over and over, played simultaneously at five different speeds. See pp. 58 and 302.





V: Video Examples on the CD-ROM

The video files on the CD-ROM are saved in the.avi
format, which is readable usingWindows Media Player
or Quicktime . Navigate toTTSS/Videos/ and launch
the *.avi file by double clicking, or by opening the file
from within the player. References in the body of the text to
the video examples are coded with[V:] to distinguish them
from references to the bibliography, discography, and sound
examples. The video examples may also be accessed using a
web browser. Open the fileTTSS/Contents.html in the
top level of the CD-ROM and navigate using the html inteface.

[V: 1] Challenging the Octave(challoct.avi 0:21 ). See p. 2 and sound example [S: 1].
The spectrum of the sound is constructed so that the octave between& and' & is dissonant
while the nonoctave& to ' ( ) & is consonant.

[V: 2] Pitch of Periodic Sounds(pitchclicks.avi 0:21 ). See p. 33. The five buzzy
sounds all have the same period; the pitch jumps up an octave somewhere between (a)
and (e).

[V: 3] Virtual Pitch of Harmonic Partials(virtpitch.avi 0:29 ). See p. 33. Sine waves
at frequencies) � 9 � , ) 7 � � , and ) = ; � are presented individually and then together. With
all three sounding, the primary percept is of a low buzzy sound at a pitch corresponding
to ' ; � Hz.

[V: 4] Virtual Pitch of Inharmonic Partials(virtpitchX.avi 0:30 ). See p. 33. Sine
waves at frequencies) � ; � , ) 7 ' � , and ) = < � are presented individually and then together.
With all three sounding, the primary percept is of a low buzzysound at a pitch correspond-
ing to about' ; 9 Hz, although this is less clear than when the partials are harmonically
related, as in [V: 3].

[V: 5] Beating of Sine Waves I(beats1.avi 0:23 ). See p. 40 and sound example [S: 8].
[V: 6] Beating of Sine Waves II(beats2.avi 0:23 ). See p. 40 and sound example [S: 9].
[V: 7] Beating of Sine Waves III(beats3.avi 0:23 ). See p. 40 and sound example

[S: 10].
[V: 8] Dissonance Between Two Sine Waves(sinediss.avi 1:06 ). See p. 45 and sound

example [S: 11]. A sine wave of fixed frequency 220 Hz is playedalong with a “sine
wave” with frequency that begins at 220 Hz and slowly increases to 470 Hz.

[V: 9] Tritone Dissonance Curve(tridiss.avi 1:04 ). See p. 97 and sound example
[S: 35]. This is the auditory version of Fig. 6.2.

[V: 10] Tritone Chime(trichime.avi 0:42 ). See p. 98 and sound example [S: 36].
First, you hear a single note of the “tritone chime.” Next, the chime plays the three chords
from Fig. 6.3. The chords are then repeated using a more “organ-like” tritone timbre.

[V: 11] 11-tet Spectral Mappings: Before and After(tim11tet.avi 1:15 ). See p. 266
and sound example [S: 86]. Several different instrumental sounds alternate with their 11-
tet spectrally mapped versions.
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[V: 12] 12-tet vs. 11-tet(tim11vs12.avi 0:38 ). See p. 268 and sound example [S: 87].
A short sequence of chords is played that compares spectrally mapped 11-tet sounds to
harmonic sounds when playing chords drawn from the 11-tet scale.

[V: 13] Tom Tom Spectral Mappings: Before and After(tomspec.avi 0:44 ). See p. 270
and sound example [S: 90]. Several different instrumental sounds alternate with versions
mapped into the spectrum of a tom tom:

[V: 14] A Harmonic Cymbal(harmcym.avi 0:23 ). See p. 272 and sound example
[S: 92]. A cymbal is spectrally mapped into a harmonic spectrum—the resulting sound
is pitched and capable of supporting melodies and chords.
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This section contains all web links referred to throughout
Tuning, Timbre, Spectrum, Scale. References in the body of
the text to websites are coded with[W:] to distinguish them
from references to the bibliography, discography, and sound
and video examples. The web examples may also be accessed
using a web browser. Open the fileTTSS/Links.html in
the top level of the CD-ROM and navigate using the html
interface.

[W: 1] Alternate tuning mailing list,http://groups.yahoo.com/group/tuning/ [This group and
[W: 18] continually discuss techniques of creating and analyzing music that is outside the
Western tradition.]

[W: 2] Bitheadz, Inc., http://www.bitheadz.com [Makers of audio tools such as theUnity soft-
ware synthesizer.]

[W: 3] How harmonic are harmonics?http://www.phys.unsw.edu.au/È jw/ harmonics.html
[Discussion of inharmonicities in strings and air column instruments.]

[W: 4] Classical MIDI Archives, http://www.classicalarchives.com/ [Thousands of standard
MIDI files are available here free for listening, studying, and enjoying.]

[W: 5] Content Organs, http://www.content-organs.com [An organ maker that offers the her-
mode tuning in its organs.]

[W: 6] Corporeal Meadows, http://www.corporeal.com/ [Website devoted to Harry Partch.
Partch’s music, instruments, and personality are all profiled here.]

[W: 7] J. A. deLaubenfels, “Adaptive Tuning Web Site,”
http:// www.adaptune.com/ [Also, see John’s personal web page at
http://personalpages.bellsouth.net/j/d/jdelaub/jstudio.htm for sound examples and
further details on the spring method of adaptive tuning.]

[W: 8] ECE330: Signals and SystemsProf. Sethares’ class website for the course on Fourier
transforms is:
http://eceserv0.ece.wisc.edu/Èsethares/classes/ece330.html and the official university
website is:
http://www.engr.wisc.edu/ece/courses/ece330.html

[W: 9] P. Erlich on Harmonic Entropy, http://tonalsoft.com/td/erlich/entropy.htm [Erlich dis-
cusses models of harmonic entropy in a series of posts to the Tuning Digest beginning in
Sept. 1997.]

[W: 10] P. Erlich, “The forms of tonality,” http://lumma.org/tuning/erlich/ Also available on
the CDTTSS/PDF/erlich-forms.pdf . [Concepts of tone-lattices, scales, and no-
tational systems for 5-limit and 7-limit music.]

[W: 11] P. Frazer,Midicode Synthesizer, http://www.midicode.com [Implements a method of
dynamic retuning in a software syntheizer.]

[W: 12] Freenote Music, http://microtones.com/new.htm [Dedicated to microtonal guitars and
recordings.]
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[W: 13] Frog Peak Music, http://www.frogpeak.org/ [This composer’s collective is a gold
mine of alternatively tuned music.]

[W: 14] The Justonic Tuning System, http://www.justonic.com/ [Jutonic’s pitch palette uses
any 12-tone just, or harmonic scale to create a 3-dimensional array of tones that can be
used to automatically retune a synthesizer as it plays.]

[W: 15] The Hermode Tuning, http://www.hermode.com/ [A form of automated tuning im-
plemented in the Waldorf Virus C synthesizer. Website has good demonstrations of the
uses of adaptive tunings.]

[W: 16] Institute for Psychoacoustics and Music, http://www.ipem.rug.ac.be/ [Part of the
University of Ghent, IPEM is Belgium’s premier center for electronic music.]

[W: 17] Keyfax Software, http://www.keyfax.com [Professionally recorded standard MIDI
files.]

[W: 18] Make Micro Music mailing list,http:// groups.yahoo.com/ group/ MakeMicroMusic/
[This group and [W: 1] continually discuss techniques of creating and analyzing music
that is outside the Western tradition.]

[W: 19] Making Microtonal Music Website, http://www.microtonal.org/ [A gathering point
for people who are actively making microtonal music, and forthose who would like to
join them.]

[W: 20] Mark of the Unicorn, http://www.motu.com/ [Makers of music hardware and soft-
ware,includingDigital Performer, a MIDI and audio sequencer.]

[W: 21] Matlab, http://www.mathworks.com/ [General purpose programming language com-
mon in signal processing and engineering: “the language of technical computing.”]

[W: 22] Max 4.0 Reference Manual, http://www.cycling74.com/products/dldoc.html [Web-
site of Cycling ‘74, distributers of Max programming language. See also [B: 210].]

[W: 23] Metasynth, http://www.uisoftware.com/ [A powerful graphic tool forsound manipu-
lation and visualization.]

[W: 24] Microtonal Dictionary, http://tonalsoft.com/ [Joseph Monzo’s online dictionary of
musical tuning terms is an excellent resource.]

[W: 25] MIDI file formats described, http://www.sonicspot.com/guide/midifiles.html
[W: 26] W. Mohrlok, The Hermode Tuning System[This provides a comprehensive de-

scription of the operation of the hermode tuning, and is available on the CD in
TTSS/pdf/hermode.pdf .]

[W: 27] Scala Homepage, http://www.xs4all.nl/È huygensf/scala/ [Powerful software tool for
experimentation with musical tunings.]

[W: 28] Tuning, Timbre, Spectrum, Scalehttp://eceserv0.ece.wisc.edu/Èsethares/
[W: 29] Smith, J. O. “Bandlimited interpolation—interpretation and algorithm,” http://ccrma-

www.stanford.edu/È jos/resample/ [Excellent discussion of audio signal processing with
focus on interpolation techniques.]

[W: 30] John Starrett’s Microtonal Music, http:// www.nmt.edu/È jstarret/ microtone.html
[Great resource for microtonal music, instruments, and tools.]

[W: 31] Tune Smithy, http://www.tunesmithy.connectfree.co.uk/ [A program for algorithmic
music composition that includes extensive microtonal support and a dynamic tuning fea-
ture.]

[W: 32] Vicentino’s adaptive-JI of 1555, http:// tonalsoft.com/ monzo/ vicentino/ vi-
centino.htm [Vicentino’s “Second tuning of 1555” is composed of two chains of 1/4-
comma meantone that can avoid comma drift.]

[W: 33] Access “Virus” Synthesizer, http://www.access-music.de/ [The hermode tuning is
available in the Virus synthesizer.]

[W: 34] Waldorf Synthesizers, http://www.waldorf-music.de [First commercial implementa-
tion of an adaptive tuning.]
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Adaptun
drone, 176, 178
parameters, 180
program setup, 172
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update scheme, 175

additive synthesis, 131, 140, 143, 257, 278,
327–328

additivity of dissonances,seedissonance,
additivity

Akkoç, C., 69
Alexjander, S., 147
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musical, 213–233
of performances, 4
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antinode, 20
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artifacts of spectrum,seespectrum, artifacts
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asymmetries in spectrum, 261
Atmosujito, S., 194
attack, 27, 263, 324, XVII
auditory crystallography, 147
auditory system, 16

Bach, J. S., 224
backward piano, 27
bar

7-tet, 298
dissonance curve, 109, 110
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spectrum, 110

barbershop quartet, 150
Barbour, J. M., 60, 62, 73
basilar membrane, 16, 44
beats, 40–42, 45, 47, 71, 84

envelope of, 341
formulas for, 315
removal of, 167
tuning with, 86

Beauty in the Beast, 221
bells, 111–113, 127–135

Ann, X
dissonance curve, 112, 131
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spectrum, 111, 130

Benade, A., 1, 24, 36
bending modes,seeresonance
Bernstein, L., 307
bifurcating partials, 196
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bins,seequantization of frequency
biological spectrum analyzer,seespectrum,
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Blackwood, E., 57
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Bohlen, H., 59, 106
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Boomsliter, P., 79
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Brown, J. C., 24
Bruford, B., 181, 184
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Cage, J., 308
Cariani, P., 44
Carlos, W., 59, 65, 73, 93, 108, 150, 221,
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categorical perception, 51
Cazden, N., 78, 82
cent, 41, 56, 317–318, XVII

converting to ratios, 317
Chaco Canyon, 135
challenging the octave, 2
Chalmers, J., 55
Chimes of Partch, 25
chord

diminished, 99
dissonance, 121
even and odd, 101
suspended, 123

Chowning, J. M., 113
chromelodeon, 63
circle

of fifths, 162
of thirds, 285

cloud chamber bowls, 63
coevolution, 306
Cohen, E. A., 104
coinciding partials, 117, 121, 237, 243
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Cokro, Pak, 194, 206
commutativity of� table, 349
composing with spectrum, 68
compressed sounds,seestretched sounds
computational models, 339
conditioning, cultural,seecultural

conditioning
conga, 23
consonance, 1

based modulation, 277
contrapuntal, 76
contrast, 8
controlling, 7
functional, 76
history of, 75
maxima, 94
maximizing, 226
melodic, 75, 187
of tritone, 97
pleasure, 76
polyphonic, 75
psychoacoustic, 77
resolution, 77
sensory,seedissonance, sensory

constraints, 236
constructive interference, 40, 315
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context model, 175, 178
convergence, 153, 157–159, 175, 226
cost function,seeoptimization
critical band, 42, 340

and dissonance, 47, 89
crossfade, 265
crystal

dissonance curve, 144
instrument, 146
sounds, 141–147

cultural conditioning, 82
cymbal, harmonic, 272

Dabo Girl, 269
Darreg, I., 73, 158
decibels, 11
deLaubenfels, J., 151
destructive interference, 40, 315
DFT, seespectral analysis
diatonic, 53, XVII
difference frequency,seefrequency,

difference

difference tones, 80
diffraction, 141
Digital Performer, 181
diminished chord, 99
dissonance

additivity, 95, 96, 122, 312, 330
and critical band, 47
calculating, 331
chord, 121
coinciding partials, 117, 121
computational model, 340
contrapuntal, 76
contrast, 8, 312
controlling, 7, 94, 121, 277, VI
curve, 5, 8, 46, 47, 93–125, VI

10-tet, 238, 282
11-tet, 258
12-tet, 241
5-tet, 120, 208
7-tet, 294
8-tet, 101
88-cet, 272
bar, 110
bells, 112, 131
crystal, 144
drawing, 95, 131, 138, 144
drum, 271
for harmonic sounds, 96
frequency modulation, 115
harmonic, 84, 97
minima, 116, 121, 334
multiple spectra, 119
pan flute, 107
pelog, 209
properties, 115–119, 333–337
Pythagorean, 250
rock, 138
slendro, 208
stretched, 103
symmetry, 116, 121
Thai, 294
three partials, 119
tritone, 98
two partials, 117
vs. 12-tet, 93

functional, 76
history of, 75
instantaneous, 219
intrinsic, 77, 95, 115, 145, 330, 333
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maximizing, 186
melodic, 75, 187
meter, 3
minima, 94, 157, 335
minimizing, 156, 226
polyphonic, 75
programs, 331
psychoacoustic, 77
restlessness, 77
score, 4, 213, 220, 297
sensory, 8, 39, 45–50, 81, VI
subharmonic sounds, 119
surfaces, 121–124, 283, 295
total, 224, 229
unison, 115

dissonance surfaces, 296
diversity of musical styles, 308
Doty, D., 62, 63
Douthett, J., 73
drift

constraining, 236
parameter, 158
tonic, 163

drum
dissonance curve, 271
spectrum, 269–271

dynamic tuning,seeadaptive tuning

earphones, 40
elastic tuning,seeadaptive tuning
end effects,seespectrum, artifacts
Ensoniq, 267
entropy

harmonic,seeharmonic entropy
envelope, 28, 29, 110, 263, 275, XVII

bell, 129
detector, 48, 340
of beating sinusoids, 41, 47, 315
rock, 135

equal temperament, 6, 56
spectra, 237

Erlich, P., 73, 77, 87, 96, 355
Eskelin, G., 63, 91, 150
ethnomusicologist, 192
euphonious, 46

face/vase illusion, 35
Farey series, 88, 355
FFT,seespectral analysis

fifth, 31, 52, 98, 123, XVII
filter bank, 44, 262, 340
Fletcher, N., 37, 111
FM, seefrequency modulation
formants, 29, XVII
Fourier’s song, 358
Fourier, J. B., 319
fourth, 31, 52, 98, 123, XVII
Fractal Tune Smithy, 151
frequency

difference, 42
modulation, 113–115, XVII

dissonance curves, 115
spectrum, 114

pitch, 12, 31
quantization, 323

frequency bins,seequantization of frequency
fundamental bass, 25, 76, 145
fusion of sound, 68, 79, 83, 104, 268, 273,

309

GA, seegenetic algorithm
Gadjah Mada University, 194
Galilei, G., 79
gambang, 201
gamelan, 4, 72, 191–212, VI

aesthetics, 192, 223
dissonance score, 222
instruments, 194
stretched tuning, 203
tunings, 72, 202, 362–365

Gamelan Eka Cita, 222
Gamelan Kyai Kaduk Manis, 194, 204
Gamelan Swastigitha, 194, 204
gender, 197–198
genetic algorithm, 241, XVIII
glockenspiel, 22
Gondwana, 67
gong, 191, 199–200
Gong Kebyar, 222
gradient descent, 157, 226
graphical method, 108
guitar

harmonics, 21
pluck, 16, 19

hair cells, 339
Hall, D. E., 73, 150, 163
Hamming, R., 321
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Hammond organ, 240
harmonic

cymbal, 272
dissonance

vs. 12-tet, 97
vs. JI, 97

entropy, 80, 87, 97, 355–356
scales vs. JI, 93
series, 3, 5, 307, XVIII
sounds

dissonance curve, 96
vs. induced spectra, 240

string, 17
template, 33, 80
vs. inharmonic instruments, 24

harmonics
odd, 106
of guitar,seeguitar, harmonics

harpsichord spectrum, 225
Harrison, L., 73
Helmholtz, H., 20, 37, 73, 77, 84, 312, 317
Hermawan, D., 194
hermode tuning, 152
Hertz, 2, 12, XVIII
heterophonic layering, 291
Hindemith, P., 81, 213
historical musicology, 5
hocketing, 186
holistic vs. analytical listening, 24, 42, 319
Huygens, C., 307

IAC, 172, XVIII
identity for � table, 349
in tune and in spectrum, 312
inaudible sound, 141
induced spectrum, 276
inharmonic, 5, XVIII

11-tet, 268
adaptation, 164
bells, 111, 127
crystal,seecrystal sounds
frequency modulation, 114
instruments, 72
metallophones, 194
music theory, 100, 273
perception,seeperception of inharmonic

sounds
resonance, 22
rocks, 135
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sounds, 4, 94, 257, 305, 312
tritone chime, 98
vs. harmonic instruments, 24

interference,seeconstructive (or destructive)
interference

interlaced partials, 160
intervals, 32, 52, 87
intonation, 5
intonational naturalism vs. relativism, 307

JI, seejust intonation
JND,seejust noticeable difference
Jorgensen, O. H., 71
just

interval, 6
intonation, 6, 60–64, XVIII

critiqued, 62
recordings, 62
vs. 12-tet, 60, 93, 97
vs. adaptation, 161–163, 166, 180

scales, 61, 64
thirds and sixths, 60

just noticeable difference, 42, XVIII
justonic tuning, 150

Katahn, E., 65
Keisler, D. F., 78
kenong, 191, 199
keyboard mappings, 67, 133, 139, 145, 280
Kirkpatrick, R., 214
kithara, 63
Krantz, R. J., 73
Kunst, J., 192, 198, 200, 202, 203, 207

Lafrenière, V., 329
Leman, M., 339
limits to listening, 308
listening to adaptation, 166
lithophone, 135
looping, 263, 322, 325
loudness, 330

amplitude, 12

magnitude spectrum,seespectrum,
magnitude

mapping, keyboard,seekeyboard mappings
mapping, spectral, 257–278
Marion, M., 323
matching
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spectrum with scale, 7
tuning with timbre, 4

Mathematica , 13
Mathews, M. V., 104, 106, 305
Mathieu, W. A., 1
Matlab , 13, 259, 267, 318, 327, 331
Max, 172
maximizing consonance,seeminimizing

dissonance
maximizing dissonance, 186
maq̃amãt, 69
McLaren, B., 59, 73, 108, 148, 319
meantone

tuning, 64, 228
vs. 12-tet, 65

metallophones, 72, 194
MIDI, XVIII

classical archives, 301
pitch bend resolution, 175
randomization, 183, 301
sequencer, 181, 185
time reversal, 303
time stretching, 182

minimizing dissonance, 156
modes of vibration,seeresonance
modulation, 277
Mohrlok, W., 151
Moreno, E., 59
morphine, 143
Morrison, G., 59, 163, 271
multidimensional scaling, 27, 275
Murail, T., 67
music theory

for 10-tet, 289
for 8-tet, 101
for inharmonic sounds, 273
for tritone sound, 100
stretched and compressed, 103

musical
analysis, 213–233
synthesizer, 29h -tet, 57, 94

natural modes of vibration,seeresonance
node, 24
noiseless sound,seeinaudible sound
non-western music, 4, 5
nonharmonic,seeinharmonic

octave, 31, 52, 56, XVIII
consonant, 1
dissonant, 2
pseudo,seepseudo-octave

octotonic spectrum and scale, 100
Ohm, G., 16
Olsen, H., 1
one-footed bride, 86
optimization, 157, 188, 226, 235, 241
out of spectrum, 269, 282, 310
out of timbre, 269
out of tune, 52, 62
overtone,seepartial
overtone scale, 66
overview, 8

pad with zeroes, 325
Paganini, N., 301
pan flute, 67

dissonance curve, 107
spectrum, 106

paradox, 11, 306
Parncutt, R., 77, 83
Partch’s 43-tone scale, 61
Partch, H., 63, 73, 79, 86, 133, 151
partial, 13, XVIII

bifurcating, 196
peak finding, 326
pelog, 72, 193, 202, 205, 209
perception of inharmonic sounds, 268, 273,

274
perceptual correlates, 11
perfect spectrum, 245, 248
periodic, 15, 319, 323, XVIII
periodicity theory of pitch perception,see

pitch, periodicity theory
Perlman, M., 307
persistence model, 175
phase spectrum,seespectrum, phase
phase vocoder, 258, 328
physical attributes, 11
piano roll notation, 181, 301
piano tuning, 70
Pierce, J. R., 44, 59, 100–101, 106
Piston, W., 77, 213
pitch

ambiguous, 34
and spectrum, 32
computational models, 339
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definition, 32
frequency, 12, 31
metallophones, 211
MIDI resolution, 172
of harmonic sounds, 31
periodicity theory, 44
place theory, 43
sliding, 169, 185, 186
standardization, 193, 307
to MIDI, 69
virtual, seevirtual pitch
wavering, 167

place theory of pitch perception,seepitch,
place theory

Plastic City, 104
pleasant, 1, 46
Plomp, R., 45, 46, 77, 89, 95, 312, 329, 336,

343
plucked string, 16, 19
Polansky, L., 62, 150
polyphonic stratification, 291, 296, 302
pong lang, 293
portamento, 185
principle of coinciding partials, 117, 121
prism, 13, 141
pseudo-octave, 2, 59, 102, 132, 249, 271,

309
Purwardjito, 206
Pythagoras of Samos, 31, 52, 73
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