uning,
Timbre,
Spectrum,
Scale

Second Edition

William A. Sethares

@ Springer




William A. Sethares

Tuning, Timbre, Spectrum, Scale

September 16, 2004

Springer

Berlin Heidelberg New York
Hong Kong London
Milan Paris Tokyo






Prelude

The chords sounded smooth and nondissonantbut strange and
somewhat eerie. The effect was so different from the tempere
scale that there was no tendency to judge in-tuneness or out-
of-tuneness. It seemed like a peek into a new and unfamiliar
musical world, in which none of the old rules applied, and the
new ones, if any, were undiscoveredH. Slaymaker [B: 176]

To seek out new tonalities, new timbres...
To boldly listen to what no one has heard before.

Several years ago | purchased a musical synthesizer witttraguiing feature—each
note of the keyboard could be assigned to any desired pitih fieedom to arbitrar-
ily specify the tuning removed a constraint from my musid thead never noticed or
questioned—playing in 12-tone equal temperameduddenly, new musical worlds
opened, and | eagerly explored some of the possibilitiesqual divisions of the
octave,n equal divisions, and even some tunings not based on thesoatall.

Curiously, itwas much easier to play in some tunings thanheis. For instance,
19-tone equal temperamerit9-ted with its 19 equal divisions of the octave is easy.
Almost any kind of sampled or synthesized instrument plagié wiano sounds, horn
samples, and synthesized flutes all mesh and flow. 16-tetdehdut still feasible.
| had to audition hundreds of sounds, but finally found a fewdysounds for my
16-tet chords. In 10-tet, though, none of the tones in théhggizers seemed right
on sustained harmonic passages. It was hard to find pairdes timat sounded rea-
sonable together, and triads were nearly impossible. Eviey appeared somewhat
out-of-tune, even though the tuning was precisely ten tpeesctave. Somehow the
timbre, or tone quality of the sounds, seemed to be interderi

The more | experimented with alternative tunings, the mbappeared that cer-
tain kinds of scales sound good with some timbres and notatfiters. Certain kinds
of timbres sound good in some scales and not in others. Tisisda host of ques-
tions: What is the relationship between the timbre of a santithe intervals, scale,
or tuning in which the sound appears “in tune?” Can this i@tahip be expressed
in precise terms? Is there an underlying pattern?

! This is the way modern pianos are tuned. The seven white keysthe major scale, and
the five black keys fill in the missing tones so that the perxtilistance between adjacent
notes is (roughly) equal.



Vi Prelude

This book answers these questions by drawing on recentsesylsychoacous-
tics, which allow the relationship between timbre and tgrimbe explored in a clear
and unambiguous way. Think of these answers as a model otatpgrception that
makes predictions about what you hear: about what kindsrifrés are appropriate
in a given musical context, and what kind of musical contexguitable for a given
timbre.

Tuning, Timbre, Spectrum, Scélegins by explaining the relevant terms from the
psychoacoustic literature. For instance, the perceptidtimbre” is closely related
to (but also distinct from) the physical notion of thpectrunof a sound. Similarly,
the perception of “in-tuneness” parallels the measurat#e bfsensory consonance
The key idea is that consonance and dissonance are notitesdities of intervals,
but they are dependent on the spectrum, timbre, or tonaltgudlthe sound. To
demonstrate this, the first sound example on the accompayih plays a short
phrase where the octave has been made dissonant by devaos ohtimbre, even
though other, nonoctave intervals remain consonant. In #&most any interval can
be made dissonant or consonant by proper sculpting of tHaéim

Dissonance curveprovide a straightforward way to predict the most consonant
intervals for a given sound, and the set of most-consonaatvals defines a scale
relatedto the specified spectrum. These allow musicians and comptselesign
sounds according to the needs of their music, rather thaimdpae create music
around the sounds of a few common instruments. The spedtcata/relationship
provides a map for the exploration of inharmonic musical ldsr

To the extent that the spectrum/scale connection is basqutaperties of the
human auditory system, it is relevant to other musical cauTwo important inde-
pendent musical traditions are the gamelan ensembles oh&sik (known for their
metallophones and unusual five and seven-note scales) apértussion orchestras
of classical Thai music (known for their xylophone-likeaghones and seven-tone
equal-tempered scale). In the same way that instrumentatisovith harmonic par-
tials (for instance, those caused by vibrating strings and@é@umns) are closely
related to the scales of the West, so the scales of the gasralamelated to the spec-
trum, or tonal quality, of the instruments used in the game&milarly, the unusual
scales of Thai classical music are related to the spectruheofylophone-likeenat

But there’s more. The ability to measure sensory consonanaereliable and
perceptually relevant manner has several implicationthedesign of audio signal
processing devices and for musical theory and analysisapsrthe most exciting
of these is a new method aflaptive tuninghat can automatically adjust the tuning
of a piece based on the timbral character of the music so agtmine dissonance.
Of course, one might cunningly seek to maximize dissonatheepoint is that the
composer or performer can now directly control this penealdy relevant parameter.

The first several chapters present the key ideas in a nonmatioal way. The
later chapters deal with the nitty-gritty issues of soundegation and manipulation,
and the text becomes denser. For readers without the bastdjto read these sec-
tions, | would counsel the pragmatic approach of skippirgdhtails and focusing
on the text and illustrations.
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Fortunately, given current synthesizer technology, itismecessary to rely only
on exposition and mathematical analysis. You can actuisllgri to the sounds and
the tunings, and verify for yourself that the predictionstiof¢ model correspond
to what you hear. This is the purpose of the accompanying @mneStracks are
designed to fulfill the predictions of the model, and somedesigned to violate
them; it is not hard to tell the difference. The effects aresubtle.

Madison, Wisconsin, USA William A. Sethares
August 2004
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vals in the symbolic method of constructing spectra.



1

The Octave Is Dead . . . Long Live the Octave

1.1 A Challenge

The octave is the most consonant interval after the unisolowAC on the piano
sounds “the same” as a high C. Scales “repeat” at octavevaiseiThese common-
sense notions are found wherever music is discussed:

The most basic musical interval is the octave, which occurenathe fre-
guency of any tone is doubled or halved. Two tones an octaad apeate a
feeling of identity, or the duplication of a single pitch irhaher or lower
registert

Harry Olsort uses “pleasant” rather than “consonant”:

An interval between two sounds is their spacing in pitch egérency... It
has been found that the octave produces a pleasant senséttisran estab-
lished fact that the most pleasing combination of two tosesie in which
the frequency ratio is expressible by two integers neitfi@rtoch is large.

W. A. Mathiel? discusses the octave far more poetically:

The two sounds are the same and different. Same name, satgé (inbat-
ever that is), but higher pitch. When a man sings nursery dsywith a
child, he is singing precisely the same song, but lower tharchild. They
are singing together, but singing apart. There is sometbasy in the har-
mony of two tones an octave apart - played either separatébgether - but
an octave transcen@ssy There is a way in which the tones are identical.

Arthur Benadé observes that the similarity between notes an octave aparéen
enshrined in many of the world’s languages:

! From [B: 66].
2[B: 123].

¢ [B: 104].

4 [B: 12].



2 1 The Octave Is Dead . . . Long Live the Octave

Musicians of all periods and all places have tended to adpatenthen they
hear a tone having a repetition frequency double that ofrenaine, the two
are very nearly interchangeable. This similarity of a tonthts octave is
so striking that in most languages both tones are given tie same.

Anthony Stor? is even more emphatic:

The octave is an acoustic fact, expressible mathematieettlich is not cre-
ated by man. The composition of music requires that the edtataken as
the most basic relationship.

Given all this, the reader may be surprised (and perhapsiadoédulous) to hear a
tone that is distinctly dissonant when played in the inteof@n octave, yet sounds
nicely consonant when played at some other, nonoctavevaitdris is exactly the
demonstration provided in the first sound exarfji: 1] and repeated in the first
video examplé [V: 1]. The demonstration consists of only a handful of npts
shown in Fig. 1.1.

Fig. 1.1.In sound example [S: 1] and

0 [ e P video example [V: 1], the timbre of the
7 e — — 2 — ‘I sound is constructed so that the octave
NG o betweenf and 2f is dissonant while

the nonoctavef to 2.1f is consonant.
foo2ft f&2f f 21f f&2.1f Go listen to this example now.

A note is played (with a fundamental frequenty= 450 Hz®) followed by its oc-
tave (with fundamental atf = 900 Hz). Individually, they sound normal enough,
although perhaps somewhat “electronic” or bell-like inurat But when played si-
multaneously, they clash in a startling dissonance. In dversd phrase, the same
note is played, followed by a note with fundamentakatf = 945 Hz (which falls
just below the highly dissonant interval usually called #ugmented octave or mi-
nor 9th). Amazingly, this second, nonoctave (and even rtoca) interval appears
smooth and restful, even consonant; it has many of the deaistics usually asso-
ciated with the octave. Such an interval is callgusaudo-octave

Precise details of the construction of the sound used inettasple are given
later. For now, it is enough to recognize that the tonal mplaihe sound was care-
fully chosenin conjunction witrthe intervals used. Thus, the “trick” is to choose the
spectrum or timbre of the sound (the tone quality) to matehttiming (the intervals
desired).

® [B: 184].

¢ Beginning on p. 381 is a listing of all sound examples (refees to sound examples are
prefaced with [S:]) along with instructions for accessingrh with a computer.

7 Beginning on p. 393 is a listing of all video examples (refexes to video examples are
prefaced with [V:]) along with instructions for accessihgin with a computer.

8 Hz stands foHertz, the unit of frequency. One Hertz equals one cycle per second



1.2 A Dissonance Meter 3

As will become apparent, there is a relationship betweerkihés of sounds
made by Western instruments (i.e., harm8rsounds) and the kinds of intervals
(and hence scales) used in conventional Western tonal magparticular, the 2:1
octave is important precisely because the first two panidsharmonic sound have
2:1 ratios. Other kinds of sounds are most naturally playgdguother intervals,
for example, the 2.1 pseudo-octave. Stranger still, therérdnarmonic sounds that
suggest no natural or obvious interval of repetition. Oethmsed music is only one
of a multitude of possible musics. As future chapters shoig possible to make
almost any interval reasonably consonant, or to make itywilcssonant, by properly
sculpting the spectrum of the sound.

Sound examples [S: 2] to [S: 5] are basically an extendedoreds this example,
where you can better hear the clash of the dissonances anddhanbral character
associated with the inharmonic stretched sounds. The “ssimgle piece is played
four ways:

[S: 2] Harmonic sounds in 12-tet

[S: 3] Harmonic sounds in the 2.1 stretched scale

[S: 4] 2.1 stretched timbres in the 2.1 stretched scale
[S: 5] 2.1 stretched timbres in 12-tet

wherel2-tetis an abbreviation for the familiar 12-tone per octave edealpered
scale, and where thgtretched scalebased on the 2.1 pseudo-octave, is designed
specially for use with the stretched timbres. When the teakand the scales are
matched (as in [S: 2] and [S: 4]), there is contrast betweersaaance and disso-
nance as the chords change, and the piece has a sensiblalfiogi¢although the
timbral qualities in [S: 4] are decidedly unusual). When tinebres and scales do
not match (as in [S: 3] and [S: 5]), the piece is uniformly dizant. The difference
between these two situations is not subtle, and it callsgotstion the meaning of
basic terms like timbre, consonance, and dissonanceldting question the octave
as the most consonant interval, and the kinds of harmony arsical theories based
on that view. In order to make sense of these examplasing, Timbre, Spectrum,
Scaleuses the notions afensory consonan@ndsensory dissonanc&hese terms
are carefully defined in Chap. 3 and are contrasted with otbgéons of consonance
and dissonance in Chap. 5.

1.2 A Dissonance Meter

Such shaping of spectra and scales requires that there bevandent way to mea-
sure the dissonance of a given sound or interval. One of thdédeas underlying
the sonic manipulations ifiuning, Timbre, Spectrum, Scatethe construction of a
“dissonance meter.” Don’t worry—no soldering is requiréde dissonance meter is
a computer program that inputs a sound in digital form angwtsta number pro-
portional to the (sensory) dissonance or consonance obtireds For longer musical

? Hereharmonicis used in the technical sense of a sound with overtones cesapaxclu-
sively of integer multiples of some audible fundamental.
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passages with many notes, the meter can be used to measutiesthieance within
each specified time interval, for instance, within each measr each beat. As the
challenging the octavexample shows, the dissonance meter must be sensitive to
both the tuning (or pitch) of the sounds and to the spectrurtirtibre) of the tones.
Although such a device may seem frivolous at first glancegstinany real uses:

As an audio signal processing devidée dissonance meter is at the heart of a device
that can automatically reduce the dissonance of a soundk Velaving its character
more or less unchanged. This can also be reversed to creatma that is more dis-
sonant than the input. Combined, this provides a way to tiyreontrol the perceived
dissonance of a sound.

Adaptive tuning of musical synthesizeWhile monitoring the dissonance of the
notes commanded by a performer, the meter can be used ta tdjusning of the
notes (microtonally) to minimize the dissonance of the pges This is a concrete
way of designing an adaptive or dynamic tuning.

Exploration of inharmonic sound3he dissonance meter shows which intervals are
most consonant (and which most dissonant) as a functioneosplectrum of the
instrument. As thehallenging the octavexample shows, unusual sounds can be
profitably played in unusual intervals. The dissonance neae concretely specify
related intervals and spectra to find tunings most appregfidaa given timbre. This

is a kind of map for the exploration of inharmonic musicalcgsa

Exploration of “arbitrary” musical scales:Each timbre or spectrum has a set of
intervals in which it sounds most consonant. Similarly,heaet of intervals (each
musical scale) has timbres with spectra that sound mosboans in that scale. The
dissonance meter can help find timbres most appropriatedivea tuning.

Analysis of tonal music and performande: tonal systems with harmonic instru-
ments, the consonance and dissonance of a musical passagierabe read from
the score because intervals within a given historical pehniave a known and rela-
tively fixed degree of consonance and/or dissonance. Bidnpeances may vary. A
dissonance meter can be used to measure the actual dissafalifferent perfor-
mances of the same piece.

Analysis of nontonal and nonwestern music and performaBoeands played in in-
tervals radically different from those found in 12-tet haw@ standard or accepted
dissonance value in standard music theory. As the dissermaeter can be applied
to any sound at any interval, it can be used to help make mssinae of passages to
which standard theories are inapplicable. For instanagritbe used to investigate
nonwestern music such as the gamelan, and modern atonal. musi

Historical musicologyMany historical composers wrote in musical scales (such as
meantone, Pythagorean, Just, etc.) that are different fid+et, but they did not
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document their usage. By analyzing the choice of intertlaésgdissonance meter can
make an educated guess at likely scales using only the extasit. Chapter 11, on
“Musicological Analysis,” investigates possible scalesdiby Domenico Scarlatti.

As an intonation monitorTwo notes in unison are very consonant. When slightly
out of tune, dissonances occur. The dissonance meter caeedeta monitor the
intonation of a singer or instrumentalist, and it may be uls&$ a training device.

The ability to measure dissonance is a crucial componergveral kinds of audio
devices and in certain methods of musical analysis. The tidgadissonance is a
function of the timbre of the sound as well as the musicalrirtis also has impor-
tant implications for the understanding of nonwestern gjsnodern atonal and
experimental compositions, and the design of electronisicaliinstruments.

1.3 New Perspectives

The dissonance curve plots how much sensory dissonancesaaicaach interval,
given the spectrum (or timbre) of a sound. Many common Weatethestral (and
popular) instruments are primarily harmonic, that is, thaye a spectrum that con-
sists of a fundamental frequency along with partials (ormres) at integer multi-
ples of the fundamental. This spectrum can be used to drassamnce curve, and
the minima of this curve occur at or near many of the steps eftestern scales.
This suggests a relationship between the spectrum of threiments and the scales
in which they are played.

Nonwestern Musics

Many different scale systems have been and still are usedghout the world. In
Indonesia, for instance, gamelans are tuned to five and seMenscales that are
very different from 12-tet. The timbral quality of the (pramly metallophone) in-
struments is also very different from the harmonic instrote®f the West. The dis-
sonance curve for these metallophones have minima that atcu near the scale
steps used by the gameldisSimilarly, in Thailand, there is a classical music tradi-
tion that uses wooden xylophone-like instruments catdedtsthat play in (approx-
imately) 7-tet. The dissonance curve for renat-like tinsinave minima that occur
near many of the steps of the traditional 7-tet Thai scalshawn in Chap. 15. Thus,
the musical scales of these nonwestern traditions arecetatthe inharmonic spec-
tra of the instruments, and the idea of related spectra aaldssts applicable cross
culturally.

1% See Chap. 10 “The Gamelan” for details and caveats.
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New Scales

Even in the West, the present 12-tet system is a fairly reicemvation, and many
different scales have been used throughout history. Sostersg, such as those used
in the Indonesian gamelan, do not even repeat at octavevatdeCanany possible
set of intervals or frequencies form a viable musical sadsuming that the listener
is willing to acclimate to the scale?

Some composers have viewed this as a musical challengeyHisickwood’s
Microtonal Etudesnight jokingly be called the “lll-Tempered Synthesizerthese
it explores all equal temperaments between 13 and 24. Thatead of 12 equal
divisions of the octave, these pieces divide the octaveliBfd 4, 15, and more equal
parts. lvor Darreg composed in many equal temperanémsglaiming

the striking and characteristic moods of many tuning-systeill become
the most powerful and compelling reason for exploring belyd2-tone
equal temperament. It is necessary to have more than onensdve-tone
system before these moods can be heard and their signifiappoeciated?

Others have explored nonequal divisions of the odfaemd even various subdi-
visions of nonoctave¥ It is clearly possible to make music in a large variety of
tunings. Such music is callecenharmonid® strange “harmonies” unlike anything
possible in 12-tet.

The intervals that are most consonant for harmonic souredsiade from small
integer ratios such as the octave (2:1), the fifth (3:2), Aeddurth (4:3). These sim-
ple integer ratio intervals are call@dlstintervals, and they collectively form scales
known asjust intonationscales. Many of the just intervals occur close to (but not
exactly at®) steps of the 12-tet scale, which can be viewed as an acdeiaprox-
imation to these just intervals. Steps of the 19-tet scale approximate many of
the justintervals, but the 10-tet scale steps do not. Thggasts why, for instance, it
is easy to play in 19-tet and hard to play in 10-tet using haimtones—there are
many consonant intervals in 19-tet but few in 10-tet.

New Sounds

Thechallenging the octavéemonstration shows that certain unusual intervals can be
consonant when played with certain kinds of unusual sousdspossible to make
any interval consonant by properly manipulating the sound ityfaFor instance,
is it possible to choose the spectral character so that mattyeclO-tet intervals
became consonant? Would it then be “easy” to play in 10-te&danswer is “yes,”

1 [D: 10].

2 From [B: 36], No. 5.

'3 For instance, Vallotti, Kirchenberg, and Partch.

' For instance, Carlos [B: 23], Mathews and Pierce [B: 102§ kicLaren [B: 108].
!5 Coined by Darreg [B: 36], from the Greedenosfor strange or foreign.

16 Table 6.1 on p. 97 shows how close these approximations are.
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and part of this book is dedicated to exploring ways of malaifirng the spectrum in
an appropriate manner.

Although Western music relies heavily on harmonic sounssé are only one
of a multitude of kinds of sound. Modern synthesizers carlyegenerate inhar-
monic sounds and transport us into unexplored musical ealime spectrum/scale
connection provides a guideline for exploration by spéoifthe intervals in which
the sounds can be played most consonantly or by specifyggatnds in which the
intervals can be played most consonantly. Thus, the methlbais the composer to
systematically specify the amount of consonance or dissma he composer has a
new and powerful method of control over the music.

Consider a fixed scale in which all intervals are just. No ssadie can be modu-
lated through all the keys. No such scale can play all theaerst chords even in a
single key. (These are arithmetic impossibilities, andrecoete example is provided
on p. 153.) But using the ideas of sensory consonance, itdsilple to adapt the
pitches of the notes dynamically. For harmonic tones, thégjuivalent to playing in
simple integer (just) ratios, but allows modulation to ary,khus bypassing this an-
cient problem. Although previous theorists had proposatighch dynamic tunings
might be possiblé! this is the first concrete method that can be applied to angdcho
in any musical settingt is possible to have your just intonation and to modulate,
too! Moreover, the adaptive tuning method is not restricted tonloaic tones, and
so it provides a way to “automatically” play in the relatealsc(the scale consisting
of the most consonant intervals, given the spectral characthe sound).

New “Music Theories”

When working in an unfamiliar system, the composer canngtae musical intu-
ition developed through years of practice. In 10-tet, fatémce, there are no inter-
vals near the familiar fifths or thirds, and it is not obviousatintervals and chords
make musical sense. The ideas of sensory consonance caachtdsd the most
consonant chords, as well as the most consonant intergaddwjays, sensory conso-
nance is a function of the intervals and of the spectrum#ténab the sound), and so
it can provide a kind of sensory map for the exploration of emings and new tim-
bres. Chapter 14 develops a new music theory for 10-tet. mbattal third” chord
is introduced along with the “circle of thirds” (which is semhat analogous to the
familiar circle of fifths in 12-tet). This can be viewed as atotype of the kinds of
theoretical constructs that are possible using the semsmryonance approach, and
pieces are included on the CD to demonstrate that the pieaodf the model are
valid in realistic musical situations.

Unlike most theories of music, this one does not seek (piiy)do explain a
body of existing musical practice. Rather, like a good ddfiertheory, it makes con-
crete predictions that can be readily verified or falsifiede§e predictions involve
how (inharmonic) sounds combine, how spectra and scalegutt and how disso-
nance varies as a function of both interval and spectrumenlctosed CD provides

'7 See Polansky [B: 142] and Waage [B: 202].
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examples so that you can verify for yourself that the préalict correspond to per-
ceptual reality.

Tuning and spectrum theories are independent of musidat styey are no more
“for” classical music than they are “for” jazz or pop. It waube naive to suggest
that complex musical properties such as style can be mehsuterms of a simple
sensory criterion. Even in the realm of harmony (and igrprinusically essential
aspects such as melody and rhythm), sensory consonandg gaonof the story. A
harmonic progression that was uniformly consonant woulted@®us; harmonic in-
terest arises from a complex interplay of restlessnessestiiimess® of tension and
resolution. It is easy to increase the sensory dissonandehence the restlessness,
by playing more notes (try slamming your arm on the keybod@d)it is not always
as easy to increase the sensory consonance and hence thimesst By playing
sounds in their related scales, it is possible to obtain thatgst contrast between
consonance and dissonance for a given sound palette.

1.4 Overview

While introducing the appropriate psychoacoustic jargoimap. 2 (the “Science of
Sound”) draws attention to the important distinction betw&vhat we perceive and
what is really (measurably) there. Any kind of “perceptyattelligent” musical
device must exploit the measurable in order to extract méiion from the environ-
ment, and it must then shape the sound based on the percegguabments of the
listener. Chapter 3 looks carefully at the case of two siemébusly sounding sine
waves, which is the simplest situation in which sensoryatiasices occur.

Chapter 4 reviews several of the common organizing priesipkehind the cre-
ation of musical scales, and it builds a library of histofri@ad modern scales that
will be used throughout the book as examples.

Chapter 5 gives an overview of the many diverse meaningshkatords “con-
sonance” and “dissonance” have enjoyed throughout theideat The relatively re-
cent notion of sensory consonance is then adopted for useghout the remainder
of the book primarily because it can be readily measured andtified.

Chapter 6 introduces the idea ofl&ssonance curvéhat displays (for a sound
with a given spectrum) the sensory consonance and disseoéadl intervals. This
leads to the definition of eelated spectrum and scale, a sound for which the most
consonant intervals occur at precisely the scale stepscowplementary questions
are posed. Given a spectrum, what is the related scale? &seale, what is a related
spectrum? The second, more difficult question is addresdedgth in Chap. 12, and
Chap. 7 (“A Bell, A Rock, A Crystal”) gives three detailed exales of how related
spectra and scales can be exploited in musical contexts.ig brimarily interesting
from a compositional point of view.

Chapter 8 shows how the ideas of sensory consonance canlbéezkpo create
a method of adaptive tuning, and it provides several exasnpiéwhat to expect”

18 Alternative definitions of dissonance and consonance amudsed at length in Chap. 5.
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from such an algorithm. Chapter 9 highlights three compmsstin adaptive tun-
ing and discusses compositional techniques and tradddfsical compositions and
examples are provided on the accompanying CD.

The remaining chapters can be read in any order. Chapteigssiow the pelog
and slendro scales of the Indonesian gamelan are correlétethe spectra of the
metallophones on which they are played. Similarly, Chapsiid®wvs how the scales
of Thai classical music are related to the spectra of the ifis&iuments.

Chapter 11 explores applications in musicology. Ti&sonance scorean be
used to compare different performances of the same piete,examine the use of
consonances and dissonances in unscored and nonwesteécn Amuapplication to
historical musicology shows how the tuning preferences aiBnico Scarlatti can
be investigated using only his extant scores.

Chapter 14 explores one possible alternative musical tseyehat of 10-tet.
This should only be considered a preliminary foray into whratmises to be a huge
undertaking—codifying and systematizing music theorarsrifon-12-tet. Although
it is probably impossible to find a “new” chord in 12-tet, itimpossible to play
in n-tet without creating new harmonies, new chordal strustuaad new kinds of
musical passages.

Chapters 12 and 13 are the most technically involved. Theywdiow to spec-
ify spectra for a given tuning, and how to create rich and dempounds with the
specified spectral content.

The final chapter sums up the ideasTuning, Timbre, Spectrum, Scals ex-
ploiting a single perceptual measure (that of sensory cuarse) and applying it to
musical theory, practice, and sound design. As we expangatatte of timbres we
play, we will naturally begin to play in new intervals and newmings.






2

The Science of Sound

“Sound” as a physical phenomenon and “sound” as a
perceptual phenomena are not the same thing. Definitions and
results from acoustics are compared and contrasted to the
appropriate definitions and results from perception resbar
and psychology. Auditory perceptions such as loudness,pit
and timbre can often be correlated with physically measleab
properties of the sound wave.

2.1 What Is Sound?

If a tree falls in the forest and no one is near, does it makessouynd?Understand-
ing the different ways that people talk about sound can hetga@the heart of this
conundrum. One definitidrdescribes the wave nature of sound:

Vibrations transmitted through an elastic material or adsdiquid, or gas,
with frequencies in the approximate range of 20 to 20,00€&her

Thus, physicists and engineers use “sound” to mean a peeggue propagating
through the air, something that can be readily measuredtjzdid into a computer,
and analyzed. A second definition focuses on perceptuatespe

The sensation stimulated in the organs of hearing by sudiatidins in the
air or other medium.

Psychologists (and others) use “sound” to refer to a pei@ehat occurs inside the
ear, something that is notoriously hard to quantify.

Does the tree falling alone in the wilderness make sound2te first defini-
tion, the answer is “yes” because it will inevitably causerations in the air. Using
the second definition, however, the answer is “no” becauseethre no organs of
hearing present to be stimulated. Thus, the physicist sagstlie psychologist says
no, and the pundits proclaim a paradox. The source of theusanf is that “sound”
is used in two different senses. Drawing such distinctisnsore than just a way
to resolve ancient puzzles, it is also a way to avoid simitarfgsions that can arise
when discussing auditory phenomena.

Physical attributes of a signal such as frequency and amgitnust be kept
distinct from perceptual correlates such as pitch and lessinThe physical at-
tributes are measurable properties of the signal whereapdiceptual correlates

! from the American Heritage Dictionary.
2 The ear actually responds to sound pressure, which is ysuatsured in decibels.
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are inside the mind of the listener. To the physicist, souna pressure wave that
propagates through an elastic medium (i.e., the air). Mdéescof air are alternately
bunched together and then spread apart in a rapid osailldtat ultimately bumps

up against the eardrum. When the eardrum wiggles, signalsemt to the brain,

causing “sound” in the psychologist’s sense.

(] .

5 high

a .

¥ nominal

'S low

-
air molecules close  air molecules far

tuning fork together = region of apart = region of rapid oscillations in
oscillates, high pressure low pressure air pressure causes
disturbing the eardrum to vibrate
nearby air

Fig. 2.1.Sound as a pressure wave. The peaks represent times whealedufas are clus-
tered, causing higher pressure. The valleys represens tivhen the air density (and hence
the pressure) is lower than nominal. The wave pushes aghm&tardrum in times of high
pressure, and pulls (like a slight vacuum) during times of fwessure, causing the drum to
vibrate. These vibrations are perceived as sound.

Sound waves can be pictured as graphs such as in Fig. 2.1 Wiggr-pressure
regions are shown above the horizontal line, and low-pressegions are shown
below. This particular waveshape, callediae wavecan be characterized by three
mathematical quantities: frequency, amplitude, and pfidsefrequency of the wave
is the number of complete oscillations that occur in one séc@®hus, a sine wave
with a frequency of 100 Hz (short for Hertz, after the Germagicist Heinrich
Rudolph Hertz) oscillates 100 times each second. In theespanding sound wave,
the air molecules bounce back and forth 100 times each second

The human auditory system (the ear, for short) perceivef¢la@ency of a sine
wave as its pitch, with higher frequencies correspondinggber pitches. The am-
plitude of the wave is given by the difference between théésg and lowest pres-
sures attained. As the ear reacts to variations in presaaees with higher am-
plitudes are generally perceived as louder, whereas waitkdomwer amplitudes are
heard as softer. The phase of the sine wave essentiallyfiggaghen the wave starts,
with respect to some arbitrarily given starting time. In mdscumstances, the ear
cannot determine the phase of a sine wave just by listening.
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Thus, a sine wave is characterized by three measurableitiesyritvo of which
are readily perceptible. This does not, however, answeqtiestion of what a sine
wavesounds likelndeed, no amount of talk will do. Sine waves have been uaho
described as pure, tonal, clean, simple, clear, like a tufink, like a theremin,
electronic, and flute-like. To refresh your memory, the fiest seconds of sound
example [S: 8] are purely sinusoidal.

2.2 What Is a Spectrum?

Individual sine waves have limited musical value. Howewembinations of sine
waves can be used to describe, analyze, and synthesizet @nyogossible sound.
The physicist’s notion of the spectrum of a waveform cotedavell with the per-
ceptual notion of the timbre of a sound.

2.2.1 Prisms, Fourier Transforms, and Ears

As sound (in the physical sense) is a wave, it has many piepéhiat are analogous
to the wave properties of light. Think of a prism, which berdsh color through
a different angle and so decomposes sunlight into a familyotfred beams. Each
beam contains a “pure color,” a wave of a single frequencyliande, and phasg.
Similarly, complex sound waves can be decomposed into ayfashisimple sine
waves, each of which is characterized by its frequency, iéngd, and phase. These
are called thepartials, or theovertonesof the sound, and the collection of all the
partials is called thepectrumFigure 2.2 depicts thEourier transformin its role as

a “sound prism.”

This prism effect for sound waves is achieved by performisgectral analysis,
which is most commonly implemented in a computer by runnimgagram called
the Discrete Fourier Transform (DFT) or the more efficierdtFéourier Transform
(FFT). Standard versions of the DFT and/or the FFT are rpadiilable in audio
processing software and in numerical packages (subtetlab and Mathematica)
that can manipulate sound data files.

The spectrum gives important information about the makedua sound. For
example, Fig. 2.3 shows a small portion of each of three s

(a) With a frequency of 100 Hz and an amplitude of 1.2 (theddotie)

(b) With a frequency of 200 Hz and an amplitude of 1.0 (plottéth
dashes)

(c) With a frequency of 200 Hz and an amplitude of 1.0, buttelifn
phase from (b) (plotted in bold dashes)

¥ For light, frequency corresponds to color, and amplitudiatensity. Like the ear, the eye
is predominantly blind to the phase.
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high frequencies

M\I\M = blue light
— o N middle frequencies
= yellow light

complex light wave . low frequencies
prism =red light

high frequencies

/\[\/\M = treble
Digitize
- Waveform | | Fourier ~N__\__p. Middle frequencies
in Transform = midrange
Computer
complex sound wave \_, low frequencies

=bass

Fig. 2.2. Just as a prism separates light into its simple constitulements (the colors of

the rainbow), the Fourier Transform separates sound wanessimpler sine waves in the
low (bass), middle (midrange), and high (treble) frequescBimilarly, the auditory system
transforms a pressure wave into a spatial array that canelspto the various frequencies
contained in the wave, as shown in Fig. 2.4.

such as might be generated by a pair of tuning forks or anrelgcttuner playing the
G below middleC and theZ an octave below th&tWhen (a) and (b) are sounded to-
gether (mathematically, the amplitudes are added togpthiat by point), the result
is the (slightly more) complex wave shown in part (d). Simjla(a) and (c) added
together give (e). When (d) is Fourier transformed, theltésithe graph (f) that
shows frequency on the horizontal axis and the magnitudeeof/aves displayed on
the vertical axis. Such magnitude/frequency graphs ateccéthespectrum of the
waveform, and they show what the sound is made of. In this ees&now that the
sound is composed of two sine waves at frequencies 100 anca@@0ndeed there
are two peaks in (f) corresponding to these frequencieseMar, we know that the
amplitude of the 100-Hz sinusoid is Z0larger than the amplitude of the 200-Hz
sine, and this is reflected in the graph by the size of the p&@diss, the spectrum (f)
decomposes the waveform (d) into its constituent sine wamgonents.

This idea of breaking up a complex sound into its sinusoitiahents is impor-
tant because the ear functions as a kind of “biological” spet analyzer. That is,
when sound waves impinge on the ear, we hear a sound (in tbadsguerceptual
sense of the word) that is a direct result of the spectrumitasdnly indirectly a re-
sult of the waveform. For example, the waveform in part (dxkovery different from
the waveform in part (e), but they sound essentially the sé&malogously, the spec-

* Actually, the G’s should have frequencies of 98 and 196, but 100 and 200 nibékthe
numbers easier to follow.

® This is more properly called threagnitude spectruriThephase spectruiis ignored in this
discussion because it does not correspond well to the hueraetual apparatus.
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and amplitude 1.2
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Fig. 2.3.Spectrum of a sound consisting of two sine waves.

trum of waveform (d) and the spectrum of waveform (e) areftidah(because they
have been built from sine waves with the same frequenciesaampditudes). Thus,
the spectral representation captures perceptual asgectsoand that the waveform
does not. Said another way, the spectrum (f) is more meaunlitmythe ear than are
the waveforms (d) and (e).

A nontrivial but interesting exercise in mathematics shives any periodic sig-
nal can be broken apart into a sum of sine waves with freqesertbiat are integer
multiples of some fundamental frequency. The spectrumuis ttieal for represent-
ing periodic waveforms. But no real sound is truly periodignly because it must
have a beginning and an end; at best it may closely appro&ianpériodic signal for
a long, but finite, time. Hence, the spectrum can closelynbtitexactly, represent
a musical sound. Much of this chapter is devoted to discogehniow close such a
representation can really be.

Figure 2.4 shows a drastically simplified view of the auditsystem. Sound or
pressure waves, when in close proximity to the eardrum ecitisvibrate. These os-
cillations are translated to tlwval windowthrough a mechanical linkage consisting
of three small bones. The oval window is mounted at one entdeo€bchlea, which
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is a conical tube that is curled up like a snail shell (althoiigs straightened out in
the illustration). The cochlea is filled with fluid, and it iszitled into two chambers
lengthwise by a thin layer of pliable tissue called the lzaisitembrane. The motion
of the fluid rocks the membrane. The region nearest the ovalew responds pri-
marily to high frequencies, and the far end responds masilyt frequencies. Tiny
hair-shaped neurons sit on the basilar membrane, sendisgpges toward the brain
when they are jostled.

membrane near window is
narrow and stiff, responds

oval w@iw ’\/\/\f\P to high frequencies

membrane in middle
responds to midrange

> "= membrane at end is

wide and flexible,
responds to low
frequencies

M\

complex mechanical linkage
sound wave of bones

eardrum vibrates
cochlea: a fluid basilar membrane

filled conical tube wiggles, triggering tiny
hair shaped neurons

Fig. 2.4. The auditory system as a biological spectrum analyzer thasforms a pressure
wave into a frequency selective spatial array.

Thus, the ear takes in a sound wave, like that in Fig. 2.3 (¢gprand sends a
coded representation to the brain that is similar to a sakatralysis, as in (f). The
conceptual similarities between the Fourier transformthedauditory system show
why the idea of the spectrum of a sound is so powerful; theiEotmransform is a
mathematical tool that is closely related to our perceptuedhanism. This analogy
between the perception of timbre and the Fourier spectrusifived posited by Georg
Ohm in 1843 (see [B: 147]), and it has driven much of the aécsisesearch of the
past century and a half.

2.2.2 Spectral Analysis: Examples

The example in the previous section was contrived becausemstructed the signal
from two sine waves, only to “discover” that the Fourier sBorm contained the
frequencies of those same two sine waves. It is time to egplare realistic sounds:
the pluck of a guitar and the strike of a metal bar. In both gaisevill be possible to
give both a physical and an auditory meaning to the spectrum.

Guitar Pluck: Theory

Guitar strings are flexible and lightweight, and they arelHgmly in place at both
ends, under considerable tension. When plucked, the stibrgtes in a far more
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complex and interesting way than the simple sine wave asicifis of a tuning fork
or an electronic tuner. Figure 2.5 shows the fir6t second of the opety string
of my Martin acoustic guitar. Observe that the waveform iially very complex,
bouncing up and down rapidly. As time passes, the osciliatidie away and the
gyrations simplify. Although it may appear that almost daigty could be happen-
ing, the string can vibrate freely only at certain frequesddecause of its physical
constraints.

(0]
e)
=2
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Fig. 2.5. Waveform of a guitar pluck and its spectrum. The top figurenghthe first3/4
second (32,000 samples) of the pluck of the G string of an st@oguitar. The spectrum
shows the fundamental &6 Hz, and near integer harmonicsi&t, 589, 787, ....

For sustained oscillations, a complete half cycle of theemaust fit exactly
inside the length of the string; otherwise, the string woliédle to move up and
down where it is rigidly attached to the bridge (or nut) of thétar. This is a tug
of war the string inevitably loses, because the bridge aridareufar more massive
than the string. Thus, all oscillations except those atagefrivileged frequencies
are rapidly attenuated.

Figure 2.6 shows the fundamental and the first few modes ohtidn for a
theoretically ideal string. If half a period correspondstte fundamental frequency
f, then a whole period at frequengy also fits exactly into the length of the string.
This more rapid mode of vibrationis called the second plaBianilarly, a period and
a half at frequency f fits exactly, and it is called the third partial. Such a speotr
in which all frequencies of vibration are integer multiptésome fundamentd, is
calledharmonic and the frequencies of oscillation are called tia¢ural modes of
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vibrationor resonant frequenciesf the string. As every partial repeats exactly within
the period of the fundamental, harmonic spectra correspmpdriodic waveforms.

A

(=first partial)
Y A
second partial ®<>
\j

third partial Q:>d;><l:>
fourth partial <I:><:>¢<I:>

f 2f 3f 4f 5f 6f
frequency

magnitude

Fig. 2.6. Vibrations of an ideal string and its spectrum. Because thiegsis fixed at both
ends, it can only sustain oscillations when a half periodefitctly into its length. Thus, if the
fundamental occurs at frequengythe second partial must be &f, the third at3 f, etc., as
shown in the spectrum, which plots frequency verses maggmitu

Compare the spectrum of the real string in Fig. 2.5 with thealided spectrum
in Fig. 2.6. Despite the complex appearance of the wavefdrequitar sound is pri-
marily harmonic. Over 20 partials are clearly visible atgbly equal distances from
each other, with frequencies at (approximately) integdtipias of the fundamental,
which in this case happens to be 196 Hz.

There are also some important differences between the nelathee idealized
spectra. Although the idealized spectrum is empty betweewarious partials, the
real spectrum has some low level energy at almost every érezyu There are two
major sources of this: noise and artifacts. The noise mightdused by pick noise,
finger squeaks, or other aspects of the musical performénogght be ambient au-
dio noise from the studio, or electronic noise from the rdony equipment. Indeed,
the small peak below the first partial is suspiciously clas€d Hz, the frequency of
line current in the United States.

Artifacts are best described by referring back to Fig. 2v&rithough these were
pure sine waves generated by computer, and are essentatl ¢he spectrum still
has a significant nonzero magnitude at frequencies otherttitese of the two sine
waves. This is because the sine waves are of finite duratibereas an idealized
spectrum (as in Fig. 2.6) assumes an infinite duration sigras smearing of the
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frequencies in the signal is a direct result of the periagiassumption inherent in
the use of Fourier techniques. Artifacts and implementatietails are discussed at
length in Appendix C.

Guitar Pluck: Experiment

Surely you didn’tthink you could read a whole chapter caltesl*Science of Sound”
without having to experiment? You will need a guitar (prafdy acoustic) and a
reasonably quiet room.

Play one of the open strings that is in the low end of your vomadje (thet string
works well for me) and let the sound die away. Hold your moightrup to the sound
hole, and sing “ah” loudly, at the same pitch as the stringnrlisten. You will hear
the string “singing” back at you quietly. This phenomenortadied resonanceor
sympathetic vibrationThe pushing and pulling of the air molecules of the pressure
wave set in motion by your voice excites the string, just getitive pushes of a
child on a playground swing causes larger and larger o8oitia. When you stop
pushing, the child continues to bob up and down. Similahg, $tring continues to
vibrate after you have stopped singing.

Now sing the note an octave above (if you cannot do this by may; at the
twelfth fret, and use this pitch to sing into the open strigpain you will hear the
string answer, this time at the octave. Now try again, siggive fifth (which can be
found at the seventh fret). This time the string respondsatthe fifth, but at the
fifth plus an octave. The string seems to have suddenly deséla will of its own,
refusing to sing the fifth, and instead jumping up an octafvgoli now sing at the
octave plus fifth, the string resonates back at the octavefifth. But no amount of
cajoling can convince it to sing that fifth in the lower octavey it. What about other
notes? Making sure to damp all strings but the chosen ongasimajor second (two
frets up). Now, no matter how strongly you sing, the strinffgses to answer at all.
Try other intervals. Can you get any thirds to sound?

To understand this cranky behavior, refer back to Fig. 2t fitch of the string
occurs at the fundamental frequency, and itis happy to telatthis frequency when
you sing. Similarly, the octave is at exactly the secondigladnd again the string
is willing to sound. When you sing a major second, its fregqyetioes not line up
with any of the partials. Try pushing a playground swing aai@ rat which it does
not want to go—you will work very hard for very little resuBimilarly, the string
will not sustain oscillations far from its natural modes diration.

The explanation for the behavior of the guitar when singimg fifth is more
subtle. Resonance occurs when the driving force (your sg)gdccurs at or near
the frequencies of the natural modes of vibration of thengt(the partials shown
in Fig. 2.6). Your voice, however, is not a pure sine wave éast, mine sure is
not). Voices tend to be fairly rich in overtones, and the secpartial of your voice
coincides with the third partial of the string. It is this noidence of frequencies that
drives the string to resonate. By listening to the stringhaee discovered something
about your voice.
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This is similar to the way Helmholtz [B: 71] determined thesspal content of
sounds without access to computers and Fourier transfétenplaced tuning forks
or bottle resonators (instead of strings) near the souncktanalyzed. Those that
resonated corresponded to partials of the sound. In this lveawas able to build a
fairly accurate picture of the nature of sound and of theihgasrocess.

Sympathetic vibrations provide a way to hear the partials guitar string,
showing that theganvibrate in any of the modes suggested by Fig. 2.6.dthey
actually vibrate in these modes when played normally? Theésimple experiment
demonstrates that strings tend to vibrate in many of the seiheultaneously.

Grab your guitar and pluck an open string, say thstring. Then, quickly while
the note is still sounding, touch your finger lightly to theirgg directly above the
twelfth fret® You should hear the lowl die away, leaving thel an octave above
still sounding. With a little practice you can make this siion reliably. To under-
stand this octave jump, refer again to Fig. 2.6. When vihgpét the fundamental
frequency, the string makes its largest movement in theecenhis point of maxi-
mum motion is called aantinodefor the vibrational mode. Touching the midpoint
of the string (at the twelfth fret) damps out this oscillatibgght away, because the
finger is far more massive than the string. On the other h&wiedseecond partial has a
fixed point (called anod@ right in the middle. It does not need to move up and down
at the midpoint at all, but rather has antinodes at 1/4 ancdBthe length of the
string. Consequently, its vibrations are (more or lessjfented by the light touch of
the finger, and it continues to sound even though the fundeatiess been silenced.

The fact that the second partial persists after touchingttieg shows that the
string must have been vibrating in (at least) the first anars@anodes. In fact,
strings usually vibrate in many modes simultaneously, &iglis easy to verify by
selectively damping out various partials. For instancetdayching the string im-
mediately above the seventh fret (1/3 of the length of thieg}rboth the first and
second partials are immediately silenced, leaving thel fhartial (at a frequency of
three times the fundamental, thean octave and a fifth above the fundamenitpbs
the most prominent sound. The fifth fret is 1/4 of the lengtkhef string. Touching
here removes the first three partials and leaves the fowthpttaves above the fun-
damental, as the apparent pitch. To bring out the fifth haipdouch at either the

¢ Although many of the details of Helmholtz’s theories haverbsuperseded, his book re-
mains inspirational and an excellent introduction to thiersce of acoustics.

" For those without a guitar who are feeling left out, it is fibksto hear sympathetic vi-
brations on a piano, too. For instance, press the middkey slowly so that the hammer
does not strike the string. While holding this key down (sat the damper remains raised),
strike theC' an octave below, and then lift up your finger so as to damp it Altthough
the lowerC string is now silent, middI€” is now vibrating softly—the second partial of the
lower note has excited the fundamental of the middl®bserve that playing a lo® will
not excite such resonances in the middlstring.

8 Hints: Just touch the string delicately. Do not press it dowto the fretboard. Also, posi-
tion the fingerimmediately over the fret bar, rather tharr tive space between the eleventh
and twelfth frets where you would normally finger a note.
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1/5 (just below the fourth fret) or at the 2/5 (near the nin#t)fpoints. This gives a
note just a little flat of a major third, two octaves above tinedamental.

Table 2.1 shows the first 16 partials of tHestring of the guitar. The frequency
of each partial is listed, along with the nearest note of taadard 12-tone equal-
tempered scale and its frequency. The first several coinadg closely, but the
correspondence deteriorates for higher partials. Thentleymrtial is noticeably flat
of the nearest scale tone, and above the ninth partial, ih&tibe resemblance. With
a bit of practice, it is possible to bring out the sound of mafyhe lower partials.
Guitarists call this technique “playing the harmonics” b&tstring, although the
preferred method begins with the finger resting lightly aastring and pulls it away
as the string is plucked. As suggested by the previous digmust is most common
to play harmonics at the twelfth, seventh, and fifth fretsjohlcorrespond to the
second, third, and fourth partials, although others arsiliéa

Table 2.1. The first 16 partials of thel string of a guitar with fundamental at 110 Hz. Many of
the partials lie near notes of the standard equal-tempeedd,$ut the correspondence grows
worse for higher partial numbers.

Partial  Frequency Name of Frequency of
Number of Partial NearestNote Nearest Note

1 110 A 110
2 220 A 220
3 330 E 330
4 440 A 440
5 550 (@) 554
6 660 E 659
7 770 G 784
8 880 A 880
9 990 B 988
10 1100 cH 1109
11 1210 DA 1245
12 1320 E 1318
13 1430 F 1397
14 1540 G 1568
15 1650 G 1661
16 1760 A 1760

As any guitarist knows, the tone of the instrument dependattyr on where the
picking is done. Exciting the string in different places drapizes different sets of
characteristic frequencies. Plucking the string in thedi@dends to bring out the
fundamental and other odd-numbered harmonics (can yowhgP) while plucking
near the ends tends to emphasize higher harmonics. Sindaplckup placed in the
middle of the string tends to “hear” and amplify more of thadamental (which has
its antinode in the middle), and a pickup placed near the étiteestring emphasizes
the higher harmonics and has a sharper, more trebly tone.
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Thus, guitars both can and do vibrate in many modes simudtesig and these
vibrations occur at frequencies dictated by the physicahggtry of the string. We
have seen two different methods of experimentally findirgéhfrequencies: excita-
tion via an external source (singing into the guitar) anéaéle damping (playing
the harmonics). Of course, both of these methods are sonm@unihdtive, but they
do show that the spectrum (a plot of the frequencies of thégigrand their mag-
nitudes) is a real thing, which corresponds well with phgkieality. With the ready
availability of computers, the Fourier transform is easyde. It is more precise, but
fundamentally it tells nothing more than could be discoslarsing other nonmathe-
matical (and more intuitive) ways.

A Metal Bar

Itis notjust strings that vibrate with characteristic fueqcies. Every physical object
tends to resonate at particular frequencies. For objeber ¢bhan strings, however,
these characteristic frequencies are often not harmdwiedhted.

One of the simplest examples is a uniform metal bar as usedjlockenspiel
or a wind chime. When the bar is struck, it bends and vibrates, exciting the ai
and making sound. Figure 2.7 shows the first 3/4 second of #vefarm of a bar
and the corresponding spectrum. As usual, the wavefornttigbie envelope of the
sound, indicating how the amplitude evolves over time. Toexgum shows clearly
what the sound is made of: four prominent partials and somle-fiequency junk.
The partials are at 526, 1413, 2689, and 4267 Hz. Considdrafirst partial as the
fundamental aff = 526 Hz, thisisf, 2.68f, 5.11f, and8.11f, which is certainly
not a harmonic relationship; that is, the frequencies atémeger multiples of any
audible fundamental. For bars of different lengths, thei@alf f changes, but the
relationship between frequencies of the partials remaimgghly) the same.

The spectrum of the ideal string was explained physicallgussto the require-
ment that it be fixed at both ends, which implied that the mkob all sustained
vibrations had to fit evenly into the length of the string. Thetal bar is free at both
ends, and hence, there is no such constraint. Instead thermeox is characterized
by bending modes that specify how the bar will vibrate onceset into motion. The
first three of these modes are depicted in Fig. 2.8, whicledsfignificantly from the
mode shapes of the string depicted in Fig. 2.6. Theoriste haen able to write
down and solve the equations that describe this kind of mdfiéor an ideal metal
bar, if the fundamental occurs at frequenfGythe second partial will be &t 76 f, the
third at5.4f, and the fourth a&.93 f. This is close to the measured spectrum of the
bar of Fig. 2.7. The discrepancies are likely caused by snmalliniformities in the
composition of the bar or to small deviations in the heighivaith of the bar. The

? Even though wind chimes are often built from cylindrical ésb the primary modes of
vibration are like those of a metal bar. Vibrations of theailumn inside the tube are not
generally loud enoughto hear.

10 See Fletcher and RossingPhysics of Musical Instrumentsr an amazingly detailed pre-
sentation.
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Fig. 2.7.Waveform of the strike of a metal bar and the correspondiegtspm. The top figure
shows the firsB/4 second (32,000 samples) of the waveform in time. The spmcstuwows
four prominent partials.

high-frequency junk is most likely caused by impact noise, sound of the stick
hitting the bar, which is not included in the theoreticalccdhtions.

As with the string, it is possible to discover these partyalsrself. Find a cylin-
drical wind chime, a length of pipe, or a metal extension Homa a vacuum cleaner.
Hold the bar (or pipe) at roughly 2/9 of its length, tap it, disten closely. How many
partials can you hear? If you hold it in the middle and tapnttiee fundamental is
attenuated and the pitch jumps up to the second partial—evell an octave away
(to see why, refer again to Fig. 2.8). Now, keeping the sourttie second partial
clearly in mind, hold and strike the pipe again at the 2/9 pafau will hear the fun-
damental, of course, but if you listen carefully, you call bear the second partial.
By selectively muting the various partials, you can bring sound of many of the
lower partials to the fore. By listening carefully, you céreh continue to hear them
even when they are mixed in with all the others.

As with the string, different characteristic frequencies de emphasized by
striking the bar at different locations. Typically, thislwiot change the locations of
the partials, but it will change their relative amplitudesiahence, the tone quality
of the instrument. Observe the technique of a conga drunByeiapping in differ-
ent places, the drummer changes the tone dramatically, Byspressing a free hand
against the drumhead, certain partials can be selectiaeghpeéd, again manipulating
the timbre.
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Fig. 2.8.The first three bending modes of

an ideal metal bar and its spectrum. The
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The guitar string and the metal bar are only two of a nearlyitginumber of pos-
sible sound-making devices. The (approximately) harmeitications of the string
are also characteristic of many other musical instrumétsinstance, when air os-
cillates in a tube, its motion is constrained in much the samag that the string is
constrained by its fixed ends. At the closed end of a tube, thedf air must be zero,
whereas at an open end, the pressure must drop tdz&tws instruments such as
the flute, clarinet, trumpet, and so on, all have spectragteprimarily harmonic.
In contrast, most percussion instruments such as druménives, kalimbas, cym-
bals, gongs, and so on, have spectra that are inharmonicicdipsactice generally
incorporates both kinds of instruments.

Analytic vs. Holistic Listening: Tonal Fusion

Almost all musical sounds consist of a great many partiahgtiver they are harmon-
ically related or not. Using techniques such as selectivepitag and the selective
excitation of modes, it is possible (with a bit of practice)earn to “hear out” these
partials, to directly perceive the spectrum of the sounds Kimd of listening is called
analyticlistening, in contrast tholisticlistening in which the partials fuse together
into one perceptual entity. When listening analyticallyisds fragment into their
constituent elements. When listening holistically, eamtngl is perceived as a single
unit characterized by a unique tone, color, or timbre.

' For more information on the modes of air columns, refer to &ksFundamentals of
Musical AcousticsSee Brown ([B: 20] and [W: 3]) for a discussion of the inhanioities
that may originate in nonidealized strings and air columns.
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Analytic listening is somewhat analogous to the ability afained musician to
reliably discern any of several different parts in a com@eare where the naive (and
more holistic) listener perceives one grand sound mass.

When presented with a mass of sound, the ear must decide how maoges,
tones, or instruments are present. Consider the closinglafa string quartet. At
one extreme is the fully analytic ear that “hears out” a largmber of partials. Each
partial can be attended to individually, and each has its atributes such as pitch
and loudness. At the other extreme is the fully holistieligr who hears the finale as
one grand tone, with all four instruments fusing into a sémgth and complex sonic
texture. This is called the root fundamental basis the works of Rameau [B: 145].
Typical listening lies somewhere between. The partialsashdanstrument fuse, but
the instruments remain individually perceptible, eachhvis own pitch, loudness,
vibrato, and so on. What physical clues make this remarksgae of perception
possible?

One way to investigate this question experimentally is toegate clusters of
partials and ask listeners “how many notes” they Réafarious features of the pre-
sentation reliably encourage tonal fusion. For instarfabgi partials:

(i) Begin at the same time (attack synchrony)

(i) Have similar envelopes (amplitudes change similaklgraime)
(i) Are harmonically related
(iv) Have the same vibrato rate

then they are more likely to fuse into a single perceptuatyemimost any common
feature of a subgroup of partials helps them to be perceivgdther. Perhaps the
viola attacks an instant early, the vibrato on the cello adafaster, or an aggressive
bowing technique sharpens the tone of the first violin. Amhsguirks are clues that
can help the ear bind the partials of each instrument togethée distinguishing
viola from violin. Familiarity with the timbral quality of minstrument is also impor-
tant when trying to segregate it from the surrounding souagdsnand there may be
instrumental “templates” acquired with repeated listgnin

The fusion and fissioning of sounds is easy to hear using af seihd chimes
with long sustain. | have a very beautiful set called the 1@ of Partch!® made
of hollow metal tubes. When the clapper first strikes a tubete is a “ding” that
initiates the sound. After several strikes and a few secahésindividuality of the
tube’s vibrations are lost. The whole set begins to “hum” aggle complex tone.
The vibrations have fused. When a new ding occurs, it isdltheard as separate,
but soon merges into the hum.

At the risk of belaboring the obvious, it is worth mentionitigat many of the
terms commonly used in musical discourse are essentiallygaraus. The strike of
a metal bar may be perceived as a single “note” by a holistierier, yet as a diverse
collection of partials by an analytic listener. As the atialjstener assigns a separate

2 This is an oversimplification of the testing procedures aliywsed by Bregman [B: 18]
and his colleagues.
7 See [B: 91].



26 2 The Science of Sound

pitch and loudness to each patrtial, the strike is heard ab@dc Thus, the same
sound stimulus can be legitimately described as a note ocherd.

The ability to control the tonal fusion of a sound can becomeial in composi-
tion or performance with electronic sounds of unfamiliartiral qualities. For exam-
ple, it is important for the composer to be aware of “how mamgtes are sounding.
What may appear to be a single note (in an electronic musi® smoon the key-
board of a synthesizer) may well fission into multiple tormsd typical listener. By
influencing the coincidence of attack, envelope, vibratwnionicity, and so on, the
composer can help to ensure that what is heard is the sameahsvahintended. By
carefully emphasizing parameters of the sound, the commrsausician can help
to encourage the listener into one or the other perceptudéeso

The spectrum corresponds well to the physical behavior efvibrations of
strings, air columns, and bars that make up musical instntsné also corresponds
well to the analytic listening of humans as they perceivesd¢hsound events. How-
ever, people generally listen holistically, and a wholealmdary has grown up to
describe the tone color, sound quality, or timbre of a tone.

2.3 What Is Timbre?

If a tree falls in the forest, is there any timbré&2cording to the American National
Standards Institute [B: 6], the answer must be “no,” whetiranot anyone is there
to hear. They define:

Timbre is that attribute of auditory sensation in terms ofchha listener
can judge two sounds similarly presented and having the sandeess and
pitch as dissimilar.

This definition is confusing, in part because it tells whattire isnot (i.e., loudness
and pitch) rather than what it is. Moreover, if a sound hasitahlike the crack of
a falling tree or the scrape of shoes against dry leaveq),itl@annot be “similarly
presented and have the same pitch,” and hence it has no tandltePratt and Doak
[B: 143] suggest:

Timbre is that attribute of auditory sensation whereby tetier can judge
that two sounds are dissimilar using any criterion othen thiech, loudness
and duration.

And now the tree does have timbre as it falls, although thenitiefn still does not
specify what timbre is.

Unfortunately, many descriptions of timbral perceptiore@mplify. For in-
stance, a well known music dictionary [B: 75] says in its défim of timbre that:

On analysis, the difference between tone-colors of insténtsare found to
correspond with differences in the harmonics represemtede sound (see
HARMONIC SERIES).
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This is simplifying almost to the point of misrepresentatidny sound (such as a
metal bar) that does not have harmonics (partials lying tegier multiples of the
fundamental) would have no timbre. Replacing “harmonicthwpartial” or “over-
tone” suggests a definition that equates timbre with spegtas in this statement by
the Columbia Encyclopedia:

[Sound] Quality is determined by the overtones, the distiedimbre of
any instrument being the result of the number and relatieenprence of
the overtones it produces.

Although much of the notion of the timbre of a sound can béatted to the number,
amplitudes, and spacing of the spectral lines in the spmctfua sound, this cannot
be the whole story because it suggests that the envelopetolt &ransients do
not contribute to timbre. Perhaps the most dramatic dematit of this is to play a
sound backward. The spectrum of a sound is the same wheihptayed forward or
backwardt* and yet the sound is very different. In the @Dditory Demonstrations
[D: 21], a Bach chorale is played forward on the piano, backivean the piano, and
then the tape is reversed. In the backward and reversedtbaseusic moves for-
ward, but each note of the piano is reversed. The piano takesaoy of the timbral
characteristics of a reed organ, demonstrating the impeetaf the time envelope in
determining timbre.

2.3.1 Multidimensional Scaling

It is not possible to construct a single continuum in whidhiedbres can be simply
ordered as is done for loudness or for pitéimbre is thus a “multidimensional”
attribute of sound, although exactly how many “dimensioa®’ required is a point
of significant debate. Some proposed subjective ratingsdal timbre include:

dull «+— sharp
cold «+— warm
soft «— hard
pure<— rich
compactk— scattered
full +— empty
static«— dynamic
colorful < colorless

Of course, these attributes are perceptual descriptianaiit physically measur-
able properties do they correspond? Some relate to temeffeats (such as enve-
lope and attack) and others relate to spectral effects @sidiustering and spacing
of partials).

The attack is a transient effect that quickly fades. The doafna violin bow
scraping or of a guitar pick plucking helps to differentitite two instruments. The

14 As usual, we ignore the phase spectrum.
5 The existence of auditory illusions such as Shephard's gsig scale shows that the
timbre can interact with pitch to destroy this simple ordgriSee [B: 41].
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initial breathy puff of a flautist, or the gliding blat of a tnpet, lends timbral char-
acter that makes them readily identifiable. An interestixgeeiment [B: 13] asked
a panel of musically trained judges to identify isolatedimsiental sounds from
which the first half second had been removed. Some instriayiéw the oboe, were
reliably identified. But many others were confused. Fordnse, many of the jurists
mistook the tenor saxophone for a clarinet, and a surprisimgber thought the alto
saxophone was a french horn.

The envelope describes how the amplitude of the sound evawver time. In
a piano, for instance, the sound dies away at roughly an et rate, whereas
the sustain of a wind instrument is under the direct contfahe performer. Even
experienced musicians may have difficulty identifying tberse of a sound when
its envelope is manipulated. To investigate this, Strond) @rark [B: 186] gener-
ated sounds with the spectrum of one instrument and the apwedf another. In
many cases (oboe, tuba, bassoon, clarinet), they founthihapectrum was a more
important clue to the identity of the instrument, whereasther cases (flute), the en-
velope was of primary importance. The two factors were of garable importance
for still other instruments (trombone, french horn).

In a series of studié8 investigating timbre, researchers generated sounds with
various kinds of modifications, and they asked subjectstmtteeir perceived sim-
ilarity. A “multidimensional scaling algorithm” was thersed to transform the raw
judgments into a picture in which each sound is representeddwint so that closer
points correspond to more similar soutdJhe axes of the space can be interpreted
as defining the salient features that distinguish the saukttiibutes include:

(i) Degree of synchrony in the attack and decay of the partial
(i) Amount of spectral fluctuatiof¥
(iii) PreEence (or absence) of high-frequency, inharmenigrgy in the at-
tac
(iv) Bandwidth of the signaP
(v) Balance of energy in low versus high partials
(vi) Existence of formant8

For example, Grey and Gordon [B: 63] exchange the spectval@mes’ of pairs
of instrumental sounds (e.g., a french horn and a bassodrgsksubjects to rate the
similarity and dissimilarity of the resulting hybrids. Théind that listener’s judg-
ments are well represented by a three-dimensional spacéichwne dimension

'S See [B: 139], [B: 46], [B: 64], and [B: 63].

'7 perhaps the earliest investigation of this kind was Stef@ns81], who studied the “tonal
density” of sounds.

'8 Change in the spectrum over time.

9 Roughly, the frequency range in which most of the partias i

20 Resonances, which may be thought of as fixed filters througthwhvariable excitation is
passed.

2! The envelope of a partial describes how the amplitude of tréigh evolves over time.
The spectral envelope is a collection of all envelopes opaitials. In Grey and Gordon'’s
experiments, only the envelopes of the common partialsnéeechanged.
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corresponds to the spectral energy distribution of the dsuAnother dimension
corresponds to the spectral fluctuations of the sound, aydptopose that this pro-
vides a physical correlate for the subjective quality oftatis” versus a “dynamic”

timbre. The third dimension involves the existence of higgguency inharmonicity
during the attack, for instance, the noise-like scrape abérnvbow. They propose
that this corresponds to a subjective scale of “soft” vethasd” or perhaps a “calm”

versus “explosive” dichotomy.

2.3.2 Analogies with Vowels

The perceptual effect of spectral modifications are oftensnbtle. Grey and Gor-
don [B: 63] state that “one hears the tones switch to eactr®ttosvel-like color but
maintain their original ... attack and decay.” As the spaatlistribution in speech
gives vowels their particular sound, this provides anofhétful avenue for the de-
scription of timbre. Slawson [B: 175] develops a whole laage: for talking about
timbre based on the analogy with vowel tones. Beginning triéhobservation that
many musical sounds can be described by formants, Slaws@oges that musical
sound colorgan be described as variable sources of excitation passmagtha se-
ries of fixed filters. Structured changes in the filters cad tegperceptually sensible
changes in the sound quality, and Slawson describes thediications in terms of
the frequencies of the first two formants. Terms such as kEssrecuteness, open-
ness, and smallness describe various kinds of motion intbedtimensional space
defined by the center frequencies of the two formants, angspond perceptually
to transitions between vowel sounds. For instance, opaminipe sustained vowel
soundi: leads toee and then taze, and this corresponds physically to an increase in
frequency of the first formant.

2.3.3 Spectrum and the Synthesizer

In principle, musical synthesizers have the potential twdpce any possible sound
and, hence, any possible timbre. But synthesizers mushimetheir sound gener-
ation capabilities so as to allow easy control over parareaiBthe sound that are
perceptually relevant to the musician. Although not a tiiedrtimbral perception,
the organization of a typical synthesizer is a market-tegieactical realization that
embodies many of the perceptual dichotomies of the prexdeations. Detailed dis-
cussions of synthesizer design can be found in [B: 38] or f8]1

Sound generation in a typical synthesizer begins with tleatwon of a wave-
form. This waveform may be stored in memory, or it may be gateer by some
algorithm such as FM [B: 32], nonlinear waveshaping [B: 1%2]any number of
other methods [B: 40]. It is then passed through a seriestefdiand modulators
that shape the final sound. Perhaps the most common modislatvenvelope gen-
erator, which provides amplitude modulation of the sigAdlypical implementation
such as Fig. 2.9 has a four-segment envelope with attackydeastain, and release.
The attack portion dictates how quickly the amplitude of sbeind rises. A rapid
attack will tend to be heard as a percussive (“sharp” or “Hasdund, whereas a
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slow attack would be more fitting for sounds such as wind imsemts which speak
more hesitantly or “softly.” The sustain portion is the shgatate to which the sound
decays after a time determined by the decay parameters.ypiatsample-based
electronic musical instrument, the sustain portion caasifa (comparatively) small
segment of the waveform, called a “loop,” that is repeateat and over until the key
is released, at which time the sound dies away at a specified ra

Fig. 2.9. The ADSR envelope defines

decay a loudness contour for a synthesized
sustain sound. The attack is triggered by the

attack ~ key press. After a specified time, the
release  sound decays to its sustain level, which
is maintained until the key is raised.
key down key up Then the loudness dies away at a rate
time determined by the release parameters.

amplitude

Although the attack portion dictates some of the percemspécts, the steady-
state sustained segment typically lasts far longer (exiogpércussive sounds), and
it has a large perceptual impact. Depending on the undegrlyaveform, the sustain
may be “compact” or “scattered,” “bright” or “dull,” “coldul” or “colorless,” “dy-
namic” or “static,” or “pure” or “rich.” As most of these dichomies are correlated
with spectral properties of the wave, the design of a tyggathesizer can be viewed
as supporting a spectral view of timbre, albeit tempered efitvelopes, filters? and
modulators.

2.3.4 Timbral Roundup

There are several approaches to timbral perception, imgudultidimensional scal-
ing, analogies with vowels, and a pragmatic synthesis ambrdOf course, there are
many other possible ways to talk about sounds. For insté®aleafer [B: 162] in
Canad&® distinguishes four broad categories by which sounds mayldssitied:
physical properties, perceived attributes, function oanieg, and emotional or af-
fective properties. Similarly, Erickson [B: 50] classifigésd categorizes using terms
such as “sound masses,” “grains,” “rustle noise,” and s@pd exposes a wide range
of musical techniques based on such sonic phenomena.

This book takes a restricted and comparatively simpligtpraach to timbre. Al-
though recognizing that temporal effects such as the attadldecay are important,
we focus on the steady-state portion of the sound where éiislmore or less syn-
onymous with stationary spectrum. Although admitting ttegt timbre of a sound
can carry both meaning and emotion, we restrict ourselvesget of measurable

22 One could similarly argue that the presence of resonanisiitte shape the synthesized
sound is a justification of the formant-based vowel analdginbre.

2% Not to be confused with Schaeffer [B: 161] in France who afttsna complete classifica-
tion of sound.
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guantities that can be readily correlated with the peroagtbf consonance and dis-
sonance. These are largely pragmatic simplifications. Bydimg on the spectral
aspects of sound, it is possible to generate whole familiesoonds with similar
spectral properties. For instance, all harmonic instrumean be viewed as belong-
ing to one “family” of sounds. Similarly, each inharmonidleation of partials has
a family of different sounds created by varying the tempfeatures. As we will see
and hear, each family of sounds has a unique tuning in whicantbe played most
consonantly.

Using the spectrum as a measure of timbre is like trying toemaksical sounds
stand still long enough to analyze them. But music does ma&ire still for long, and
there is a danger of reading too much into static measuremiemave tried to avoid
this problem by constantly referring back to sound examaiels where possible, to
musical examples.

2.4 Frequency and Pitch

Conventional wisdom says that the perceived pitch is prigaal to the logarithm
of the frequency of a signal. For pure sine waves, this is@pprately true* For
most instrumental sounds such as strings and wind instrigniens easy to iden-
tify a fundamental, and again the pitch is easy to deternBoefor more complex
tones, such as bells, chimes, percussive and other inhasmmds, the situation is
remarkably unclear.

2.4.1 Pitch of Harmonic Sounds

Pythagoras of Sam®sis credited with first observing that the pitch of a stringiis d
rectly related to its length. When the length is halved (eraft 1:2), the pitch jumps
up an octave. Similarly, musical intervals such as the fiftt Bourth correspond to
string lengths with simple ratié% 2:3 for the musical fifth, and 3:4 for the fourth.
Pythagoras and his followers proceeded to describe theandmdVerse in terms of
simple harmonic relationships, from the harmony of indixdts in society to the har-
mony of the spheres above. Although most of the details didydras’ model of the
world have been superseded, his vision of a world that careberitbed via concrete
logical and mathematical relationships is alive and well.

The perceived pitch of Pythagoras’ string is proportiomathe frequency at
which it vibrates. Moreover, musically useful pitch retatships such as octaves and
fifths are not defined by differences in frequency, but raltyeratios of frequencies.

24 The mel scale, which defines the psychoacoustical reldtiprisetween pitch and fre-
quency, deviates from an exact logarithmic function esgllydn the lower registers.

2% The same guy who brought you the formula for the hypotenuaeight triangle.

26 Whether a musical interval is written &= or asa:b is immaterial because one describes
the lower pitch relative to the upper, whereas the otherritesssthe upper pitch relative to
the lower.
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Thus, an octave, defined as a frequency ratio of 2:1, is pet€imore or less) the
same, whether it is high (sa3000 to 1000 Hz) or low 250 to 125 Hz). Such ratios
are called musicahtervals

The American National Standards Institute defipish as:

that attribute of auditory sensation in terms of which saumey be ordered
on a scale extending from low to high.

Because sine waves have unambiguous pitches (everyomns thide the same way
from low to higi?”), such an ordering can be accomplished by comparing a sdund o
unknown pitch to sine waves of various frequencies. Thehpfcthe sinusoid that
most closely matches the unknown sound is then said to battttegs that sound.
Pitch determinations are straightforward when workinghwétrings and with
most harmonic instruments. For example, refer back to tleetapm of an ideal
string in Fig. 2.6 on p. 18 and the measured spectrum of a teabsn Fig. 2.5
on p. 17. In both cases, the spectrum consists of a collecfidrarmonic partials
with frequencies, 2f, 31, ..., plus (in the case of a real string) some other unrelated
noises and artifacts. The perceived pitch willfyehat is, if asked to find a pure sine
wave that most closely matches the pluck of the string,dste invariably pick one
with frequencyyf.
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Fig. 2.10.(a) and (b) have the same perigtand the same pitch. (c) and (d) change con-
tinuously into (e), which has perio§. Thus, (e) is perceived an octave higher than (a). The
spectra (shown on the right) also change smoothly from (g&XoWhere exactly does the
pitch change? See video example [V: 2].

T With the caveat that some languages may use different wéodsnstance, “big” and
“small” instead of “low” and “high.”



2.4 Frequency and Pitch 33

But it is easy to generate sounds electronically whose pstdifficult to predict.
For instance, Fig. 2.10 part (a) shows a simple waveform wibuzzy tone. This
has the same period and pitch as (b), although the buzz is lijtelg different
character. The sound is now slowly changed through (c) an@{itl maintaining its
period) into (e). But (e) is the same as (a) except twice dsdad is heard an octave
above (a)! Somewhere between (b) and (e), the sound jumps optave. This is
demonstrated in video example [V: 2], which presents theduends in succession.

The spectra of the buzzy tones in Fig. 2.10 are shown on tl-hignd side.
Like the string example above, (a) and (e) consist primarfilgarmonically related
partials at multiples of a fundamental tP for (a) and at% for (e). Hence, they
are perceived at these two frequencies an octave apartsBug avaveforms (b), (c),
and (d) change smoothly from (a) to (e), the spectra must mma@othly as well.
The changes in the magnitudes of the partials are not momptom unfortunately,
it is not obvious from the plots exactly where the pitch jumps

2.4.2 Virtual Pitch

When there is no discernible fundamental, the ear will ofterate one. Suchir-
tual pitch 28 when the pitch of the sound is not the same as the pitch of aiitg of
partials, is an aspect of holistic listening. Virtual pitshexpertly demonstrated on
the Auditory Demonstrations CD [D: 21], where the “WestnémsChimes” song is
played using only upper harmonics. In one demonstratiansttunds have spectra
like that shown in Fig. 2.11. This particular note has pé&sté 780, 1040, and 1300
Hz, which is clearly not a harmonic series. These partias laowever, closely re-
lated to a harmonic series with fundamental at 260 Hz, bectheslowest partial is
260 times 3, the middle partial is 260 times 4, and the highestial is 260 times
5. The ear appears to recreate the missing fundamentalh&netrception is strong
enough to support the playing of melodies, even when thécpéat harmonics used
to generate the sound change from note to note.

The pitch of the complex tones playing the Westminster Chisang is deter-
mined by the nearest “harmonic template,” which is the ayeraf the three fre-
guencies, each divided by their respective partial numi@ymbolically, this is
T(T80 4 1040 4 1300y — 960 Hz. This is demonstrated in video example [V: 3],
which presents the three sine waves separately and thethéogedividually, they
sound like high-pitched sinusoids at frequendigs, 1040, and1300 Hz (as indeed
they are). Together, they create the percept of a singledsat260 Hz. When the par-
tials are not related to any harmonic series, current teeatiggest that the ear tries
to find a harmonic series “nearby” and to somehow derive & gitam this nearby
series. For instance, if the partials above were each raisétz, to 800, 1060, and
1320 Hz, then a virtual pitch would be perceived at ab§(#2% + 1270 + 1320y ~ 265
Hz. This is illustrated in video example [V: 4], which play®tthree sine waves in-
dividually and then together. The resulting sound is thégrahted with a sine wave
of frequency265 Hz for comparison.

2% Terhardt and his colleagues are among the most prominen¢§iguthis area; see [B: 195]
and [B: 197].
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1 2 3 4 5 Fig. 2.11.Spectrum of a sound with prominent
partials at 780, 1040, and 1300 Hz. These are
1 1 1 1 marked by the arrows as the third, fourth, and fifth
partials of a “missing” or “virtual” fundamental at
260 Hz. The ear perceives a note at 260 Hz, which

is indicated by the extended arrow. See video ex-
ample [V: 3].
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An interesting phenomenon arises when the partials areecela more than one
harmonic series. Consider the two sounds:

(i) With partials at 600, 800, and 1000 Hz
(ii) With partials at 800, 1000, and 1200 Hz

Both have a clear virtual pitch at 200 Hz. The first contaires tthird, fourth, and
fifth partials, whereas the second contains the fourth, il sixth partials. Sound
example [S: 6] begins with the first note and ascends by adtliidg to each partial.
Each raised note alternates with a sine wave at the apptepiitual pitch. Similarly,
sound example [S: 7] begins with the second note and desbgralgtracting 20 Hz
from each partial. Again, the note and a sine wave at thealipitch alternate. The
frequencies of all the notes are listed in Table 2.2. To ustdad what is happening,
observe that each note in the table can be viewed two waysirdalp 3, 4, and 5 of
the ascending notes or as partials 4, 5, and 6 of the desgendtas. For example,
the fourth note has virtual pitch at either

660 860 1060
— + — 4+ — | =~ 215.
( 3 + 1 + 5 > 5.6

LW —

or at
1 <@ @ 1060

3 4-|-5-|-6)~171.2
depending on the context in which it is presented! Virtuatipihas been explored
extensively in the literature, considering such factorghasmportance of individual
partials [B: 115] and their amplitudes [B: 116].

This ambiguity of virtual pitch is loosely analogous to Rulbiwell-known
face/vase ‘illusion” of Fig. 2.12 where two white faces candeen against a black
background, or a black vase can be seen against a white loacidit is difficult to
perceive both images simultaneously. Similarly, the walpitch of the fourth note
can be heard as 215 when part of an ascending sequence, oihie deeard as 171
when surrounded by appropriate descending tones, butifficutt to perceive both
simultaneously.
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Table 2.2. Each note consists of three partials. If the sequence ieglagcending, then the
firstvirtual pitch tends to be perceived, whereas if playesb&nding, the second, lower virtual
pitch tends to be heard. Only one virtual pitch is audible taha. This can be heard in sound
examples [S: 6] and [S: 7].

Note First Second Third Virtual Pitch Virtual Pitch
partial partial partial ascending descending

1 600 800 1000 200.0 158.9
2 620 820 1020 205.2 163.0
3 640 840 1040 210.4 167.1
4 660 860 1060 215.6 171.2
5 680 880 1080 220.9 175.3
6 700 900 1100 226.1 179.4
7 720 920 1120 231.3 183.6
8 740 940 1140 236.6 187.7
9 760 960 1160 241.8 191.8
10 780 980 1180 247.0 195.9
11 800 1000 1200 252.2 200.0

Perhaps the clearest conclusion is that pitch determimdtio complex inhar-
monic tones is not simple. Virtual pitch is a fragile phenoow that can be in-
fluenced by many factors, including the context in which tbersls are presented.
When confronted with an ambiguous set of partials, the eamsdo “hear” whatever
makes the most sense. If one potential virtual pitch is fatlogical sequence (such
as the ascending or descending series in [S: 6] and [S: 7]rbopa melodic phrase
as in the Westminster Chime song), then it may be preferred avother possible
virtual pitch that is not obviously part of such a progreasio

Pitch and virtual pitch are properties of a single sound. iRetance, a chord
played by the violin, viola, and cello of a string quartet @ msually thought of
as having a pitch; rather, pitch is associated with eachiunsntal tone separately.
Thus, determining the pitch or pitches of a complex soundauequires that it
first be partitioned into separate perceptual entitiesy@itien a cluster of partials
fuse into a single sound can it be assigned a pitch. Whemiigieanalytically, for
instance, there may be more “notes” present than in the saorasvhen listening
holistically. The complex sound might fission into two or mdnotes” and be per-

Fig. 2.12.Two faces or one vase? Ambiguous perceptions, where one
stimulus can give rise to more than one perception are cormimon
vision and in audition. The ascending/descending virtighps of
sound examples [S: 6] and [S: 7] exhibit the same kind of patee
ambiguity as the face/vase illusion.
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ceived as a chord. In the extreme case, each partial may beasely assigned a
pitch, and the sound may be described as a chord.

Finally, the sensation of pitch requires time. Sounds that@o short are heard
as a click, irrespective of their underlying frequency emtt Tests with pure sine
waves show that a kind of auditory “uncertainty principleldhs in which it takes
longer to determine the pitch of a low-frequency tone thamafrhigh frequency?

2.5 Summary

When a tree falls in the forest and no one is near, it has nb,disadness, timbre,
or dissonance, because these are perceptions that ocicleransind. The tree does,
however, emit sound waves with measurable amplitude, &gy and spectral con-
tent. The perception of the tone quality, or timbre, is datel with the spectrum of
the physical signal as well as with temporal properties efdignal such as envelope
and attack. Pitch is primarily determined by frequency, Endiness by amplitude.
Sounds must fuse into a single perceptual entity for hall&tening to occur. Some
elements of a sound encourage this fusion, and others tesmttturage a more an-
alytical perception. The next chapter focuses on phenortatdirst appear when
dealing with pairs of sine waves, and successive chaptetsrexthe implications of
these perceptual ideas in the musical settings of perfazenand composition and
in the design of audio signal-processing devices.

2.6 For Further Investigation

Perhaps the best overall introductions to $uéence of Sounate the book by Ross-
ing [B: 158] with the same naméJjusic, Speech, Audiby Strong [B: 187], and
The Science of Musical Souniolg Sundberg [B: 189]. All three are comprehensive,
readable, and filled with clear examples. The coffee-tabbdity of the printing of
Science of Musical Sourny Pierce [B: 135] makes it a delight to handle as well
as read, and it is well worth listening to the accompanyimgpréing. Perceptual as-
pects are emphasized in the readd®igsics and Psychophysics of MuicRoed-
erer [B: 154], and the title should not dissuade those withtathematical expertise.
Pickles [B: 133] givesAn Introduction to the Physiology of Hearirthat is hard
to beat. ThePsychology of Musiby Deutsch [B: 41] is an anthology containing
forward-looking chapters written by many of the researshveno created the field.
The recordindAuditory DemonstrationfD: 21] has a wealth of great sound exam-
ples. It is thorough and thought provoking.

For those interested in pursuing the acoustics of musisaliments, th€unda-
mentals of Musical Acoustidsy Benade [B: 12] is fundamental. Those with better
math skills might consider tHeundamentals of Acoustity Kinsler and Fry [B: 85]
for a formal discussion of bending modes of rods and striagsvell as a whole lot

2% This is discussed at length in [B: 99], [B: 61], and [B: 62].
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more). Those who want the whole story should check outRhgsics of Musical
Instrumentdy Fletcher and Rossing [B: 56]. Finally, the book that st@it all is
Helmholtz'sOn the Sensations of Tonfs: 71], which remains readable over 100
years after its initial publication.
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Sound on Sound

All is clear when dealing with a single sine wave of
reasonable amplitude and duration. The measured amplitude
is correlated with the perceived loudness, the measured
frequencyis correlated with the perceived pitch, and thaesgh

is essentially undetectable by the ear. Little is clear when
dealing with large clusters of sine waves such as those that
give rise to ambiguous virtual pitches. This chapter exgdor
the in-between case where two sinusoids interact to produce
interference, beating, and roughness. This is the simplest
setting in which sensory dissonance occurs.

3.1 Pairs of Sine Waves

When listening to a single sine wave, amplitude is direathated to loudness and
frequency is directly related to pitch. New perceptual phmeana arise when there
are two (or more) simultaneously sounding sine waves. Fgiaite, although the
phase of a single sine wave is undetectable, the relativeeghlaetween two sine
waves is important, leading to the phenomena of constretidd destructive inter-
ference. Beats develop when the frequencies of the two wiiffes and these beats
may be perceived as sensory dissonance. Although the eaesalve very small
frequency changes in a single sine wave, there is a muchr faggical bandwidth”
that characterizes the smallest difference between fsitttiat the ear can “hear out”
in a more complex sound. These ideas are explored in the aetibss, and some
simple models that capture the essence of the phenomenasamrgbed.

3.2 Interference

When two sine waves of exactly the same frequency are plaggdter, they sound
just like a single sine wave, but the combination may be lowdesofter than the

original waves. Figure 3.1 shows two cases. The sum of cuajeand (b) is given

in (c). As (a) and (b) have nearly the same phase (startingtpdheir peaks and
valleys line up reasonably well, and the magnitude of the sugneater than either
one alone. This is called constructive interference. Inms, when (d) and (e) are
added together, the peaks of one are aligned with the troofgine other and their
sum is smaller than either alone, as shown in curve (f). Thisalled destructive
interference. Thus waves of the same frequency can eithdoree or cancel each
other, depending on their phases.
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Fig. 3.1. Constructive and destructive

= = interference between two sine waves
of the same frequency. (a) and (b) add

© ) S~ Cconstructively to give (c), and (d) and
(e) add destructively to give (f).

In Appendix A, trigonometriphiles will find an equation shiog that the sum of
two sine waves of the same frequency is always another sittedame frequency,
albeit with a different amplitude and phase. The equati@méells exactly what the
amplitude and phase of the resulting wave are in terms of tlase difference of
the original waves. These equations also describe (in ffetperceptual reality of
combining sine waves in sound. Constructive interfereafiests the common sense
idea that two sine waves are louder than one. Destructiegfarence can be used
to cancel (or muffle) noises by injecting sine waves of theeséiequencies as the
noises but with different phases, thus canceling out theamt@d sound. Sound can-
celing earphones from manufacturers such as Bose and Ssaniige this principle,
and some technical aspects of this technology, calledeaatbise cancellation, are
discussed in [B: 51].

3.3 Beats

What if the two sinusoids differ slightly in frequency? Thesest way to picture this
is to imagine that the two waves are really at the same frexgyubat that their relative
phase slowly changes. When the phases are aligned, theyadtfuctively. When
the waves are out of phase, they interfere destructivelysTwhen the frequencies
differ slightly, the amplitude of the resulting wave slovalgcillates from large (when
in phase) to small (when out of phase).

Figure 3.2 demonstrates. At the start of the figure, the twessare aligned al-
most perfectly, and the amplitude of the sum is near its marimBy about 0.3
seconds, however, the two sine waves are out of sync andstimiris accordingly
small. By 0.6 seconds, they are in phase again and the aaplitas grown, and by
0.9 seconds they are out of phase again and the amplituddnhatksThus, even
though there are “really” two sine waves of two differentfiuencies present in the
bottom plot of Fig. 3.2, it “looks like” there is only one simeave that has a slow
amplitude variation. This phenomenon is calteshting

It may “look” like there is just one sine wave, but what doessibund” like?
Sound examples [S: 8] to [S: 10] investigate (and these aeated in video exam-
ples [V: 5] to [V: 7]). The three examples contain nine shedreents.

Examples [S: 8] and [V: 5]:
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amplitude

amplitude

Fig. 3.2. The beating of two sine
waves of close but different frequen-
cies can be viewed as alternating re-
gions of constructive and destructive
. . interference. The bottom plot is the

2 destructive 4 destructive sum of the amplitudes of the two si-
\ constructive / nusoids above. The envelope outlines

‘ ‘ | interference the undulations of the wave, and the

0 02 04 06 08 10 12 beating occurs at a rate defined by the
time (in seconds) frequency of the envelope.

amplitude

(i) A sine wave of 220 Hz (4 seconds)
(i) A sine wave of 221 Hz (4 seconds)
(iif) Sine waves (i) and (ii) together (8 seconds)

Examples [S: 9] and [V: 6]:

(iv) A sine wave of 220 Hz (4 seconds)
(v) A sine wave of 225 Hz (4 seconds)
(vi) Sine waves (iv) and (v) together (8 seconds)

Examples [S: 10] and [V: 7]:

(vii) A sine wave of 220 Hz (4 seconds)
(viii) A sine wave of 270 Hz (4 seconds)
(ix) Sine waves (vii) and (viii) together (8 seconds)

The difference between the first two sine waves is fairly leucause they are less
than 8 centsapart. Yet when played together, even this small differdsemomes
readily perceivable as beats. The sound varies in loudrzag @nce per second,
which is the difference between the two frequencies. Thetlicand fifth sine waves
are noticeably distinct, lying about 39 cents apart. Whetygdl together, the per-
ceived pitch is about 222.5 Hz. The beats are again promibeating at the much
faster rate of five times each second. Again, the rate of thtrgecorresponds to the
difference in frequency between sine waves.

In fact, it is not too difficult (if you like trigonometry) toleow that the amplitude
variation of the beats always occurs at a rate given by tlferdiice in the frequencies
of the sine waves. Appendix A gives the details. The restilt is

! There are 100 cents in a musical semitone. T@etnotation is defined and discussed in
Appendix B.

2 If this turns out to be negative, then take its absolute valinere is no such thing as a
negative beat.
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number of frequency frequency
{beats per second} - {of first wave } B {of second wa've}
Thus, the rate of beating decreases with the differenceeuigncy, and the beats
disappear completely when the two sine waves are perfettiyrie. Because beats
are often more evident than small pitch differences, theyumed to tune stringed
instruments such as the piano and guitar.

As the difference in frequency increases, the apparenimdieating increases.
A frequency difference of 1 Hz corresponds to a beat rate oérlspcond: 5 Hz
corresponds to a beat rate of 5 times per second: 50 Hz condspio a beat rate
of 50 times per second. But when the two sine waves of frequ2f@ and 270 are
played simultaneously, as in the ninth segment on the CDe thxeno beats at all
Has the mathematics lied?

Don't lose the sound of the forest for the sound of fallingeg®Does the word
“beats” refer to a physical phenomenon, or to a perceptibttielformer, then the
mathematics shows that, indeed, the waveform in part (ispahd example [S: 10]
exhibits beats at 50 Hz. But it is an empirical question whethis mathematical
fact describes perceptual reality. There are two ways tar‘hpart (ix). Listening
holistically gives the impression of a single, slightlyatenic timbre. Listening an-
alytically reveals the presence of the two sine waves indegetly. As is audibly
clear? in neither case are there any beats (in the perceptual sdimses, the mathe-
matical model that says that the beat rate is equal to thedrezy difference is valid
for perceptions of small differences such as 5 Hz, but failddrge differences such
as 50 Hz.

Can the spectrum give any insight? Figure 3.3 shows time @atpiéncy plots
as the ratio of the frequencies of the two sine waves vari¢gen/the ratio is large,
such as 1:1.5, two separate peaks are readily visible inpgbetrsl plot. As the ra-
tio shrinks, the peaks grow closer. For 1:1.1, they are patiscernible. For even
smaller ratios, they have merged together and the spectpp®ass to consist of
only a single frequencyA similar phenomenon occurs in the ear’s “biological spec-
trum analyzer.” When the waves are far apart, as in the soxerd@e (ix), the two
separate tones are clearly discernible. As they grow ¢litsbecomes impossible
to resolve the separate frequencies. This is another gyoibet the ear shares with
digital signal-processing techniques such as the FFT.

3.4 Critical Band and JND

As shown in Fig. 2.4 on p. 16, sine waves of different freqienexcite different
portions of the basilar membrane, high frequencies neaothkwindow and low

? Recall the “paradox” on p. 11.

* Some people can also hear a faint, very low-pitched tone.i$hie “difference frequency,”
which is due to nonlinear effects in the ear. See [B: 69] and.{®)].

® The resolving power of the FFT is a function of the samplirtg end the length of the data
analyzed. Details may be found in Appendix C.
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frequencies near the apex of the conical cochlea. Earlarelsers such as Helmholtz
[B: 71] believed that there is a direct relationship betwé®m place of maximum
excitation on the basilar membrane and the perceived pit¢theosound. This is
called the “place” theory of pitch perception. When two teaee close enough in
frequency so that their responses on the basilar membrankapythen the two tones
are said to occupy the sarnatical band The place theory suggests that the critical
band should be closely related to the ability to discriméndifferent pitches. The
critical band has been measured directly in cats and inttiriechumans in a variety
of ways as described in [B: 140] and in [B: 212]. The “width"tbg critical band is
roughly constant at low frequencies and increases appaiglgnproportionally with
frequency at higher frequencies, as is shown in Fig. 3.4.

The Just Noticeable Difference (JND) for frequency is thaltest change in
frequency that a listener can detect. Careful testing sea¢B:a211] has shown that
the JND can be as small as two or three cents, although adtilities vary with
frequency, duration and intensity of the tones, traininghef listener, and the way
in which JND is measured. For instance, Fig. 3.4 shows the fiMDones with
frequencies that are slowly modulated up and down. If thexgba are made more
suddenly, the JND decreases and even smaller differenegseaceptible. As the
JND is much smaller than the critical band at all frequendhesscritical band cannot
be responsible for all pitch-detection abilities. On thaesthand, the plot shows
that JND is roughly a constant percentage of the criticatlarer a large range of
frequencies.
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1000
critical
bandwidth
100 ¢

Fig. 3.4.Critical bandwidth is plotted as a func-
tion of its center frequency. Just Noticeable Dif-
ferences at each frequency are roughly a con-
stant percentage of the critical bandwidth, and
they vary somewhat depending on the amplitude
of the sounds. The frequency difference corre-
sponding to a musical whole tone (the straight
line) is shown for comparison. Data for critical
100 1000 10000  bandwidth is from [B: 158] and for JND is from
frequency in Hz [B: 206].

60db

frequency difference in Hz

An alternative hypothesis, called the “periodicity” theasf pitch perception,
suggests that information is extracted directly from tineetibehavior of the sound.
For instance, the time interval over which a signal repeady be used to deter-
mine its frequency. In fact, there is now (and has been foptst 100 years or so)
considerable controversy between advocates of the plat@eanodicity theories,
and it is probably safe to say that there is not enough evelémdecide between
them. Indeed, Pierce [B: 136] suggests that both mechamsaysoperate in tan-
dem, and a growing body of recent neurophysiological rete@uch as Cariani and
his coworkers [B: 24] and [B: 25]) reinforces this.

Computational models of the auditory system such as thog8:df11] and
[B: 95] often begin with a bank of filters that simulate theiatof the basilar mem-
brane as it divides the incoming sound into a collection ghals in different fre-
guency regions. Figure 3.5 schematizes a filter bank camgisf a collection ofn
bandpass filters with center frequencjgs f-, . . ., f». Typical models use between
n = 20 andn = 40 filters, and the widths of the filters follow the critical bamdth
as in Fig. 3.4. Thus, the lower filters have a bandwidth of a4®0 Hz and grow
wider as the center frequencies increase.

bandpass filters

2
n high frequencies
e
fn-1

input . .
mid frequencies

N
3

E— m; >
oo ) Fig. 3.5.Then filters separate the input sound into nar-
D oW Teauencies  rowband signals with bandwidths that approximate the
fi critical bands of the basilar membrane.
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The JND measures the ability to distinguish sequentialgsented sine waves.
Also important from the point of view of musical perceptianthe ability to dis-
tinguish simultaneously presented tones. Researcheesfbamd that the ability to
resolve concurrent tones is roughly equal to the criticaldod hat is, if several sine
waves are presented simultaneously, then it is only passibhear them individu-
ally if they are separated by at least a critical band. Thaggs limits on how many
partials of a complex tone can be “heard out” when listenimaically.

3.5 Sensory Dissonance

When listening to a pair of sine waves, both are readily paicke if the frequencies
are well separated. However, when the frequencies are tgst¢her, only one sine
wave is heard (albeit with beats), due to the finite resolyioger of the ear. What
happens in between, where the ear is unsure whether it impeare or two things?
Might the ear “get confused,” and how would such confusiopé&eeived?

Sound example [S: 11] (and video example [V: 8]) investidghteboundary be-
tween these two regimes by playing a sine wave of frequen@y-22together with
a wave of variable frequency beginning at 220 Hz and slowdyaasing to 470 Hz.
See Fig. 3.6 for a pictorial representation showing parhefwaveform and typical
listener reactions. Three perceptual regimes are evitféhén the sine waves are
very close in frequency, they are heard as a single pleasaattith slow variations
in loudness (beats). Somewhat further apart in frequeheybéating becomes rapid
and rough, dissonant. Then the tones separate and areveergaiividually, gradu-
ally smoothing out as the tones draw further apart. Perbappérceived roughness
is a symptom of the ear’s confusion.

slow, pleasant beating rough, rapid beating sound separates into

TS L

time

Fig. 3.6. Part of the waveform resulting from two simultaneous sine@egaone with fixed
frequency of 220 Hz and the other with frequency that swemps 220 Hz to 470 Hz. Typical
perceptions include pleasant beating (at small frequeatt@ys), roughness (at middle ratios),
and separation into two tones (at first with roughness, ardégthout) for larger ratios. This
can be heard in sound example [S: 11] and in video example][V: 8

In an important experiment, Plomp and Levelt [B: 141] inigetted this care-
fully by asking a large number of listeners to judge the coasze (euphoniousness,
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pleasantness) of a variety of intervals when sounded by pajpure sine wavesThe
experiment is succinctly represented by the curves in Figy.i8 which the horizon-
tal axis represents the frequency interval between the itveotenes and the vertical
axis represents a normalized measure of dissonance. Téendisce is minimum
when both sine waves are of the same frequency, increaseyrapits maximum
somewhere near one-quarter of the critical bandwidth, bed tecreases steadily
back toward zero. In particular, this says that intervathsas the major seventh and
minor ninth are almost indistinguishable from the octavéeis of sensory disso-
nancefor pure sine wavesSuch a violation of musical intuition becomes somewhat
more palatable by recognizing that pure sine waves are aimevsr encountered in
music.

"roughness”

"two tones"

sensory
dissonance

0 [
Hertz: 400 424 449 476 504 534 566 596 635 673 713 755 800 848

12-tet scale steps: fourth fifth octave
Interval: 1/1 4/3 3/2 21

Fig. 3.7. Two sine waves are sounded simultaneously. Typical pemepinclude pleasant

beating (when the frequency difference is small), roughifas the difference grows larger),
and separation into two tones (at first with roughness, ated laithout) as the frequency

difference increases further. The frequency of the lowes siave is 400 Hz, and the horizontal
axis specifies the frequency of the higher sine wave (in Hgeimitones, and as an interval).
The vertical axis shows a normalized measure of “sensoggatiance.

Although this experiment was conducted with pairs of sineeseof fixed fre-
guency, the results are similar to our observations frormd@xample [S: 11]. The
same general trend of beats, followed by roughness and hygeslooothing out of
the sound is apparent. The Plomp and Levelt curves have hgditated and ver-
ified in different musical cultures (for instance, Kameokal &uriyagawa [B: 79]
and [B: 80] in Japan reproduced and extended the resultyémaedirections), and
such curves have become widely accepted as describingspense of the auditory
system to pairs of sine waves. Figure 3.8 shows how the sed&sonance changes
depending on the absolute frequency of the lower tone.

The musical implications of these curves have not been urmeersial. Indeed,
some find it ridiculous that Plomp and Levelt used the wordssonance” and “dis-
sonance” at all to describe these curves. “Everyone knoat'the octave and fifth
are the most consonant musical intervals, and yet they ambere distinguishable

6 This experiment is discussed in more detail on p. 89.
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from nearby intervals on the Plomp-Levelt curves. We willdhanuch more to say
about this controversy in later chapters. Perhaps to defos® of the resistance
to their efforts, Plomp and Levelt were careful to call theestonal consonance
and dissonance. Terhardt [B: 196] suggests the teensoryconsonance and disso-
nance, and we follow this usage.

One of the major contributions of the Plomp and Levelt papas to relate the
point of maximum sensory dissonance to the critical bantwid the ear. As the
critical band varies somewhat with frequency, the dissoeaunrves are wider at low
frequencies than at high, in accord with Fig. 3.8. Thus,rirgis (like three semi-
tones) that are somewhat consonant at high frequenciesneeeighly dissonant at
low frequencies. To hear this for yourself, play a majordhir a high octave of the
piano, and then play the same notes far down in the bass. Te third sounds
muddy and rough, and the higher third is clear and smootts iBhalso consistent
with musical practice in which small intervals appear farenfsequently in the tre-
ble parts, and larger intervals such as the octave and fifthttedominate the lower
parts.

3.6 Counting Beats

Perhaps the simplest way to interpret the sensory dissertamees is in terms of the
undulations of the amplitude envelope. Referring back tp &i7, the “slow pleasant
beats” turn to roughness when the rate of the beating inesetasaround 20 or 30
beats per secondAs the frequencies spread further apart, they no longeritima
single critical ban# the sine waves become individually perceptible and theagn
dissonance decreases. Thus, one way to create a model ofyselissonance is

" The peak of the dissonance curve in Fig. 3.7 occurs at abosinitane above 400 Hz,
which is 424 Hz. Thus, the beat rate is 24 Hz when the diss@niamoaximum.
8 Figure 3.4 shows that a critical band centered at 400 Hz islargier than 100 Hz wide.

100 Hz frequency of
lower tone
200 Hz

400 Hz

e

600 Hz
1000 Hz

sensory
dissonance

0f

[ [ ]
12-tet scale steps: ~ fourth fifth octave
frequency interval

Fig. 3.8.Two sine waves are sounded simultaneously. As in Fig. 3étthmizontal axis repre-
sents the frequency interval between the two sine waveshanertical axis is a normalized
measure of “sensory” dissonance. The plot shows how th@seosnsonance and dissonance
change depending on the frequency of the lower tone.
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to “count” the beats, to create a system that detects theitamiplenvelope of the
sound and then responds preferentially when the frequehttyeeenvelope is near
the critical number where the greatest dissonance is pectei

One way to build such a model is to use a memoryless nonliydatiowed by
a bandpass filtéras shown in Fig. 3.9. The rectification nonlinearity

g(z) = {8 ’ 2 8 (3.1)

leaves positive values unchanged and sets all negatives/azero. Combined with
a low-pass filter, this creates an envelope deté®isith an output that rides along
the outer edge of the signal. The bandpass filter is tunedv® maximum response
in frequencies where the beating is most critical. Heneaylittput is large when the
beating is rough and small otherwise.

| | rectified signal envelope

b energy
signal i D, accumulation
f
rectification LPF BPF

noninearity g(x)

- -
—

envelope detector

Fig. 3.9.The envelope detector outlines the beats in the signal anlethdpass filter is tuned
to respond to energy in the 20 Hz to 30 Hz range where beatipgriseived as roughest.
Typical output of the model is shown in Fig. 3.10.

Typical output is shown in Fig. 3.10, which simulates theesipent of sound
example [S: 11], where two sine waves of equal amplitude @menged to create the
input; one is held fixed in frequency and the other slowly@ases. The accumulated
energy at the output of the model qualitatively mimics thessey dissonance curve
in Fig. 3.7. The detailed shape of the output depends onlgletfahe filters chosen.
For the simulation in Fig. 3.10, the LPF was a Remez filter wittoff at 100 Hz and
the BPF (which influences the detailed shape of the outpnafigvas a second-order
Butterworth filter with passband between 15 and 35 Hz. Thislehés discussed
further in Appendix G.

? This is similar to an early model by Terhardt [B: 195].
10 see Appendix C of [B: 76] for a discussion of envelope detscto
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Fig. 3.10.Two sine waves of equal amplitude are input into the modeligf 8.9. The fre-
quency of one sine is fixed at 400 Hz, and the other begins ati#0énd slowly increases
to 850 Hz. The output of the bandpass filter (the energy actation) is largest when the
beating is in the 20 to 30 Hz range.

3.7 Ear vs. Brain

These first chapters have been using “the ear” as a synonyftthénuman auditory

system.” Of course, there is a clear conceptual divisioween the physical ear (the
eardrum, ossicles, cochlea, etc.) that acts as a transftooepressure waves into
neural impulses and the neural processes that subseqoently inside the brain.

It is not so clear, however, in which region various aspe€seoception arise. For
instance, the perception of pitch is at least partly accshpt on the basilar mem-
brane, but it is also due in part to higher level processing.

To investigate whether the perception of roughness anstsei physical ear or
in the brain, sound example [S: 12] repeats the previouk toat with a binaural
recording; the sine wave of fixed frequency is panned all thg t@ the right, and
the variable sine wave is panned completely to the leftelistg normally through
speakers, the two sides mix together in the air. But lisggtimough headphones,
each ear receives only one of the sine waves. If the pereepfiooughness origi-
nated exclusively in the physical ear, then no roughnessldhme heard. Yet it is
audible, although the severity of the beating is somewldged!? This suggests
that perceptions of sensory dissonance are at least partinhgal phenomenon; that
is, the signals from the two ears are combined in the neuchitacture. As the ef-
fect is stronger when the waves physically mingle togethera|l sound example
[S: 11]), it is also likely that perceptions of roughness duoe at least partly to the
physical mechanism of the ear itself.

This chapter has considered the simple case of a pair of salmesywhere sen-
sory dissonance is readily correlated with the interfeeguitenomenon of beating.

! Electrodes attached directly to the auditory nerves of geaple induce the perception of
a “fuzzy, scratchy” sound like “comb and paper”; see [B: 133]

2 Another way to listen to this sound example, suggested bydlleR is to listen through
the air and through headphones simultaneously. Pluggidgiaplugging the headphones
as the example progresses emphasizes the dual nature eftiepfion: part “ear” and part
“brain.”
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Later chapters return to this idea to build a more completdehihat calculates the
sensory dissonance of an arbitrary collection of soundsarMaile, Chap. 4 turns
to a consideration of musical scales and summarizes sonteeahany ways that
people divide up the pitch continuum.



4

Musical Scales

People have been organizing, codifying, and systematizing
musical scales with numerological zeal since antiquity.
Scales have proliferated like tribbles in quadra-tritieajust
intonations, equal temperaments, scales based on ovestone
scales generated from a single interval or pair of intervals
scales without octaves, scales originating from arcane
mathematical formulas, scales that reflect cosmological or
religious structures, and scales that “come from the heart.
Each musical culture has its own preferred scales, and many
have used different scales at different times in their njsto
This chapter reviews a few of the more common organizing
principles, and then discusses the question “what makes a
good scale?”

4.1 Why Use Scales?

Scales partition the pitch continuum into chunks. As a p@fa@usic progresses, it
defines a scale by repeatedly exploiting a subset of all thsiple pitch relationships.
These repeated intervals are typically drawn from a smabbfsgossibilities that are
usually culturally determined. Fifteenth-century monlsed very different scales
than Michael Jackson, which are different from those usethimnese gamelan or
in Sufi Qawwali singing. Yet there are certain similaritiesremost is that the set of
all possible pitches is reduced to a very small number, fivd@oper octave for the
monks, the major scale for Michael, either a five or severnohoctave-based scale
for the gamelan, and up to 22 or so notes per octave in somdcdAglrkish, and
Indian music traditions. But these are far from using “aliétpossible perceptible
pitches. Recall from the studies on JND that people canngjsish hundreds of
different pitches within each octave.

Why does most music use only a few of these at a time? Most ésoanot.
Birdsong glides from pitch to pitch, barely pausing befdrbdgins to slide away
again. Whales click, groan, squeal, and wail their pitchlimast constant motion.
Most natural sounds such as the howl of wind, the drippingatew and the ping of
ice melting are fundamentally unpitched, or they have giscthat change continu-
ously.

One possible explanation of the human propensity to digergitch space in-
volves the idea of categorical perception, which is a welwkn phenomenon to
speech researchers. The brain tries to simplify the woddrad it. The Bostonian’s
“pahk,” the Georgian’s “paaark,” and the Midwesterner'affg’ are all interchange-
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able in the United States. Similarly, in listening to anyl igace of music, there is a
wide range of actual pitches that will be heard as the sanch,@ay middle’'. Per-
haps the flute plays a bit flat, and the violin attacks a bitgh@ine mind hears both
as the “same’C, and the limits of acceptability are far cruder than thesepow-
ers of resolution. Similarly, an instrumentalist does nlatypwith unvarying pitch.
Typically, there is some vibrato, a slow undulation in thel@rying frequency. Yet
the ear does not treat these variations as separate noteatheer incorporates the
perception of vibrato into the general quality of the tone.

Another view holds that musical scales are merely a methodasfsification
that makes writing and performing music simpler. Scalep define a language that
makes the communication of musical ideas more feasibleifteveryone adopted
their own pitch conventions. For whatever reasons, musis dgpically exploit
scales. The next few sections look at some of the scales #évatlteen historically
important, and some of the ways that they have been gerestadizd extended.

4.2 Pythagoras and the Spiral of Fifths

Musical intervals are typically defined by ratios of freqaies, and not directly by
the frequencies themselves. Pythagoras noted that a Bettey at its halfway point
sounds an octave above the unfretted string, and so theedstgiven by the ratio two
to one, writter2/1. Similarly, Pythagoras found that the musical fifth soundemw
the length of two strings are in the ratig2, whereas the musical fourth sounds when
the ratio of the strings i$/3.

Why do these simple integer ratios sound so special? Rdlithe spectrum
of a string (from Fig. 2.5 on p. 17 and Fig. 2.6 on p. 18) cossidta fundamental
frequencyf and a set of partials located at integer multiples’o¥When the string
is played at the octave (when the ratio of lengths is 2/1)spiextrum consists of a
fundamental a2 f along with integer partials &(2f) = 4f, 3(2f) = 6f, 4(2f) =
8f, and so on, as shown in Fig. 4.1. Observe that all the padfdlse octave align
with partials of the original. This explains why the note atstbctave tend to merge
or fuse together, to be smooth and harmonious, and why thegasily be mistaken
for each other. When the octave is even slightly out of tunedver, the partials do
not line up. Chapter 3 showed how two sine waves that are aosequency can
cause beats that are perceived as a roughness or dissdnanogstuned octave, the
nt? partial of the octave is very close to (but not identical Withe 2n** partial of
the fundamental. Several such pairs of partials may beatstgsach other, causing
the characteristic (and often unwanted) out of tune sesrsati

When a note is played along with its fifth, alternating pastlme up. The par-
tials that do not line up are far apart in frequency. As in #mgsery dissonance curve
of Fig. 3.7 on p. 46, such distinct partials tend not to intefa a significant way.
Hence, the fifth also has a very smooth sound. As with the ectahen the fifth
is mistuned slightly, its partials begin beating against ¢brresponding partials of
the original note. Similarly, when other simple integelioatare mistuned, nearby
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partials of a harmonic sound
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Fig. 4.1.A note with harmonic spectrum shown in (a) forms an octaveyrof-tune octave,
and a fifth, when played with (b), (c), and (d), respectiv®lgserve the coincidence of partials
between (a) and (b) and between (a) and (d). In the out-a&f-tstave (c), closely spaced
partials cause beats, or roughness.

partials interact to cause dissonances. Thus, Pythaguvastvations about the im-
portance of simple integer ratios can be viewed as a consequ the harmonic
structure of the string.

Using nothing more than the octave and the fifth, Pythagarastoucted a com-
plete musical scale by moving successively up and down Whsfiftiote that moving
down by fifths is equivalent to moving up by fourths, beca(&&)(4/3) = 2. To
follow Pythagoras’ calculations, suppose that the (aabjiy starting note is called
C, at frequencyl. After including the fifthG at 3/2, Pythagoras adde® a fifth
aboveG, which is(3/2)(3/2) = (3/2)* = 9/4. As 9/4 is larger than an octave, it
needs to be transposed down. This is easily accomplishedvigind by 2, and it
gives the rati® /8. Then add4 with the ratio(3/2)3, E at(3/2)*, and so on (always
remembering to divide by 2 when necessary to transpose bk briginal octave).
Alternatively, returning to the origindl’, it is possible to add notes spiraling up by
fourths by adding” at 4/3,Bb at(4/3)%, and so on, again transposing back into the
original octave. This process gives thgthagorean scalshown in Fig. 4.2.

The seven-note Pythagorean scale in Fig. 4.2 is an earljoweo$ a diatonic
scale. Diatonic scales, which contain five large steps amdstwall steps (whole
tones and half tones), are at the heart of Western musicatiootand practice
[B: 53]. In this case, the scale contains the largest numbg@edect fourths and
fifths possible, because it was constructed using only therdtically ideal ratios
3/2and4/3.
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Pythagorean Scale (wolf at F#)

Pythagorean Scale (wolf at Bb)

ratio cents ratio cents
cpn, a1 0 ~
256/243 0 2187/2048 114 a=9/8
D | 9/8 204 | <_ 9/8 204 | <
—  32/27 204 _a —— 19683/16384 318 a
E |81/64 408 < 81/64 408 =
b=256/243 T b=256/243
F |43 498 < 4/3 498 <
— 720512 612 2 —  729/512 612 a
G |32 02 | 3/2 702 | <
—  128/81 792 _a —— 6561/4096 816 a
A |27/16 906 | <_ 27116 906 |
— 16 996 a —— 59049/32768 1020 \a
B |243/128 1110 ‘< 243/128 1110 ‘ —
b \b
c| en 1200 | — 2/1 1200 | _—

Fig. 4.2.In a Pythagorean scale, all intervals form perfect justdiflith the scale tone seven
steps above except for one called thelf. The Pythagorean diatonic (major) scale is shown
on the white keys (labele@', D, E, F, G, A, B, C) and the black keys show two possible
extensions to a full 12-note system. The left-hand scaleggslahe wolf on thel}, and the
right hand scale has the wolf &b.

Much to Pythagoras’ chagrin, however, there is a problemei\éxtending the
scale to a complete tuning system (continuing to multipbcsssive terms by perfect
3/2 fifths), it is impossible to ever return to the unisbAfter 12 steps, for instance,
theratiois(3/2)!?, whichis231221. When transposed down by octaves, this becomes
%, which is aboutl.0136, or one-quarter of a semitone (23 cents) sharp of the
unison. This interval is called theythagorean command Fig. 4.3 illustrates the

Pythagorean “spiral of fifths.”

Fig. 4.3.In a Pythagorean scale built from all per-
fect fifths with ratios of?, the interval formed by
12 perfect fifths is slightly larger than an octave.

' To see tha(3/2)"
3" = 2™*" As any integer can be decomposed uniquely into primese tban be no
integer that factors inte powers of3 and simultaneously inte: + n factors of 2.

2™ has no integer solutions, multiply both sides %%, giving
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The implication of this is that an instrument tuned to an ethagorean scale,
one that contained all perfect fifths and octaves, wouldirecan infinite number
of notes. As a practical matter, a Pythagorean tuner chamse®f the fifths and
decreases it by the appropriate amount. This is calledPttiegorean command
the (imperfect) “fifth” that is a quarter semitone out of tusesalled thewolf tone,
presumably because it sounds bad enough to make peoplelhohé.left-hand side
of Fig. 4.2, the wolf fifth occurs betweeht and theC't above.

To the numerologically inclined, the Pythagorean scaledslaght. First of all,
there is nothing unique about the order in which the suceedsaictors of a fourth
and fifth are applied. For instance, the right-hand side gf &i2 shows a second
Pythagorean scale with the wolf tonefii. There are several ways to generate new
scales based on the Pythagorean model. First, other itg¢inga the fifth and fourth
could be used. For instance, lestand for any interval ratio (any number between
one and two will do), and letbe its complement (i.e., the interval for which = 2).
Thenr ands generate a family of scales analogous to the Pythagoreatyféaf
course, Pythagoras would be horrified by this suggestiosgus®e he believed there
was a fundamental beauty and naturalness to the first foegéns? and the simple
ratios formed from them.

The Pythagorean scale can also be viewed as one example igfeaclass of
scales based on tetrachords [B: 43], which were advocated bymber of an-
cient theorists such as Archytas, Aristoxenus, Didymuatdsthenes, and Ptolemy
[B: 10]. A tetrachord is an interval of a pure fourth (a ratib4g'3) that is divided
into three subintervals. Combining two tetrachords arcaicentral interval of)/8
forms a seven-tone scale spanning the octave. For instaigcd,.4 shows two tetra-
chords divided into intervals, s, t andr’, s’, t'. Whenr = ', s = s, andt = ¢/,
the scale is called an equal-tetrachordal scale. The Pgtbag scale is the special
equal-tetrachordal scale where= ' = s = s’ = 9/8. A thorough modern treat-
ment of tetrachords and tetrachordal scales is availallinamers [B: 31].

Fig. 4.4. Tetrachordal scales divide the

C D E F G A B C :
| | | | } | | | octave into two 4:3 tetrachords sepa-
r s t r s' t rated by an interval of 9:8. The tetra-
| | 98 | | chords are each divided into three inter-
4:3 tetrachord 4:3 tetrachord vals to form a seven-note scale, which
\ | islabeled in the key of.
2:1 octave

A third method of generating scales is based on the obsenvtitat the intervals
between successive terms in the major Pythagorean scalegétg structured. As
shown Fig. 4.2, there are only two distinct successive valer9,/8 and256,/243,
between notes of the Pythagorean diatonic scale. Why nargenscales based on
some other interval ratiosand s? For octave-based scales, this would require that

2 In the Pythagorean conception, tteraktyswas the generating pattern for all creation:
politics, rhetoric, and literature, as well as music.
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there be integers andm such that™s” = 2. The simplest possible scale of this
kind would haves = r, because then all adjacent notes would be equidistant.

4.3 Equal Temperaments

For successive notes of a scale to sound an equal distarmteasea interval must be
the same. Letting represent this interval, a scale with 12 equal steps can itiemwr

1 2 ‘;3,54,35,36,57,88,89,510,811,512.

Ifthe scale is to repeat at the octave, the final note must @qliae equation!? = 2
has only one real solution, called the twelfth root of twdslhotateds = /2, and

it is approximatelyl.05946. A quick check with a calculator shows that multiplying
1.05946 times itself 12 times gives an answer (very closeto)

Although ratios and powers are convenient for many purpdbeyg can be cum-
bersome for others. An easy way to compare different inteiséo measure inents
which divide each semitone into 100 equal parts, and thee@téo 1200 parts. Fig-
ure 4.5 depicts one octave of a keyboard, and it shows thetlt2sing in ratios,
in cents, and in the decimal equivalents. Given any ratimtarval, it is possible to
convert to cents, and given any interval in cents, it is gedb convert back into a
ratio. The conversion formulas are given in Appendix B.

note cents interval Fig. 4.5.The familiar 12-tone equal-tempered scale is the basis
| of most modern Western music. Shown here is one octave of the
C#/Db 180 ]:8595 keyboard with note names, the intervals in cents defined bly ea
200 1.189 key, and the decimal equivalents. The white keys (labéle®,
D#/Eb 300 1.1225 E,F,G, A, B, C) form the diatoniaC major scale, and the full
400 1'260‘ 12 keys form the 12-tet chromatic scale.

500 1.335\
F#/Gb 600 1.4142
700 1.498l
G#/Ab 800 1.5874
900 1.682|
A#/Bb1000 1.7818
1100 1.888‘

1200 2.0 ‘

olal>o[n[m[o o

The 12-tone equal-tempered scale (12-tet) is actuallfyfeécent? With 12-tet,
composers can modulate to distant keys without fear ofrigjtévolf tones. As the

% The superscripts represent powerssphence, the interval between thé" andn + 1°*
stepiss™t' /s = s.

* The preface to Jorgensen [B: 78] states that “the modernl ¢égugperament taken for
granted today as universally used on keyboard instrumeetsad exist in common prac-
tice on instruments until the early twentieth century. thbi@mperament and music were
tonal”
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modern Western instrumental families grew, they were desigo play along with
the 12-tet piano, and the tunings’ dominance became a $ttawld. It is now so
ubiquitous that many modern Western musicians and comp@asereven unaware
that alternatives exist.

This is not surprising, because most books about musicahdrar and scales
focus exclusively on 12-tet, and most music schools offer deurses on non-12-
tet music, even though a significant portion of the histdriepertoire was writ-
ten before 12-tet was common. For instance, the standarit tihg®ry texts Piston
[B: 137] and Reynolds and Warfield [B: 148] make no mentionmof auning other
than 12-tet, and the word “temperament” does not appeaeinitidices. All major
and minor scales of “classical music,” the blues and pentatecales of “popular
music,” and all various “modes” of the jazz musician are tauas nothing more
than subsets of 12-tet. When notes outside of 12-tet areduted (e.g., “blues” or
“bent” notes, glissandos, vibrato), they are typically sidered aberrations or ex-
pressive ornaments, rather than notes and scales in thessisel

Yet 12 notes per octave is just one possible equal tempetamésa easy to
design scales with an arbitrary numbeof equal steps per octave. iifis the nt”
root of 2 - = {/2), thenr” = 2 and the scale

[ O I N it
containsn identical steps. The calculation is even easier using cé&stthere are
1200 cents in an octave, each stepitone equal temperament 1200/n cents.
Thus, each step in 10-tone equal temperament (10-tet) is&2@, and each step
in 25-tet is 48 cents. Figure 4.6 shows all the equal tempengsrbetween 9-tet and
25-tet. Because 12-tetis the most familiar, grid lines dra#100, 200, 300, ... cents
provide a visual reference for the others.

The Structure of Recognizable Diatonic Tunifi§s15] examines many equal-
tempered tunings mathematically and demonstrates thigityab approximate in-
tervals such as the perfect fifth. More important than theheragtics, however, are
Blackwood’s12 Microtonal Etudesin each of the tunings between 13-tet and 24-tet,
which demonstrate the basic feasibility of these tunings.

It is fine to talk about musical scales and to draw interesgiragphics describ-
ing the internal structure of tunings, but the crucial giogstmust be: What do these
tuningssoundlike? One of the major points of this book is that alternative-
ing systems can be used to create enjoyable music. The aaoging CD contains
several compositions in various equal temperaments, asktare summarized in
Table 4.1. The pieces range from very strange soundsaglironismand Swish) to
exotic (Ten Fingersand The Turquoise Dabo Giylto reasonably familiarQympa-
thetic Metaphorand Truth on a Bus References marked with [S:] point to entries
in the index of sound examples that starts on p. 381, wheregodind instructions
on how to listen to the files using a computer as well as mo@métion about the
pieces.

5 See (and hear) [D: 4].
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Fig. 4.6.Tuning of one octave of notes in the 9-tet, 10-tet, throughe?Scales. The vertical
axis proceeds from unison (1/1) to the octave (2/1). Thezbotal lines emanate from the
12-tet scale steps for easy comparison.

Table 4.1. Musical compositions in various equal temperaments afpgan the CD-ROM.

Name of Equal File For More
Piece Temperament Detall
Swish 5-tet swish.mp3 [S:107]
Nothing Broken in Seven 7-tet broken.mp3 [S:117]
Pagan’s Revenge 7-tet pagan.mp3 [S:116]
Phase Seven 7-tet phase7.mp3 [S:118]
March of the Wheel 7-tet marwheel.mp3 [S:115]
Anima 10-tet anima.mp3 [S: 106]
Ten Fingers 10-tet tenfingers.mp3 [S:102]
Circle of Thirds 10-tet circlethirds.mp3 [S:104]
Isochronism 10-tet isochronism.mp3 [S: 105]
The Turquoise Dabo Girl 11-tet dabogirl.mp3 [S: 88]
Unlucky Flutes 13-tet 13flutes.mp3 [S:99]
Hexavamp 16-tet hexavamp.mp3 [S:97]
Seventeen Strings 17-tet 17strings.mp3 [S: 98]
Truth on a Bus 19-tet truthbus.mp3 [S:100]
Sympathetic Metaphor 19-tet sympathetic.mp3 [S:101]
Dream to the Beat 19-tet dreambeat.mp3 [S:13]

Incidence and Coincidencel9-tet+12-tet incidence.mp3 [S: 14]
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| believe that one of the main reasons alternative tunings haen underexplored
is because there were few musical instruments capable whglshem. Ironically,
the same keyboard instruments that saddled us with 12+tgtégast two and a half
centuries can now, in their electronic versions, easily pfaalmost any tuning or
scale desired.

Equal temperaments need not be based on the octave. A sthle equal steps
in every pseudo-octabe is based on the ratio = ;/p. Again, this calculation is
easier in cents. A pseudo-octgve- 2.1 defines an interval of 1284 cents. Dividing
thisinto (say) 12 equal parts gives a scale step of 107 camtsing that is explored
in October 21sfS: 39]. Recall the “simple tune” of [S: 4]. This melody is @éeped
further (and played in a variety of different pseudo-octve Plastic City[S: 38].
One interesting pseudo-octavers= 2.0273, which defines a pseudo-octave of
1224 cents, the amount needed to make 12 perfect 3/2 fifthsis, the Pythagorean
spiral of fifths can be closed by relaxing the requirement tha scale repeat each
2/1 octave. However, harmonic sounds clash dissonantiypleed in 1224-cent
intervals because of the almost coinciding partials. Ifphetials of the sounds are
manipulated so as to realign them, then music in the 1228psmudo-octave need
not sound dissonant.

Moreno [B: 118] examines many nonoctave scales and findsrtrsatme "
root of p” tunings the ratio p:1 behaves analogously to thk ratio in 12-tet.
McLaren [B: 107] discusses the character of nonoctaveebssales and proposes
methods of generating scales that range from number thedrgantinued fractions
to the frequencies of vibrations of common objects. An ieééing nonoctave scale
was proposed independently by Bohlen [B: 16] on the basioofhination tones
and by Mathews et al. [B: 101] on the basis of chords with &85:7 (rather than
the more familiar 3:4:5 of diatonic harmony). The resultsogle intervals are fac-
tors of the thirteenth root df rather than the twelfth root &, and thetritave® plays
some of the roles normally performed by the octave. Thus,3 defines the pseudo-
octave, and = /3 has 146.3 cents between each scale step. For more informatio
see the discussion surrounding Fig. 6.9 on p. 107.

Itis also perfectly possible to define equal-tempered sdajesimply specifying
the defining interval. Wendy Carlos [B: 23], for instances Hefined the alpha scale
in which each step contains 78 cents, and the beta scaletejith of 63.8 cents. Gary
Morrison [B: 113] suggests a tuning in which each step cost88 cents. This 88
cents per step tuning has 13.64 equal steps per octave, qualsteps in a stretched
pseudo-octave of 1232 cents. Many of these are truly xerdvamin nature, with
strange “harmonies” that sound unlike anything possiblEiniet. As will be shown
in subsequent chapters, a key idea in exploiting strangedsrsuch as these is to
carefully match the tonal qualities of the sounds to theipaler scale or tuning used.
Two compositions on the CD use this 88 cent-per-tone s¢deoun in 88[S: 15]
and88 VibedS: 16].

6 p = 2 gives the standard octave.
7 Transposinq%)12 down (by octaves) to the nearest octave gives 1224 cents.
8 An interval of 3/1 instead of the 2/1 octave.
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4.4 Just Intonations

One critique of 12-tet is that none of the intervals are peoe instance, the fifths are
each 700 cents, whereas an exact Pythagorean 3/2 fifth i€R@2 The imperfection
of the wolf fifth has been spread evenly among all the fifths, perhaps this small
difference is acceptable. But other intervals are lessifate. Just as the octave and
fifth occur when a string is divided into simple ratios suct2ésand 3/2, thirds and
sixths correspond to (slightly more complex) simple ratiifsese are thpistthirds
and sixths specified in Table 4.2. For comparison, the 1&xégor thirds are 14 cents
flat of the just values, and the minor thirds are 16 cents sh&yeh discrepancies are
clearly audible. Many music libraries will have a copy of Baur [D: 2], which gives
an extensive (and biased) comparison between just and-taapkred intervals.

Table 4.2. The just thirds and sixths.

interval ratio cents
just minor third  6/5 316
just major third  5/4 386
just minor sixth  8/5 814
just major sixth  5/3 884

The Just Intonatior(JI) scale appeases these ill-tempered thirds. Two example
are given in Fig. 4.7. The seven-note Jl major scale in thédfbis depicted in the
key of C. The thirds starting o', Ct, D, D, F, G, andGf are all just 5/4. As
the fifths starting orC', C't, F', GG, andG4 (among others) are perfegyf 2 fifths, all
five form just major chords. Similarly, the JI scale on thetbot has five just minor
chords starting o, D, E, F', andA.

What do just intonations sound like? Sound examples [S: Ardugh [S: 20]
investigate. Scarlatti's Sonata K380 is first played in [&:ih 12-tet!® The sonata
is then repeated in just intonation centered(®in [S: 18]. As it is performed in
the appropriate key, there are no wolf tones. The overalré@sgion is similar to
the 12-tet version, although subtle differences are appangon careful listening.
To clearly demonstrate the difference between these tsngoyind example [S: 19]
plays in 12-tet and in just intonation simultaneously. $oténere the tunings are the
same sound unchanged. Notes where the tunings differ schordsed or phased
and are readily identifiable.

? The Pythagorean scale gives an even worse approximatioenihasizing fourths and
fifths, the thirds and sixths are compromised, and the Pyifesgn major thirdd1/64 (408
cents) is even sharper than the equal-tempered third (4®8)c©n the other hand, there
are many ways to construct scales. For example, the Pytagotterval £)®, when trans-
lated to the appropriate octave, is almost exactly a jusbnthjrd.

1% The musical score for K380 is shown in Fig. 11.3 on pp. 216 dd & is performed here
(transposed down a third) i major.
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Partch's 43 tone scale
ratio cents ‘
11 o |
A Just In_tonation Scale in C and 33/32 N 53 2?
extension to a 12-note scale
ratio cents 21/20 84 ‘
7 16/15 112
clin 0 *< 12/11 151 |
[ 16/15 112 *< 7 1110 165
D | 9/8 204 |*x 10/9 182 |
. 6/5 316 * . 9/8 204
E |5/4 386 < 8/7 231
F |43 498 |*< 7/6 267
T 45/32 590 — 3227 294
G |32 702 [k < 6/5 316 ‘
85 814 *x< — 1109 347
A | 5/3 884 ‘ Lo 5/4 386
—— 16/9 996 <
B |15/8 1088 ‘ < 14/11 417
— 9/7 435
C|2n 1200 ‘*° 21/16 471 |
— — 4/3 498
27/20 520 |
I 11/8 551
7/5 583 ‘
A Just Intonation Scale in C and 10/7 617 ‘
extension to a 12-note scale — 16/11 649
; 40/27 680
ratio cents [ " 3/ 702
c|1n 0 Ix< 32/21 729 ‘
— 25/24 71 * ‘
D [10/9 182 |x< 14/9 765
— 6/5 316 1 78‘2
E | 5/4 8/5 814
> 3 x> — 181 853
F | a3 498 * < 5/3 884 |
—— 45/32 590 7 27/16 906
G| 3/2 702 | 1277 933
— 8/5 814 <
Al 53 884 k< 7/4 969
—— 16/9 996 < . 16/9 996
B |15/8 1088 ‘ < 9/5 1018 |
7 20/11 1035
C| 211 1200 ‘* <> 11/6 1049
15/8 1088
— 40/21 1116
64/33 1147 |
— 160/81 1178
2/1 1200 |

Fig. 4.7.The intervals in just intonation scales are chosen so thaymfthe thirds and fifths
are ratios of small integers. Two JI diatonic scales are sh@abeledC, D, E, F, G, A,
B, C) in the key ofC; the black keys represent possible extensions to the chiofrnote
setting. Each interval in the top JI major scale with a * foransist major third with the note
4 scale steps above, and each note marked withforms a just fifth with the note 7 scale
steps up. Similarly, in the bottom JlI scale, each intervéh\ai* forms a just minor third with
the note 3 scale steps above, and each note markedawitforms a just fifth with the note 7
scale steps up. Partch’s 43-tone per octave scale contaimg ofithe just intervals.
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The five pieces listed in Table 4.3 are performed in a variéyst intonation
scales, which are documented in detail in [S: 23] througt2[3: These represent
some of my earliest compositional efforts, and | prefer tmremend recordings by
Partch [D: 31], Doty [D: 11], or Polansky [D: 34] to get a mokntplete idea of how
just intonations can be used.

Table 4.3. Musical compositions in various just intonations appeadn the CD-ROM.

Name of File For More
Piece Detail
Imaginary Horses imaghorses.mp3 [S: 23]
Joyous Day joyous.mp3 [S: 24]
What is a Dream? whatdream.mp3 [S: 25]
Just Playing justplay.mp3 [S: 26]
Signs signs.mp3 [S: 27]

JI scales are sometimes criticized because they are inthekey specific. Al-
though the above scales work well@hand in closely related keys (those nearby on
the circle of fifths), they are notoriously bad in more distegys. For instance, an
F'# major chord has a sharp third and an even sharper fifth (728)cérhus, it is
unreasonable to play a piece that modulates ftota F'f in Jl. To investigate, sound
example [S: 20] plays Scarlatti’s K380 in just intonationted on”'f even though
the piece is still played in the key @f. The out-of-tune percept is unmistakable in
both the chords and the melody. When JI goes wrong, it gogsweng. Barbour
[D: 2] analogously plays a series of scales, intervals, duds in a variety of tun-
ings that demonstrate how bad JI can sound when played eatlytrFor instance,
“Auld Lang Syne” is played irC” in a justC' scale, and it is then played i without
changing the tuning. Barbour comments, “A horrible examgbeit instructive.” It is
a horrible example—of the misuse of JI. No practitioner widgpérform a standard
repertoire piece i’ just when it was written in the key dff.

There are several replies to the criticism of key specifidtyst, most JI advo-
cates do not insist that all music must necessarily be paddrin JI. Simply put, if
a piece does not fit well into the JI framework, then it showtlve performed that
way. Indeed, JI enthusiasts typically expect to retune fhstruments from one Ji
scale to another for specific pieces. The second resporis il scales may contain
more than 12 notes, and so many of the impure intervals caarbed The third
response involves a technological fix. With the advent oftebmic musical instru-
ments that incorporate tuning tables, it has become paswihietune “on the fly.”
Thus, a piece could be played in a Jl scale centered ar6y@ehd then modulated
(i.e. retuned) to a JI scale centered aroutig without breaking the performance.
This would maintain the justness of the intervals throughdhe fourth possibility
is even newer. What if the tuning could be matigmamic¢ so as to automatically
retune whenever needed? This is the subject of the “Adaptiméngs” chapter.
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The second criticism brought against JI is closely relatethe first. Rossing
[B: 158] explains that JI is impractical because an “oraeesbmposed of instru-
ments with just intonation would approach musical chaasadine if each instru-
mentalist required 12 instruments, one for each musicdlBeyit is only fixed pitch
instruments like keyboards that are definitively lockedaiatsingle tuning. Winds,
brass, and strings can and do change their intonation witkiaalucircumstance.
Where fixed pitch instruments set an equal-tempered stdnglach microtonal in-
flections may be in the direction of equal temperament. Bbtlswitch manipu-
lations by the musician are heavily context dependent. |&ityj choirs sing very
differentlya cappellathan when accompanied by a fixed pitch instrument.

The amusing and caustic bobdkes My Music Teacher Told Mells the first-
hand story of a choir director who discovers justly intonegbivals, and trains his
chorus to sing without tempering. Eskelin [B: 54] exhorts thoir to “singinto the
chord, not through it,” and teaches his singers to “lock theochord,” with the goal
of tuning the sound “until the notes disappear.” He deseribgypical session with a
new singer who is at first:

reluctant and confused, and is convinced we are all a litHeycfor ask-
ing him to sing the pitch out of tune. Eventually this defemsiess is re-
placed by curiosity, and finally the singer begins to exptbesspace outside
his old comfort zone. When he experiences the peaceful danoccurs
when the note locks with [the] sustained root, the eyebraiger the eyes
widen...another soul has been saved from the fuzzinessnpfetieed tuning.

Whatever its practicality, JI concepts have been fertitaigd for the creation of
musical scales. For instance, scales can be based aroendhlatother than thirds,
fifths, and octaves. Extending the Jl vocabulary in this veayls to scales such as the
43-tone scale of Partch [B: 128] and to a host of 11 and 13kedles (those that
use ratios with numerator and denominator less than thefiggenumber). David
Doty [B: 43] argues eloquently for the use of JI scales in leis/weadablelust In-
tonation Primer and includes examples of many of the more important teclasiq
for constructing JI scales. An organization called the Joistnation Network has
produced a number of interesting compilations, includRagional Music for an Ir-
rational WorldandNumbers Racketind numerous Jl recordings are available from
Frog Peak Musié!

4.5 Partch

Harry Partch was one of the twentieth century’s most prolfiocfound, opinionated,
and colorful composers of music in just intonation. Partebedoped a scale that uses
43 (unequal) tones in each octave. To perform in this 43-pmreoctave Jl scale,
Partch designed and built a family of instruments, inclgdirreed keyboard called
the chromelodeonthe percussiveloud chamber bow|ghe multistringedkithara,

11 See [B: 57] and [W: 13].
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thezymo-xylmade from wine bottles, and tlleazda marimbanade from the glass
of light bulbs. He wrote idiosyncratic choral and operatigsic that mimicked some
facets of ancient Greek performances and trained musi¢t@ansad and play his
scores. Some of his recordings are available; both [D: 3d][&n 31] have been
recently reissued, and the Corporeal Meadows website [\wbiains photos of his
instruments and up-to-date information on performancéssomusic.

Partch’s scale, shown in Fig. 4.7, has the ability to mamtidse approxima-
tionsto many just intervals in many different keys. Alse thrge palette of intervals
within each octave provides the composer with far more @stban are possible
in a smaller scale. For instance, depending on the musioalrostances and the
desired effect, one might choose 7/4, 16/9, or 9/5 to playd¢heof dominant sev-
enth, whereas the major seventh might be represented byd5(821. The melodic
“leading tone” might be any of these, or perhaps 64/33 or8@6®ould be useful
to guide the ear up into the octave. This scale, and Partbbries, are discussed
further in Sect. 5.3.

4.6 Meantone and Well Temperaments

Although many keyboards have been built over the centuriés far more than
12 keys per octave, none have become common or popular,npabbu because
of the added complexity and cost. Instead, certain tonesheri2-note keyboard
were tempered to compromise between the perfect interf#feall scales and the
possibilities of unlimited modulation in equal temperantseiMeantone scales aim to
achieve perfect thirds and acceptable triads in a familyeaofral keys at the expense
of some very bad thirds and fifths in remote keys. They arectlfyi built from a
circle of fifths like the Pythagorean tuning, but with centdifths larger or smaller
than 3/2.

Figure 4.8 compares the Pythagorean, 12-tet, and two meatiaingst? Each
protruding spoke represents a fifth. A zero means that thetfés a perfect 3/2 ratio,
whereas a nonzero value means that the fifth is sharpeneas{tfye) or flattened (if
negative) from 3/2. The Pythagorean tuning has zeroes wheng except between
the wolf, which is shown here betweért and Eb. The —1 represents the size of
the Pythagorean comma, and the sum of all the deviation®difths in any octave-
based temperament must equdl. In equal temperament, each fifth is squeezed by
an identical-1/12. Quarter-comma meantone flattens each fifth-dy'4 and then
compensates by creatingta7 /4 wolf. This is done because a stack of fout /4
tempered fifths gives a perfegt4 third.

Of course, there are many other possibilities. Figure 4dvsta number of his-
torical well temperaments that aim to be playable (but nenfital) in every key.
Many of these scales are of interest because they are aasdg by ear. Before this
century, keyboardists typically tuned their instrumergfbe each performance, and
a tuning that is easy to hear was preferred over a theodgtitare precise tuning

12 The form of this diagram is taken from [B: 114].
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Quarter-comma meantone Sixth-comma meantone

Fig. 4.8.Wheels of Tunings.

that is harder to realize. In fact, as Jorgensen [B: 78] saint, equal temperament
as we know it was not in common use on pianos as late as 8Hfs is at least
partly because 12-tet is difficult to tune reliably.

But the interest in well temperings is more than just the ficatmatter of the
ease of tuning. Each key in a well temperament has a uniqeedmlor, key-color,
or character that makes it distinct from all others. It wassehcharacteristic colors
that Bach demonstrated in Higell Tempered Clavieand not (as is sometimes re-
ported) the possibility of unlimited modulation in equatigerament. Many Baroque
composers and theorists considered these distinctivesradamportant element of
musical expression, one that was sacrificed with the rise2efief. Carlos [D: 7]
performs pieces by Bach in various well temperaments. Kafph24] performs a
stunning collection of piano sonatasBeethoven in the Temperaments

Two sound examples on the CD explore meantone tunings.aftarSonata
K380 is performed in the quarter comma meantone tuning oeshtie the key of
C'in [S: 21]1* As in the JI performance, the effect is not overwhelmingledent
from the familiar 12-tet rendition in [S: 17]. But when the amtone tuning is used

'3 Ellis’ measurements, reported in Helmholtz [B: 71], werewrate to about one cent.
' As in the previous examples [S: 17]-[S: 20], the piece issparsed ta” major.
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Werkmeister VI Kirnberger Il

Fig. 4.9.Several well temperaments.

improperly, the piece suffers (example [S: 22] uses thetgu@omma meantone
tuning centered o0'f).

4.7 Spectral Scales

Both the Pythagorean and the just scales incorporate alsedefined by simple
integer ratios. Such ratios are aurally significant becalieéharmonic structure of
many musical instruments causes their partials to ovevidygreas nearby out-of-
tune intervals experience the roughness of beating paréaiother way to exploit
the harmonic series in the creation of musical scales isde Hze scale directly on
the overtone series. Two possibilities are shown in Figd 4The first uses the eight
pitches from the fourth octave of the overtone series, ardsétond exploits the
16 pitches of the fifth octave. Of course, many other overspades are possible
because the sixth octave contains 32 different pitches divel, then” octave
contain2™ ! pitches) and any subset of these can be used to define ovedales.
Because the frequencies of the overtones are equally spatiechetically, they
are not equally spaced perceptually. The pitches of thestona harmonic series
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Scale from the Harmonic Series: Scale from the Harmonic Series:
Octave 4 Octave 5
. ratio  cents
ratio cents
11 0
" 0 — 1716 1oz\3
9/8 204
/8 204 | — 19/16 208
5/4 386 54 386
21/16 471
18 581 11/8 551
23/16 628
3/2 702 | 3/2 702 |
13/8 841 25/16 773
7/4 969 | 13/8 841
27116 906
15/8 1088 ‘ 7/4 96‘9
29/16 1030
2n 1200 | 15/8 1088 |
— 31/16 1145
2/ 1200 |

Fig. 4.10.All partials from the fourth octave of the harmonic series @duced to the same
octave, forming the scale on the left. Partials from the fdthave of the harmonic series
similarly form the scale on the right. The keyboard mappiagsnot unique.

grow closer together, and no two intervals between adjatet#s in the scale are
the same. Moreover, each starting note has a different nuafilséeps in its octave.
This contrasts strongly with equal temperaments in whitlsatcessive intervals
are identical and all octaves have the same number of stepgetheless, overtone
scales may be as old as prehistory. Tonometric measureroépian pipes from

Nasca, Peru suggest that the Nasca culture (200 BC to 600 A)have used an
arithmetic overtone scale with about 43 Hz between sucngddnes, see [B: 67].

The “throat singing” technique ([B: 97], [D: 22], [D: 20]) lalvs a singer to
manipulate the overtones of the voice. By emphasizing icegtartials and de-
emphasizing others, the sound may contain low droning hurdshéggh whistling
melodies simultaneously. Because the voice is primarilymioaic, the resulting
melodies tend to lie on a single overtone scale.

Spectral composers such as Murail [B: 120] have attempteditd “a coherent
harmonic system based on the acoustics of sound,” whichtheésound itself as
a model for musical structure.” One aspect of this is to dgmmse a sound into its
constituent (sinusoidal) components and to use these aoenp®to define a musical
scale. Thus, the scale used in the composition comes frorsatime source as the
sound itself. When applied to standard harmonic soundslghads to overtone scales
such as those in Fig. 4.10. More generally, this idea can temdrd to inharmonic
sounds. For example, the metal bar of Fig. 2.7 could be useeffioe a simple four-
note scale. More complex vibrating systems such as drurtis, &ed gongs can also
be used to define corresponding “inharmonic” scales.

In Murail's GondwandD: 28], the sounds of bells (inharmonic) and trumpets
(harmonic) are linked together by having the orchestrdtimsents play notes from
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scales derived from an analysis of the bellsTime and Againinharmonic sounds
generated by a DX7 synthesizer are the catalyst for pitcee®ngmed by the or-

chestra. The orchestral instruments are thus used as dketoeresynthesize (and
augment) the sound of the DX7.

An interesting spectral technique is to tune a keyboard ®® afmnthe spectral
scales, and to set each note to play a pure sine wave. Suchl@™&cindistinguish-
able from the “partials” of a note with complex spectrum, dgnldecomes possible
to compose with the spectrum directly. As long as the sounthires fused into a
single perceptual entity, it can be heard as a flowing, cotigtanutating complex
timbre. When the sound is allowed to fission, then it brealstapto two or more
perceptual units. The composer can thus experiment withuhger of notes heard
as well as the tone quality. In Murail3ésintégrationsfor example, two spectra fuse
and fission in a series of spectral collisions. Such techetique discussed at length
in [B: 34].

As a composer, | find spectral scales to be pliant and easy th with. They
are capable of expressing a variety of moods, and some egarappearing on the
CD are given in Table 4.4. These range from compositiongdinect additive syn-
thesid® (such agvertuneandPulsating Silencégo those composed using spectral
technigues and the overtone scales of Fig. 4.10 (sué¢hegsfrom GravityandIm-
manent Spheje More information about the individual pieces is avai&lnh the
references to the sound examples beginning on p. 381.

Table 4.4. Musical compositions in various spectral scales appearinge CD-ROM.

Name of File For More
Piece Detall
Immanent Sphere imsphere.mp3 [S: 28]
Free from Gravity freegrav.mp3 [S:29]
Intersecting Spheres intersphere.mp3 [S: 30]
Over Venus overvenus.mp3 [S:31]
Pulsating Silences pulsilence.mp3 [S:32]
Overtune overtune.mp3 [S: 33]
Fourier's Song fouriersong.mp3 [S: 34]

Spectral scales, even more than Jl, tend to be restricteattioylar keys or tonal
centers. They contain many of the just intervals when playg¢ide key of the funda-
mental on which they are based, but the approximations begoogressively worse
in more distant keys. Similarly, instruments tuned to aweet scales are bound to
a limited number of related keys. For example, most “naturallveless) trumpets
produce all their tones by overblowing, and they are limitedotes that are harmon-
ics of the fundamental. These are inherently tuned to antaverscale. Of course,
many kinds of music do not need to modulate between keys; ofthe pieces in Ta-

'S Where all sounds are created by summing a large collectipni@f sine wave partials.
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ble 4.4 change key. Some do not even change clraridating SilenceandOvertune
do not even change notes!

4.8 Real Tunings

Previous sections have described theoretically ideahggmiWhen a real person
tunes and plays a real instrument, how close is the tunirtgt@ieal ? The discussion
of just noticeable differences for frequency suggestsahatccuracy of 2 or 3 cents
should be attainable even when listening to the notes séigllgriWhen exploiting
beats to tune simultaneously sounding pitches to simpégvals such as the octave
and fifth, it is possible to attain even greater accutédgut this only describes the
best possible. What is typical?

§ 4204 _ _ _ _ _ _ _ o _____4 hicaz
c _F-—-—-—-—---- F-——-- === nim hicaz
_9 340—]

———————————— & & — — — — — — — — cargah
£ 260 7 X glk
o ____________ . 4w — — |busel
e o s, 3%, — qsegah
T s — dik kundi
q!:) S (Vo[
O 20 | | jatremepetts_ _°*_ e _ o ewts_ — _ |dugah
> -60—] * . . dik zengule
O - - - — - - = s - -- -1 zengule
<|C> 774 P e nim zengule
=) L - 8 _ _ _ _ _ _ _ ___ %5 e ] rast
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time

Fig. 4.11.Each note of the performance appears as a dot localizedén(tima horizontal axis)
and in frequency (the vertical axis). Theoretical note naofehe Turkish tradition appear on
the right. Figure used with permission [B: 4].

The actual tuning of instruments in performance is diffitutheasure, especially
in polyphonic music where there are many instruments ptagimultaneously. Can
Akkog [B: 4] has recently transcribed the pitches of a ailten of Turkish improvi-
sations{aksim) played in a variety of traditional modes&flamatby acknowledged
masters. Because these are played on a kind of fluter{@msur neys an aerophone
with openings at both ends), it is monophonic, and the pcas be automated
using a pitch-to-MIDI converter and then translated fronDViinto frequency. The
results can be pictured as in Fig. 4.11, which plots frequesctime; each dot rep-
resents the onset of a note at the specified time and with duifigal pitch. Observe
the large cluster of dots near the tonic, the horizontal labeleddugah A large
number of notes lie near this tonic, sometimes occurrinyalamd sometimes be-
low. Similarly, there are clusters of notes near other sstdps as indicated by the

'8 For instance, when matching two tones at 2000 Hz, it is péssibslow the beating rate
below 1 beat per second, which corresponds to an accuradpof half a cent.
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dashed lines. Interestingly, many pitches occur at lonatibat are far removed from
scale steps, for instance, the cluster at the end halfwaydesisegahanddik kundi
Thus, the actual performances are different from the theatevalues. (Similar ob-
servations have also been made concerning Western perfoesia
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frequency (cents from tonic)

Fig. 4.12.Zooming into the region between dugah and busilek shows hewmotes are dis-
tributed in pitch. Each dot represents the duration of alésat the indicated frequency, as a
percentage of the total duration of the piece. Figure ust#idparmission [B: 4].

To try to understand this phenomenon, Akkog replotted thta ¢h the form of
a histogram as in Fig. 4.12. In this performance, the lontiest (about 2.7% of
the total) was spent on a note about 10 cents above the tamécp&aks of this plot
can be interpreted as anchor tones around which nearbyepittho regularly occur.
Akkog interprets this stochastically, suggesting thast®maperformers do not stick
slavishly to predetermined sets of pitches, but rathebdeditely play in distributions
around the theoretical values. In one piece:

two consecutive clusters are visited back to back at diffigpeints in time,
and at each visit the musician has selected different séteaqiencies from
the two clusters, thereby creating a variable micro scale. .

Of course, thanansur neys a variable intonation instrument, and it is perhaps
(on reflection) not too surprising that the actual pitches/etl should deviate from
the theoretical values. But surely an instrument like a modeell-tuned piano
would be tuned extremely close to 12-tet. This is, in faatpimect. Modern pianos
do not even have real 2/1 octaves!

Piano tuning is a difficult craft, and a complex system ofgestd checks is used
to ensure the best sounding instrument. The standard nmetiemin by tuning one
note to a standard reference (say midd)eollowed by all octaves of thé'. Tuning
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then proceeds by fifths or by thirds (depending on the systetmgre each interval
is mistuned (with respect to the just interval) by a certaitoant. This mistuning
is quantified by the number of beats per second that the twereepes. Jorgensen
[B: 78], for instance, details several different methodsfming equal temperament,
and the instructions contain many statements such as Hgeaticurs at this high
location between the nearly coinciding harmonics of theperad interval below,”
“readjust middleC' until both methods produce beats that are exactly equad,” an
“numbers denote beats per second of the test interval."ast |part of the complex-
ity of the tuning instructions occurs because beats ar¢ecklnearly to frequency
difference (and not frequency ratio, as is pitch). Thus gkmected number of beats
changes depending on which octave is being tuned.

The deviation from 12-tet occurs because piano stringsym®ahotes that are
slightly inharmonic, which is heard as a moderate shargeninthe sound as it
decays. Recall that an ideal string vibrates with a purelymioaic spectrum in
which the partials are all integer multiples of a single famntal frequency. Young
[B: 208] showed that the stiffness of the string causes alartf piano wire to be
stretched away from perfect harmonicity by a factor of alioQ013, which is more
than 2 cents. To tune an octave by minimizing beats requirgshing the funda-
mental of the higher tone to the second partial of the loweet®Vhen the beats are
removed and the match is achieved, the tuning is stretchédebyame amount that
the partials are stretched. Thus, the “octave” of a typitah@is a bit greater than
1202 cents, rather than the idealized 1200 cents of a parftate, and the amount
of stretching tends to be greater in the very low and very hégfisters. This stretch-
ing of both the tuning and the spectrum of the string is cleaddible, and it gives
the piano a piquancy that is part of its characteristic degjsiound.

Interestingly, most people prefer their octaves somewtnatched, even (or es-
pecially) when listening to pure tones. A typical experitasks subjects to set an
adjustable tone to an octave above a reference tone. Alnithgiwy exception, peo-
ple set the interval between the sinusoids greater than ac2ale. This craving for
stretching (as Sundberg [B: 189] notes) has been observedtfio melodic intervals
and simultaneously presented tones. Although the prefameunt of stretching de-
pends on the frequency (and other variables), the averagébi@ato-free octaves is
about 15 cents. Some have argued that this preference &ctstd intervals may
carry over into musical situations. Ward [B: 203] notes thwatverage, singers and
string players perform the upper notes of the major third thredmajor sixth with
sharp intonation.

Perhaps the preference for (slightly) stretched interislgaused by constant
exposure to the stretched sound of strings on pianos. Onthiee band, Terhardt
[B: 194] shows how the same neural processing that definesetigation of virtual
pitcht” may also be responsible for the preference for stretcheaviais. Although
it may be surprising to those schooled in standard Westesicioat their piano is
not tuned to real octaves, the stretching of octaves is atiomored tradition among
the Indonesian gamelan orchestras.

7 Recall the discussion on p. 33.



72 4 Musical Scales
4.9 Gamelan Tunings

The gamelan, a percussive “orchestra,” is the indigenodsriesian musical tradi-
tions of Java and Bali. Gamelan music is varied and complex tlae characteristic
shimmering and sparkling timbres of the metallophonesir@ecing. The gamelan
consists of a large family of inharmonic instruments thattaned to either the five-
noteslendroor the seven-tonpelogscales. Neither scale lies close to the familiar
12-tet.

In contrast to the standardized tuning of Western musid) gacnelan is tuned
differently. Hence, the pelog of one gamelan may differ satgally from the pelog
of another. Tunings tend not to have exact 2:1 octaves; natie octaves can be
either stretched (slightly larger than 2:1) or compressédHtly smaller). Each “oc-
tave” of a gamelan may differ from other “octaves” of the sagaemelan.

An extensive set of measurements of actual gamelan tursrggeen in [B: 190],
which studies more than 30 complete gamelans. An averagérsl&uning (obtained
by numerically averaging the tunings of all the slendro gams is

0, 231, 474, 717, 955, 1208

(values are in cents) which has a pseudo-octave stretchgdémts. The slendro tun-
ings are often considered to be fairly close to 5-tet, altfioeach gamelan deviates
from this somewhat.

Similarly, an average pelog scale is

0, 120, 258, 539, 675, 785, 943, 1206,

which is a very unequal tuning that is stretched by 6 cent® ifiktruments and
tunings of the gamelan are discussed at length in the chapter Gamelan,” and
detailed measurements of the tuning of two complete gareedam given in Ap-
pendix L.

4.10 My Tuning Is Better Than Yours

It is a natural human tendency to compare, evaluate, andejuderhaps there is
some objective criterion by which the various scales anihggscan be ranked. If
so0, then only the best scales need be considered, becaiadeet fittle sense to com-
pose ininferior systems. Unfortunately, there are marfediht ways to evaluate the
goodness, reasonableness, fitness, or quality of a scaleaah criterion leads to a
different set of “best” tunings. Under some measures, 1&the winner, under oth-
ers 19-tet appears best, 53-tet often appears among tloesyiéfL2-tet was crowned
in one recent study, and under certain criteria nonoctaakesdriumph. The next
paragraph summarizes some of these investigations.

Stoney [B: 183] calculates how well the scale steps of variegual tempera-
ments match members of the harmonic series. Yunik and SBif2(Q9] compare
equal temperaments in terms of their ability to approxinsatatalog of 50 different
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just intervals. Douthett et al. [B: 44] and van Prooijen [B4] use continued frac-
tions to measure deviations from harmonicity for arbitregyal temperaments. Hall
[B: 68] observes that the importance of an interval depemdhe musical context
and suggests a least-mean-square-error criterion (bettieegntervals of.-tet and
certain just intervals) to judge the fitness of various tgsifor particular pieces of
music. Krantz and Douthett [B: 88] propose a measure of febsity” that is based
on logarithmic frequency deviations, is symmetric, and lbarapplied to multiple
intervals. As the criterion is based on “octave-closureis not dominated by very
fine divisions of the octave. Erlich [B: 52] measures how elaarious just intervals
are approximated by the equal temperaments up to 34-tetzasl thiat certain 10-
tone scales in 22-tet approximate very closely at the 7tli@arlos [B: 23] searches
for scales that approximate a standard set of just intebealsloes not require that
the temperaments have exact 2/1 octaves and discovergiescales with equal
steps of 78, 63.8, and 35.1 cents.

All of these comparisons consider how well one kind of scglgraximates an-
other. In an extreme case, Barbour [B: 10] essentially ¢alea how well various
meantone and well-tempered scales approximate 12-tetamdconcludes that 12-
tet is the closest!

The search for sensible criteria by which to catalog andsidfiasarious kinds
of scales is just beginning. Hopefully, as more people ggiegence in composing
in a variety of scales, patterns will emerge. One possjhiBisuggested in McLaren
and Darreg [B: 109], who rate equal temperaments on a camtirthat ranges from
“biased towards melody” to “biased towards harmony.” Ppshsomeday it will be
possible to reliably classify the possible “moods” that gegi tuning offers. See
[B: 36] for further comments.

4.11 A Better Scale?

Pythagoras felt that the coincidence of consonant interaatl small interval ratios
were confirmation of deeply held philosophical beliefs. Isutervals are the most
natural because they involve powerful mystical numbems 1ik2, 3, and 4. Rameau
[B: 145] considered the just intervals to be natural becdlieg are outlined by the
overtones of (many) musical sounds. Lou Harrison says ifPhiser [B: 70] that
“The interval is just or not at all.” “The best intonation isst intonation.” For Harry
Partch [B: 129], 12-tet keyboards are a musical straigkggc'twelve black and
white bars in front of musical freedom.” From all of these misiof view, the 12-
tet tuning system is seen as a convenient but flawed apprtigimta just intervals,
having made keyboard design more practical, and enablimgposers to modulate
freely.

Helmholtz further claimed that untrained and natural siagese just intervals,
but that musicians, by constant contact with keyboardse h&en trained (or brain-
washed) to accept equal-tempered approximations. Onlgtbatest masters suc-
ceed in overcoming this cultural conditioning. Althoughilcally sound, these argu-
ments are not always supported by experimental evidenadiestof the intonation
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of performers (such as [B: 4] and [B: 21]) show that they dotand to play (or sing)
in just intervals. Nor do they tend to play in Pythagorearinigs, nor in equal tem-
peraments, exactly. Rather, they tend to play pitches tirgtfvom any theoretically
constructed scafé

There are arguments based on numerology, physics, andqasyaistics in favor
of certain kinds of scales. There are arguments of expeglaamt ease of modulation
in favor of others. While each kind of argument makes senseimits own frame-
work, none is supported by irrefutable evidence. In fadij@cusage by musicians
seems to indicate a considerable tolerance for mistunmgsactical musical situ-
ations. Perhaps these deviations are part of the expressimmotional content of
music, perhaps they are part of some larger theoreticatisysir perhaps they are
simply unimportant to the appreciation of the music.

Almost every kind of music makes use of some kind of scale essuaiset of all
possible intervals from which composers and/or performarsbuild melodies and
harmonies? As the musical quality of an interval is highly dependent loa timbre
or spectrum of the instruments (recall the “challengingatimve” example from the
first chapter in which the octave was highly dissonahtying, Timbre, Spectrum,
Scaleargues that the perceptual effect of an interval can onlyebahly anticipated
when the spectrum is specified. The musical uses of a scatdepucially on the
tone quality of the instruments.

Thus, a crucial aspect is missing from the previous disonssdf scales. Justly
intoned scales are appropridte harmonic timbresOvertone scales make sense
when used with sounds that have harmonic overtoBaselan scales are designed
for play with metallophonesWhether the scale is made from small integer ratios,
whether it is formed from irrational number approximatiensh as the twelfth root
of two, and whether it contains octaves or pseudo-octavasefther) is only half of
the story. The other half is the kinds of sounds that will bkeypH in the scale.

'8 Some recent work by Loosen [B: 98] suggests that musiciante judge familiar tem-
peraments as more in-tune. Thus, violinists tend to preférd@orean scales, and pianists
tend to prefer 12-tet.

¥ The existence of sound collages and other textural tecksigs in [D: 23], [D: 26], and
[D: 43] demonstrates that scales are not absolutely negessa



5

Consonance and Dissonance of Harmonic Sounds

Just as a tree may crash silently (or noisily) to the ground
depending on the definition of sound, the terms “consonance”
and “dissonance” have both a perceptual and a physical
aspect. There is also a dichotomy between attitude and
practice, between the way theorists talk about consonance
and dissonance and the ways that performers and composers
use consonances and dissonances in musical situations.
This chapter explores five different historical notions of
consonance and dissonance in an attempt to avoid confusion
and to place sensory consonance in its historical perspecti
Several different explanations for consonance are revigwe
and curves drawn by Helmholtz, Partch, Erlich, and Plomp
for harmonic timbres are explored.

5.1 A Brief History

Ideas of consonance and dissonance have changed sigtyfioset time, and it
makes little sense to use the definitions of one century tlatthe conclusions
of another. In his 1988listory of ‘Consonance’ and ‘Dissonancéames Tenney
discusses five distinct ways that these words have beenTisese are the melodic,
polyphonic, contrapuntal, functional, and psychoacaeustiions of consonance and
dissonance.

5.1.1 Melodic Consonance (CDC-1)

The earliest Consonance and Dissonance Concept (CDC-hireys terminology)
is strictly a melodic notion. Successive melodic intenaals consonant or dissonant
depending on the surrounding melodic context. For instaeendy church music was
typically sung in unison, and CDC-1 refers exclusively te thlatedness of pitches
sounded successively.

5.1.2 Polyphonic Consonance (CDC-2)

With the advent of early polyphony, consonance and disstmaegan to refer to
the vertical or polyphonic structure of music, rather tharits melodic contour.
Consonance became a function of the interval between (y$wal) simultaneously
sounding tones. Proponents of CDC-2 are among the cleanesating “consonant”
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to “pleasant” and “dissonant” to “unpleasant.” For insngsumming up the com-
ments of a number of theorists from the thirteenth to thedifte century, Crocker
[B: 35] concludes:

These authors say, in sum, that the ear takes pleasure inor@mce, and
the greater the consonance the greater the pleasure; atidsfogason one
should use chiefly consonances...

Theorists were divided on the root cause of the consonanteligaonance. Some
argued that the consonance of two tones is directly propmatito the degree to
which the two tones sound like a single tone. Recall how thiggtaof simple ratio
intervals such as the octave tend to line up, encouragindgwbesounds to fuse
together into a single perception. Other theorists focasethe numerical properties
of consonant intervals, presuming, like the Pythagorehasthe ear simply prefers
simple ratios. As the simplest ratios are the unison, tHdrth, fifth, sixth, and
octave, these were considered consonant and all otheodiss These conflicting
philosophies anticipate even further notions.

5.1.3 Contrapuntal Consonance (CDC-3)

Contrapuntal consonance defines consonance by its rolaiimepoint. These are
the “rules” that are familiar to music students today wheardéng voice-leading
techniques. In a dramatic reversal of earlier usage, theHf@mame to be considered
a dissonance (except in certain circumstances) much asghttégoday. Similarly,
a minor third is considered consonant, whereas an augmeateshd is considered
dissonant, even though the two intervals may be physicaégtical. Thus, it is the
context in which the interval occurs that is crucial, andthetphysical properties of
the sound.

5.1.4 Functional Consonance (CDC-4)

Functional consonance begins with the relationship of tidvidual tones to a
“tonic” or “root.” Consonant tones are those that have a smelationship to this
fundamental root and dissonant tones are those that do Imistwhs crystallized by
Rameau, whose idea of thendamental bassoughly parallels the modern notion of
the root of a chord. Rameau argues that all properties of:

sounds in general, of intervals, and of chords rest finallyhensingle fun-
damental source, which is represented by the undivideastri

The “undivided” string in Fig. 5.1, which extends from 1 to #qunds the funda-
mental bass. Half of the string, which vibrates at the oGtaxéends from 2 to A.

One third of the string, which vibrates at the octave plusth,féxtends from 3 to
A. Thus, Rameau identifies all of the familiar consonanceshiydistances on the
string and their inversions. For example, suppose two rfotesan interval of a ma-

jor third (the region between 4 and 5 in the figure). These atk bontained within

the undivided string, which vibrates at the fundamentasbas
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Octave Fig. 5.1.Rameau illustrates the con-
Octave Maj 6th sonance of intervals on a vibrating
—— string. If 1-A represents the com-

Fifth Fourth Min 6th plete string, 2-A is one half the

1 2 3 4 56810 A string, 3-A is one third, and so
‘ | ‘ Lu L1 on. The musical intervals that result
Maj 3rd Min 3rd from these different string lengths
Octave Fitth include all of the consonances. This
— figure is redrawn from [B: 145].
Double Octave Octave
Triple Octave

But Rameau’s fundamental bass implies not only the stationof the lowest
note of a chord in root position, but also the dynamic notiba succession of bass
notes. Dissonances occur when the music has moved away tsawoi, and they
set up an expectation of return to the root. Thus, functidissonance is not a result
of chordal motion, but rather its cause. This notion thasalignces cause motion
is very much alive in modern music theory. For example, Watiston [B: 137], in
Harmony places himself firmly in this camp when he writes:

A consonant interval is one which sounds stable and complétereas the
characteristic of a dissonant interval is its restlessaagsts need for reso-
lution into a consonant interval... Music without dissoniatervals is often
lifeless and negative, since it is the dissonant elementtwhirnishes much
of the sense of movement and rhythmic energy... It cannobbetrongly
emphasized that the essential quality of dissonance isritsesof movement
and not, as sometimes erroneously assumed, its degreelefsaptness to
the ear.

5.1.5 Psychoacoustic Consonance (CDC-5)

The most recent concept of consonance and dissonance $anuperceptual mech-
anisms of the auditory system. One CDC-5 view is calledsory dissonanamnd
is usually credited to Helmholtz [B: 71] although it has beg@nificantly refined by
Plomp and Levelt [B: 141]. A major component of sensory dissee is roughness
such as that caused by beating partials; sensory consoisathan the smoothness
associated with the absence of such beats. Another compohesychoacoustic
consonance, callddnalnessis descended from Rameau’s fundamental bass through
Terhardt’s notions of harmony [B: 196] as extended by PétrjBu 126] and Erlich
[W: 9]. A major component of tonalness is the closeness opé#rgals to a harmonic
series; distonalness is thus increased as partials déwdatéharmonicity.

CDC-5 notions of consonance and dissonance have threagtiikplications.
First, individual complex tones have an intrinsic or inhtrdissonance. From the
roughness perspective, any tone with more than one pangaitably has some
dissonance, because dissonance is caused by interactirsp&imilarly from a
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tonalness point of view, as the partials of a sound deviate fa perfect harmonic
template, the dissonance increases. These are in stakasbtat the earlier CDCs
where consonance and dissonance were properties of redhaijis between tonés.

The second implication is that consonance and dissonapendeaot just on the
interval between tones, but also on the spectrum of the tdmiesvals are dissonant
when the patrtials interact to cause roughness accordingetsdnsory dissonance
view. Similarly, intervals are increasingly dissonantas partials deviate from har-
monicity according to the tonalness view. In both casesgkaet placement of the
partials is important.

The third implication is that consonance and dissonanceiaveed as lying on a
continuum rather than as an absolute property. In the e&IXCs, a given interval is
either consonant or dissonant. CDC-5 recognizes a contiruiossible gradations
between consonance and dissonance.

The sensory notion of dissonance has no problem explaihieddhallenging
the octave” sound example [S: 1] of Chap. 1 (indeed, it waatetefrom sensory
considerations), and both sensory dissonance and tosdiaes a firm basis in psy-
choacoustic experimentation (as discussed in Sect. 5SBu)hese CDC-5 ideas are
lacking in other respects. Perhaps the greatest strengjtie ebntrapuntal and func-
tion consonance notions is that they provide comprehemsascriptions (or at least
descriptions) of the practice of harmony. They give guidgindhe construction and
analysis of polyphonic passages, and they explain how iggsees are crucial to the
proper motion of musical compositions. In contrast, sepsiissonance and tonal-
ness are static conceptions in which every collection diglathas some dissonance
and there is not necessarily any relationship between ssigeeclusters of sound in
a musical sequence.

Mechanistic approaches to consonance are not withoutamany and have
been questioned from at least two perspectives. First, addddB: 28] points out,
the ideas of psychoacoustic dissonance do not capturertbédnal idea of musical
dissonance as restlessness or desire to resolve and teé tinkion of consonance as
the restful place to which resolution occurs. In essend®dbmes the responsibility
of the composer to impose motion from psychoacoustic desomto psychoacous-
tic consonance, if such a motion is desired.

Secondly, psychoacoustic experiments are tricky to canduog interpret. De-
pending on the exact experimental setup, different effeg be emphasized. For
example, many experiments address the relevance of bedtoaghness to per-
ceptions of intonation. Among these is Keisler [B: 81], wh@mines musicians’
preferences to various “just” and “tempered” thirds anch§ifby manipulating the
partials of the sounds in a patterned way. Keisler concludas beating is not a
significant factor in intonation. Yet other studies such as |B: 201], using differ-
ent techniques, have found the opposite. Similarly, thedaperception of virtual
pitch is uncontested, and yet it sometimes appears as gsarahfundamental as-
pect (e.g., the Westminster chime song played by Houtsma1D); or it may appear
fragile and ambiguous (as in sound examples [S: 6] and [S: 7])

! Or of the relationship between a tone and the fundamental bas
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5.2 Explanations of Consonance and Dissonance

What causes these sensations of consonance and dissodasica®there are differ-
ent paradigms for what consonance and dissonance meamnatedtifferent ideas as
to their cause: from numerological to physiological, froifietence tones to differ-
ing cultures. Are there physical quantities that can be oreasto make reasonable
predictions of the perceived consonance of a sound, chordusical passage?

5.2.1 Small Is Beautiful

Perhaps the oldest explanation is the simplest: Peoplerfiedvals based on small
integer ratios more pleasant because the ear naturallgrprefnall ratios. Although
somewhat unsatisfying due to its essentially circular rgtthis argument can be
stated in surprisingly many ways. Pythagoras, who wasrased to find small num-
bers at the heart of the universe, was content with an eaflgntumerological as-

sessment. Galileo [B: 58] wrote:

agreeable consonances are pairs of tones which strikethgtea certain
regularity; this regularity consists in the fact that théses delivered by the
two tones, in the same interval of time, shall be commensaiamumber,
S0 as not to keep the eardrum in perpetual torment, benditvgpidifferent
directions in order to yield to the ever discordant impulses

A more modern exposition of this same idea (minus the pegbétument) is pre-
sented in Boomsliter and Creel [B: 17] and in Partch [B: 128re, consonance
is viewed in terms of the period of the wave that results whvemtbnes of differ-
ent frequency are sounded: The shorter the period, the nomioant the interval.
Thus, 3/2 is highly consonant because the combined waveatsepeery 6 periods,
whereas 301/200 is dissonant because the wave does not uepié£0,200 peri-
ods? In essence, this changes the argument from “the ear likel satias” to “the
ear likes short waves.” The latter forms a testable hypighbecause the ear might
contain some kind of detector that would respond more styaiogshort repeating
waveforms. In fact, periodicity theories of pitch percept[B: 24] and [B: 136] sup-
pose such a time-based detector.

5.2.2 Fusion

The fusion of two simultaneously presented tones is diygmtbportional to the de-
gree to which the tones are heard as a single perceptuaRauiall from Fig. 4.1 on
p. 52 that many of the partials of sounds in simple ratio wdkr (such as the octave)
coincide. The ear has no way to tell how much of each partiahgs to which note,
and when enough partials coincide, the sounds may loseititinduality and fuse

2 On the other hand, the 12-tet equal fifth, whether considaseaaving infinite period or
some very long finite period, is more consonant than otheniats such as 25/24, which
have much shorter period. Thus, the theory cannot be soesimpl
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together. Stumpf [B: 188] determined that the degree obfusif intervals depends
on the simple frequency ratios in much the same way as conserand hypothe-
sized that fusion is the basis of consonance. The less giflisound is to fuse, the
more dissonant.

5.2.3 Virtual Pitch

Whereas Rameau'’s theories focus on physical propertiessohating bodies, Ter-
hardt focuses on the familiarity of the auditory system wfith sound of resonating
bodies. This shifts the focus from the physics of resondtidjes to the perceptions
of the listener. Terhardt's theory of virtual pitch [B: 198]combined with a “learn-
ing matrix” [B: 195] (an early kind of neural network) to gitlee “principle of tonal
meanings.”

By repeatedly processing speech, the auditory system r@squiamong
other Gestalt laws - knowledge of the specific pitch relaiamich... be-
come familiar to the “central processor” of the auditoryteys... This way,
these intervals become the so-called musical intervals.

Terhardt emphasizes the key role that learning, and edlyetti® processing of
speech, plays in the perception of intervals. Differentiéay experiences lead to
different intervals and scales and, hence, to differenbnstof consonance and dis-
sonance.

One of the central features of virtual pitch is that the augitsystem tries to
locate the nearest harmonic template when confronted wéthilaction of partials.
This is unambiguous when the sound is harmonic but becomes amsbiguous as
the sound deviates from a harmonicity. The idedafmonic entropysee [W: 9],
Sect. 5.3.3, and Appendix J) quantifies this deviation, on@ag the tonalness of
an interval based on the uncertainty involved in interpigethe interval in terms of
simple integer ratios.

5.2.4 Difference Tones

When two sine waves of different frequencies are soundestheg, it is sometimes
possible to hear a third tone at a frequency equal to therdiftee of the two. For
instance, when waves ¢gf = 450 Hz andg = 570 Hz are played simultaneously,
a low tone aty — f = 120 Hz may also occur. Thegtifference toneare usually
attributed to nonlinear effects in the ear, and Roederedf] observes that “they
tend to become significant only when the tones used to evae Hne performed at
high intensity.” Under certain conditions, difference éstmay be audible at several
multiples such ag8f — g, 3¢ — 2f, etc3 When f andg form a simple integer ratio,
there are few distinct difference tones between the haresafif and the harmon-
ics of g. For instance, iff andg form an octave, the difference tones occur at the
same frequencies as the harmonics. But as the complexiheaftio increases, the

# In general, such higher order difference tones may occiit at 1)g — n f for integersn.
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number of distinct difference tones increases. Thus, Keufg; 89] (among others)
proposes that dissonance is proportional to the numberstihdt difference tones;
consonance occurs when there are only a few distinct difteréones.

Because both difference tones and beats occur at the saimedde frequency
f — g, it is easy to imagine that they are the same phenomenonditfietence
tones are nothing more than rapid beats. This is not so. Téenes of the beat
phenomenon is fluctuations in the loudness of the wave, \akaldference tones
are a result of nonlinearities, which may occur in the earrbay also occur in
the electronic amplifier or loudspeaker system. Hall presid series of tests that
distinguish these phenomena in his paper [B: 69], “the diffee between difference
tones and rapid beats.”

Difference tones are also similar to, but different fromtwél pitch. Recall the
example on p. 34 where three sine waves of frequencies 60028 1000 Hz gen-
erate both a virtual pitch at 200 Hz and a difference tone 8ti28. When the sine
waves are raised to 620, 820, and 1020, the virtual pitchnesdat higher than 200
Hz, whereas the difference tone remains at 200 Hz. For neishiers in most situ-
ations, the virtual pitch dominates emphasizing that diffiee tones can be subtle,
except at high intensities. On the other hand, “false” déffiee tones can be gener-
ated easily in inexpensive electronic equipment by noalitties in the amplifier or
speaker.

Difference tones can be readily heard in laboratory sedtimgd Hindemith
[B: 72] presents several musical uses. In many musicahgstthowever, difference
tones are not loud enough to be perceptually relevant andgheannot form the ba-
sis of dissonance, as argued by Plomp [B: 138]. On the othret,lvehen difference
tones are audible, they should be taken into account.

5.2.5 Roughness and Sensory Dissonance

Helmholtz’s idea is that the beating of sine waves is pestes roughness that in
turn causes the sensation of dissonance. This sensoryndigs®is familiar from
Fig. 3.7 on p. 46, and this model can be used to explain whyvale made from
simple integer ratios are perceptually special, as sugdédst the mistuned octaves
in Fig. 4.1 on p. 53.

The “challenging the octave” example (recall Fig. 1.1 on)d@monstrates this
dramatically. The partials of the inharmonic tone are pdase that they clash rau-
cously when played in a simple 2/1 octave but sound smootmlsyed ina 2.1/1
pseudo-octave. Are these 2/1 and 2.1/1 intervals consondigsonant? It depends,
of course, on the definition. Much of our intuition survivesrh CDC-2, where con-
sonant and dissonant are equated with pleasant and unule@$sarly, the 2.1/1
pseudo-octave is far more euphonious (when played withtgeficked timbres) than
the real octave. Modern musicians have been trained ex&yngbrainwashed?) with
harmonic sounds. Because octaves are always consonanplelyed with harmonic
sounds, the musician is likely to experience cognitive alissice (at least) when
hearing the 2.1/1 interval appear smoother than the 2/@ctdis example is chal-
lenging to advocates of functional consonance (CDC-4) st is unclear what
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the terms “key,” “tonal center,” and “fundamental root” mear inharmonic sounds
in non-12-tet scales. This is also a setting where the piedi of the tonalness
model and the sensory dissonance model disagree, and thiscisssed more fully
in Sects. 6.2 and 16.3.

5.2.6 Cultural Conditioning

One inescapable conclusion is that notions of consonandedasonance have
changed significantly over the years. Presumably, theyowiitinue to change. Caz-
den [B: 28] argues that the essence of musical materialsotdrendetermined by
unchanging natural laws such as mathematical proportiamewheories, perceptual
phenomena, the physiology of hearing, and so on, becaus rfiit possible that
laws which are themselves immutable can account for theopraf transformations
which have taken place in musical practice.” Similarly, Wide variety of scales and
tunings used throughout the world is evidence that cultoatext plays a key role
in notions of consonance and dissonance.

The importance of learning and cultural context in everyeaspf musical per-
ception is undeniable. But physical correlates of peromgstineed not completely
determine each and every historical style and musical ytiossy as Cazden sug-
gests; rather, they set limits beyond which musical expiona cannot go. Surely
the search for such limits is important, and this is discd$seher in Sect. 16.3 “To
Boldly Listen” in the final chapter.

Cazden also rightly observes that an individual's judgnoéebnsonance can be
modified by training, and so cannot be due entirely to nattaakes. This is not an
argument for or against any particular physical correlate,even for or against the
existence of correlates in general. Rather, the extent tohathaining can modify a
perception places limits on the depth and universality efdbrrelate.

The larger picture is that Cazdkis attacking excessive scientific reductionism
in music theory, and in much of this he is quite correct. HaveCazden defines a
consonant interval to be stable and a dissonant interval tedtless, an attack on the
CDC-5 mindset using a CDC-4 definition. He states firmly tleatisonance and dis-
sonance do not originate on the level of properties of tam&spn the level of social
communication,” and hence, all such beat, fusion, and rdiffee tone explanations
are fundamentally misguided. Interpreting this to meandbastions of musical mo-
tion are not readily addressable within the CDC-5 framew@dzden is correct. But
this does not imply that such physiological explanations @ffer nothing relevant
to the perception of dissonances.

5.2.7 Which Consonance Explanation?

There are at least six distinctly different explanationstf@ phenomena of conso-
nance and dissonance: small period detectors, fusion afisptonalness and virtual
pitch, difference tones, cultural conditioning, and beatsoughness. The difference

*In [B: 29] and [B: 30].



5.2 Explanations of Consonance and Dissonance 83

tone hypothesis is the weakest of the theories becauseimgntal evidence shows
that it occurs primarily at high sound intensities, whilsstinances can be clearly
perceived even at low volumes.

The remaining possibilities each have strengths and liiaita. Consonance and
dissonance, as used in musical discourse, are complicd¢ed that are not read-
ily reducible to a single formula, acoustical phenomenamhysiological feature.
As we do not ultimately know which (if any) of the explanatsois correct, a prag-
matic approach is sensible: Which of the possible explanatfor consonance and
dissonance lead to musically sensible ideas for sound 3o and manipulation?

There is undoubtedly a large component of cultural influengelved in the
perception of musical intervals, but it is hard to see howdqgal @it this view in the
construction of musical devices or in the creation of newinsi©n the other hand,
as Terhardt [B: 195] points out, to whatever extent coneerati musical systems are
the result of a learning process, “it may not only be posdioleeven promising to
invent new tonal systems.” Chapters 7, 9, 14, and 15 do jisst th

The importance of fusion in the general perception of sosndideniable—if a
tone does not fuse, then it is perceived as two (or more) tdhisseasy to see why
a viable fusion mechanism might evolve: The difference leetwa pack of hyenas
in the distance and a single hyena nearby might have imneesiiavival value. But
its role in consonance is less clear. In the “Science of Sbcimabter, several factors
were mentioned that influence fusion, including synchrohgttack, simultaneous
modulation, and so on. Unfortunately, these have not yat beecessfully integrated
into a “fusion function” that allows calculation of a degrekfusion from some set
of physically measurable quantities. Said another way fak®sn hypothesis does
not (yet?) provide a physical correlate for consonancedhatbe readily measured.
From the present utilitarian view, we therefore submergeftision hypothesis be-
cause it cannot give concrete predictions. Nonethelessjlebecome clear when
designing and exploring inharmonic sounds, ensuring tiege sounds fuse in a
predictable way is both important and nontrivial. Finding@kable measure of au-
ditory fusion is an important arena for psychoacousticskwBee Parncutt [B: 126]
for a step in this direction.

The small period hypothesis can only be sensibly appliecaitanbnic (i.e., pe-
riodic) sounds; it is not obvious how to apply it to music thaes inharmonic in-
struments. For example, the small period theory cannotagxpihy or how the
pseudo-octaves of the “challenging the octave” experirmennd pleasant or restful
(pick your favorite CDC descriptor) when played in the 2re&thed timbres. On the
other hand, the roughness/sensory dissonance can beyrgadiitified in terms of
the spectra of the sounds. Because a large class of intggestinds are inharmonic,
further chapters exploit the ideas of psychoacoustic auenrsce as a guide in the cre-
ation of inharmonic music. It is important to remember tihas ts just one possible
explanation for the consonance and dissonance phenomktwoeover, the larger
issue of creating “enjoyable music” is much wider than antjaroof dissonance.
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5.3 Harmonic Dissonance Curves

Early theorists focused on the consonance and dissonaspedific intervals within
musical scales: Some are consonant and some are not. Beitleesin infinite num-
ber of possible pitches and, hence, of possible intervatsall of these other inter-
vals perceived as dissonant? Helmholtz investigated Hinguwo violins, one play-
ing a fixed note and the other sliding up slowly. He found timé¢rivals described
by small nhumber ratios are maximally consonant. Partcerest very carefully to
his 43-tone-per-octave chromelodeon (a kind of reed orgad)learned to tune all
the intervals by ear using the beating of upper partials.dd@d he could relate the
relative consonances to small integer ratios. Erlich’atoess quantifies the confu-
sion of the ear as it tries to relate intervals to nearby sm#dher ratios. Plomp and
Levelt use electronic equipment to carefully explore pgtices of consonance and
dissonance. Again, they find that the intervals specifiedrbgllsinteger ratios are
the most consonant. All four, despite wildly differing metts, mindsets, and theo-
retical inclinations, draw remarkably similar curves: iébltz’s roughness curve,
Partch’s “one-footed bride,” Erlich’s harmonic entropgdaPlomp and Levelt’s plot
of consonance for harmonic tones.

5.3.1 Helmholtz and Beats

The idea of sensory consonance and dissonance was intdSducéielmholtz in
On the Sensations of Tonas a physical explanation for the musical notions of con-
sonance and dissonance based on the phenomenon of beats pifite sine tones
are sounded at almost the same frequency, then a distirtatdgpeacurs that is due
to interference between the two tones. The beating becoimesrsas the two tones
move closer together, and it completely disappears wheffrélg@iencies coincide.
Typically, slow beats are perceived as a gentle, pleasastilation, whereas fast
beats tend to be rough and annoying, with maximum roughmeessing when beats
occur about 32 times per second. Observing that any sounldecdacomposed into
sine wave partials, Helmholtz theorized that dissonant@d®n two tones is caused
by the rapid beating between the partials. Consonancerdingoto Helmholtz, is
the absence of such dissonant beats.

To see Helmholtz's reasoning, suppose that a sound has ahigrgpectrum
like the guitar string of Fig. 2.5 on p. 17, or its idealizedsien in Fig. 2.6 on p. 18.
When such a sound is played at a fundamental frequéney200 (near the7 below
middle (), its spectrum is depicted in the top graph of Fig. 5.2. Thmesapectrum
transposed to a fundamental frequegcy: 258 is shown just below. Observe that
many of the upper partials gf are close to (but not coincident with) upper partials
of g. For instance, the fourth and fifth partials p&re very near the third and fourth
partials ofg. As partials are just sine waves, they beat against each atteerate
proportional to the frequency difference, in this case 26aHd at 32 Hz. Because
both these beat rates are near 32 Hz, the partials interaghiyp

® Similar ideas can be found earlier in Sorge [B: 178].
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Fig. 5.2. A harmonic note at fundamental
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Assuming that the roughnesses of all interacting partidgdsup, the dissonance
of any interval can be readily calculated. Figure 5.3 isaair from Helmholtz. The
horizontal axis represents the interval between two haren@iolin) tones. One is
kept at a constant frequency labelédand the other is slid up an octaveda The
height (vertical axis) of the curves is proportional to tbaghness produced by the
partials designated by the frequency ratios. For instatieepeaks straddling the
valley atg’ are formed by interactions between:

(i) The second partial of the note gt and the third partial of’ (labeled
2:3in the figure)
(i) The fourth partial of the note g’ and the sixth partial o#’ (labeled
4:6)
(iii) The sixth partial of the note af’ and the ninth partial of (labeled 6:9)
Other peaks are formed similarly by the beating of othergpafiinteracting partials.

To draw these curves, Helmholtz makes three assumptioatsthh spectra of
the notes are harmonic, that roughnesses can be added aanietl32 Hz beat rate

Fig. 5.3. Two pitches are sounded simultaneously. The regions oftmoeigs due to pairs of
interacting partials are plotted over one another, leawiny a few narrow valleys of relative
consonance. The figure is redrawn from Helmhol@fsthe Sensation of Tone
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gives maximal roughness. His graph has minima (intervalhith minimum beat-
ing occurs) near many of the just intervals, thus suggesticmnnection between the
beating and roughness of sine waves and the musical nofienasonance or disso-
nance. Helmholtz's work can be evaluated by comparing higlasions with those
of other notions of consonance and dissonance and by igeéisty his assumptions
in more detail. For instance, does the 32 Hz beat rate forrmalxioughness hold up
under rigorous investigation? Do roughnesses really a@d up

5.3.2 Partch’s One-Footed Bride

Harry Partch was an eclectic composer and theorist who rgtooeated a just 43-
tone-per-octave musical scale, but also a family of insent®ito play in this scale.

In Genesis of a MusjdPartch [B: 128] details how he tuned his chromelodeon reed
organ by ear:

To illustrate the actual mechanics of tuning, assume thatinterval in-

tended as 3/2 is slightly out of tune, so that beats are hpartiaps two or
three per second between the second partial of the “3” anthtrtepartial

of the “2” .... Hence we scratch the reed at the tip, testingiooally, until

the beats disappear entirely - that is, until the two pulsetiare “commen-
surable in number” ... Experience in tuning the chromelodeas proved
conclusively that not only the ratios of 3 and 5, but also tierivals of 7, 9,
and 11 are tunable by eliminating beats.

Although Partch is willing to use beats to tune his instrutaghe maintains that
consonance is purely a result of simple integer ratios. Agestthis in terms of the
period of the resulting wave: The shorter the period, theentsonsonant the interval.
This is reminiscent of Galileo, who viewed simple intervike 3/2 as a pleasant
bending exercise for the ear, but intervals like 301/200eapgtual torment. Partch
ridicules simple sine wave experiments (such as the kind tsexplain sensory
dissonance in the “Sound on Sound” chapter) in a sectioeatdDbfuscation by
the Moderns,” although it is unclear from his writing whatlee disbelieves the
experimental results, or simply dislikes the conclusi@ached.

However anachronistic his theoretical views, Partch waarefal listener. Us-
ing the chromelodeon, he classified and categorized all #Bvials in terms of their
comparative consonance, resulting in the “One-FootedeBAdGraph Of Compar-
ative Consonance,” which is redrawn here as Fig. 5.4. Obgeow close this is to
Helmholtz’s figure, although it is inverted, folded in hadfid stood on end. Where
Helmholtz draws a dissonant valley, Partch finds a consgmeeit: All familiar JI
intervals are present, and the octave, fourth, and fifth@ppeminently.

In discussing the one-footed bride, Partch observes tlzath“eonsonance is a
little sun in its universe, around which dissonant satslitluster® As a composer,
Partch is interested in exploiting these suns and theirgidarHe finds four kinds

¢ Helmholtz would claim that these dissonant clusters ars@aby the beating of the same
upper partials that allowed Partch to tune the instrumeatsarately.
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Fig. 5.4.Partch’s graph of compar-
ative consonance, the “One-Footed
Bride,” shows the relative conso-
nance of each of the intervals in
his 43-tone-per-octave just scale
based or. Four kinds of intervals
are depicted: intervals of power,
suspense, emotion, and approach.
Figure is redrawn and used with
permission [B: 128].
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of intervals: intervals of power, of suspense, of emotiard af approach. Power
intervals are the familiar perfect consonances recogrsiren antiquity. Suspenseful
intervals are those between the fourth and the fifth thatrgdéime the function of the
tritone. A variety of thirds and sixths rationalize (in aelitl sense) and expand on
the kind of emotions normally associated with major and mihirds and sixths.
Finally, the intervals of approach are usually reservegfmsing tones and melodic
inflections.

Like Helmholtz, Partch observed little correlation betwélee notes of the 12-tet
scale and the comparative consonance of the intervals. @§ep12-tet scale steps
can approximate many of the just ratios. But Partch was namtmcompromise or
approximate, and he devoted his life to creating music asttuments on which to
realize his vision of a just music that would not perpetusdiyment the ear. Fortu-
nately, today things are much easier. Electronic keybozadde retuned to Partch’s
(or any other scale) with the push of a button or the click ofcuse.

5.3.3 Harmonic Entropy

The discussion of virtual pitch (in Sect. 2.4.2) describew lthe auditory system
determines the pitch of a complex tone by finding a harmomigptate that lies close
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to the partials of the tone. If the fundamental (or root) & tbmplate is low, then the
pitch is perceived as low; if the root of the template is hitplen the pitch is perceived
as high. Often, however, the meaning of “closest harmomiptate” is ambiguous,
for instance, when there is more than one note sounding on wisengle note has an
inharmonic spectrum. Harmonic entropy, as introduced gEfW: 9], provides a
way to measure the uncertainty of the fit of a harmonic tersptat complex sound
spectrum. Erlich writes:

There is a very strong propensity for the ear to try to fit whétears into
one or a small number of harmonic series, and the fundanseotdhese
series, even if not physically present, are either heardghit or provide
a more subtle sense of overall pitch known to musicians asrtind.” As
a component of consonance, the ease with which the ear/yatam can
resolve the fundamental is known as “tonalness.”

Entropy is a mathematical measure of disorder or unceytdiarmonic entropy
is a model of the degree of uncertainty in the perception twhpiTonalness is the
inverse: A cluster of partials with high tonalness fits clgse a harmonic series and
has low uncertainty of pitch and low entropy, and an ambiguduster with low
tonalness has high uncertainty and hence high entropy.lRkeaa single sound
is more likely to fuse into one perceptual entity when thetipkr are harmonic.
Similarly, holistic hearing of a dyad or chord as a unifiedy#rsound is strengthened
when all of the partials lie close to some harmonic series.

In the simplest case, consider two harmonic tones. If thedamne to be under-
stood as approximate harmonic overtones of some commonthagt must form a
simple-integer ratio with one another. One way to model tisiss the Farey series
Fn, which contains all ratios of integers up#oThis series has the property that the
distance between successive terms is larger when the aatiggmpler. Thus, 1/2 and
2/3 occupy a larger range than complex ratios such as 2464¢%rfy given interval
i, a probability distribution (a bell curve) can be used taagste a probability; (4)
with the ratiosf; in F,. The probability that the intervalis perceived as thgth
member of the Farey series is high whigs close tof; and low wher is far from
f;. The harmonic entropy (HE) afis then defined in terms of these probabilities as

HE(i) = - ij (4) log(p; (7))

When the interval lies near a simple-integer ratj%, there will be one large proba-
bility and many small ones. Harmonic entropy is low. Whenititerval: is distant
from any simple-integer ratio, many complex ratios contrémany nonzero prob-
abilities. Harmonic entropy is high. A plot of harmonic ey over a one-octave
range is shown in Fig. 5.5 where the intervals are labeleceivisc Clearly, inter-
vals that are close to simple ratios are distinguished bynigaew entropy values,
whereas the more complex intervals have high harmonic pytEetails on the cal-
culation of harmonic entropy can be found in Appendix J.
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Fig. 5.5.Erlich’s model of
harmonic entropy predicts
the tonalness (degree of cer-
tainty in the perception of the
root) for various intervals.
3:2 Some of the most tonal sim-
ple ratios are labeled.
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5.3.4 Sensory Consonance and Critical Bandwidth

In the mid 1960s, Plomp and Levelt conducted a series of @rpats on the sensa-
tions of consonance and dissonance. About 90 volunteers asiied to judge pairs
of pure tones on a seven-point scale where 1 indicated th¢ dissonant and 7
the most consonant. The pairs were chosen so as to vary btbcthve and the
frequency ratios presented within the octave. The expertinvas carefully devised:
Each subject was tested individually, each subject onlgéuica few intervals so as to
avoid interval recognition and fatigue, responses werede®r consistency (those
who gave erratic results were discounted), and the subjems allowed a prelimi-
nary series of intervals to familiarize them with the ran@stamulus so they could
make adequate use of the seven-point scale.

One of the most unique (and controversial) features of Plamg Levelt's
methodology was the use of musically untrained subjectsvi®us studies had
shown that musically trained listeners often recognizerirdls and report their
learned musical responses rather than their actual peospfAn example is in Tay-
lor's Sounds of Musjcwhich presents Helmholtz's roughness curve along with a
series of superimposed crosses that closely match the.clinese crosses are the
result of a series of experiments in which sine waves werdegtdy subjects in
terms of their harshness or roughness. As Taylor says, tse chatch “cannot be
explained in terms of the beating of upper partials, bec#use are none!” How-
ever, the close match may be explainable by considering thecal background of
his subjects.

To avoid such problems with learned responses, Plomp aneltLehvose to use
musically naive listeners. Subjects who asked for the nmganf consonant were
told beautifuland euphoniousand it can be argued that the experiment therefore
tested the pleasantness of the intervals rather than tis®oance. However, as most
musically untrained people (and even many with trainingjticae to think in this
CDC-2 manner, this was deemed an acceptable compromise.

Despite considerable variability among the subject'soasps, there was a clear
and simple trend. At unison, the consonance was maximumh@srterval in-
creased, it was judged less and less consonant until at soimegpminimum was
reached. After this, the consonance increased up towatrdgler quite reached, the
consonance of the unison. This is exactly what we heard indsexMample [S: 11]
when listening to two simultaneous sine waves.
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Their results can be succinctly represented in Fig. 3.7 of6pwhich shows
an averaged version of the dissonance curve (which is sithplgonsonance curve
flipped upside-down) in which dissonance begins at zeroh@uhison) increases
rapidly to a maximum, and then falls back toward zero. Thetraomprising feature
of this curve is that the musically consonant intervals aréistinguished—there is
no dip in the curve at the fourth, fifth, or even the octave @ntcast to the learned
response curves found by investigators like Taylor, whiotskow the presence of
normally consonant intervals, even for intervals formeahfipure sine waves).

Plomp and Levelt observed that in almost all frequency rajige point of max-
imal roughness occurred at about 1/4 of the critical bantwiecall that when a
sine wave excites the inner ear, it causes ripples on théabasémbrane. Two sine
waves are in the same critical band if there is significantlapeof these ripples
along the membrane. Plomp and Levelt's experiment sugdleatshis overlap is
perceived as roughness or beats. Dependence of the rosghmése critical band
requires a modification of Helmholtz's 32 Hz criterion for ximaal roughness, be-
cause the critical bandwidth is not equally wide at all freigeies, as was shown in
Fig. 3.4 on p. 44. For tones near 500 Hz, however, 1/4 of thieakband agrees well
with the 32 Hz criterion.

Of course, these experiments gathered data only on pesosptif pure sine
waves. To explain sensory consonance of more musical spBtamep and Levelt
recall that most traditional musical tones have a spectmmsisting of a root or fun-
damental frequency, along with a series of sine wave pardainteger multiples of
the fundamental. If such a tone is sounded at various intenve dissonance can be
calculated by adding up all of the dissonances between ial pbpartials. Carrying
out these calculations for a note that contains six harnadigispaced partials leads
to the curve shown in Fig. 5.6, which is taken from Plomp aneeligB: 141].

Fig. 5.6.Plomp and Levelt calculate the
consonance for two tones, each with six
harmonics. The first tone is fixed at a fre-
quency of 250 Hz, and the second varies
over an octave. Peaks of consonance oc-
cur at simple integer ratios of the funda-
mental frequency, where harmonics coin-
cide. From Plomp and Levelt (1965).
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Observe that Fig. 5.6 contains peaks at many of the justialterThe most con-
sonant interval is the unison, followed closely by the oetavext is the fifth (3:2),
followed by the fourth (4:3), and then the thirds and sixths.might be expected,
the peaks do not occur at exactly the scale steps of the ¥etpmal-tempered scale.
Rather, they occur at the nearby simple ratios. The rankaggse reasonably well
with common practice, and they are almost indistinguisa&iom Helmholtz's and
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Partch’s curves. Thus, an argument based on sensory comsoisaconsistent with
the use of just intonation (scales based on intervals witipk integer ratios), at
least for harmonic sounds.

5.4 A Simple Experiment

It is easy to experience sensory dissonance for yoursel§.&#hote on an organ (or
some other sustained, harmonically rich sound) that isthedow end of your vocal
range. While sounding the note loudly and solidly (turn bff tvibrato, chorusing,
and other effects), sing slightly above, slightly belowg @imen swoop right onto the
pitch of the note. As you approach the correct pitch, you makr your voice beating
against the organ, until eventually your voice “locks inteé fundamental. It works
best if you use little or no vibrato in your voice. Now repdat experiment, but this
time sing around (slightly above and slightly below) thehfifAgain, you will hear
your voice beat (the second partial of your voice againsttird partial of the organ)
and finally lock onto the perfect fifth.

Now sing a major third above the sustained organ note, agraging slightly
above and slightly below. Listen carefully to where yourosgoes... does it lock
onto a 12-tet third? Or does it go somewhere slightly flat2encarefully to the
pitch of your locked-in voice. If you are truly minimizing éhdissonance, then the
fourth partial of your voice will lock onto the fifth partialf ahe organ. Assuming
the organ has harmonic partials, you will be singing a jusiopmthird (a ratio of
5/4, or about 386 cents, instead of the 400 cent third in f2@an you feel how it
might be tempting for a singer to synchronize in this way? Byilarly exploring
other intervals, you can build up your own personal dissoeanirves. How do they
compare with the curves of Helmholtz, Partch, and Plomp asebIt?

In his amusing bookies My Music Teacher Told M&skelin [B: 54] describes
this to his choir:

If you do it slowly and steadily, you will hear the relationgtbetween the
two sounds changing as your voice slides up. It's a bit likertg in stations
on a radio dial (the old fashioned ones that had knobs to hatrhuttons to
push). As you arrive at each “local station” it gradually @minto sharp fo-
cus and then fades out of focus as you go past it. What you gegiexcing
is calledconsonancanddissonance

5.5 Summary

The words “consonance” and “dissonance” have been usedrin ways throughout
history, and many of these conflicting notions are still ptext today. Psychoacous-
tic consonance provides a pragmatic working definition enghnse that it leads to
physical correlates that can be readily measured. It isosgrdissonance that un-
derlies the “dissonance meter” and the resulting appboatdf the first chapter. Al-
though arguably the most important notion of dissonancaytagensory dissonance
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does not supplant previous notions. In particular, it sathing about the important
aspects of musical movement that functional consonancéda®

Helmholtz understood clearly that his roughness curve dbel“very different
for different qualities of tone.” Partch realized that hieefooted bride would need
to be modified to account for different octaves and diffetenbres, but he saw no
hope other than “a lifetime of laboratory work.” Plomp andsek explicitly based
their consonance curve on tones with harmonic overtongsnny musical sounds
do not have harmonic partials. The next chapter exploresdemsory consonance
can be used in inharmonic settings, gives techniques focalwilation of sensory
dissonance, suggests musical uses in the relationshigbetapectrum and scale,
and demonstrates some of the ideas and their limitationsénias of musical exam-
ples.

5.6 For Further Investigation

On the Sensations of Tof@: 71] set an agenda for psychoacoustic research that is
stillin progress. Papers such as Plomp and Levelt's [B: T#djal Consonance and
Critical Bandwidth” and the two-part “Consonance of Complenes and its Cal-
culation Method” in Kameoka and Kuriyagawa [B: 79] and [B] 8@ve expanded

on and refined Helmholtz's idea&. History of ‘Consonance’ and ‘Dissonanday
Tenney [B: 192] provided much of the historical framework foe first section of
this chapter, and it contains hundreds of quotes, argumedefiitions, and anec-
dotes. Although Partch'&enesis of a MusifB: 128] may not be worth reading for

its contributions to psychoacoustics or to historical roakigy, it is inspiring as a
prophetic statement about the future of music by a musis@dwary and composer.
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Related Spectra and Scales

Sensory dissonance is a function of the interval and the
spectrum of a sound. A scale and a spectrumratatedif

the dissonance curve for the spectrum has minima (points of
maximum sensory consonance) at the scale steps. This chapte
shows how to calculate dissonance curves and gives examples

that verify the perceptual validity of the calculations h@t
examples demonstrate their limits. The idea of relatedtspec
and scales unifies and gives insight into a number of previous
musical and psychoacoustic investigations, and some gkner
properties of dissonance curves are derived. Finally, theai

of the dissonance curve is extended to multiple sounds, each
with its own spectrum.

“Clearly the timbre of an instrument strongly affects whahing and scale sound
best on that instrumentiV. Carlos [B: 23].

6.1 Dissonance Curves and Spectrum

Figures like Helmholtz's roughness curve and Plomp and IEsv@nsonance curve
(Figs. 5.3 and 5.6) on pp. 85 and 90 are caltkgsonance curvebecause they
graphically portray the perceived consonance or dissenaarsus musical inter-
vals. Partch’s one-footed bride (Fig. 5.4 on p. 87) is anptAkhough its axis is
folded about the tritone. Perhaps the most striking aspletttese harmonic disso-
nance curves is that many of the familiar 12-tet scale steplase to points of
minimum dissonance. The ear, history, and music practige battled on musical
scales with intervals that occur near minima of the dissoeanrve.

A spectrum and a scale are said tadlatedif the dissonance curve for
that spectrum has minima at scale positions.

Looking closely, it is clear that the minima of the harmonissbnance curves of
the previous chapter do not occur at scale steps of the ¢guonglered scale. Rather,
they occur at the just intervals, and so harmonic spectreetaied to just intonation
scales.

The relatedness of scales and spectra suggests severasiimg questions.
Given a spectrum, what is the related scale? Given a scal,amb the related spec-
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tra? How can spectrum/scale combinations be realized #tiegielectronic musical
instruments? What is it like to play inharmonic sounds iresmfiar tunings?

6.1.1 From Spectrum to Tuning

Because dissonance curves are drawn for a particular ape¢# particular set of

partials), they change shape if the spectrum is changednMiappear and disap-
pear, and peaks rise and fall. Thus, given an arbitrary sgeciperhaps one whose
partials do not form a standard harmonic series, this chastg@ores how to draw

its dissonance curve. The minima of this curve occur at vaterthat are good can-
didates for notes of a scale, because they are intervalsrafmaim dissonance (or,

equivalently, intervals of maximum consonance).

The crucial observation is that these technigues allowiggemontrol over the
perceived (sensory) dissonance. Although most stateraenteade in terms of max-
imizing consonance (or of minimizing dissonance), the seé@ngth of the approach
is that it allows freedom to sculpt sounds and tunings so acldeve a desired
effect. Sensory consonance and dissonance can be usedittea@erceptual path-
way helpful in navigating unknown inharmonic musical sgace

The idea of relating spectra and scales is useful to thereléctmusician who
wants precise control over the amount of perceived dissmnigina musical passage.
For instance, inharmonic sounds are often extremely désgomhen played in the
standard 12-tet tuning. By adjusting the intervals of thedesat is often possible to
reduce (more properly, to have control over) the amount ofgieed dissonance. It
can also be useful to the experimental musician or the ingni builder. Imagine
being in the process of creating a new instrument with an wadyge., inharmonic)
tonal quality. How should the instrument be tuned? To whatesshould the finger
holes (or frets, or whatever) be tuned? The correlation éetwspectrum and scale
answers these question in a concrete way.

6.1.2 From Tuning to Spectrum

Alternatively, given a desired scale (perhaps a favoristdnical scale, one that di-
vides the octave inta equal pieces, or one that is not even based on the octave),
there are spectra that will generate a dissonance curvemiitima at precisely the
scale steps. Such spectra are useful to musicians and cerapaishing to play in
nonstandard scales such as 10-tet, or in specially fabdcstales. How to specify
such spectra, given a desired scale, is the subject of thgeshdrom Tuning to
Spectrum.”

6.1.3 Realization and Performance

All of this would be no more than fanciful musings if there weasway to concretely
realize inharmonic spectra in their related tunings. The deapter “A Bell, A Rock,
A Crystal” gives three examples of how to find the spectrumnahfarmonic sound,
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draw the dissonance curve, map the sound to a keyboard, apdple process is de-
scribed in excruciating detail to help interested readarsye their own inharmonic
musical universes.

6.2 Drawing Dissonance Curves

The first step is to encapsulate Plomp and Levelt's curve fioe gine waves into a
mathematical formula. The curve is a function of two pureesivaves each with a
specified loudness. Representing the height of the cunacat@oint by the lettef,
the relationship can be expressed as:

f1 is the frequency of the lower sine
d(f1, f2,41,¢2), where f, is the frequency of the higher sine
£1 and/, are the corresponding loudnesses

A functional equation using exponentials is detailed in &pgix E, and the mathe-
matically literate reader may wish to digress to this appefat a formal definition
of the functiond and of dissonance curves. But it is not really necessaryplgim
keep in mind that the functiody(-, -, -, -) contains the same information as Fig. 3.8
onp.47.

When there are more than two sine waves occurring simulteshgat is possible
to add all dissonances that occur. Suppose the Fidtas three partials &, f», and
f3, with loudnesseg, {5, and¢s. Then the intrinsic or inherent dissonanae is the
sum of all dissonances between all partials. Thysis the sum ofl(f;, f;, 4, ¢;) as
i andj take on all possible values from 1 to 3. Although it is not thegan point of
the demonstration, you can hear sounds with varying degféetrinsic consonance
by listening holistically to sound example [S: 54]. Theiaisound is dissonant, and
it is smoothly changed into a more consonant sound.

The same idea can be used to find the dissonance when theuspétis played
at some intervat. For instance, suppodehas two partialg’; and f,. The complete
sound contains four sine waves:fat fs, cf1, andef,. The dissonance of the inter-
val is the sum of all possible dissonances among these forgsw&irst is the intrin-
sic dissonances of the notés = d(f1, f2,¢1,¢2) and D.rp = d(cf1, cfa, b1, £2).
Next are the dissonances betwegh and the two partials of’, d(fi, cfi, 41, 1)
andd(fa2, cf1,f2, 1), and finally the dissonances betwegh and the partials of’,
d(fi,cfa,01,02) andd(fa, cfa, £, £2). Adding all of these terms together gives the
dissonance of" at the intervak, which we write Dr(c). The dissonance curve of
the spectrunf is then a plot of this functio®r (c) over all intervals: of interest.

If you are thinking that there are a lot of calculations neeeg to draw disso-
nance curves, you are right. It is an ideal job for a compineact, the most useful
part of this whole mathematical parameterization is tha itow possible to cal-
culate the dissonance of a collection of partials autoraliyicThose familiar with
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the computer languages BASICMiatlab will find programs for the calculation of
dissonance on the CD and discussions of the programs in AlppErt

For example, running either of the programs from Appendixitheut changing
the frequency and loudness data generates the dissonamveefoua sound with
fundamental at 500 Hz containing six harmonic partialssThishown in Fig. 6.1
and can be readily compared with Helmholtz’s, Plomp and ltsyeand Partch’s
curves (Figs. 5.3, 5.4, and 5.6 on pp. 85, 87, and 90).

12-tet scale steps
unison m3 MBS fourth fifth M6 octave
1 — ——f— ‘ ——

sensory
dissonance

11 6/55/44/3  3/2 5/3 21
frequency ratio

Fig. 6.1. Dissonance curve for a spectrum with fundamental at 500 Hsin harmonic
partials has minima that coincide with many steps of theldtshation scale and that coincide
approximately with 12-tet scale steps, which are shown elfmvcomparison.

Table 6.1 provides a detailed comparison among the 12-&é# steps, the just
intonation major scale, and the minima of the dissonanoceeanrawn for a harmonic
timbre with nine partials. The Jl intervals are similar te tbcations of the minima
of the dissonance curve. In particular, the minima agreb thi¢ septimal scales of
Partch [B: 128] for seconds, tritones, and the minor sevamihwith the JI major
scale for the major seventh. Minima occur at both the septimathe just thirds.

One assumption underlying dissonance curves such as Eigs &dditivity, the
assumption that the sensory dissonance of a collectiomefgsrtials is the sum of
the dissonances between all pairwise partials. Althoughatsumption generally
holds as a first approximation, it is easy to construct exasphere it fails. Follow-
ing Erlich [W: 9], consider a sound with ratios 4:5:6:7 (tan be heard in sound
example [S: 40]) and an inharmonic sound with ratios 1/71¥81/4 (as in sound
example [S: 41]). Both sounds have the same intevalgj hence, the sensory dis-
sonance is the same. Yet they do not sound equally cons@wamntd example [S: 42]

! A FORTRAN version, along with an alternative parametenmaif the Plomp—Levelt
curves can also be found in [B: 92].

2 To be specific, the 4:5:6:7 sound example consists of sinesvar400, 500, 600, and 700
Hz and contains the intervalg'4, 3/2, 7/4, 6/5, 7/5, and7/6. The inharmonic sound is
made from sine waves at 400, 467, 560, and 700 Hz, and hasrteistervals. Similar
results appear to hold for harmonic sounds.
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Table 6.1. Notes of the equal-tempered musical scale compared witimaiof the disso-
nance curve for a nine-partial harmonic timbre, and contpatith the just intonation major
scale from [B: 207]. Septimal (sept.) scale values from [B3]1

Note 12-tet Minima of Just
Name r= VW2 dissonance curve Intonation
C =1 1 1:1 unison
Ci r'=1.059 16:15 just semitone

D r?=1.122 1.14(8:7 = sept. maj. 2) 9:8 just whole tone
Eb  +® =1.189 1.17 (7:6 = sept. min 3)

1.2 (6:5) 6:5 just min. 3
E r*=1.260 1.25 (5:4) 5:4 just maj. 3
F r®=1.335 1.33 (4:3) 4:3 just perfect 4
Fi % =1.414 1.4 (7:5 = sept. tritone) 45:32 just tritone
G r7 =1.498 1.5(3:2) 3:2 perfect 5
Ab % =1.587 1.6 (8:5) 8:5 just min. 6
A r?=1.682 1.67 (5:3) 5:3 just maj. 6
Bb r'©=1.7821.75(7:4=sept.min.7)  16:9 just min. 7
B r''=1.888 1.8(9:5=justmin.7) 15:8 justmaj. 7
C r'?=2 2.0 2:1 octave

alternates between the harmonic and inharmonic soundsnaatlisteners find the
harmonic sound more consonant. Thus, dissonance cannoliyetaracterized as
a function of the intervals alone without (at least) consitgtheir arrangement. Ac-
cordingly, sensory dissonance alone is insufficient to/falaracterize dissonance.
In this case, the sound with greater tonalness (smallerdrd@mentropy) is judged
more consonant than the sound with lesser tonalness (gheataonic entropy).

6.3 A Consonant Tritone

Imagine a spectrum consisting of two inharmonic partiafseiuencies and/2f.
Because the/2 interval defines a tritone (also called a diminished fifthugmented
fourth in 12-tet), this is called theitone spectrumThe dissonance curve for the tri-
tone spectrum, shown in Fig. 6.2, begins with a minimum asemj rapidly climbs
to its maximum, then slowly decreases until, just beforettitene, it rises and then
falls. There is a sharp minimum right at the tritone, follalN®y another steep rise.
For larger intervals, dissonance gradually dies away. ¥ouwerify for yourself by
listening to sound example [S: 35] that the perceived diasoa corresponds more
or less with this calculated curve. Video example [V: 9] femses the same conclu-
sion. Thus, the dissonance curve does portray percepticitaple sweeping sounds
fairly accurately. But it is not necessarily obvious whagfiything) such tests mean
for more musical sounds, in more musical situations.

Sounds used in music are not just static sets of partialg:ithee attack, decay,
vibrato, and a host of other subtle features. A more “musigaision of the tritone
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1

sensory
dissonance

0 1 2 3 4 5 6 7 8 9 10 11 12
semitones

Fig. 6.2.Dissonance curve for an inharmonic spectrum with partiafsand/2 f has minima
at 1.21 (between 3 and 4 semitones) and at 1.414, which i®adri

spectrum should mimic at least some of these characteristhee “tritone chime”
has the same tritone spectrum but with an envelope that miagoftly struck bell
or chime, and a bit of vibrato and reverberation. This chinilebe used in the next
two sound examples to verify the predictions of the dissoaamrve.

Both the fifth (an interval of seven semitones) and the fo(fitk semitones) lie
near peaks of the tritone dissonance curve. Thus, the @issercurve predicts that a
chord containing both a fourth and a fifth should be more diasbthan a chord con-
taining two tritones, at least when played with this timbre.see if this prediction
corresponds to reality, sound example [S: 36] begins withglenote of the tritone
chime. It is “electronic” sounding, somewhat percussivd #min, but not devoid
of all musical character. The example then plays the threedshof Fig. 6.3. The
chords are then repeated using a more “organ-like” sousd,@mposed from the
tritone spectrum. In both cases, the chords containirayiei are far more consonant
than chords containing the dissonant fifths and fourths.predictions of the disso-
nance curve are upheld. This demonstration is repeatedwdwethenore graphically
in video example [V: 10].

fifths tritones ~ Fig- 6.3.Familiar intervals such as the fifth
A and fourth are dissonantwhen played using
"‘(:‘ 0?1 o oF the “tritone chime.” But chords containing
D Wwy #.7 tritones are consonant.
fourths

But still, sound example [S: 36] deals with isolated chod#s/oid of meaningful
context. Observe that there is a broad, shallow minimumratdL21, approximately
a minor third. This suggests that the minor third is more ooast than the major
third. Combined with the consonance of the tritone, thisliegpthat a diminished
chord (root, minor third, and tritone) should be more comsarthan a major chord
(root, major third, and fifth) when played with the tritoneusd. Is this inversion of
normal musical usage possible? Listen to sound example7]Swhich places the
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tritone chime into a simple musical setting. The followingptchord patterns are
each repeated once:

(a) F major,C major,G major,C' major
(b) C dim, D dim, Dt dim, D dim

This is shown in musical notation in parts (a) and (b) of Figk, 6vhere “dim” is

an abbreviation for “diminished.” Both patterns are playeth the same simple
chordal rhythm, but there is a dramatic difference in thenso'’he major progres-
sion, which, when played with “normal” harmonic tones wosttind completely
familiar, is dissonant and bizarre. The diminished progjms which in harmonic
sounds would be restless, is smooth and easy. The inhartnidaie chime is capa-
ble of supporting chord progressions, although familiasical usage is upended.

The final two tritone chime chord patterns, shown in (c) andofdFig. 6.4,
investigate feelings of resolution or finality. To my eand), fieels more settled, more
conclusive than (c). Perhaps it is the dissonance of thermshjurd that causes it to
want to move, and the relative restfulness of the diminigiextd that makes it feel
more resolved. Essentially, the roles of the fifth and thene have been reversed.
With harmonic sounds, the tritone leads into a restful fififith tritonic spectra, the
fifth leads into a tranquil tritone.

Observe: We began by pursuing sensory notions of dissortzeaaise it pro-
vided a readily measured perceptual correlate. Despiteiths now clear (in some
cases, at least) that sensory dissonance is linked withifunat dissonance, the more
musical notion, in which the restlessness, motion, andel@sia chord to resolve
play a key role. Even in this simple two-partial inharmondcisd, chords with in-
creased (sensory) dissonance demand resolution, whdreessavith lower (sen-
sory) dissonance are more stable.

This two-partial tritone sound is not intended to be genlyimeusical, because
the tone quality is simplistic. The purpose of the exampdet® idemonstrate in the
simplest possible inharmonic setting that ideas of musiuation, resolution, and
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Fig. 6.4.Chord patterns using the tritone chime sound.
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chord progressions can make sense. Of course, the “rulestisital grammar may
be completely different in inharmonic musical universefiéve major chords can
be more dissonant than diminished, and where tritones camobe consonant than
fifths), but there are analogies of chord patterns and strerigairmonic “harmonies.”
These arexentonal Unusual tonalities that are not possible with harmoniasisu

6.4 Past Explorations

As the opening quote of this chapter indicates, this is nefitist time that the rela-
tionship between timbre and scale has been investigatbouah it is the first time
it has been explored in such a general setting. Pierce ancbhé&agues are major
explorers of the connection between sound quality and itynal

6.4.1 Pierce’s Octotonic Spectrum

Shortly after the publication of Plomp and Levelt's artickierce [B: 134] used a
computer to synthesize a sound designed specifically todeglin an eight-tone
equal-tempered (8-tet) scale, to demonstrate that it wesilple to attain consonance
in “arbitrary” scales. Letting: = /2, an octotonicspectrum can be defingdy
partials at

1’ 7’10, 7‘16, 7"20, 7’22, 7"24.
In the same way that 12-tet divides evenly into two interwowdole-tone (6-tet)
scales, the 8-tet scale can be thought of as two interwovehstales, one contain-
ing the even-numbered scale steps and the other consiétilng odd scale steps. As
the partials of Pierce’s octotonic spectrum fall on eventiplds of the eighth root
of two, the even notes of the scale form consonant pairs andadt notes form con-
sonant pairs, but they are dissonant when even and odd seepsumnded together.

This can be seen directly from the dissonance curve, whishasn in Fig. 6.5.
The curve has minima at all even scale steps, implying thesetintervals are conso-
nant when sounded together. Although he does not give defadrce says “listeners
report” that notes separated by an even number of scale atepaore concordant
than notes separated by an odd number of scale steps.

The scale related to the octotonic spectrum consists oétbcale steps at which
minima occur. These are at ratibsr?, »*, %, andr®. Although this scale may ap-
pear completely foreign at first glance, observe how it linpsexactly with scale
stepsl, 3,6,9, and 12 of the 12-tet scalé,which is plotted above for handy refer-
ence. Thus, the primary consonant intervals in this ociotarale are identical to the
familiar minor third, tritone, and major sixth, and the dctoic spectrum is a close
cousin of the tritone spectrum of the previous section. Ageadbnventional music

% Beware of a typo in Table 1 of [B: 134]: the frequency ratiold second partial should be
r'® = 2.378.

* Usingt to represent the 12-tet interval rati§/2, this lining up occurs becausé = t*,
r* =1% r® =% and of course® = t'? = 2.
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Fig. 6.5.Dissonance curve for Pierce’s octotonic spectrum desifpraaay in the 8-tet scale.
Minima occur at even steps of the 8-tet scale. The 12-teesstelps are placed above for
comparison. Every third step in 12-tet is the same as evexgrskstep in 8-tet.

theory has been upended, with consonant tritones and dissdifths, consonant
diminished chords, and dissonant major chords.

To perform using Pierce’s octatonic spectrum, | creatediag@vith the specified
partials in which the loudnesses died away at an exponeat&abf 0.9. A percussive
envelope and a bit of vibrato help make it feel more like a ratmstrument. First,
| played in 12-tet. As expected, the tritones were far moresooant than the fifths,
and the diminished chords were very smooth. Retuning thedaayl to 8-tet, the
same diminished chords are present. In fact, that's alktiern 8-tet with the oc-
totonic spectrum, all even scale steps form one big dimedseventh chord (but a
very consonant diminished seventh) and all odd scale stepsdnother diminished
seventh. In a certain sense, music theory is very simpldsr8thet setting: There are
“even” chords and there are “odd” chorti¥here are no major or minor chords, no
leading tones, and no blues progressions—just back artdfertveen two big conso-
nant diminished sevenths. Of course, related spectra ahesseill not always lead
to such readily comprehensible musical universes.

Pierce concludes on an upbeat note that, “by providing mugfctones having
accurately specified but inharmonic partials, the digitmhputer can release music
from the tyranny of 12 tones without throwing consonanceloeard.”

6.4.2 Stretching Out

“Inharmonic” is as precise a description of a sound specasiimonpink” is of light.
As there are so many kinds of inharmonicity, it makes senserdwith sounds that
are somehow “close to” familiar sounds. Recalling that thetipls of a piano are
typically stretched away from exact harmonicity (see Yo{Bg208]), Slaymaker
[B: 176] investigated spectra with varying amounts of stnefThe formula for the
partials of harmonic sounds can be writtgn= jf = f2'°e:(7) for integers;. By

5 Although even the even chords are decidedly odd.
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replacing the 2 with some other numbgr Slaymaker created families of sounds
with partials at
fi= fslogz(j).

When S < 2, the frequencies of the partials are squished closer tegétian in
harmonic sounds, and the tone is said tacbmpressedWhenS > 2, the partials
are spread out like the bellows of an accordion, and the sstestchedy the factor

S. The most striking aspect of compressed and stretchedrapethat none of the
partials occur at the octave. Rather, they line up at thecsteel octave, as shown
in Fig. 6.6. In the same way that the octave of a harmonic terseiooth because
the partials coincide, so thEseudo-octavef the stretched sound is smooth due to
coinciding partials.

1 21 32 44 56 6.8 8.0 9.310.511.813.14.315.616.9 18.1
stretched
spectrumatf + + + + + + <+ + + + + + + + +
stretched : : : : : : :
spectrum H + + + + + + +
at 2.1f :
harmonic S S S S S B R S S
spectrumat2f : : : : : : : : :

harmonic

+ + + 4+ +F + +F + + + + + + + + o+ +
spectrum at f

3 45 67 8 9 1011 12 13 14 15 16 17 18

Fig. 6.6.Locations of partials are shown for four spectra. The plarti the 2.1 stretched
spectrum at fundamentglhave the same relationship to its 2.1 pseudo-octave (atfupd-
tal 2.1f) as the partials of the harmonic spectrum at fundameftadve to the octave at
fundamenta? f.

This is also readily apparent from the dissonance curveghndre plotted in
Fig. 6.7 for stretch factors = 1.87 (the pseudo-octave compressed to a seventh),
S = 2.0 (hormal harmonic tones and octaves)= 2.1 (the pseudo-octave stretched
by about a semitone), arfel = 2.2 (the pseudo-octave stretched to a major 9th). In
each case, the frequency raffois a pseudo-octave that plays a role analogous to
the octave. Real 2:1 ratio octaves sound dissonant andalvedsvhens is signif-
icantly different from 2, whereas the pseudo-octaves arelyiconsonant. This is
where the “challenging the octave” sound example from tisééinapter came from.

A stretched sound withh = 2.1 was played in a 2.0 octave, which is dreadfully dis-
sonant, as suggested by the lower left of Fig. 6.7. When gdlayés pseudo-octave,
however, it is consonant.

Each of the curves in Fig. 6.7 has a similar contour, and maniinthe disso-
nance curve occur at (or near) the 12 equal steps of the psmdees. A complete
pseudo-just intonation of pseudo-fifths, pseudo-foudhd, pseudo-thirds is readily
discernible, suggesting the possibility that music theamg practice can be trans-
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Fig. 6.7.Dissonance curves generated by stretched (and compregsadja have the same
contour as the harmonic dissonance curve, but minima atekéad (or compressed) so that
pseudo-octaves, pseudo-fifths, and so on, are clearlyleridibe bottom axis shows 12 equal
divisions of the pseudo-octave, and the top axis shows tredatd 12-tet scale steps. Tick
marks for the octave (frequency ratio of 2) and the fifth (freqcy ratio 3/2) are extended for
easy comparison. As usual, the dissonance axis is norrdalize

ferred to compressed and stretched spectra, when playechipressed and stretched
scales.

Is Stretched Music Viable?

There is a fascinating demonstration on #alitory Demonstrations CI[D: 21] in
which a four-part Bach chorale is played four ways:

(i) A harmonic spectrum in the unstretched 12-tet scale
(ii) A 2.1 stretched spectrum in the 2.1 stretched scale
(iii) A harmonic spectrum in the 2.1 stretched scale
(iv) A 2.1 stretched spectrum in the unstretched 12-teescal

The first is normal sounding, if somewhat bland due to the Baity of the nine
partial “electric piano” timbre. The second version hasesslsensory consonance, a
result expected because all notes occur near minima of ssemtnce curve. But the
tone quality is decidedly strange. It is not easy to tell hosngntones are sounding,
especially in the inner voices. The notes have begun to dws# fusion. Although the
sensory dissonance has notincreased from (i), the torssisegct of dissonance has
increased. The third and fourth versions are clangoroud&sdnant in a spectacular
way—like the extended versions of the “challenging the \@&talemonstrations in
sound examples [S: 2] to [S: 5].
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Several experiments have investigated the uses and lions=of stretched tones
in semimusical contexts. Mathews and Pierce [B: 100] testéjects’ ability to de-
termine the musical key and the “finality” of cadences wheayetl with stretched
timbres. Three simple musical passagés M, and T, were played in sequence
XMXT, and subjects were asked to judge whetkiewas in the same key a§
andT'. Both musicians and nonmusicians were able to answer ¢lyrraost of the
time. But when subjects were asked to rate the “finality” ohdence and an anti-
cadence, the stretched versions were heard as equallydngtfinal. Mathews and
Pierce observe that melody is more robust to stretchingtlhamony, and they sug-
gest that the subjects in the key determination experimagthave used the melody
to determine key rather than the chordal motion. The stritctor used in these
experiments was = 2.4, which is well beyond where notes typically lose fusion.
Thus, one aspect of musical perception (the finality of cedghrequires the fusion
of tones, even though fusion may not be critical for othershsas a sense of the
“melody” of a passage. An alternative explanation is thaesof a melodic passage
may fuse more readily when they are the focus of attention.

Perhaps the most careful examination of stretched intersahe work of Cohen
[B: 33], who asked subjects to tune octaves and fifths for setyaof sounds with
stretched spectra ranging frath= 1.4 to S = 3.0. Cohen observed two different
tuning strategies: interval memory and partial matchirgm8 subjects consistently
tuned the adjustable tone to an internal model or templatheointerval, and they
were able to tune to real octaves and fifths, despite the aictory spectral clues.
Others pursued a strategy of matching the partials of thestatjle tone to those of
the fixed tone, leading to a consistent identification of teeualo-octave rather than
the true octave.

Plastic City: A Stretched Journey

In talking about Pierce’s work on stretched tunings, Mode1[17] observes that
Pierce uses traditional music, rather than music spedificamposed around prop-
erties of the new sounds. Taking this as a challenge, | deédinéear for myself.
First, | created about a dozen sets of sounds via additivthegi® with partials
stretched fromS = 1.5 to S = 3.0. As expected, those with extreme stretching
lost fusion easily, so | chose four sets of moderately dtext@and compressed tones
(with S = 2.2, 2.1, 2.0, and 1.87) that sounded more or less musical. When gen-
erating these soundsand when using the keyboard to add performance parameters
such as attack and decay envelopes, vibrato, and so on, |axefsilcto keep the
sounds strictly comparable: If | added vibrato or reverb e sound, | added the
same amount of vibrato or reverb to each of the other soundkid way, fair com-
parisons should be possible.

The resulting experiment, calldélastic City, can be heard in sound example
[S: 38]. The structure of the piece is simple: The theme iggdawith harmonic

5 Appendix D contains a discussion of additive synthesis.
" The sounds used iRlastic City contained between five and ten partials, with a variety of
amplitudes with primarily percussive envelopes.
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tones (in standard 12-tet), then with the 2.2 stretchedstdhen with the compressed
1.87 tones, and finally with the 2.1 stretched tones (eadheiin tespective stretched
scales, of course). The theme is based on a simple | V IV V pettdlowed by | V

. Itis unabashedly diatonic and has a clear sense of hamnaation and resolution.
The theme is repeated with each sound, and the second tinad adéce solos. At
the end of the repeat, the theme disintegrates and scatteking way for the next
tuning.

Now stop reading. Listen tBlastic City(sound example [S: 38] in the
file plasticity.mp3 ), and make up your own mind about what
parts work and what parts do not.

Most people find the entrance of the 2.2 tone extremely k#zairen, just as the
ear is about to recover, the compressed tone begins a newfimeasiness. Finally,
the entrance of the 2.1 tone is like a breath of fresh air afterturous journey. The
most common comment | have heard (besides a sigh of relig@isnow we're back
to normal.” But 2.1 stretched is really very far from normat-eontains no octaves,
no fifths, no recognizable intervals at all. The octaves areof-tune by almost a
semitone. This is the same amount of stretch used oAtld&ory Demonstrations
CD [D: 21] to show the loss of fusion with stretched tones. iviethis context, 2.1
stretched can be heard as “back to normal.”

Thus, 2.2 is stretched a bit too far, and 1.87 is squishedtadihuch. The kinds
of things you hear ifPlastic Cityare typical of what happens when tones fission.
becomes unclear exactly how many parts are playing. It id teafocus attention on
the melody and to place the remaining sounds into the baakgrkdChordal motion
becomes harder to fathom. Of course, this piece is strutBoas to “help out” the
ear by foreshadowing using normal harmonic sounds. Thissiribre obvious what
to listen for, and by focusing attention, the “same” pieae lsa heard in the stretched
and compressed versions, but it takes an act of will (andfirated listenings) before
this occurs.

Perhaps the 2.1 version only sounds good in this contextisedaie ear has been
tortured by the overstretching and undercompressing. &example [S: 39], called
October 21stis a short piece exclusively in 2.1 stretched. The timbrestse same as
used inPlastic Cityand in [S: 4], and here they sound bright, brilliant, and chae
The motion of the chord patterns is simple, and it is not diffito perceive. Torture
is not a necessary precondition to make stretched toneslsousical. Perhaps the
most interesting aspect of this piece is its familiarityal/d played this for numerous
people, and many hear nothing unusual at all.

What does it mean when a sound has been stretched or contptessdar?”
Perhaps the most obvious explanation is loss of fusion;ishétis no longer heard
as a single complex sound but as two or more simpler soundssalyg related pos-
sibility is loss of tonal integrity; that is, the uncertapnin the (virtual) pitch mecha-
nism has become too great. In the first case, the sound agpdafsrcate from one
sound into two, whereas in the latter case, it appears todpiteh that is noticeably
higher (for stretched sounds) than the dominant lowestgba@tohen’s experiments
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[B: 33] are relevant, but it is not obvious how to design anezxpent that clearly
distinguishes these two hypotheses.

Moving beyond stretched versions of the 12-tet scale, iisatways possible
to correlate inharmonic spectra and their related scald#s stindard music theory.
The next example shows how a simple class of sounds (thokeod-numbered
partials) can lead to a nonintuitive tuning based on 13 edjwadions of the “tritave”
rather than 12 equal divisions of the octave.

6.4.3 The Bohlen—Pierce Scale

Pan flutes and clarinets (and other instruments that adiubes open at a single end)
have a spectrum in which odd harmonics predominate. Faariost Fig. 6.8 shows
the spectrum of a pan flute with fundamental frequefiey 440 Hz and prominent
partialsat aboWtf, 5 f, 7f, and9 f. Recall that the just intonation approach exploited
ratios of the first few partials of harmonic tones to form tpere” intervals such as
the fifth, fourth, and thirds. A generalized just intonategproach to sounds with
only odd partials would similarly exploit ratios of small @dumbers, such as 9/7,
7/5,5/3,9/5, 7/3, and 3/1.

441

1322
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Fig. 6.8.Some instruments have spectra that consist primarily ofraddbered patrtials. This
pan flute has a fundamental At= 441 Hz and prominent partials at (approximatedy), 5 f,
7f,9f,and11f.

Mathews and Pieréeobserved that these ratios can be closely approximated by
steps of a scale built from 13 equal divisions of the ratio(@i&tritave). The most
promising of these scal@swhich they call theBohlen—Piercescale, contains nine
notes within a tritave. Recall that when a harmonic soundiisliined with its octave,
no new frequency components are added, as was shown in Eigrot.spectra with
only odd partials, however, the addition of an octave doesnaiv components (the
even partials), but the addition of a tritave does not. Thhesritave plays some of
the same roles for spectra with odd partials that the octiyesfior harmonic tones.

8 [B: 102], and see also Bohlen [B: 16].
? Built onsteps 0, 1, 3,4, 6,7, 9, 10, and 12.
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Mathews and Pierce analyze many of the possible chords itritaee-based
Bohlen—Pierce scale in the hope of determining if viableimisspossible. Chords
built from scale steps 0, 6, and 10 are somewhat analogousjar rwhords, and
those built from 0, 4, and 10 have a somewhat minor flavor. Whasicians and
nonmusicians are asked to judge the consonance of the saimuds, some inter-
esting discrepancies originate. Naive listeners tend dgguthe consonance of the
chords more or less as indicated by the Plomp-Levelt models {0 agree with
the predictions of the dissonance curve). But musicallyhsgijrated listeners judge
some of the chords more dissonant than expected. On cloggedtion, Mathews
and Pierce found that these chords contained close (butxaot)eapproximations
to standard 12-tet intervals. Thus, the musically traindgects heard a familiar in-
terval out of kilter, rather than an unfamiliar interval imee. Recall that Plomp and
Levelt had similar problems with highly trained musical mdbs whose judgments
of intonation were often based on their training rather thianvhat they heard.

12 equal divisions of 3  pseudo-fifth pseudo-octave

.
12 equal divisions of 2 othave octaverfifth

tritave

sensory
dissonance _

© (1) 2 (3 @ 5 (6 (7) 8(9010)11(12)(13)(1) 2 (3) (4) 5 (6)

13 equal divisions of 3

o

Fig. 6.9.Dissonance curve for the panflute spectrum with odd integeigts atf, 3f, 57,
7f,and9f. The bottom axis shows steps of the Bohlen—Pierce scale@mffeeses, which are
a subset of 13 equal divisions of 3. Observe how steps 3, 4,8),7and 13 occur at or near
sharp minima of the dissonance curve. The top axes showsuthiéar 12-tet scale steps as
well as theS = 3 stretched scale.

Figure 6.9 shows the dissonance curve for spectra with oddhlsasuch as the
pan flute. Observe that the curve has many minima alignedthvéltBohlen—Pierce
scale: at steps 3, 4, 6, 7, 10, and 13. The tritave is very ca@mgpand all the in-
tervals of the “major” and “minor” chords proposed by Matlseand Pierce (and
their inversions) appear convincingly among the deepet$teofinima. To facilitate
comparison with previous scales, two additional axes apatethe top of the dia-
gram. Note that the tritave is equal to a standard octavegplifih, but that virtually
none of the other 12-tet scale steps occur near minima ofisisemance curve. Also,
compare the Bohlen—Pierce tritave scale and the stretatade with stretch factor
S = 3. Although the pseudo-octave of the stretched scale isiichérb the tritave,



108 6 Related Spectra and Scales

none of the other stretched scale steps coincide closely minimaZ® Thus, the
Bohlen—Pierce scale really is fundamentally different] &requires a fundamen-
tally new music theory. Unlike the tritone spectrum in 8-thts theory is not trivial
or obvious. Three exploratory compositions in the Bohlearde scale can be heard
on the CD accompanyin@urrent Directions in Computer Music Reseafgh 103].

6.5 Found Sounds

Each of the previous examples began with a mathematicaligtoacted spectrum
(the tritone spectrum, the octatonic spectrum, stretclpedtsa, spectra with odd
partials) and explored a set of intervals that could be egglet® sound consonant
when played with that spectrum. The dissonance curve pesvadiseful simplifying
tool by graphically displaying the most important intesjakhich together form the
scale steps. Each of the previous examples had a clear caatepderpinning. But
mathematical constructions are not necessary—the ongepdmeeded is the sound
itself.

McLaren [B: 107] is well aware of the need to match the spectwith the
scale, “Just scales are ideal for instruments that genkrtef harmonic partials”
but when the instruments have inharmonic partials, thetigwius to use “non-just
non-equal-tempered scales whose members are irratidite od one another... [to]
better fit with the irrational partials of most... instrunt@hFound sounds:

remain one of the richest sources of musical scales in thevoeld. Anyone
who has tapped resistor heat sinks or struck the edges of/dloper pots
realizes the musical value of these scalés. ..

This section suggests approaches to tunings for “foundgeibjor other sounds
with essentially arbitrary spectra. In this respect, dissme curves can be viewed
as a formalization of a graphical technique for combiningrats first presented by
Carlos. Two concrete examples are worked out in completaldet

6.5.1 Carlos’ Graphical Method

The quote at the start of this chapter is taken from the artilining: At the Cross-
roads” by Carlos [B: 23], which contains an example showiag the consonance
of an interval is dependent on the spectrum of the instrun@aros contrasts a har-
monic horn with an electronically produced inharmonic tmsent” called theggam
with both played in octaves and in stretched octaves. Theggamds more conso-
nant in the pseudo-octave, and the horn sounds most cortsorthe real octave.

10 Stretched scales and spectra are fundamentally differemtthe Bohlen—Pierce scale and
spectra with odd integer partials. A = 3 stretched spectrum, for instance, has partials at
f,3f,5.7f,9f,12.8¢, etc.

" From McLaren [B: 107].



6.5 Found Sounds 109

This is presented on the sound sheet (recording) that acaewmpthe article, and it
is explained in graphical form.

Carlos’ graphical method can be applied to almost any soQnodsider a struck
metal bar, and recall that the bending modes (partials)rdrarmonically related.
This was demonstrated in Fig. 2.8 on p. 24, which shows thigatmdiagrammati-
cally. When several metal bars are struck in concert, as thigghpen in a glocken-
spiel or a wind chime, longer bars resonate at lower fregesrtban smaller bars,
but the relationships (or ratios) between the various r@soes remains the same.
Figure 6.10 shows three bars with fundamentalg ay,, andh;. The invariance of

the ratios between partials implies tlﬁt: %2 = 22 and that% =L = e

[%2]
g Bart | | | Fig. 6.10. Three metal bars of different lengths
€ PR f (that are otherwise identical) have the same pat-
2 |1 ,2 |3 tern of bending modes (partials), but beginning
g Baro | | at different base frequencies. When these partials
2 ar || I | | | coincide, as for bars 1 and 3, they achieve maxi-
g L f mum sensory consonance. When they fail to co-
B 91 : 92 : 93 incide, like bars 1 and 2, dissonances originate.
C
S Bar3 !
: |

hy h, hg

frequencies of bending modes

When the partials of one bar fall close to (but not identicahjthe partials of
another, then the sound beats in a harsh and dissonantriagtiien the overtones
coincide, however, the sound becomes smoother, more canisdrhe trick to de-
signing a consonant set of metal bars (wind chimes, for mugtpis to choose the
lengths so that the overtones overlap, as much as is padsilhe figure, bars 1 and
3 will sound smooth together, and bars 1 and 2 will be roughdmaore dissonant.

Although this graphical technique of overlaying the speectrinharmonic sounds
and searching for intervals in which partials coincide isaclconceptually, it be-
comes cumbersome when the spectra are complex. Dissonan@s @rovide a
systematic technique that can find consonant intervals fgiven spectrum that is
essentially independent of the complexity of the spectralired.

6.5.2 A Tuning for Ideal Bars

There are many percussion instruments such as xylopholoekegspiels, wind
chimes, balophones, sarons, and a host of other instrurtieotsghout the world
that contain wood or metal beams with free (unattached).efsisuming that the
thickness and density of the bar are constant througholdritgth, the frequencies
of the bending modes or partials can be calculated usingrahfauder differential
equation given ifFfundamentals of Acoustit®y Kinsler and Fry [B: 85]. Assuming
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that the lowest mode of vibration is at a frequenfyand that the beam is free to
vibrate at both ends, the first six partials are

£, 2.76f, 5.41f, 8.94f, 13.35f, and18.65f

which are clearly not harmonically related.

Two octaves of the dissonance curve for this spectrum arersi Fig. 6.11.
Numerous minima, which define intervals of a scale in whighuthiform bar instru-
ment will sound most consonant, are spaced unevenly thmughe two octaves.
Observe that there are only a few close approximations tditarimtervals: the fifth,
the major third, and the second octave. The octave itsedilityfdissonant.

12-tet scale steps

I}IIS fh“th oct?ve 1 octaYe 2

—_

sensory
dissonance

o

i
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491.65 1.96 227 2.76 3.24 4.07
frequency ratio

Fig. 6.11.Dissonance curve for a uniform bar has minima shown by tickksan the lower
axis. The upper axis shows 12-tet, with several intervaisreded for easy comparison.

With so few intervals coincident with those of the 12-tetlechow can such bar
instruments be played in ensembles with strings, windsadher harmonic instru-
ments? First, most have a short, percussive envelope. atils to hide the rough-
ness, because beats take time to develop. Second, by mpuhérbar in clever
ways, many of the offensive partials can be attenuated.raamce, the bar is typi-
cally suspended from two points roughly two-ninths of thgfvam the ends. These
points coincide with the nodes of the first partial. (In FigB ®n p. 24, these are
the stationary points in the vibration pattern of the firstiph) As other partials re-
quire nonzero excursions at the 2/9 point, they rapidly diaya This is somewhat
analogous to the way that guitarists play “harmonics” bystitely damping the
fundamental, only here all partials but the fundamentabaraped. To hear this for
yourself, take a bar such as a long wind chime, and hold itemtrddle (rather than
at the 2/9 position). The fundamental will be damped, andtitenumbered partials
(at2.76f, 8.94f and 18.65f) will be greatly exaggerated. Suspending at yet other
points brings other partials into prominence.

Despite the short envelope and the selective damping difsithe inharmonic-
ity of bar instruments is considered a problem, and attengptsanipulate the con-
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tour and/or density of the bar to force it to vibrate more hamioally*? are common.

The idea of related scales and spectra suggests an alterrRdither than trying to
manipulate the spectrum of the bar to fit a preexisting pattet the bar sound as it
will. Play in the musical scale defined by the spectrum of tae the scale in which
it will sound most consonant.

6.5.3 Tunings for Bells

Bell founders and carillon makers have long understood tthexte is an intimate

relationship between the modes of vibration of a bell and haweh in-tune certain

intervals sound. Because bells are shaped irregularlyuibeate in modes far more
complex than strings or bars. TiRhysics of Musical Instrumentsy Fletcher and

Rossing [B: 56] contains a fascinating series of picturesvihg how bells flex and

twist in each mode. The frequencies of these modes vary déemeon numerous

factors: the thickness of the material, its uniformity amhsity, the exact curvature
and shape, and so on.

There is no theoretically ideal bell like there is an ideataagular bar, but bell
makers typically strive to tune the lowest five modes of Milora(called the hum,
prime, tierce, quint? and nominal) so that the partials are in the ratigs : 1 :
1.2 : 1.5 : 2. The tuning process involves carefully shaving particplations of the
inside of the bell so as to tame wanton modes without adweefédcting already
tuned partials. Traditional church bells tuned this wayaaiéed “minor third” bells
because of the interval 1.2, which is exactly the just mihodt6/5. Bell makers have
recently figured out how to shape a bell in which the tierceobees 1.25, which is
the just major third 5/4. These are called “major third” bell

Using dissonance curves, it is easy to investigate whatvatgesuch bells sound
most consonantly. The frequencies of the modes of vibratwfthree bells are
shown in Table 6.2. The partials of the ideal minor and mdjindtbells are taken
from [B: 94],'4 and the measured bell is from/a; church bell as investigated by
[B: 132] and [B: 157]. The most noticeable difference betwtee minor and major
bells is the tierce mode, which has moved from a minor to a nhjod. Inevitably,
the higher modes also change. The measured bell gives amfdeav accurately
partials can be tuned. The quint and undeciem are consigiatdterent from their
ideal values. There is debate about whether the stretchdaleloctave is intentional
(recall that stretching is preferred on pianos) or accialent

The dissonance curves for these three bells are shown i6 B, and the exact
values of the minima are given in Table 6.3. Although bellsaz be made harmonic
because of their physical structure, the close match bettreejust ratios and the
minima of the dissonance curves suggests that bell makeestheir instruments
so that they will be consonant with harmonic sounds. Suchguis far more com-
plex than simply tuning the fundamental frequency becaussguires independent
shaping of a large number of partials.

2 For instance, see [B: 124].
'3 Those who remember their Latin will recognize tierce andhtjas roots for third and fifth.
'* As reported in [B: 56].
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Table 6.2. Partials of bells used in Fig. 6.12.

Name of Ideal Minor Measured Ideal Major
Partial Third Bell Bell Third Bell
hum 0.5 0.5 0.5
prime 1.0 1.0 1.0
tierce 1.2 1.19 1.25
quint 15 1.56 1.5
nominal 2.0 2.0 2.0
deciem 25 2.51 25
undeciem 2.61 2.66 2.95
duodeciem 3.0 3.01 3.25
upper octave 4.0 4.1 4.0

[ B

"Ideal" Minor Third Bell

sensory

o dissonance _, o dissonance _,

‘ ‘ Measured Bell

sensory

Major Third Bell

sensory
o dissonance _,

frequency ratio

Fig. 6.12.Dissonance curve for an “ideal” minor third bell is compavdth the dissonance
curve of a real bell, and to the dissonance curve of the “nthjai” bell described by [B: 94].
The ideal has deep minima at many of the just ratios, and timémmai for the real bell are
skewed. The increase in consonance of the major third israppia both octaves of the lower
plot, although the fifths have become slightly flat.
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The dissonance curve for the measured bell is close to thé Beme extra min-
ima have been introduced, and some of the deeper minima leavesneared by the
slight misalignment of partials. The major third bell has@uoplished its goal. In
both octaves, the major third is very consonant, secondtortlye octave. Unfortu-
nately, the consonance of the fifth has been reduced, andtimanm corresponding
to the fifth has become noticeably flat. It is unclear whethdroov much this effects
the playability of the bell.

Table 6.3. Minima of dissonance curves in Fig. 6.12.

Nearest Ideal Minor Measured Ideal Major

Just Ratio  Third Bell Bell Third Bell

1/1 1.0 1.0 1.0
1.15 1.13 1.14
6/5 1.2 1.2 1.18
5/4 1.25 1.26 1.25
4/3 1.33 1.33 1.35
1.38 1.4
3/2 1.5 1.51 1.48

1.6

1.62
5/3 1.67 1.66 1.69
1.75 1.8 1.75

21 2.0 2.0 2.0

2.08 2.08
2.2 2.26 2.28
12/5 2.4 2.36 2.33
10/4 25 2.51 2.5
2.62 2.72 2.72
2.75 2.76

3/1 3.0 3.01 2.95

The literature on bells is vast, and either [B: 56] or [B: 18dh be consulted
for an overview. The present discussion highlights the dslissonance curves as
a way of investigating what intervals sound consonant wHapeg by a bell with a
specified set of partials. An alternative is to try writingiage of music emphasizing
the inharmonic nature of the bell, an avenue pursued in tkiechepter.

6.5.4 Tuning for FM Spectra

Frequency Modulation (FM) was originally invented for radliansmission. Chown-
ing [B: 32] pioneered its use as a method of sound generatidigital synthesizers,
and it gained popularity in the Yamaha DX and TX synthesizémind is typically
created in a FM machine using sine wave oscillators. By aligwhe output of one
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sine wave (the modulator) determine the frequency of a sktbe carrier), it is pos-
sible to generate complex waveforms with rich spectra ugirlg a few oscillators.
When the ratio of the carrier frequency to the modulatordeswy is an integer, the
resulting sound is harmonic, whereas noninteger ratiosrgés inharmonic sounds.
In practice, these complex inharmonic sounds are oftegaitd to percussive or
noise patches because they sound dissonant when playeden Uaing the related
scale allows such sounds to be played more consonantly.

For example, consider an FM tone with carrier-to-modulatatioc : m of 1 :
1.4 and modulating indé® I = 2. The frequencies and magnitudes of the resulting
spectra are shown schematically in Fig. 6.13. The spectsuatearly inharmonic,
and the magnitude of the fundamental (at 500 Hz) is small esatpwith many
of the partials. When programmed on a TX81Z (a Yamaha FM sgitkr), the
sound is complex and somewhat noisy. Placing a slowly dagdidlucked string”
envelope over the sound and a small amount of vibrato givgestitange inharmonic
flavor: more like a koto or shamisen than a guitar. There avarfeervals in 12-tet at
which this sound can be played without significant dissoeambe most consonant
interval (when restricted to the 12-tet scale) is probabé/rinor seventh, although
the fourth is also smooth. The fifth and octave are definitedgahant.

Two octaves of the dissonance curve for this spectrum arteplin Fig. 6.14,
and itis readily apparent why there are so few consonanaltein the 12-tet scale.
Although there are numerous minima, almost none coincide steps of the 12-tet
scale, except for the fourth and minor seventh. But whemeatuo the related “FM
scale” with steps given by the minima of the figure, the sowardlwe played without
excessive dissonance.

The reason for including this example is because it is likbt some readers
will have access to an FM-based synthesizer. This is an easges of inharmonic
sounds, and many units incorporate tuning tables so thatittieg of the keyboard
can be readily specified. This particular timbre is, frankigt all that interesting
musically, but the procedure can be applied generally. Wityfind the spectrum
of your favorite (inharmonic) FM sound, and retune the sgsirer to play in the

!5 The way that the parametersm, and! relate to the frequencies and amplitudes of the par-
tials of the resulting sound is complex, but formulas arelabte in [B: 32] and [B: 158].

c-m c+m

3
2 c-2m c+2m
=S [
© c-3m c+3m
E | I c-4m | c+4m

| ] ]

0 1000 2000 3000 4000

frequency in Hz

Fig. 6.13.Line spectrum showing the partials of the FM spectrum withm ratio1 : 1.4 and
modulating index = 2. The “fundamental” was arbitrarily chosenat 500 Hz.
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fifth octave 1 octavle 2

sensory
dissonance
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1 1.331.49 1.8 211 24 275 3.2 3.66
1.19 1.37158 192 217 2.5 2.89 3.37 3.8

frequency ratio

Fig. 6.14.Dissonance curve for the FM spectrum with m ratio 1 : 1.4 and modulating
index/ = 2 has minima shown by the tick marks on the bottom axis. Thee12¢ale steps
are shown above for comparison.

related scale? Working through an example like this is the @y to ensure you
understand the procedure, and you may find yourself englaraly a new musical
experience.

6.6 Properties of Dissonance Curves

The shape of the dissonance curve is dependent on the fragaiéand magnitudes)
of the components of the spectrum. Changing these fregeeifand magnitudes)
changes the location and depth of the minima, which changesdale in which
the spectrum can be played most consonantly. The exampléw gfrevious sec-
tions showed specific spectra and their related scales.nimast, this section looks
at general properties of dissonance curves by probing thieemetical model for in-
ternal structure and by exploring patterns in its behaWour generic properties are
presented, although formal statements of these propéatiestheir proofs) are rel-
egated to Appendix F. These properties place bounds on theenof minima of a
dissonance curve, identify symmetries, and describe twerjeclasses of minima.
These properties help give an intuitive feel for where maiwill occur and how
they change in response to changes in the frequencies ariduatap of the partials.

Throughout this section, we suppose that the spectfulasn partials located
at frequenciedi, fa, ..., fa.

‘ Property 1 The unison is a minimum of the dissonance curve.

Recall that any nontrivial soudhas an inherent dissonance due to the interaction of
its partials. The dissonance of the sound at unison corfigist this intrinsic disso-
nance, whereas other intervals also contain interactietveden nonaligned partials.
Details and caveats are given in Appendix F.

' That is, any sound that contains more than a single partialy €llence and a pure sine
wave have zero dissonance.
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Property 2 As the interval grows larger, the dissonance approaches a
value that is no more than the intrinsic dissonance of thadou

The second property looks at extremely large intervals eabipartials of the lower
tone fall below the partials of the upper tone. For large goimtervals, the inter-
action between the partials becomes negligible, and tlsedésce decreases mono-
tonically as the interval increases. In practical termsitmtand a piccolo may play
together without fear of excess dissonance.

The next result gives a bound on the number of minima of a dessce curve in
terms of the complexity of the spectrum.

Property 3 The dissonance curve generatedfias at mostn? min-
ima that are located symmetrically (on a logarithmic scate)hat hal
occur for intervals between 0 and 1, and half occur for irgkrketwee
1 and infinity.

There are really two parts to this property: a bound on thebarrof minima, and an
assertion of symmetry. The easiest way to see (and heas ihby example. Con-
sider a simple spectrum with just two partials. As shown on Bi15, the dissonance
curve can have three different contours depending on thargpaetween the two
partials” The unison may be the only minimum, there may be an addititwal
steep minima, or there may be an additional two “broad” maim

The middle graph of Fig. 6.15 shows the dissonance curve gmale sound
with two partials atf and1.15f. The dissonance begins at the unison, rises rapidly
to its peak, and then plummets to a sharp minimum at 1.150B&%e then climbs
again before sinking slowly toward zero as the two sounds alpart. It is easy to
understand this behavior in terms of the coincidence of #nggls. Letr denote the
ratio between the two notes. Near unity (forr 1), the partials off beat furiously
against the corresponding partialsrgt. Whenr reaches 1.15, the second partial of
f aligns exactly with the first partial off, and the dissonance between this pair van-
ishes, causing the minimum in the curve. Asontinues to increase, the previously
aligned partials begin to beat, producing the second peakaFger, both partials of
f are separated from both partialsigf so that there is little interaction, and hence
little dissonance.

Perhaps the most striking feature of this figure is its symyd&tSuppose that
instead of sliding the second tone up in frequency, it istetlitiown; a similar sce-
nario ensues. Faor ~ 1, there is large dissonance. Aglescends to 0.87 (which is
the inverse of 1.15, that |§% = 0.87), the first partial off aligns with the second
partial ofr f to cause a minimum. As continues to descend, the rise and fall of dis-
sonance occur just as before. In general, whenever themiisisum at a particular
valuer*, there is also a minimum &t/r*. Thus, the range from 0 to 1 is a mirror

'7 To make this figure clearer, the intrinsic dissonances haem subtracted out.

18 The astute reader will note that the symmetry is not exactbee dissonance curves vary
with absolute frequency. However, over much of the audigearthe curves are nearly
symmetric.
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1/2 1 2 Fig. 6.15.Dissonance curves for spec-
ﬁw tra with two partials have three possible

shapes: The partials may be too close
partials (f, 1.01f)  togetherto allow any minima other than
the unison (top), the minima may occur
at the intervals defined by the ratios of
the partials (middle), or there may also
be “broad” minima due to the sparsity
| of partials (bottom). Observe the sym-
metry about the unison. Steps of the 12-
tet scale are shown above for compari-
son.

sensory
dissonance

partials (f, 1.15f)
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dissonance

.54 .71 1 141 186
frequency ratio

image of the range from 1 to infinity, and they are typicallid&d together, as has
been done for most of the dissonance curves throughout thle bo

If the partials are too close together, there may be no mimithar than the uni-
son. The top graph in Fig. 6.15 shows the dissonance cungedound with partials
at f and1.01f. At first thought, one might expect that= 1.01 (and its inverse)
should be minima. But the other partials are clustered yearid their combined
dissonances are enough to overwhelm the expected mininegsbnce, if the par-
tials are clumped too tightly, minima can disappear.

Thus, minima may (or may not) occur when partials coincidaiivia can also
occur when partials are widely separated. The bottom gnayptig. 6.15 shows the
dissonance curve for a sound with partialsfaand 1.86 f. As expected, there are
minima at 1.86 and its inverse 0.54, but there is also a nedddifbroad” minimum
at 1.41 (and its inverse). This occurs because the part@isidely separated, so that
for a large range of the ratig there is little significant interaction. Such minima are
typically wide, and they tend to disappear for sounds withiertban a few partials.
The harmonic dissonance curve of Fig. 6.1 on p. 96, for itgaronsists exclusively
of minima caused by coinciding partials; the broad, in-le&mwminima have been
vanquished. This discussion foreshadows a property désgrthe two classes of
minima: those caused by coinciding partials and those dabgevidely separated
partials.
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Property 4: The principle of coinciding partialslp ton? of the minima
occur at interval ratiog for which r = f;/f; where f; and f; are
partials of . Up ton? of the minima are the broad type of the bottpm
curve in Fig. 6.15.

For example, spectra with three partials may have up to thieena at points where
rifi = fa, rof1 = f3, andrsfs = f3, which are represented schematically in
Fig. 6.16. Essentially, a minimum can occur whenever twdefgartials coincide,
and this property is called the principle of coinciding gt Of course, other min-
ima may exist as well. The top graph in Fig. 6.17 shows theodasce curve for the
spectrumyf, sf, s* f, wheres = /2. Note that the three minima predicted by prop-
erty 4 are at exactly the first and fourth scale degrees oftivdne equal-tempered
scale, and at the difference frequenéy’. The bottom graph of Fig. 6.17 places the
partials atf, sf, s® f, generating the expected scale steps at 1 and 6, and the diffe
ence frequency® f at 10-tet scale step 5. There is also a broad minimum between
the third and fourth steps, which is a result of the distaretevben the partialsf
andsS f.

L 1 | Fig. 6.16.Schematic representation of
f1 flz f3 1 | three possible local minima (at ratios

' r1, r2, andrs) of a spectrum with par-
| tials at f1, f2, andfs.

rofy rofa rofs
1 1

rq f1 i rq f2 rq fs
L 1

|
rafy rafy raf

Properties 3 and 4 combine to give a fairly complete pictdrn@ number and
types of minima to expect. They are located symmetricaltygdogarithmic scale)
so that half occur for intervals between 0 and 1, and half ofanintervals between
1 and infinity. No more than half of the minima are the broacetgipe to a paucity of
partials. No more than half are the steep kind, which occlemgartials coincide at
intervals defined by ratios of the partials. Because the eallgiuseful information
is located in intervals within a couple of octaves of unitychuse the broad minima
tend to vanish (except for sparse spectra), and becausemiamya are annihilated
when partials are densely packed, typical dissonance sw@xfaibit far fewer than
the maximum. In Fig. 6.1 on p. 96, for instance, there are aimMg minima within
the octave of interest, considerably fewer than the bouridof2.

Symmetry of the dissonance curves about one is not the sarepetgtion at the
octave. For instance, the harmonic dissonance élihas a minimum af/4, and
the corresponding symmetric minimum occurd g&&. When translated back into the
original octave between 1 and 2, this8ig5, which is not a minimum. Thus, using
the related scale under the assumption of octave equivalsmiifferent, in general,
from using the intervals of the dissonance curve plus tmeerses. Depending on

'® Fig. 6.1 on p. 96.
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12-tet scale steps ~ fourth ~ fifth octave

spectrum (f, sf, s*f)

sensory
dissonance

spectrum (f, sf, s6f)

sensory
dissonance

scale steps of 10-tet scale

Fig. 6.17.Dissonance curves demonstrating local minima for spedttatiwree partials, with
s defined as the tenth root of two. Observe that minima are @®n¢ with scale steps of
10-tet and not with scale steps of 12-tet.

the musical context, either one or the other may be preféfr&gpically, the minima
of a dissonance curve become sparser (further apart) fgrhigh and for very low
frequencies, implying that both low and high notes will bedpart when using the
scale with inverses. This accords well with our perceptuatimanism because the
majority of notes tend to cluster in the midrange where Imggis most sensitive.

Another consequence of the symmetry of dissonance curteatithe “inverse”
of a spectrum will have the same dissonance curve as thergpedtor example,
subharmonic sounds are those defined by a frequénagd the subharmonigy/2,
f/3,.... Such subharmonic sounds have the same dissonance curtheasdme
related scale as harmonic sounds.

6.7 Dissonance Curves for Multiple Spectra

The dissonance curves of the previous sections assumeabthatotes in the interval
had the “same” spectrum; that is, they differed only by a $émganspositiort! As
it is common to combine sounds of different tonal qualitysitmportant to be able
to draw analogous dissonance curves for notes with diffesgectra.

Suppose the notE has partials af; with loudness:;, and the noté&s has partials
atg; with loudness;. Then the dissonance betweErand G is the sum of all dis-

20 Octave equivalence s often assumedbecause it is geneaallyr to “map” to the keyboard,
but this is a pragmatic and not a musical or perceptual prate.

2! The note with partials af; and loudness;, when transposed by an intervalhas patrtials
atr f; with the same loudness.
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sonancesl(fi, g;, a;, b;), where the functioff d represents the sensory dissonance
between the pure sine wave partialsfalandg; as in Fig. 3.8 on p. 47, weighted
by the loudnesses. Similarly, @ is raised (or lowered) by an interva) then the
dissonances( f;, sg;, a;, b;) are summed, whereas/fis raised (or lowered) by an
intervalr, then the dissonance is calculatédy summing ald(rf;, g;, a:, b;).

For example, suppose that a soundith four harmonic partials is played simul-
taneously with a soun@ with three inharmonic partials gt 1.515¢, and3.464. The
corresponding dissonance curve is shown in Fig. 6.18 ovegiam of slightly larger
than an octave in both ands. The curve is drawn witlt ands on the same axis
because they are essentially inverses; that is, the eff@taging F' and transposing
G by s is nearly the santé as playing’ and transposing by r = 1/s.

A

Fig. 6.18.Dissonance curve for sounds (at intervalr) andG (at intervals). F' has four
harmonic partials whil& has three inharmonic partials @t1.515g, and3.46g. The curve
has many minima close to the steps of 5-tet, which is showxeafos comparison.

5-tet scale steps

|

sensory
dissonance

12-tet scale steps

In this example, minima occur near many of the steps of 5atieich is shown on
the top horizontal axis. There are minima wheeis the first, second, and fifth steps
of 5-tet, and whenm is the first, third, and fourth steps. Together, this suggtsit
this pair of sounds may be sensibly played in 5-tet.

Dissonance curves for multiple spectra have somewhatréiftgroperties than
similar curves for sounds with a single spectrum. For ingtathe unison is not

22 Details of the function can be found in Appendix E.

2% An alternative approach is to combine the spectra of the wmds, and then draw the
(normal) dissonance curve. For instance, combinindtlaadG of Fig. 6.18 gives a “new”
soundH with partials at:, 1.515h, 2k, 3h, 3.46h, and4h. The dissonance curve for this
spectrum has many of the same features as Fig. 6.18, butat islentical. For instance,
when the sixth partial of the lower tone corresponds to thetfopartial of the higher tone
(at the intervald/3), the dissonance curve éf may have a minimum, depending on the
loudness of the partials. There is no minimum at 4/3 in Fig8éowever, because there
are no pairs of partials i andG with this 4/3 ratio.

21 They differ only due to the absolute frequency dependenatissbnance, which is rela-
tively small over moderate intervals.
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always a minimum. Figure 6.19 shows the dissonance curvéaforinharmonic
sounds with partials af, 1.7f, and2.84 f, and atg, 1.67¢, and3.14g. The deepest
minimum occurs at the interval = 1.7, where the first and second partials Bf
align with the second and third partials@f The unison is not a minimum.

The second property, which says that dissonance must decasahe intervals
grow asymptotically large, is still valid. But the third grerty must be amended.

Property3’: The dissonance curve generatedyandG has at most
2nm minima, wheren is the number of partials if" andm is the num-|
ber of partials inG.

The symmetry of the curves about unity is lost, as shown ih Bags. 6.18 and 6.19.
The principle of coinciding partials must also be modified.

Property4’: In the dissonance curve generatedfbhgndG, up tonm of
the minima occur at intervalsfor which eitherr = g;/fi orr = f;/g;,
where f; andg; are the partials of" andG. Up to nm of the minima
are the broad type of the bottom curve in Fig. 6.18.

Dissonance curves can give insight into how different kiofisounds can be com-
bined so as to control sensory consonance. This might finkicatipn, for instance,

in a piece that combines several kinds of inharmonic souBdgll manipulations
of the pitches may lead to dramatic changes in the perceigsdmince of the com-
bined sound, and dissonance curves can be used to reliaguicpthese changes.

6.8 Dissonance “Surfaces”

Dissonance curves can also be drawn for three note “chortiese can be readily
pictured as dissonance surfaces where mountainous peaf®iats of maximum
dissonance, and valleys are locations of maximum consenanc

sensory dissonance

12-tet scale steps

Fig. 6.19.Dissonance curve generated by two souRdsvith partials atf, 1.7 f, and2.84 f)
andG (with partials atg, 1.67g, and3.14g). Loudness values for both sounds are 1, 5, and 5.
Minima occur atr = 1.1, 1.37, and1.85, and ats = 1.02, 1.33, and1.7. The unison is not a
minimum.
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As usual, the total dissonance is calculated by adding tssodances between
all simultaneously sounding partials. The sensory disscamaf a sound” played in
a chord containing the intervals4,,ands is®>:

Total Dissonance Dissonance Dissonance
Dissonance » = Between + Between + Between
of Chord FandrF F and sF rF and sF

Generalizations tan sounds, each with its own spectrum, follow the same philoso-
phy, although in higher dimensions there is no simple wayréavchictures.

Figure 6.20 shows the dissonance “surfaédbr a soundF consisting of six
harmonic partials, as ands are varied over a region slightly larger than an octave.
The central rift, which is sandwiched by a range of high maimgtnear the diagonal,
is the degenerate case whergs s. The two far edges of the surface (which are not
clearly visible due to the angle of view) are where= 1 (on the left) ands = 1
(around the back). As all three notes have the same specrals are interchange-
able and the surface is symmetric about the diagonal. Heheenost interesting
and musically useful information is contained in the fotd#hon the near side of the
diagonal range.

sensory dissonance

interval between the first and second notes

Fig. 6.20.Dissonance curve for a sound with six harmonic partials hagma at many inter-
vals defined by small integer ratios. These form chords wilximum sensory consonance.
Figure 6.21 shows the same data as a contour plot.

Although surface plots such as Fig. 6.20 give a broad overefdhe landscape,
it is not always easy to spot detailed features. The samenaiion is displayed as

2% y F is the transposition of by the intervalr.
26 Appendix E details how the surfaces are drawn.
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a “contour plot,” a topographic map of the dissonance laagiscin Fig. 6.21. The
symmetry about the diagonal is readily apparent. The fardgftdhand edges again
represent the degenerate cases wheeel andr = 1, and the beaded strand on the
diagonal is where = s. In these regions, two of the three notes have merged.

interval between first and second notes
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Fig. 6.21.Contour plot of the dissonance curve for three note chortls Rarmonic spectra.
Several of the most important features are indicated. Tiakanon the axes indicate intervals
of the 12-tet scale step. The chords labeled A-J are exarnmmadre detail in Table 6.4.

Many of the just chords appear in the lower left half of the fegas promi-
nent sinkholes in the dissonance wilderness. For instaheearrowsk and M in
Fig. 6.21 indicate long narrow ravines at the perfect fifttvanth the horizontal and
vertical dimensions, that is, in bothands. This ravine contains both the just major
and just minor chord#? and 1. An angled string of minima for which the second
and third notes are locked into a perfect fifth is indicatedhgyarrowl. This string
intersects the ravine at thiechord, which is composed of two perfect fifths piled on
top of each other.

The chord labeled! contains both a perfect fourth and a perfect fifth. Such “sus-
pended” chords do not form a normal diatonic triad, and yey tire not unfamiliar.
The chordG can be viewed as an inversion. Raising the fundamental f,1;'°
one octave gives®, r'%, »'2, which is a transposition oft. The chordC'is also an
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Table 6.4. Minima of the dissonance surface for a sound with six harmpaitials occur at
many of the just chords and at many of the simple integergatiabels refer to regions on the
contour plot for harmonic sounds in Fig. 6.21.

Actual Closest 12-tet
Label Minimum scale steps Comment
a= Y2
A 1,4/3,32 1a°,d" suspended
B 1,5/4,32 1a%d" just major
C 1,98,32 1¢%d’ suspended
D 1,6/54/3 14°%d’ just minor
E 1,5/4,5/3  1la* a° inversion of minor
F 1,4/3,5)3 14°a° inversion of major
G 1,4/3,16/9 14°,a* string of fourths
H 1,4/3,2 1a®,2 open fourth
I 1,3/2,2 147,2 open fifth
J  1,3/2,9/4  147,a" string of fifths

inversion of A, as can be seen by lowering the highest note an octave. 8imnita
andF are inversions of the just major and minor chords.

It may at first appear strange that the intervals 9/8 and 1g@ar inC andG,
because the dissonance surface was generated by a harmamitcontaining only
the first six partials. But the interval from 3/2 to 9/8 is ethael/3, and so the 9/8
interval is a byproduct of the consonance of the perfecttfoand the perfect fifth.
Similarly, the 16/9 inG forms a perfect fourth with 4/3, and this suspended chord
can be thought of as a “string of fourths.” In fact, the strafdifths chord.J is also
an inversion of this same suspension, because loweringigiest note an octave
gives theC' chord.

The real purpose of this discussion is not to learn more ajogtintonation or
about the traditional diatonic setting, because these baga explored extensively
through the years. Rather, it is to demonstrate that in thnélitar harmonic setting,
features of dissonance curves and surfaces corresporalychaish familiar musical
objects. Hence, there is good reason to expect that in uhidaimharmonic contexts,
analogous features can be used to predict and explore Uigiamusical intervals,
scales, and chords. An extended example is given in the ehé@fiwards a ‘Music
Theory’ for 10-tet.”

6.9 Summary

Dissonance curves generalize the kinds of curves drawn byhtdtz, Partch, and
Plomp to sounds with inharmonic spectra. They give a graghplay of the in-
tervals with the greatest sensory consonance (least sedissonance) for a given
spectrum, and these intervals can be gathered inteethted scale Several previ-
ous investigations were highlighted, including the workvsthews and Pierce and
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their colleagues, and the musical explorations of Carlzantples were drawn from

ideal bars, bells, and FM synthesis. General propertiesssbdance curves bound
the number of minima, demonstrate the symmetry of the iatembout the unison,

and classify them into those caused by coinciding partiadsthose that are a result
of gaps in the partial structure. Extensions to multiplerstsuwith different spectra

are straightforward. The next chapter explores three elentporoughly.
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A Bell, A Rock, A Crystal

To bring the relationship between tuning and spectrum into
sharper focus, this chapter looks at three examples in Hetai
an ornamental hand bell, a resonantrock from Chaco Canyon,
and an “abstract” sound created from a morphine crystal.
All three are discussed at length, and each step is detaded s
as to highlight the practical issues, techniques, and tcdfe
that originate when applying the ideas to real sounds making
real music. The bell, rock, and crystal were used as the basis
for three compositionsTingshaw The Chaco Canyon Rogk
and Duet for Morphine and Cymbalvhich appear on the
accompanying CD as sound examples [S: 43], [S: 44], and
[S: 45].

7.1 Tingshaw: A Simple Bell

By the tenth century BC, bells were used to accompany ritaals they are among
the oldest extant musical instruments. Bells can be mada metal, wood, clay,
glass, and almost any other material that can be shapedttirsoscillation. They
range in size from tiny ornaments to monstrosities weigsigeral tons. Because of
the great variety of materials, shapes, and sizes, bellsagrable of a wide variety
of tones and timbres. The typical bell sound is inharmonid,ités sound envelope (a
rapid rise followed by a long slow decay) is probably its ndistinctive feature.

This section uses one particular hand bell, and it derivesetated scale using
the dissonance curve. This scale is then “mapped” onto alatdrkeyboard, and
some aspects of performance are considered. A musical citigpocalledTing-
shawfeaturing this inharmonic bell played in its nonequal, nctave based scale, is
presented in sound example [S: 43].

Despite the “scientific” flavor of much of the discussion ieyious chapters, the
translation from sound to scale is not a completely meclahmimcess. Decisions
must be made that will ultimately shape the performance &gpility of the sound
and, hence, will help to mold the resulting music. To outtimecomplete procedure:

(i) Choose a sound
(i) Find the spectrum of the sound
(i) “Simplify” the spectrum
(iv) Draw the dissonance curve, and choose a set of intefaalsale) from
the minima
(v) “Create an instrument” that can play the sound at the@mate scale
steps
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(vi) Play music

Each of these will now be discussed in detail, and the detssaad choices made for
the tingshaw will be explained. Although someone versedpactsal analysis will
find many aspects of this discussion familiar, there are abmurof issues that are
specific to the auditory settinfgl do not present this detail in the expectation that it
would be useful to exactly duplicate my steps. Rather, osreersl years of working
with this kind of material, | have run across certain proldesnd traps again and
again. My hope is to post warnings near some of these traps.

7.1.1 Choose a Sound

Although obvious, this is the most crucial step of the praredbecause the charac-
ter of everything in the music (from the character of the sbiarthe scale in which it
will be played) are derived from the sound itself. Sounds e@ye from a musical
synthesizer. They may be from “real” instruments such ds bgbngs, cymbals, and
so on. They may originate from collisions between natur@abk such as bricks,
metal pans, scrap wood, rocks, or recyclables. They mayditally generated by a
computer program.

Although any sound can be used, not all sounds are equallyludehe spec-
trum of the sound is too simple, then the related scale mayilialt For instance,
the tritone spectrum has a dissonance curve with only thieerma, and hence, the
related scale has only three notes; it will be hard to writeravicing melody with
only three notes. On the other hand, if the spectrum of thed@mtoo complex, then
the related scale may have hundreds or even thousands af fibie extreme may
also be impractical. Finally, an unexciting sound cannatiraculously rejuvenated
by playing it in the related scale. If the timbre is dull andniaresting, then it will
most likely lead to dull and uninteresting music.

For this example, | have chosen a small bell called tingshidas a cheery little
clang with a sharp attack and a long slow decay. The tingshasvsampled at the
standard CD rate of 44100 Hz, and the sample was downloadeddamputer and
stored in a file called ting.wav.

7.1.2 Find the Spectrum

There are many programs that can readily calculate therspecbut the accuracy
and usefulness of the results are determined primarily &ysémple rate, the num-
ber of samples analyzed, and the windowing procedure ulsgall have never taken

! The musician may find all of these decisions and the incredibtail frightening. Recog-
nize that | am trying to write iall down. Imagine if you were to try and document every
step of the decision-making process when writing even alsipipce of music. You would
need to explain why it is in 4/4 time, why one particular n@eyncopated and another
is not, why the viola line crosses the violin line (in viotati of standard rules), and why
you have allowed a parallel octave in one section but notemnot here are many decisions
for each noteand there are many, many notes! Rest assured that all & tressions and
detail would be enough to frighten even the hardiest of exgjin
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a spectrum before, you will want to read AppendixSpeaking of Spectrdor an
overview of the kinds of tradeoffs that are inherent in thisgess. The more compe-
tently these decisions are made, the more meaningful théses

The tingshaw bell has a sharp attack followed by a long sloeagento in-
audibility. The complete sound file contains about 120K dasym little less than 3
seconds of sountiTaking the FFT of the complete sound is a bad idea for two rea-
sons. First, it is too long. Because the computation tim@foFFT increases rapidly
as the length of the signal increases, 120K points could @alkeg time. Second,
the attack is very important to the sound, but it lasts onlgwa thousand samples.
Even if the computation time was acceptable, the long decayydobscure the short
attack because of the averaging effect of the FFT.

On the other hand, the FFT must not be too short. At least gaheodecay
portion of the sound must be present or the spectrum canpgent the complete
sound. Also, the accuracy will suffer. Recall (or read alitintAppendix C) that the
width of the FFT frequency bins determines the precisiomwihich the sinusoidal
components can be pinpointed. As the width of the bins is gntignal to the sam-
pling rate divided by the length of the waveform, taking toeedl a portion of the
wave leads to wide bins and poor estimates for the frequendithe partials. Such
inaccuracies can have serious consequences when defiringdted scale.

As the just noticeable difference Fig. 3.4 on p. 43 showegl gt is sensitive to
changes in pitch as small as 2 or 3 Hz in the most sensitivemedielow 1000 Hz.
Thus, itis sensible to choose an FFT length that gives attlesaccuracy. Using an
FFT with length that is a power of two gives two choices: a 16K kvith resolution
of 2.69 Hz? or a 32K FFT with a resolution of 1.35 Hz. To decide, | listenedhe
first 16K of the waveform and to the first 32K. The 16K segmeptsed to capture
enough of the sustained part of the sound.

To examine the effects caused by truncating the wave, | sésgral different
windowing strategies. The rectangular window and the harmgmiindows gave es-
timates for the most important frequencies that were sevetz apart. There are
two sources of error: The hamming window attenuates thelagartion signifi-
cantly, and the rectangular window simply truncates thedigfter 16K samples.
| reasoned that it was a good idea to leave the attack portidisturbed, because
this is where much of the important information resides. &8se a signal has the
same spectrum whether it is played forward or backward ie timarefully selected
a “middle point,” and reversed the 16K waveform about thidpoint? When plot-
ted, the transition point was visually smooth (i.e., nodgiigmp occurred in either the
value of the signal or its slope), and so it seemed unlikegyréatly effect the results.
Indeed, this gave a spectrum that differed by no more thaiiz.som the original
rectangular window, and so | decided to accept this as the™spectrum. Figure

120000

? The duration is the length divided by the number of samplespeond; thus; 220X

2.72 seconds.
s sampling rate__ 44100
length of FFT ™ 16284
* Various windowing strategies are discussed in Appendix C.

~
~

= 2.69 = resolution in Hz.




130 7 A Bell, A Rock, A Crystal

7.1 shows an FFT of the first 16K samples of the sound file ting.accomplished
using a 32K FFT and a wave reversal “windowing” strategy.

2368 5553

magnitude

0 5000 10000 15000

frequency in Hz

Fig. 7.1.Spectrum of the tingshaw bell with the most prominent spepiaks labeled.

7.1.3 Simplify the Spectrum

The output of this FFT says that the first 3/8 second of thestiag/ sound consists
of the first16, 386 harmonics of a fundamental at 1.35 Hz, each with a specified
amplitude and phase. Despite the fact that this is litetallg, it is useless.

A far better interpretation of Fig. 7.1 is that there are tvamihant regions of
spectral activity near 2370 and 5555, and three smallergpatk784, 7921, and
10103. There is also a small cluster near 11300, and a cotipt®lated peaks,
at about 700 and 3200. It is important to try and select ongyrtfost significant
peaks, without missing any, because spurious peaks mag eatrs minima in the
dissonance curve, whereas missing peaks may cause missilegsseps. Neither
is good. Perhaps the best strategy is to analyze severatatiffrecordings and to
choose only what is common among them. This approach islelétai the next
section in the discussion of the Chaco Rock. Unfortunatblytingshaw bell went
missing shortly after | recorded it, leaving only the one pem(and some great
memories).

One way to get more information from limited data is to analjtzin different
ways. | pursued two different strategies: multiple anasid analysis by synthesis.
One interesting and puzzling feature of the tingshaw spetfig. 7.1 is that there
are two separate peaks close to 5555. To investigate, | daiessof 4K spectral
snapshot8.The snapshots suggested that there is really only one lpartay 4K
segment, but that it is slowly changing in frequency fromwtt&b 70 down to about
5550 over the course of the sample. As 5550 is its steadg-gtdie (as shown by
FFTs taken with the attack portion of the sound stripped dwagttled on the single
value 5553 to represent all of this activity. Using the saldesdapshots shows that

® To be specific, | used a 4K hamming window and evaluated thetispe centered at sam-
ples 1K, 2K, 3K, ..., 15K.
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the peaks near 7921 are simpler: They merge into a singlaaithas the sound
progresses and remain centered at 7921 throughout.

The second way to try and understand more from a limited nummbsamples
is a variation on a technique pioneered by Risset and WeBsdl5[L] in  which
the accuracy of an analysis is verified by resynthesizingsthend. If the analysis
captures most of the important features of the sound, themnebynthesized sound
will be much like the original. In the present context, | firssynthesizetthe sound
using the five major peaks, and then added in the smaller pessis700, 3200, and
11,300. Of course, the resynthesized sounds were not mkelhié tingshaw, but
there was almost no perceptible difference between the ésynthesized sounds.
This suggested that the extra smaller peaks were likely ve htle effect on the
overall sound.

Hence, | decided that the five inharmonically related peefgsasent the primary
constituents of the sound, and this simplified tingshawtspetis used to draw the
dissonance curve. It is shown in Fig. 7.2.

Fig. 7.2.Spectrum of the tingshaw bell
simplified to show only the most promi-
nent features.

magnitude

0 2368 47845553 7921 10103
frequency in Hz

A third method to help decide which are the most importantspepeaks might
be called “analysis by subtractive synthesis.” In this rodttthe FFT of the original
sound is manipulated by removing a few suspicious partiaistaen reconstructed
using the inverse FFT. If there is little or no differencevibe¢n the original and the
reconstruction, then the removed partials must be of littigortance to the overall
sound. | did not actually need to use this technique on thgshiaw because | was
already satisfied that | had located the most important sgdeoformation, but it is
a technique that has worked well in other situations.

7.1.4 Draw the Dissonance Curve

The simplified spectrum for the tingshaw shown in Fig. 7.1 barentered into the
dissonance calculating programs given in AppendiHBw to Draw Dissonance
Curves in a straightforward way. Setting the frequency vectoramglitude vectors
freq=[2368, 4784, 5553, 7921, 10103]
amp=[1.0, 0.5, 1.0, 0.6, 0.5]

6 See the AppendiRdditive Synthesi®r details on the resynthesis procedure.
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gives the dissonance curve for the tingshaw shown in Fig.Thi3 figure shows the
dissonance curve from unison to just a bit more than two estain the code, the
algorithm increments binc=0.01 and the upper value is specified by ta@ge
variable, in this case 4.1. It is often a good idea, when firsking at the dissonance
curve of a sound, to calculate the curve over a larger rangeatce sure nothing
“interesting” happens at large values. For the tingshaerettwas one more bump
and dip near 4.27, but it was small and seemed unimportarghéwsn in the figure,
the dissonance curve has minima unevenly spaced at

1,1.16,1.29,1.43,1.56, 1.66, 1.81, 2.02, 2.15, 2.35,, 333, and 4.08.
One way to choose the scale is to simply use these ratiosrfiaylse the one at 4.27)
to play the tingshaw. Another possibility is to also use theise ratios

1, 0.862, 0.775, 0.699, 0.641, 0.602, 0.552, 0.495, 0.4825)0.353,
0.299, and 0.245,

which would result in a complete scale with almost twice amynaotes. This is
sensible because the dissonance curve is really symmbtid ¢he unison (recall
property number 3) and hence contains all of these invetsevals as well.

oct?ve 1 octaveI 2

—_

sensory
dissonance

o

. B f
frequency ratio

Fig. 7.3.Dissonance curve for the tingshaw bell. The minimum at 2€®es as a pseudo-
octave, because some of the minima in the second pseudeeauta aligned with those in
the first. For example2.35/2.02 = 1.16 and3.34/2.02 = 1.65 are found in both pseudo-
octaves. Steps of the 12-tet scale are shown above for cazapar

But looking more carefully at the minima of the dissonancereueveals an in-
teresting pattern. If the minimum at 2.02 is thought of asrallof pseudo-octave,
then the intervalg.15/2.02 = 1.16, 3.34/2.02 = 1.65, and4.08/2.02 = 2.02 are
present in both pseudo-octaves. As these are the most pobf@atures in the sec-
ond half of the curve, the tingshaw sound is closely relabeti¢ eight-note unequal
stretched-octave scale

1,1.16, 1.29, 1.43,1.56, 1.66, 1.81, and 2.02.

This is the scale used in the pieBmgshawon the accompanying recording.
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7.1.5 Create an Instrument

Assuming adequate metal working skills and sufficient tihejould probably be
possible to build a whole carillon of ting-bells: large ontespeal the deep notes
and tiny ones to ring the highs. Exactly how to scale the priogus of the bell
and how to choose appropriate materials so as to leave tlediouality more or
less unchanged are nontrivial issues, but with enough ewpetation and dedica-
tion, these could likely be solved. This was exactly Harrgté¥es situation when he
found that his dream of playing in the 43-tone unequal scalddcnot be realized
without instruments that could play in 43 tones per octavecodingly, he set out
to build such instruments, and much of his career was devotggstrument design,
crafting, and construction. Until just a few years ago, erking on a long and com-
plex construction project would have been the only way ta the ting-chime into
reality.

Fortunately, today there is an easier way. Digital sampiéaipnology is based
on the idea of creating “virtual” instruments. Sound bedms digital sampling
keyboard (asample) as a waveform stored in computer-like memory. This is pro-
cessed, filtered, and modulated in a variety of ways, andsherad across the key-
board so that each key plays back the “same” sound, but afeaetdif fundamental
frequency. The (in)famous “dog-bark symphony” is a clasg@mple where the vo-
calizations of man’s best friend are tuned to a 12-tet saadepdayed as if it were a
musical instrument. As general-purpose computers havenbefaster, software has
become available for both synthesis and sample playbatlcéimareplace much of
the external hardware.

The most exciting feature of many samplers (whether harelwasoftware) is
that the user can specify both the waveform and the tunirggsampler will then
play back the chosen sound in the specified scale. In conieetes, it is possible
to transfer the sound file ting.wav from the computer intodampler, and to then
program the sampler so that it will play in the desired sBalee musician can play
the keyboard as a realistic simulation of a ting-carillon.

As the specifics of moving sound files from one machine to aratre unique to
the individual machines, they will not be discussed furtlSee your owners manual,
software guide, or ask a friend. But one detail remains. &ltth we decided to
use the eight-note unequal stretched-octave scale of évéopis section, we did not
decide how the scale steps were to be assigned to the keys &Ejtboard. One

" A detailed discussion of the design of samplers and othefrelsic musical instruments is
well beyond the scope of this book. Sources such as De FurizgdBprovide an excellent
introduction from a musicians perspective, and the engiméght wish to consult Rossing
[B: 158] or DePoli [B: 40] for a more technological preseidat

8 Transferring the wave file from the computer to the sampleraften be accomplished
using software utilities available from the manufactunefrom third-party software com-
panies. Each sampler has somewhat different internal fig@ns and limitations. For
instance, some samplers only allow the pitch to be chaagedemitone away from its
12-tet default value, whereas others allow arbitrary ass@nt of frequencies to keys of
the keyboardCaveat emptar
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possibility is to simply map successive scale tones to ssive keys. Although this
is often the most sensible strategy, in this particular ctsere is a better way. As
there are eight notes in the scale per pseudo-octave, areldteeight white notes
per (normal, familiar) octave on the keyboard, the easiegiping is the one shown
in Fig. 7.4 in which each octave of the keyboard is used to ph pseudo-octave
of the tingshaw scale.

Tingshaw Scale

ratio cents ‘
E 0 ‘
1.16 257 |
1.29 a1 |
1.43 619 ‘
1.56 770 |
36 877 |
1.81 1027 ‘
2.02 1200 ‘ Fig. 7.4.Each pseudo-octave of the tingshaw scale can be

readily mapped to the white keys on a standard keyboard.

7.1.6 Play Music

Most samplers have numerous options that let the musiciaripulate certain fea-
tures of the sound. Filters can be set to vary along with the piayed, attack
and decay parameters can be modulated by the key velocity i@oidly the key
is pressed), subtle pitch and timbral transformations eaprbgrammed to respond
to aftertouch (how hard the key is pressed), and reverloeratid other effects can be
added to simulate various auditory environments. All fesgof the sampler should
be exploited, as seems appropriate to the sound.

For the tingshaw, | added a bit of reverberation to give thendoa more open
feel, incorporated a subtle low-pass filter to subdue sorrshhass at the high end of
the keyboard, and programmed the aftertouch to induce eadelvibrato. Because
the sound grew a bit mushy at the low end, | increased the spfeia: attack for
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the lower notes. These are the kinds of modifications thasaond designéwould
apply to make a more playable sound.

Now (finally!) comes the fun part. The tingshaw sound is spraaoss the key-
board in a virtual ting-carillon. Fingers are poised. Thigftolls for us.

7.2 Chaco Canyon Rock

The reddish rocks of Chaco Canyon (in New Mexico) producerfol sounds as
they scrape and clatter underfoot. They are musical, b@rimbnic. They are res-
onant, but ambiguously pitched. While hiking the shalef€lgurrounding Chaco
Canyon a few years ago, | was captivated by the music of tleess rl hit them with

sticks, struck them with mallets, and beat the rock agaissiffi

Figure 7.5 shows a typical sampled waveform. The largealiifipact is rapidly
damped, and the vibrationis inaudible by 1/4 of a second shlape of the waveform
isirregular, although its envelope follows a smooth expoia¢decay. Using a digital
sampler to pitch shift this sound across a keyboard createsnalete “lithophone”
that sounds deep and resonant in the lower registers, hatutftze middle range,
and degenerates into a sharp plink when transposed intathgper registers. The
default operation of most samplers is to pitch shift the sbiato the familiar 12-tet
scale. Is this really the best way to tune a Chaco lithophone?

A little experimentation reveals that 12-tet works well foeces that are primar-
ily percussive, in which the sound envelope of one note diesyaefore the next
note begins. But denser pieces, and those with sustained'?dsecome increas-
ingly dissonant, especially in the lower registers. Thigtisa details a systematic
way to retune the pitches of the keyboard based on the spectfthe rock sound
S0 as to minimize the dissonance. T®leaco Canyon Rodgsound example [S: 44])
demonstrates many of the ide'as.

7.2.1 Find the Spectrum

Eventually, | settled on a favorite piece of rock. Roughtgular with a diameter of
about 15 cm, itis less than a centimeter thick. It weighs 8ddams: lighter than it
looks, but heavier than a cymbal of the same size. By strikingh different mallets
in different places, it speaks in a remarkable variety of svay

? | know of no single source containing a comprehensive disionsof sound design, al-
though there are numerous articles spread throughout @omagazines such &dec-
tronic MusicianandKeyboardin which individual sound designers discuss their methods
and philosophies.

10 For instance, extreme time expansion can transform they gfexcussive envelope into a
lengthy reverberation.

' This work on the Chaco rock was originally presented (inedéht form) at théynaesthet-
ica conference [B: 168].
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Fig. 7.5. Typical waveform of the Chaco rock when struck by a hard mallesmall portion
is expanded to make the irregularity of the waveform moreasagnt.

| sampled the rock 12 timé&to try and capture the full range of its tonal qual-
ities. Each sample was transferred to the computer, staredsaund file, and ana-
lyzed by a 16K FFT. Most of the wavefiles (such as the one shawg. 7.5 above)
contained about 16K samples, and thus no windowing was deéue few cases,
the wavefile was smaller than 16K samples. These were |lemggH®y zero padding,
which augments the data with a string of zeroes. Three typpectra are shown in
the Fig. 7.6.

7.2.2 Simplify the Spectrum

Each strike of the rock has a unique sound, and yet they ackeaHly from the same
source. The most constant mode (although rarely the loueathigh resonance
near 4070 Hz. No matter how the rock is struck, no matter whaltemis used,
this mode is audible. Other resonances occur in just one@ofwhe samples. For
instance, the peak at 2736 in the top spectrum of Fig. 7.6aappe only this one
sample. Perhaps it was caused by the mallet, or perhaps tliis i very hard to
excite, and | was lucky to find it. In either case, it is not atdrthe generic sound
of the rock.

Often, the loudest component of the sound is somewhere bet2@10 and 2200.
For instance, the most prominent partial in the top spectsah2163. In the bottom
spectrum, the dominant partial is at 2047, which may be oet&fd by the (slightly
flat) octave at 4070. At first, | thought these both represkmtesingle dominant

2 As before, at the standard rate of 44.1 KHz.
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mode whose exact frequency varied somewhat with the sitwaBut by striking
and listening carefully, it became clear that both realligiyas shown in the middle
spectrum, where 2040 and 2170 are present simultaneoudsty. fAaying around a
bit, | realized that there are places on the rock face wheregossible to reliably
predict which of these two modes will dominate. Moving theket point back and
forth causes the pitch of the rock to move up and down abouh#@aee. This makes
sense because the ratio 2167/2040 is 105 cents. At leastf dinese two modes is
present at all times, and this mode tends to determine toh.piYhen both sound
clearly, the pitch becomes more ambiguous.

As the partials near 5066 and 7666 are present in a numbempies other than
the ones shown, they also form a part of the generic soundec€ttaco rock. The
mode at 1351 is due to one particular edge of the rock. Wherleigeedge is hit, the
resonance at 1351 is excited. By striking elsewhere, thiapat 1351 is subdued.

Combining the above observations about the various modeg obck, the “full”
behavior can be approximated by forming the composite lpgetsum in Fig. 7.7,
which has spectral lines at 1351, 2040, 2167, 4068, 506676&66. The exact val-
ues used for the amplitudes of the partials in the compop#etsum are somewhat
arbitrary, but they are intended to reflect both the numbesaofiples in which the
mode appears and the amplitude of the partial within thosepkess.

This is clearly not a harmonic sound, because the frequemceenot an integer
multiple of any audible fundamental. The inharmonicity védent to both the ear
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2167 4068 Fig. 7.7.The three spectra of the Chaco
2040, rock are combined to form a composite
5066 7666 line spectrum that captures much of the

acoustic behavior of the samples.
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(the semitone between 2040 and 2167 is strikingly inharo)arid to the eye (from
the spectra).

7.2.3 Draw the Dissonance Curve

The composite spectrum for the Chaco rock shown in Fig. fibeaentered into the
dissonance calculating programs of the appendix in a sitfaiggvard way. Setting
the frequency vector and amplitude vectors

freq=[1351, 2040, 2167, 4068, 5066, 7666]

amp=[0.2, 0.9, 0.9, 1.0, 0.5, 0.5]
gives the dissonance curve for the Chaco rock in Fig. 7.8ckvhhows the disso-
nance curve from unison to just a bit more than two octaves.

fifth octave 1 octave-+fifth octalve 2

sensory
dissonance

o

1 I1.25 | 1.51I 1.69I 2.0 I2.34I 2.77 | 3.23| 3.76
1.17 1.37 1.61 1.88 2.172.48 3.01 3.54
frequency ratio

Fig. 7.8.Dissonance curve for the composite Chaco rock spectrum hasilima within a
two-octave span. These are indicated by the tick marks omdhieontal axis. Upper axis
shows 12-tet scale steps, with several extended for easyarison.

Perhaps the most surprising features of this dissonanee euwe the minima at
the fifth, octave, and the octave plus fifth. A little thougdm@ some simple calcula-
tions) show that these are due to overlapping partials. Viglegred at a ratio of 1.99,
the 4068 partial of the lower tone coincides with the 204Qighof the (almost)
octave. When played at a ratio of 1.51, the 7666 partial ofdiver tone coincides
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with the 5066 partial of the (almost) fifth. The minimum at Bdxiginates similarly
from the coincidence of the 4068 and the 1351 partials.

Except for these familiar intervals, the inharmonic spatif the Chaco rock
has a dissonance curve with minima that do not coincide Wimbtes of the 12-tet
scale, and the most consonant intervals using the Chacad soerifferent from the
familiar consonant intervals defined by harmonic tones.ddethe most consonant
scale using the Chaco rock differs significantly from theifean12-tet scale.

7.2.4 Create an Instrument

Because it is illegal to remove material from a National bligtal Site, quarrying
rocks from Chaco Canyon and sculpting them into a giantfitume is not feasible.
Consequently, we will pursue a simulation strategy by bngd virtual lithophone,
which will be tuned by judicious use of the intervals from ttissonance curve.

Places where dips in the dissonance curve occur are insettvatl sound most
consonant. These points can be read directly from the fiquddranslated into their
cent equivalents, which gives

0, 272, 386, 545, 713, 824, 908, 1093, 1200, 1472, 1572,
1764, 1908, 2030, 2188, and 2293.

Subtracting 1200 cents from each of the intervals in the regtartave and rear-
ranging shows that many of the intervals occur in both ogaathough some are
markedly different:

0272 386 545 713 824 908 1093

0272 372 564 708 830 988 1093

Clearly, the final scale should contain the common inte®al72, and 1093. Scale
steps at 710 (a compromise between 708 and 713) and 827 (amoisp between

824 and 830) are sensible. As 908 and 988 are close to a sengipamt, it is rea-

sonable to use both. Similarly, 545 and 564 differ signifigars thirds are so im-

portant, we might also choose to use both 372 and 386 (whielkdstly the just

major third), giving three kinds of thirds: a flat minor thjlmneutral third, and a just
major third. This gives an 11-note scale. As it is much edsiptay a tuning that re-

peats every 12 notes rather than 11, due to the physicaltiaf®estern keyboards,
perhaps we should add another note?

The largest step in the scale (by far) is the first intervalZ# 2ents. This seems
like a reasonable place for an extra note because it mighttbedmooth a melody
as it approaches or leaves the tonic. Recall from the previliscussion that it is
possible to make the rock change pitch by about a semitorieddsfts) by striking
it in different places. As this 105-cent interval naturallycurs within the stone, it is
a reasonable “extra” interval. The full 12-note scale isrofiin the Fig. 7.9, where
the notes are shown mapped to a single octave of the keyhwandf to C'.

As the above discussion shows, there is nothing inevitdieitathis particular
tuning. It is a compromise between faithfulness to the diasce curve and find-
ing a practical keyboard that is easy to play. Perhaps the amb&rary decision in
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Keyboard Layout for Chaco Tuning

interval cents
1.0 0
— 1.063 105
1.17 272 |
— 124 372
1.25 386
1.37 545
—— 1.385 564
1.507 710 |
— 1612 827
1.69 908 | . . )
— 177 988 Fig. 7.9.0ne possible keyboard layout for the Chaco litho-
1.88 1093 | phone repeats one full octave every 12 keys. Numbers give
2/1 1200 \ the tuning (in cents) of each key with respect to an arbitrar-

— ily chosen fundamental frequengy

the whole process was to base the tuning on the octave. Ajthtius is perfectly
justified when focusing on the first octave, observe that &oersd octave (marked
“octave 2" in Fig. 7.8) does not occur at (or near) a local imiem.

7.2.5 Play Music

The performance molding capabilities of the sampler allowsiderable freedom in
sculpting the ultimate sound of the rock. Adding reverlierahelps to counteract
the rapid decay by creating a feeling of space. Imagine ptathie lithophone in a
hard-walled cavern where each stroke echoes subtly withvitsreflection.

When playing the rock live, there are inevitable scrapingd grating sounds as
the mallet and rocks chafe and abrade. These “extraneousitisavere mostly re-
moved from the samples by careful sampling techniques, abttiey would not
influence the dissonance curve and the resulting scale. @utto make the piece
richer, I mixed them back in. Consequently, most of the rhythack, and all of
the rubbing and grating sounds were derived from the rodieitain a completely
nontonal way.

To try and lighten the sound of the piece, | generated somearporeal (elec-
tronic) Chaco rocks. A number of interesting timbral vadas are possible by using
additive synthest$ in which the partial structure is specified from the compeosit
spectrum of Fig. 7.7. These tend to be high and “electrorochsling because they
are much simpler than natural sounds, but they do help baldwecheaviness of the
raw rock samples. Because they are artificial, there is netcaint on their duration.
In the first section of the piece, they are used as a sopraeoszh of the rock,
whereas in the middle section they function more like anfimtwaic rock organ.

Is music possible in such an idiosyncratic tuning, with sidibsyncratic tim-
bres? Absolutely. Listen for yourself to tlighaco Canyon Rock sound example
[S: 44].

'3 A program listing of a simple additive synthesis programiieg in Appendix D.
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7.3 Sounds of Crystals

Sound is a kind of vibration, and there are many kinds of vibres. For example,
light and radio waves vibrate as they move through spacee&atreceiver works by
translating electromagnetic vibrations into sound vilora that you can hear. With
such translations any type of vibration is a potential “shti®ne kind of “noise-
less” sound lurks in the molecular structure of everydaytarres, and these sounds
can be extracted using techniques of x-ray crystallograpiayadditive synthests.
Thus, the final example of this chapter begins with the “re&sesound” of a crys-
tal and realizes this in a noisy, consonance-based way.é&=udting piecePuet for
Morphine and Cymbakppears in sound example [S: 45].

The simplest example of a noiseless sound is one that isquiticio low or too
high for human ears to hear, like a dog whistle. Clearly, ppéssible to record or
sample a dog whistle, and to then play the sample back at @skpeed, thus low-
ering the pitch so that it can be heard. Another translagohriique is employed by
Fiorella Terenzi inMusic from the GalaxiefD: 44]. Rather than beginning with a
dog whistle, she uses digital recordings of the microwad@ramissions of various
interstellar objects. These are slowed down until theyramesposed into the audible
range, and music (or at least sound) is created. Dr. Teraifizi feer work “acoustic
astronomy.” Amazingly enough, in Terenzi's work, outer@aounds just like you
always thought it would.

7.3.1 Choose the Sound

There are other, less obvious noiseless sounds in naturechhitjue called x-ray
diffraction is a way of discovering and understanding théeoalar structure of ma-
terials. The idea is to shine an x-ray beam (think of it as tianb of a flashlight)
onto a crystalline structure. The x-rays, which vibrateheytmove, pass through the
crystal and are bent when they hit the atoms inside. Becdutbe pattern in which
the atoms are arranged, the x-rays bend in a few charaatefiistctions.

This process, called diffraction, is at work in prisms aridibaws. When sunlight
passes through a prism, it is broken apart into its constitakements—the colors
of the rainbow. Each color has a characteristic frequenay,emch color is bent (or
diffracted) through an angle that is proportional to thagfrency. The same idea
works with the diffraction of x-rays through crystals, biddause the structure is
more complicated, there is a correspondingly more comiglitpattern, composed
of beams of x-rays moving in different directions with diféat intensities.

These diffraction patterns are typically recorded and ldigd graphically as
a Fourier transform, a spectral chart that concisely digpthe angle and intensity
information. For example, the transform of the chemicatrhith molybdenum oxide
(Bis M o03015) is shown in Fig. 7.10. The main scientific use of this techeitg that
each crystal has a unique transform, a unique signaturendwk materials can be
tested, and their transforms compared with known signatuéen, the unknown

' This idea was first reported in [B: 174].
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material can be identified based on its transform, much aerfimonts are used to
identify people.

Ormax Fig. 7.10. This x-ray diffraction pat-
1 tern is the (spatial) Fourier transform of
the chemical bismuth molybdenum ox-
ide. Using a simple mapping, it can be
transformed into sound.

Intensity

| threshold

20 30 40 50 60 70 80
Angle of Diffraction in Degrees

In materials, any periodic physical structure (usuallyezhla crystal) reflects
electromagnetic energy (such as x-rays) in a characte¥isty that can be decom-
posed into a collection of angles. The angle at which diffeeoccurs quantifies the
resonance point for vibrations in the crystal, althoughwiieations here are of x-
rays and not of air. Thus, the angle of the diffracted beanmystallography plays a
role similar to sine waves in sound, providing an analogyveen the Fourier trans-
form of the crystalline material and the Fourier transforfi@ound. The intensity
of the energy at each angle can be similarly translated miod wave amplitudes.
This then provides a basis for the mapping of x-ray diff@etlata into sound data,
and it defines a method @fuditory crystallographyin which the spectrum of the
crystal maps into the spectrum of a sound.

7.3.2 Find the Spectrum

A base frequency, or fundamental, must be chosen to rehkzsotund. This choice is
probably best left to the performer by assigning variouslamentals to the various
keys of a keyboard, allowing the “crystal tones” to be plairetypical synthesizer
fashion. In generating the sound data, the fundamentaliémrzy is based on the
angle, which has maximum intensity. Referring to Fig. 7th@,largest spike occurs
at an angle of about 25 degrees, which is labélgg,. .

Each anglée; of the x-ray diffraction pattern can be mapped to a particin
quencyf; via the relation
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$in(fmas)

sin(6;)
which transforms the x-ray diffraction angles into freqdes of sine waves. In gen-
eral, angles that are less thap,. are mapped to frequencies higher than the funda-
mental, whereas angles that are greater thap are mapped to lower frequencies.
This feature of the mapping is responsible for much of thejueness of crystal
sounds, because typical instrumental sounds have fewfisemti partials below the
fundamental. As botkin(6;) andsin (6,4 ) can take on any value between 0 and 1,
fi can be arbitrarily large (or small).

To see how the formula works, grab a calculator that has tiefsinction. For
abmar- Of 25 degrees, calculatén(fmax) = sin(25) = 0.4226 (if you get -0.1323,
change from radians to degrees). To find the frequency qneing to the spectral
line at 41 degrees, calculaten(41) = 0.6560, and then divide.4226/0.6560 =
0.6442. Thus, the frequency of this partial is 0.6442 times thedsswy of the fun-
damental. For ant note at 440 Hz, this would b&10 x 0.6442 = 283 Hz.

The amplitude of each partial corresponds to the intengithied;, and it may
be read directly from the graph. Referring to Fig. 7.10 agtie amplitude of the
sine wave with frequency corresponding to an angle of 41ed=gis about 2/3 the
amplitude of the fundamental. Designate the amplitude efitih Sine wave bys;.
Then the complete sound can be generated from the freqegncig, fs, ... with
amplitudes:q, a2, as, ... via the standard techniques of additive synthesis.

fi=

7.3.3 Simplify the Spectrum

As a practical matter, the number of different frequenciestibe limited. The eas-
iest method is to remove all angles with amplitudes belowvargthreshold. The
threshold used foBi, M 03014, for example, is shown in Fig. 7.10. Using the for-
mula of the previous section, the truncated x-ray diffi@ttpattern can be readily
transformed into the set of partials shown in Fig. 7.11. Thgl@with the largest
intensity in the diffraction pattern (about 25 degreesyesponds to the partial with
maximum amplitude, which appears at 950 Hz. Because therityapd larger an-
gles in the diffraction pattern occur at angles larger thaid@grees, the majority of
partials in the resulting sound lie below 950 Hz. The clusteof partials near 500
Hz is perhaps the most distinctive feature of this sound.

Itis feasible to create sounds from almost any material. $taey and | [B: 174]
experimented with a number of sound-materials, includihgase, tartaric acid,
topaz, roscherite, reserpine, a family of Bismuth Oxidesame, and THC® One
of my favorite sounding crystals was from morphine, and saisnd is featured in
the compositiorDuet for Morphine and Cymballhere are numerous sources for
x-ray diffraction data, which are available in technichréries.

!5 |istening to materials does not necessarily have the safmet @5 consuming them.
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Fig. 7.11.The partials of the sound corresponding to the x-ray diffoacpattern for bismuth
molybdenum oxide are tightly clustered.

7.3.4 Dissonance Curve

Because crystal sounds likgi; M 0301516 have a high intrinsic dissonance caused
by tightly packed partials, the dissonance curves tend taniferm, having neither
deep minima nor large peaks. For instance, Fig. 7.12 shatsite dissonance curve
for Bi; M o301 has eight minima within two octaves that are barely distigigable
from the general downward slope of the curve. Thus, no iaterare significantly
more consonant than any others, and the rationale for dgfthimrelated scale via
the dissonance curve vanishes.

octave 1 octave 2

s e e AR e S

sensory
dissonance

o

frequency ratio

Fig. 7.12.Dissonance curve for bismuth molybdenum oxide has minintfaegtick marks 1.2,
1.39,1.42,1.56, 1.61, 1.68, 1.89, and 2.13. The lack of amuinpely consonantintervals (no
deep minima) suggests that these intervals might not pmdwery convincing musical scale.

This problem with the dissonance curves of highly complexctp is readily
audible. Although the crystal spectra sound interestinig, difficult to find any in-
tervals at which the sounds can be reasonably played. Ggtiftbs, and the small
dips in the dissonance curve all sound muddy in the lowestets, and clash dis-
astrously in the higher registers. One solution is to retarthe diffraction pattern
and choose a higher threshold. This will give a simpler spettand, hence, a more

'8 | have used bismuth molybdenum oxide throughout this se¢tialescribe the process of
transforming crystal data into sound (even though the nalisemposition is based on the
spectrum of the morphine crystal) because | was unable tddax clean x-ray diffraction
graph for morphine.
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usable dissonance curve. The danger is that oversimpiificatay lose the essence
of the original diffraction pattern.

Recall that points of minimum dissonance often develop segartials in two
simultaneously sounding complex tones coincide, and tisabdance curves show
the intervals at which a single sound can be played most camsly. But if, as with
the Bis M 03015 sound, there are no such intervals, another approach isdeRdr-
haps consonance can be regaineahgnging the spectrum along with the interval.
The simplest approach is to change the spectrum at eachssep)eso that all partials
coincide, no matter what scale steps are played. As will inecclear, the total dis-
sonance of any combination of scale steps need not exceédttimsic dissonance
of the original sound.

7.3.5 Create an Instrument

Think of a “crystal instrument” in which each partial loaati defines a scale
step. If the 25 partials of the bismuth molybdenum oxide sooh Fig. 7.11
are labeledf,, f,..., fo5, then the scale steps occur at precisely these frequen-
cies. Construct a different spectrum at each scale step bgsaig from among
the remaining partials. For instance, the spectrunf;amight contain partials at
f1, fo, fs, fs, fio, fi3, fis, fo1, andfao. Similarly, the spectrum afs might
containfs, fz, fis, fis, fi7, andfsq. This is shown diagrammatically in Fig. 7.13,
which displays a possible spectrum for each of the first 18s0f the scale. Thus,
each vertical stripe is a miniature line spectrum specgfyhre frequency and ampli-
tude of the partials played when the key with “fundamengalls pressed.

Observe that each spectrum contains a subset of the pdrtiaisthe original
crystal sound. When playing multiple notes, only partisttoccur in the original
sound are present, and hence, the dissonance cannot Heaighy greater than the
intrinsic dissonance of the original (it might increase sarhat because the partials
in the combined sound can have different amplitudes thamemtiginal). Each note
contains only a small piece of the “complete” timbre, whishrévealed only by
playing various “chords” and tonal clustérs.

In terms of implementation, this is more complex than theiongs two exam-
ples, because each key of the sampler must contain its owefevav (corresponding
to the specified spectrum) and each spectrum must be cregiachtely. Neverthe-
less, the process of generating 25 different spectra anghasg them to 25 different
keys on the sampler is not particularly onerous, especieltign much of the work
can be automated by software.

7.3.6 Play Music

The most striking feature of crystal sounds is their inharicity. The spectra tend to
be rich in frequencies within an octave of the fundamentahhbee the major peaks

17 Essentially, the higher notes are pieces of a single grdmed-c¢hord. This is somewhat
parallel to Rameau’s fundamental bass, but for inharmamiads.
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line spectra differ for each scale step
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Fig. 7.13.The frequencies of the bismuth sound are used to constrewetle and a family of
spectra consonantwith that scale. Each scale step ocdtirauindamentaf;, and a possible
line spectrum is shown for each.

of the diffraction pattern often lie in clusters. This is itaik contrast with conven-
tional harmonic tones that consist of integer multiples airagle base frequency.
Crystal spectra do not sound like standard musical instnisné tempting analogy
is with the inharmonic spectra of bells. When the crystaktoare struck, and the
sound is allowed to die away slowly, they resonate much likelg although addi-
tive synthesis does not require the use of such a percussie®ope. Although some
of the sounds (THC and roscherite, for instance) are veryla@inmost are distinct.
Perhaps the closest comparison is with synthesizer voidésnames like “sound-
track,” “metal vapor,” and “space pad,” which give an idedlaf subjective flavor of
the sounds.

Because it has a distinct and complex quality, | chose to cs@@ piece using
the sound of the morphine crystal, which was truncated so &sve 37 different
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partials. The 37-note partial-based scale was programnmte@isampler, and a “dif-
ferent” spectrum was assigned to each key, as in Fig. 7.18.sblinds were then
looped, and performance parameters like modulation tafteh, and amplitude en-
velopes were added.

The keyboard is easy to play, although decidedly unfamiliareach note con-
sists of partials aligned precisely with the partials of tingstal sound, it is almost
impossible to hit “wrong” notes. Almost any combination aftes can be played
simultaneously, creating unique tonal clusters. In essepartial-based scales and
spectra allow the performer to play with timbre directlyaitighly structured way.
In theDuet for Morphine and Cymbatomplex clusters of tones are juxtaposed over
a rhythmic bed supplied by the more percussive timbre of yinebal. The bass line
was created exactly as above, but with very simple spectig o or three partials
per note) pitched well below the rest of the sound mass. Kirsgpartial-based scale
of pure sine waves was used for the melody lines.

7.3.7 The Sound of Data

Originally we had hoped that by listening to the sounds oftaljine structures,
it would be possible to learn to identify the material fromigfhthe sound came,
using the ear as an aid in data analysis. Although we have besuccessful in
realizing this goal of auditory crystallography, “noissdesounds” such as the spectral
interpretation of x-ray diffraction data can provide a ffui source of sounds and
tunings. This gives a way to “listen” to crystal structuresi 4o “play” the sounds of
materials.

Imitative sound synthesis captures real sounds and plaees inside musical
machines. Audio crystallography begins with a conceptoahd (molecular reso-
nances) that does not exist until it is mapped into the aughdw. There are many
other sources of conceptual sound data. For instance, a@sdnances are often
described via Fourier transforms, and they can be similzwhywerted to sound. At
the other end of the time scale, planetary and stellar systesonate and can be
described using Fourier techniques.

Indeed, such explorations have already begun. Alexjarigtes][used transform
data to generate musical scales in the article “DNA Tuniragsf the CDSequencia
[D: 1], although the sounds used with these scales were atdrsynthesizer tones
and acoustic instruments. Terenzi [D: 44] mapped data fradiortelescopes into
audio form. She comments, “The predominant microtonalfithe galaxy is a fasci-
nating aspect that could be explored... by creating nevesaaid timbres.” Indeed,
part of this book presents methods to carry out such expborétt a musical and
perceptually sensible way.

7.4 Summary

In the pursuit of genuinely xenharmonic music that does actifice consonance or
depth of timbral material, this chapter presented threema examples of related
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tunings and spectra. The tingshaw bell and the Chaco rockeshbow to take the
spectrum of an existing sound, draw the dissonance cureetiferelated scale, and
build a playable “instrument.” The crystal section showesvho take an arbitrary
complex spectrum and to realize it in sound via a relatedgldrased scale.

Despite the odd timbres and scales, the resulting musis gimempression of
tonality or key. It has the surface feeling of tonality, kisiunlike anything possible
in 12-tet. McLaren comment$

The Chaco Canyon Rodlounces from one inharmonic “scale member” to
another, producing an astonishing sense of consonanceffEoeisn’tiden-
tical to traditional tonality—yet it produces many of toitys effects. One is
instantly aware of “right” and “wrong” pitches, and theraisense of spec-
tral “progression.”

We call such musigentonal

With the intent of making this chapter a “how to” manual, nocamt of detail
was spared. Each of many agonizing compositional, techraicd creative decisions
was discussed, the options weighed, and then one way wasrchOsher paths,
other choices of analysis methods, windowing techniquede steps, performance
parameters, keyboard mappings, and so on, would have léfei@dt compositions.
Thus, the complete process, as outlined in the above sis,siemot completely
mechanical, and there are numerous technical and artifadis Although the bell,
the rock, and the crystal were used throughout as examplesnéthods readily
apply to any sound, although they are most useful with inlb@imsounds.

It is often desirable to augment the original sound with ott@mplementary
tones, and there are three approaches to creating new stamdse fully consonant
with the original. Additive synthesis has already been moerd several times as one
way to augment the timbral variation of a piece. The use dfgdavased scales is not
limited to sounds created from x-ray crystallography, anthin be readily applied
in other situations. The third technique, called spect@bpings, is a way of trans-
forming familiar instrumental sounds into inharmonic vers that are consonant
with a desired “target” spectrum. This is discussed at lengthe chapter “Spectral
Mappings.”

'® In Tuning DigestL20.
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Adaptive Tunings

Throughout the centuries, composers and theorists have
wished for musical scales that are faithful to the consonant
simple integer ratios (like the octave and fifth) but that can
also be modulated to any key. Inevitably, with a fixed (finite)
scale, some intervals in some keys must be compromised. But
what if the notes of the “scale” are allowed to vary? This
chapter presents a method of adjusting the pitches of notes
dynamically, anadaptive tuningthat maintains fidelity to a
desired set of intervals and can be modulated to any key. The
adaptive tuning algorithm changes the pitches of notes in a
musical performance so as to maximize sensory consonance.
The algorithm can operate in real time, is responsive to the
notes played, and can be readily tailored to the spectrum
of the sound. This can be viewed as a generalized dynamic
just intonation, but it can operate without specifically ricas
knowledge such as key and tonal center, and it is applicable t
timbres with inharmonic spectra as well as the more common
harmonic timbres.

8.1 Fixed vs. Variable Scales

A musical scale typically consists of an ordered set of wakrthat (along with a
reference frequency such as= 440 Hz) define the pitches of the notes used in a
given piece. As discussed at length in Chap. 4, differenésdeave been used in dif-
ferent times and places, and scales are usually thoughtusfiag fixed throughout a
given piece, and even throughout a complete repertoire siaalugenre. However,
even master performers may deviate significantly from thetétically ideal pitches
[B: 21]. These deviations are not just arbitrary inaccugsdn pitch, but they are an
important expressive element. One way to model these pitahges is statisticalty
another is to seek criteria that govern the pitch changesXample, the goal might
be to play in a just scale that maximizes consonance evemlitbe piece has com-
plex harmonic motion. The key is to use a variable scaleageptive tuninghat
allows the tuning to change dynamically while the music igqrened. The trick is
to specify sensible criteria by which to retune.

Imagine a trumpet player. When performing with other brastere is a temp-
tation to play in the tuning that originates naturally frome tovertones of the tubes.
When performing with a fixed pitch ensemble, the temptat®roi temper the

' As suggested in [B: 4] and discussed in Sect. 4.8.
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pitches. Similarly, a violinist may lock pitch to the ovens of others in a string
guartet but may temper toward 12-tet when playing with keyd@ccompaniment.
Some a capella singers (such as Barbershop quartets) dlenaweh to deviate pur-

posefully from 12-tet so as to lock their pitches togethekefir? advises his choral

singers to “singnto the chord, not through it,” to “lock into the chord.” In all of
these cases, performers purposely deviate from the theslhgtorrect 12-tet scale,
adjusting their intonation dynamically based on the musioatext. The goal of an

adaptive tuning is to recapture some of these microtonahpigriations, to allow

traditionally fixed pitch instruments such as keyboardsauded element of expres-
sive power, to put a new musical tool into the hands of peréwsrand composers,
and to suggest a new theory of adaptive musical scales.

8.1.1 Approaches to (Re)tuning

The simplest kind of tuning that is responsive to the intisrira piece uses a fixed
scale within the piece but retunes between pieces. Themnisderable historical
precedent for this sensible approach. Indeed, harpsittsnegularly retune their
instruments (usually just a few notes) between pieceso€ Bt 23] and Hall [B: 68]
introduced quantitative measures of the ability of fixedes#o approximate a de-
sired set of intervals. As different pieces of music contdifferent intervals, and
because it is mathematically impossible to devise a singéslfscale in which all
intervals are perfectly in tune, Hall [B: 68] suggests chogtunings based on the
piece of music to be performed. For instance, if a piece hagy/tfards based on
C, then a tuning that emphasizes the purity of this intervalildde preferred. An
elegant early solution to the problem of comma drift in Jisuseo chains of mean-
tone a perfect fifth apart. This was proposed by Vicentino565L[B: 199] and is
explored in [W: 32]. TheGrovenSysteni allows a single performer to play three
acoustic pianos that together are tuned to a 36-tone just sca

8.1.2 Approaches to Automated (Re)tuning

With the advent of electronics, Polansky [B: 142] suggdsis & “harmonic distance
function” could be used to make automated tuning decisiamd points to the “intel-
ligent keyboard” of Waage [B: 202] that uses a logic circaiatitomatically choose
between alternate versions of thirds and sevenths depgndithe musical context.
As early as 1970, Rosberger [B: 155] proposed a “ratio machimat attempts to
maintain the simplest possible integer ratio intervaldlairaes. Expanding on this
idea, Denckla [B: 39] uses sophisticated tables of intertlat define how to ad-
just the pitches of the currently sounding notes given thsicali key of the piece.
The problem is that the tables may grow very large, espgciaimore contextual
information is included. A modern implementation of thigédcan be found in the
justonictuning system [W: 14], which allows easy switching betweeragety of

2 From [B: 54]. Discussed more fully on p. 63.
¥ Described ahttp://vms.cc.wmich.edu/ ~ code/groven
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scales as you play. Frazer has implemented a dynamic tumitingiMidicode Syn-
thesizer [W: 11] that allows the performer to specify thetrafdthe retuned scale on
a dedicated MIDI channel. Theermodetuning [W: 15] “analyses chords and im-
mediately adjusts the pitch of each note so that the prorim&monics line up.”
Through its numerous sound examples, the website providesmag argument for
the use of tunings that can continuously adjust pitch. Ththatkis discussed fur-
ther in Sect. 8.2. Another modern implementation of a dyeamiing is included in
Robert Walker's=ractal Tune SmithjW: 31], which microtonally adjusts the pitch
of each new note so as to maximize the number of consonans @yacently sound-
ing.

Partch had challenged [B: 128] that “it is conceivable thairestrument could
be built that would be capable of an automatic change of ghobughout its en-
tire range.” The hermode tuning system is one response.h&najpproach is John
deLaubenfels’ [W: 7] spring-mass paradigm that modelsg¢hsibn between the cur-
rently sounding notes (as deviations from an underlyingjisnation template) and
adapts the pitches to relax the tension. This spring moegjléd in Sect. 8.3, pro-
vides a clear physical analog for the operation of adaptinengs.

The bulk of this chapter realizes Partch’s challenge usingeasure of conso-
nance as its “distance function” to change the pitches aésxdynamically (and in
real time) as the music is performéds we will see, the strategy can maintain a de-
sirable set of intervals (such as the small integer ratios}pective of starting tone,
transpositions, and modulations. In addition, the adatining is responsive to the
spectrum of the instruments as they are played. Recall tieatissonance function
Dr(a) describes the sensory dissonance of a sound with spectrumen played
at intervalsa. Values ofa at which local minima of the dissonance function occur
are intervals that are (locally) maximally consonant. THapive tuning algorithm
calculates the (gradient of the) dissonance at each tirpeastadjusts the tuning of
the notes toward the nearest minimum of the dissonance.curve

8.2 The Hermode Tuning

The hermode tuning, created in 1988 by Werner Mohrlok ([B; §&/: 15]), is a
method of dynamically retuning electronic musical instemts in real time so as to
remove tuning errors introduced by the equal-temperee sbabrder to help retain
compatibility with standard instruments playing in stardtunings, the hermode
tuning adjusts the absolute pitches so that the sum of tbh ditviations (in cents
from the nominal 12-tet) is zero.

The process begins with an analysis of the currently sognthites. For example,
suppose that’, F, andG are commanded. The system detects@hmajor chord
and consults a stored table of retunings, finding (in thigc#sat theF should be
flattened by 14 cents and tli¢ sharpened by 2 cents to achieve a justly intoned
chord. All three notes are then raised in pitch so that thesgeedeviation is zero, as

* This first appeared in [B: 167], from which key elements of tthapter are drawn.
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illustrated in Fig. 8.1. In its normal operation, the an@ysoceeds by reducing all
notes to one octave, which greatly simplifies the tables ex¢a store the retuning
information.

Equal Temperament Just Intonation in C Hermode Tuning
5 :‘;’ c E G c G (+2) C (+4) G (+6)
] E —eo—o
>
@ -
S8 E (-14) E (-10)

Fig. 8.1. The hermode tuning retunes chords to just intervals whitgezéng the pitches so
that the sum of all deviations is zero. This helps to maintairizontal consistency and com-
patibility with standard instruments.

“Hermode” is a contraction and anglicization barmonischer modyswvhich
translates roughly as “modes of just intonation.” Thus,gbal of the hermode sys-
tem is to automatically retune the keyboard into a form of joonation while re-
taining the ability to perform in concert with other instranms. For example, when
the same note appears in successive chords, certain @emiervals may be tem-
pered to disguise the (horizontal) motion. In order to cetent possible drifts of
the tuning, the hermode tuning does not allow the level of @myrd pattern to be
retuned more tha#20 cents, which effectively limits the retuning of any givert@o
to within £30 cents (except for some of the sevenths). Finally, when matgsrare
sounding simultaneously and the optimal tuning becomesarhs, the frequen-
cies of the notes are controlled to the best horizontal Bbneomplete description of
the hermode tuning can be found in Mohrlok’s paper “The Hetentuning System,”
which is available electronically on the CD [W: 26].

The hermode tuning can operate in several modes. Theselprdifierent ways
to ensure that the retuned pitches remain close to 12-tgiragehatic features aimed
at making the system flexible enough for real time use. Sontleesk are:

(i) A mode that only adjusts thirds and fifths
(i) A mode thatincludes adaptation of sevenths
(iif) A mode that considers the harmonic center of a piece
(iv) A mode containing a depth parameter that allows thequerér to use
the hermode tuning at one extreme and equal temperamerg atttbr
extreme

The hermode tuning is currently implemented in the Wald@f&ynthesizer [W: 34],
in the Access “Virus” [W: 33], in organs by Content [W: 5], andll soon be added
to a number of software synthesizers. Theoretically, tmenbde tuning generalizes
justintonation in at least two senses. First, it is insé@nstb the particular key of the
piece; that is, the same tuning strategy “works” in all k&econd, because the level
at which the tunings are equalized (above and below equadésament) is allowed
to fluctuate with the music, there is no absolute tonal center
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8.3 Spring Tuning

To see why adaptive tunings are not completely straighthodvwo specify and im-
plement, consider trying to play the simple four-note chérdD, GG, and A in a
hypothetically perfect intonation in which all intervalsegust. The fifths can be
made just (each with 702 cents) by sett@ig= 0, D = 204, G = 702, andA = 906
cents® But C' to A is a sixth; if this is to be a just major sixth, it must be 884tsén
Clearly,884 # 906, and there is a problem. Perfection is impossible, and compr
mise is necessary.

John deLaubenfels’ approach [W: 7], developed in 2000, dsfancollection of
tuning “springs,” one for each of the just intervals. As shawFig. 8.2, each spring
connects two notes; the spring is at rest when the notes argpatcified just interval
i. If the interval between the notes is wider thiathe springs pull inward to narrow it.
If the notes are tuned too closely, the spring pushes thiegstapart. Once all pairs of
notes are connected with appropriate springs, the algnsimulates the tugging of
the springs. Eventually, the system reaches equilibriumresthe intervals between
the notes have stabilized at a compromise tuning that bedasitcompeting criteria.

Ja
spring at )
rest defined mf;]o:i:nd
by Jl interval pring
J J J perfect 5th
J * G spring
major 6th
I % % spring pe:;‘i’; :‘h
J J ? perfect 5th
compressed J soring
spring pushes out J b
towards Jl interval extended spring
pulls inwards or 2nd
towards JI interval masjgrrin g
Je

Fig. 8.2.Springs are at rest when the notes are at their assignedfestals. Once all notes
are connected by a network of springs (the right-hand nétsbows the four-note chord
C, D, G, A and its springs), the algorithm simulates the pushing atithgwof springs. At
convergence, a compromise tuning is achieved.

For example, the right-hand side of Fig. 8.2 shows the fote4chordC, D, G,
and A along with the appropriate assignments of desired inteteasprings. As the
tuning of the fifths and sixths cannot all be pure simultasgguhe springs move

5 Cto Gis 702 cents andy to D is also 702 cents. Hencé€,to D is 1404 cents, which is
octave reduced to 204 cenf3.to A is then204 + 702 = 906 cents.
¢ Recall Table 4.2 on p. 60.



154 8 Adaptive Tunings

the pitches slightly away from the just intervals. The exadties achieved depend
on the strength of the springs; that is, the constants theaifyythe restoring force of

the springs as a function of displacement. The spring tusiagumes that the “pain”
caused by deviations in tuning (measured in cents) is ptampal to the square of

the pitch change. Thus, pain is analogous to energy (bethasnergy stored in a
linear spring is proportional to the square of the displaaetn and the goal of the
spring tuning is to minimize the pain.

The mistuning of simultaneously sounding notes is only cinel lof pain that
can occur in a variable tuning. A second kind occurs when @hgesnote is retuned
differently at different times. This happens when the nofeears in different musical
contexts, i.e., in different chords, and it may be discoticglin melody lines and in
sustained notes when it causes the pitch to waver and wiglgéethird kind occurs
when the whole tuning wanders up or down. All three of thesaes are discussed
in detail in the context of the adaptive tuning algorithm ett 8.4.

For the spring tuning, there is an elegant solution: Assim kinds of springs to
deal with each new kind of pain. For example, Fig. 8.3 showallaction of springs
connected horizontally between successive occurrencéeeafame notes. Observe
that these springs do not pull horizontally in time, but ieity in pitch. Strength-
ening the springs ensures less wavering of the pitchesstiras, but it pulls the
vertical harmonies further from nominal. Weakening theséngs allows more vari-
ation of the pitches over time and closer vertical harmorsésilarly, “grounding”
springs can be assigned to combat any tendency of the tumidgft. This can be
implemented by connecting springs from each note to theesed2-tet pitch (for
instance).

Fig. 8.3.When notes are allowed to vary in pitch,

a C note in one chord may differ in pitch from
the “same’C note in another. This wandering of
pitches can be controlled by assigning a second
setof springs between the same notes occurring at
different (nearby) times. These springs are drawn
vertically because they do not pull horizontally
(in time), but only vertically (in pitch).

pitch
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Thus, there are three ways that the tuning can deviate freal @hd three kinds
of springs: Across each vertical interval is a spring thdlsgtoward the nearest just
ratio, horizontal springs control the instability of piehover time, and grounding
springs counteract any global wandering of the tuning. Tloelehhas several pa-
rameters that directly influence how the retuning proceeds:

(i) The strength of the vertical springs may differ for eanterval type.

(i) The strength of the horizontal strings may differ degieng on the dis-
tance in time. Setting all horizontal springs completegydiallows the
same algorithm to find an “optimal” fixed tunirg.

(iii) The strength of the grounding springs may differ to cipethe fidelity
to the underlying fixed tuning.

(iv) The strength of the springs may be a function of the Iasinof the
notes.

(v) The time interval over which events are presumed to beibameous
may be changed.

(vi) There may be a factor that weakens the horizontal sprimigen many
notes are sounding.

The large number of parameters allows considerable fléyibilthe implementation
and may be changed based on individual taste. For exampisteadr preferring
pure intervals may de-emphasize the strength of the haaksprings whereas a
listener who dislikes wavering pitches may increase thength of the horizontal
springs. One thorny issue lies in the automatic specifinaifavhich size or kind of
spring should be assigned to each interval. For examplgughénterval of a major
second may be represented by the frequency ﬂ§tjcby %, or by ;, depending on
the musical context. In the spring tuning, this fundameasaignment must be made
in a somewhat ad hoc manner, unless some kind of extra highttayic is invoked.
In one implementation, dissonances such as the major arat séoonds are not tied
together with springs (equivalently, the spring constamnésset to zero). A number
of retunings of common practice pieces are available atdedafels’ personal web
page, see [W: 7].

8.4 Consonance-Based Adaptation

Another way of creating an adaptive tuning is to calculatesnsory dissonance of
all notes sounding at each time instant and to move the @itehas to decrease the
dissonance. Picture the mountainous contour of a disseranmge such as Fig. 8.4.
If the musical score (or the performer) commands two notasfdrm the interval
a1, then consonance can be increased by making the intervdlesnifithe score

" In a preferred (non-real-time) application of the springitg, this “calculated optimum
fixed tuning” (COFT) can be used as a starting point for furth@aptation by tying the
grounding springs to the COFT. This helps to lend horizoataisistency to the retuned
piece. The COFT is analogous to the procedure applied todheefti sonatas in Sect. 11.2
using the consonance-based algorithm.
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commandsy,, the consonance can be increased by making the intervarldrg
both cases, consonance is increased by sliding downhilllessonance is increased
by climbing uphill. As the minima of the dissonance curve nkefihe related scale,
the simple strategy of always moving downhill provides a italty sensible way to
automatically play in the related scale. This is the idearztthe adaptive tuning
algorithm.

sensory
dissonance

frequency ratio

Fig. 8.4.Any interval betweemv; anda: is dynamically retuned by sliding downhill on the
dissonance curve to the nearby local minimurm atThis adaptive tuning strategy provides a
way to automatically play in the related scale.

The algorithm must have access to the spectra of the sousds @djust because
dissonance curves are dependent on the spectra. This atformmay be built-in (as
in the case of a musical synthesizer or sampler that inHgréatows” the timbre
of its notes), or it may be calculated (via a Fourier transfofor instance). The
algorithm adjusts the pitch of each note so as to decreasditkenance until a
nearby minimum is reached. This modified set of pitches (eqdencies) is then
output to a sound generation unit. Thus, whenever a new alusient occurs, the
algorithm calculates the optimum pitches so that the solowl{y) minimizes the
dissonance.

There are several possible ways that the necessary adjutstoag be carried out.
Consider the simple case of two notes with pitchesand F; (with F; < F5). With
no adaptive tuning, the intervadl,/F; will sound. The simplest adaptive strategy
would be to calculate the dissonances of the inter¥a)sF; + ¢ for various values
of ¢, (appropriate’s could be determined by the bisection method, for instanidee
point of minimum dissonance is given by that value é6r which the dissonance is
smallest. The pitches df; and F; are then adjusted by an appropriate amount, and
the more consonant interval sounded.

This simple search technique is inefficient, especiallymibis necessary to cal-
culate the dissonance of several simultaneous foté® gradient descenmethod
[B: 205] is a better way to find the nearest local minimum of diesonance curve.
Suppose thatn notes, each with spectrum are desired. Lef; < fo < ... < fm

8 The number of directions to search increasex™aswherem is the number of notes.
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represent the fundamental frequencies (pitches) of thesndtcostfunction D is
defined to be the sum of the dissonances of all intervals atesdime,

D:ZDF(%). (8.1)
I J

An iteration is then conducted that updates fhéoy moving downhill over then
dimensional surfac®. This is

new old
frequency » = < frequency j — {stepsize}{gradient} (8.2)
values values

where theyradient is an approximation to the partial derivative of the costwré-
spectto theé” frequency. The minus sign ensures that the algorithm desderdook

for a local minimum (rather than ascending to a local maximuvtore concretely,
the algorithmis:

Adaptive Tuning Algorithm

do
fori = 1tom

dD

filk +1) = fi(k) —HW

(8.3)

endfor
until | f;(k+ 1) — fi(k)| < d for all 4

wherek is an iteration counter. Thus, the frequencies of all notesreodified in pro-
portion to the change in the cost and to the stepgimetil convergence is reached,
where convergence means that the change in all frequesdessithan some speci-
fiedd. Some remarks:

(i) d should be chosen based on the tuning accuracy of the souachgjen

unit.

(i) 1t may sometimes be advantageous to fix the frequencynefaf thef;
and to allow the rest to adapt relative to this fixed pitch.

(i) Itis sensible to carry out the adaptation with a loglanic stepsize, that
is, one that updates the frequency in cents rather thartljiredertz.

(iv) Itis straightforward to generalize the algorithm touee any number of
notes, each with its own spectral structure.

(v) Adetailed discussion of the calculanonﬁfi is given in Appendix H.

(vi) There are many ways to carry out the m|n|m|zat|onEmfAn iterative
algorithms proposed because closed-form solutions fontmima are
only possible in the simplest cases.
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(vii) If desired, the adaptation can be slowed by decreaiagtepsize. Out-
putting intermediate values causes the sound to slide frggoint of
maximum consonance. This is one way to realize Darreg’'srisf an
“elastic” tuning [B: 36].

8.5 Behavior of the Algorithm

This section examines the adaptive tuning algorithm by iloglat its behavior in
a series of simple situations. Any iterative procedureesissues of convergence,
equilibria, and stability. As the adaptive tuning algonittis defined as a gradient
descent of the dissonan£k such analysis is conceptually straightforward. However,
the functionD is complicated, its error surface is multimodal, and exhebtetical
results are only possible for simple combinations of singgectra. Accordingly,
the analysis focuses on a few simple settings, and exampdassad to demonstrate
which aspects of these simple settings generalize to manglex (and hence more
musically interesting) situations. The next few examplehi¢h are formalized as
theorems in Appendix H) show the close relationship betweerbehavior of the
algorithm and the surface formed by the dissonance curveffént, the behavior
of the algorithm is to adjust the frequencies of the notesssi anake a controlled
descent of the dissonance curve.

8.5.1 Adaptation of Simple Sounds

The simplest possible case considers two nétesmd G, each consisting of a single
partial. Let fo and g, be the initial frequencies of the two sine wave partialshwit
fo < go, and apply the adaptive tuning algorithm. Then either

(i) fr approachesg; ask increases
(ii) fr andgr grow further apart ag increases

To see this graphically, picture the algorithm evolving ba single humped disso-
nance curve of Fig. 8.5. If the initial difference betwegrandg, is small, then the
algorithm descends the near slope of the hump, driyingnd g; closer together
until they merge. If the difference betwegnandy; is large, then the algorithm de-
scends the far side of the hump and the dissonance is dedrasgeand g, move
further apart. The two partials drift away from each oth€hi$ is conceptually sim-
ilar to the “parameter drift” of [B: 172], where descent of amor surface leads to
slow divergence of the parameter estimates.) Togethandi)ii) show that the point
of maximum dissonance (the top of the hump) is an unstabliiledum.

For sounds with more complex spectra, more interesting (aetul) behaviors
develop. Figure 8.6 shows how interlaced partials can dvoil drifting and merg-
ing. Suppose that the nofé consists of two partials fixed at frequenciggnda f
with o > 1, and that; consists of a single partial at frequengythat is allowed to
adapt via the adaptive tuning algorithm. Then:
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!

sensory
dissonance
o
%

>

B

frequency ratio

Fig. 8.5.Dissonance between two notéandg, each a pure sine wave. There are two possible
behaviors as the adaptive tuning algorithm is iteratededdimg on the starting frequency. If

g is in region A, thery ultimately merges witty. If g is in region B, thery and f ultimately
drift apart.

(i) There are three stable equilibria: @t= f, atg = af, and atg =
(1+0)f/2
(i) If go is much less tharf, theng drifts toward zero
(iii) If go is much greater thafi theng;, drifts toward infinity

The regions of convergence for each of the possible eqigldre shown below the
horizontal axis of Fig. 8.6. As in the first example, wheis initialized far belowf
or far abover f (in regions A or E), them drifts away, and ify starts near enough to
foraf (inregions B or D), the ultimately merges wittf or a.f.

b4 b 4+—>

sensory
dissonance

f (1+a)f/2 of
A | B | c | D | E

Fig. 8.6. Dissonance between a note with two fixed partialg and« f, and a note with a
single partialg, as a function of;. There are five possible behaviors as the adaptive tuning
algorithm is iterated, depending on the starting frequelfigybegins in region A, thep drifts
toward zero. Ifg begins in region B, thep merges withf. If g begins in region C, thegphas

a minimum at(1+2—")f. If g begins in region D, thep merges withw f. If g begins in region

E, theng drifts toward infinity.

The interesting new behavior in Fig. 8.6 occurs in region @nely is repelled
from bothf anda f and becomes trapped at a new minimurﬁlégﬁﬁ. In fact, this
behavior is generic—sandwiched patrtials typically reddissonance by assuming
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intermediate positions. This is fortunate, because itgige to many of the musi-

cally useful properties of adaptive tunings. In particusats of notes with interlaced
partials do not tend to drift apart because it is difficultfartials to cross each other
without a rise in dissonance.

To be concrete, consider two notéswith partials at frequenciesfy, f1, ... fa)
and G with partials at frequenciegyo, g1, ...gm). Suppose thay; is sandwiched
betweenf; and f; 41,

fi <gi < fi+1,

and that all other partials are far away

Ji-1 << [fj, fi+1 << [fi42
gi—1 << fj, fiy1 << gipr.

Then the dissonances (and their gradients) betwgand thef; are insignificant in
comparison with the dissonances betwggeand the nearby frequencigsandf; ;1.
Thus,g; acts qualitatively like thg of Fig. 8.6 as it is adjusted by the adaptive tuning
algorithm toward some intermediate equilibrium. Of coutbe actual convergent
value depends on a complex set of interactions among allfgrbutg; tends to
become trapped, because approaching ejther f; 1 requires climbing a hump of
the dissonance curve and a corresponding increase in dissen

8.5.2 Adapting Major and Minor Chords

As more notes are adapted, the error surface increases angiiom and becomes
more complex. Notes evolve on an-dimensional sheet that is pocketed with
crevices of consonance into which the algorithm creepsnEvejuick glance at
Appendix H shows that the number of equations grows rapidlyhe number of
interacting partials increases.

To examine the results of such interactions in a more r@afigtiation, Table 8.1
reports converged values (in Hertz, accurate to the neategfer) for triads played
with harmonic tones with varying numbers of partials. Infeaase, the algorithm is
initialized with fundamental frequencies that corresptmthe 12-tet note€’, Eb,

G (a minor chord) or t@”, F, G (a major chord), and the algorithm is iterated until
convergence. No drifting notes or divergence occurs bectihespartials of the notes
are interlaced. In all cases, the fifth (the interval betw€esnd ) remains fixed at
a ratio of 1.5:1. For simple two and three partial notes, thgmand minor chords
merge, converging to a “middle third” that splits the fiftttartwo parts with ratios
1.21 and 1.24. With four partials, the middle third splitg tfifth into two nearly
equal ratios of 1.224.

For notes with five or more partials (up to at least 16), the imtalizations
evolve into distinct musical entities. The major chordiadization converges to a
triad with ratios 1.2 and 1.25, and the minor chord initiatian converges to a triad
with the inverted ratios 1.25 and 1.2. These are consistéhttive minor and ma-
jor thirds of the just intonation scale, suggesting thafqrenances in the adaptive
tuning are closely related to a just intonation when playét tvarmonic timbres of
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Table 8.1. Converged major and minor chords differ depending on thebmusraf harmonic
partials they contain.

Initial Initial Converged Converged  Converged
notes  frequencies frequencies frequencies frequencies
in 12-tet (2—-3 partials) (4 partials) (5-16 partials)

C 523 523 523 523

Eb 622 647 641 627

G 784 784 784 784

C 523 523 523 523

E 659 647 641 654

G 784 784 784 784

sufficient complexity. Thus, when the sounds have a harngpectra, the action of
the adaptive tuning algorithm is consistent with just irgthon.

8.5.3 Adapting to Stretched Spectra

When the spectra deviate from a harmonic structure, howthejustly tuned inter-
vals are not necessarily consonant, and the adaptatioatepeso as to minimize the
sensory consonance. In extreme cases, it is easy to heahéhatir prefers con-
sonance over justness. A particularly striking examplehis tse of sounds with
stretched (and/or compressed) spectra as irCtadlenging the Octaveound ex-
ample [S: 1] from Chap. 1.

Consider an inharmonic sound with partials at

£, 2.1f, 3.24f, 4.41f, and5.6f
which are the first five partials of the stretched spectrummddfby
fn — fAlngn

for A = 2.1. As shown in Table 8.2, an initial set of note<4t~, G, C' converges to
notes with fundamental frequencies that are completelglated to “normal” 12-tet
intervals based on the semitofa/2. The convergent values also bear no resem-
blance to the just intervals. Rather, they converge neasnaoft the stretched scale
defined by the stretched semitofie= 121/2.1. Thus, a major chord composed of
notes with stretched timbres converges to a stretched rolagod. Similarly, the mi-
nor chord converges to a stretched minor chord. Sound exaipl 46] and [S: 47]
demonstrate, first in the original 12-tet tuning and theeratte adaptation is com-
pleted.

8.5.4 Adaptation vs. Jl vs. 12-tet

As harmonic tones are related to a scale composed of sintplgeinratios, using the
adaptive tuning strategy is similar to playing in a Just mhatiion (JI) major scale,
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Table 8.2. Using five partial stretched timbres, the adaptive tunirgpathm converges to
stretched major and minor chords. The chords in this talbtebeaheard in sound examples
[S: 46] and [S: 47].

Initial Initial Nearest

notes  frequency of Convergent Convergent stretched step

in 12-tet fundamental values ratos B =221
C 523 508 1.0 B8 =
Eb 622 616 1.21 8% =1.20
G 784 784 1.54 87 =154
C 1046 1067 2.1 A% =21
C 523 523 1.0 B8° =1
E 659 665 1.27 8% =1.28
G 784 808 1.54 87 =1.54
C 1046 1100 2.1 g2 =21

at least in a diatonic setting. Significant differences ocbawever, when the tonal
center of the piece changes. Consider a musical fragmentytbles through major
chords around the circle of fifths:

CGDAEBF{CiGi DI AL F C

For reference, this is performed in sound example [S: 482#tet. When played in Jl
inthe key of C majof, as in sound example [S: 49], the progression appears very out
of-tune. This occurs because intervals in keys ri¢are just (or nearly so), whereas
intervals in distant keys are ntFor instance, major thirds are harmoniously played
atintervals of 5:4 in the keys ne@f, but they are sounded as 32:25%mand £ and as
512:405inF'4. Some fifths are impure also; the fifth in tfhg chord, for example, is
played as 40:27 rather than the desired 3:2. Such inacesrace readily discernible
to the ear and sound out-of-tune and dissonant. Problerhsasuthis are inevitable
for any non-equal fixed tuning [B: 68]. The adaptive tuningtloe other hand, is able
to maintain the simple 5:4 and 3:2 ratios throughout the oali$iagment because it
does not maintain a fixed set of intervals. The circle of fifthperformed again in
sound example [S: 50]; all chords are just and consonant.

One might consider switching from JI @i to JI in G to Jl in D and so on, using
the local musical key to determine which JI scale should leel @ a given instant.
This results in a performance identical to [S: $8]This cures the immediate prob-
lem for this example. Unfortunately, it is not always easylébermine (in general)
the proper local key of a piece, nor even to determine if anénvé key change
has occurred. The adaptation automatically adjusts thiedua the desired intervals
with no a priori knowledge of the musical key required. When used with haimon

? Using the 12 note JI scale from Fig. 4.7 on p. 61.
% Such injustices shall not go unpunished!
" This is the approach taken by table-driven schemes suclegisstonic [W: 14] tuning.
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timbres, it is reasonable to view the adaptive tuning as ateapntinuously inter-
polate between an appropriate family of just intonations.

8.5.5 Wandering Tonics

A subtler problen¥ is that variable tunings may drift or wander. For examplel] Ha
[B: 68] points out that if the chord pattern of Fig. 8.7 is mayin JI with the tied
notes held at constant pitch, then the instrument finisheerlthan it begins. Equal
temperament prevents this drift in tonal center by forcimg mistuning of many of
the intervals away from their just small integer ratios. Bdaptive tuning maintains
the just ratios, and the tonal center remains fixed. Thisssipte because the pitches
of the notes are allowed to vary microtonally. For instarticeC' note in the second
chord is played at 528 Hz, and the “same” note in the first choptayed at 523 Hz.

Three renditions of Fig. 8.7 are played in sound example§15to [S: 53]. In
[S: 51], the phrase is played six times in just intonationc&ese of the tied notes,
the tuning drifts down about 21 cents each repeat. As thediirdtthe final chords
are identical, each repeat starts where the previous orse Aftér five repetitions, it
has drifted down about a semitone. The final rendition isquieat the original pitch
to emphasize the drift. For comparison, [S: 52] plays theesphrase in 12-tet; of
course, there is no drift. Similarly, [S: 53] plays the plerasadaptive tuning. Again
there is no drift; yet all chords retain the consonance opférmteger ratios.

One of the major advantages of the 12-tet scale over Jl igtttet be transposed
to any key. The adaptive tuning strategy shares this adgants demonstrated by
the circle of fifths example. Both 12-tet and the adaptivértgean be played starting
on any note (in any key). The 12-tet tuning has sacrificedmasusce so that (say) all
C notes can have the same pitch. As before, the adaptive tatgogthm modifies
the pitch of each note in each chord slightly to increase tiesgnance. Thus, the
C note in theC' chord has a (slightly) different frequency from thenote in theF’
chord, and from the (12-tet enharmonically equivaléit)ote in theG4 chord.

When restricted to a single key (or to a family of closely tetbkeys), JI has the
advantage that it sounds more consonant than 12-tet (aféedsarmonic timbres),
because all intervals in 12-tet are mistuned somewhat frensitmple integer ratios.
The adaptive tuning shares this advantage with JI. Thugjiffe@ence between an
adapted piece and the same piece played in 12-tet is roughlyaime as the differ-
ence between JI and 12-tet, for pieces in a single key whereglaith harmonic
timbres. Whether this increase in consonance is worth tbee@se in complexity
(and effort) is much debated, although the existence offgsuch as thdust Into-
nation Networks evidence that some find the differences worthy of expionat

When focusing on timbres with harmonic spectra, the adeygpring tuning of
Sect. 8.3 and the consonance-based adaptation have mwsdmtbeeffect, although
the spring tuning requires more information because it rspistify which just inter-
val to assign to each spring. When the timbres are inharmbaoigever, neither the
spring tuning nor the table-driven models are appropriate.

2 Gary Morrison, in theTuning Digest(9/9/96), argues that wandering tonics can also be
viewed as a feature of dynamic tunings that “have a fascigatiusical effect.”
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ﬁ
I
408

)
v Ne
O
Frequencies when 392.5 436---436 387.5--387.5
played in JI with held 327 327 290.5-290.5 323
notes: 261.5-261.5 290.5 242 258.5
131 109 87 96.5 129
Frequencies when 392 440 440 392 392
played in 12-tet: 329.5 329.5 293.5 293.5 329.5
261.5 261.5 293.5 247 261.5
131 110 87.5 98 131
Frequencies when 392.5 440 438.5 391 392.5
played in adaptive 327 330 292 294 327
tuning: 261.5 264 292 245 261.5
' 131 110 87.5 98 131
Ratios when played in ¢/5  4/3  3/2  4/3 6/5
adaptive tuning and 5/4 5/4 1/1 6/5 5/4
in Jl: 2/1 6/5 5/3 5/4 2/1

Fig. 8.7.An example of drift in Just Intonation: the fragment endswl&i cents lower than it
begins. 12-tet maintains the pitch by distorting the sinipleger ratios. The adaptive tuning
microtonally adjusts the pitches of the notes to maintaimp# ratios and to avoid the wander-
ing pitch. Frequency values are rounded to the nearest Q.5lizthree cases are performed
in sound examples [S: 51] to [S: 53].

8.5.6 Adaptation to Inharmonic Spectra

A major advantage of the adaptive tuning approach beconmaut when the tim-
bres of the instruments are inharmonic, that is, when thégtsare not harmoni-
cally related. Consider a “bell-like” or “gong-like” ingtment with the inharmonic
spectrum of Fig. 8.8, which was designed for play in 9-tehgghe techniques of
Chap. 12. The dissonance curve is significantly differemtfthe harmonic disso-
nance curve. The most consonant intervals occur at stejpe &-tet scale (the bot-
tom axis) and are distinct from the simple integer ratios.TB-tet scale steps (shown
in the top axis) do not closely approximate most of these @oast intervals. Table
8.3 demonstrates the behavior of the adaptive tuning algonvhen used with this
9-tet tone. Pairs of notes are initialized at standard 1,2te algorithm compresses
or expands them to the nearest minimum of the dissonance.cimall cases, the
converged values are intervals in 9-tet. Similarly, a séadanajor chord converges
to the root, third, and fifth scale steps of the 9-tet scale.
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12-tet scale steps
unison M3 P4 P5 octave

sensory
dissonance

9-tet scale steps

Fig. 8.8.Dissonance curve for an inharmonic timbre with partials, &°’, 3'*, 8'#, 8*', 8%,
827, andB®®, whereg = °+/2. This timbre is appropriate for 9-tet, because minima of the
dissonance curve occur at many of the 9-tet scale stepsipaixis) and not at the steps of
the 12-tone scale steps (top axis). Observe that everydtemlin 9-tet is equal to every fourth
step in 12-tet. This follows from the numerical coincidetieat (°/2)* = (*2/2)*.

Table 8.3. Using the 9-tet sound of Fig. 8.8, the adaptive tuning atgoriconverges to
minima of the related dissonance curve. The major chordexges to a chord with 9-tet scale
steps 0, 3, and 5.

Initial Initial Nearest
notes frequency of Convergent Convergent 9-tetstep
in 12-tet fundamental values ratios =" 2
C 523 528 2 _
5 622 617 1.17 BT =117
C 523 528 3 _
E 659 659 1.26 B =1.26
C 523 518 4 _
F 698 705 1.36 B*=1.36
C 523 513 5 _
i 39 Tes 1.47 3° =1.47
C 523 528 5 _
G 783 777 1.47 B7 =1.47
C 523 523 6
1. = 1.59
Gi 830 830 9 8 ?
C 523 519 7 _
A 880 888 1.71 B =171
¢ 523 527 126  B° =126
E 659 664 147 3 = 1.47
G 783 774 ' -
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The adaptive tuning strategy can be viewed as a generalizatijust intonation
in two directions. First, it is independent of the key of thesic being played; that is,
it automatically adjusts the intonation as the notes of teegopmove through various
keys. This is done without any specifically “musical” knoddge such as the local
key of the music. Second, the adaptive tuning strategy iiGghpe to inharmonic
as well as harmonic sounds, thus broadening the notion birjtsation to include
a larger palette of sounds. Recall that a scale and a timbreadd to be related if
the timbre generates a dissonance curve with local minintfzesgcale steps. Using
this notion of related scales and timbres, the action of ldp@rdhm can be described
succinctly:

The adaptive tuning algorithm automatically retunes nsteas to play
in intervals drawn from the scale related to the timbre of tioges.

8.6 The Sound of Adaptive Tunings

This section examines the adaptive tuning algorithm byefistg to its behavior.
Several simple sound examples demonstrate the kinds ateffessible. The com-
positions of Chap. 9 (see especially Table 9.1 on p. 181) dstrate the artistic
potential.

8.6.1 Listening to Adaptation

In sound example [S: 54], the adaptation is slowed so thatpbssible to hear the
controlled descent of the dissonance curve. Three notegitisdized at the ratios
1, 1.335, and 1.587, which are the 12-tet intervals of a foand a minor sixth (for
instance(, F', andAb). Each note has a spectrum containing four inharmonic par-
tialsatf, 1.414f, 1.7f, 2f. Because of the dense clustering of the partials and the
particular intervals chosen, the primary perception o tbnal cluster is its rough-
ness and beating. As the adaptation proceeds, the rougthemssases steadily until
all of the most prominent beats are removed. The final adaptéss are 1, 1.414,
and 1.703.

Thisis illustrated in Fig. 8.9, where the vertical grid oe tbft shows the familiar
locations of the 12-tet scale steps. The three notes aresemied by the three ver-
tical lines, and the positions of the partials are markedneysmall circles. During
adaptation, the lowest note descends, and the higher teodseventually settling
on a “chord” defined by the intervalg 1.41g, and1.7¢. The arrows pointing left
show the locations of four pair of partials that are (neachipciding.

Sound example [S: 54] performs the adaptation three timebkrae different
speeds. The gradual removal of beats is clearly audibleaisitwest. When faster,
the adaptation takes on the character of a sliding portaméiftere is still some
roughness remaining in the sound even when the adaptatmomglete, which is
due to the inherent sensory dissonance of the sound. Thévemalow beats (about
one per second) are due to the resolution of the audio equippme
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C=4.0f - Fig. 8.9. Three notes have fundamen-
B tals at C, F, and Ab, and partials
- at 1.0f, 1.41f, 1.7f, and 2.0°. After
B P T adaptation, th& at frequencyf slides
- & down to frequencyy, and the other
i PP b two notes slide up to 1.41and 1.7@.
- b - 24 The arrows on the right emphasize the
B PP “9  resulting four pairs of (almost) coin-
C=20f |- o) ciding partials. Sound example [S: 54]
B P PT | = 209 demonstrates.
— P
Ab=1581 |- S P S = e
F#=1.41f - P
F=1.33f F > —e P D - 1.41¢g
c=1.0f - co— o4 109

There are two time scales involved in the adaptation of a calipassage. First
is the rate at which time evolves in the music, the speed atiwidtes occur. Sec-
ond is the time in which the adaptation occurs, which is deiteed by the stepsize
parameter. The two times are essentially indeperi&ethiat is, the relative rates of
the times can be chosen by the performer or composer. Famnicestthe adaptation
can be iterated until convergence before the sound startgasdone in Fig. 8.7 and
sound examples [S: 50] and [S: 53]. Alternatively, interragalvalues of the adap-
tive process can be incorporated into the performance, aslarge in sound example
[S: 54]. The resulting pitch glide can give an interestiragékity to the tuning, anal-
ogous to a guitar bending strings into tune or a brass plagpinlg the sound to
improve the intonation. Adaptation provides a kind of “lfiteent” portamento that
begins wherever commanded by the performer and slides bigdota nearby most-
consonant chord. The speed of the slide is directly cortiptéland may be (virtually)
instantaneous or as slow as desired.

8.6.2 Wavering Pitches

When the two time rates are coupled incorrectly, there magdmee unusual (and
undesirable) effects. Several sound examples demonsisatg the first section of
Domenico Scarlatti’'s harpsichord sonata K1. These arelbsvig

(i) [S: 55]: Scarlatti's K1 sonata in 12-tet
(i) [S:56]: Scarlatti’s K1 sonata with adaptation (incect stepsizes)
(iii) [S: 57]: Scarlatti's K1 sonata with adaptation.

'3 The inevitable time lag due to the computation of the alparitan be made almost imper-
ceptible by using a reasonably fast processor.
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The first two measures of the sonata are shown in Fig. 8.10fildteeight notes
in all three are identical because only one note is soundlifiten two voices occur
simultaneously, both are adapted, and the adapted verdffersdrom the 12-tet
version. The most obvious change is during the trill at the@fithe second measure,
although subtler differences can be heard throughout.

Allegro r
A - - -
YT " r [ T
bt ==
rI) - I Ll i | —
U — — |
mf

) ‘. — — M
FY—m—— yia ] ] I I I ——
7% e — - — ot

D <%

Fig. 8.10.Scarlatti's Sonata K1 is played in 12-tet, and with diffdrepeeds of adaptation.
The first two measures are shown.

Sound example [S: 58] focuses attention on the second neehguplaying all
three versions one after the other. As written (and as heat@-tet), the trill alter-
nates betweent and Bb, and it is accompanied by a slower repeatedn octave
below. When adapted (assuming a harmonic spectrum for tipsichord)!* the be-
havior of the algorithm can best be described by refereneedissonance curve for
harmonic sounds (such as in Fig. 6.1 on p. 96). The octavé itnitl are unchanged,
because the octave is a minimum of the dissonance curve.niérwal betweem
and Bb does not fall on a minimum, and the adaptation moves dowahithe dis-
sonance curve, pushing the notes apart to the nearby minthmatnoccurs at a ratio
of 2.25 (which is just a bit more than an octave plus a wholeYohhe algorithm
essentially “splits the difference” by sharpening #ieabout 50 cents and simulta-
neously flattening thel about 50 cents. It is the rapid oscillation between the #rue
and the flat4d that causes the wavering.

Although the algorithm is moving each pair to the most coasdmearby in-
terval, the overall effect is unlikely to be described adftésonsonance. Rather,
the rapid wiggling of the lower tone during the trill is prdig confusing and dis-
concerting. This kind of wavering of the pitch can occur wéear rapidly varying
tones occur over a bed of sustained sounds. Although thidmaggeful as a special
effect, itis certainly not always desirable. The strangsrad the gliding of the adap-
tive tuning is especially noticeable when played using atrimental sound like the
harpsichord that cannot bend its pitch.

There are several different ways to fix the wavering pitctofgm. The simplest
is to adapt the notes with a slower time constant, like thetielauning of sound

" The harpsichord is assumed to have nine harmonic partissanher*™ partial has ampli-
tude0.9°. See Fig. 11.7 on p. 225.
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example [S: 54]. By adapting more slowly, the pitches of dapills such as in the

second measure of the Scarlatti piece do not have time toevdad thus reducing

the waviness. Another solution is to adapt those notes thaleeady sounding more
slowly than newer notes. This is implemented by making thpssze corresponding
to new notes larger than the stepsize corresponding to loéédsnA third approach,
using the idea of a musical “context” or “memory,” is expldiie Sect. 9.4.

To investigate this, the same two measures of the Scarlattidata are played
with new notes adapted ten times as fast as held notes. I sxample [S: 58](c),
the wavering of the pitch beneath the trill is almost inalelid careful look at the
adapted notes shows that the sustainatbscends only about 10 cents, and Hés
ascend almost 90 cents, again forming an interval of 2.26s;Tihe sustained only
wiggles imperceptibly and thBb has risen to (almost) B.

This example demonstrates that the use of the adaptivegoaimbe at odds with
a composers intent. Likely, Scarlatti meant for the dissoraf the trill to be part of
the effect of the piece (else why write it?). By turning thissbnance into a slightly
wavering series of consonances, this intent has been sabyanderscoring the dan-
ger of applying a musical transformation in a setting to Wwhtds not appropriate.
This example shows the behavior of the adaptive tuning @lguarin a particularly
unfriendly setting. When many notes are sounding at onae,naes (such as the
trill) become less likely to cause large wavering changésis] the simple two note
setting is the most likely place to encounter the waveritighpbhenomenon.

8.6.3 Sliding Pitches

In the adaptive tuning algorithm, whenever a new note ocalirsurrently sounding
notes are re-adapted. In some situations, like the Sdakamnple, this can cause an
undesirable wavering pitch. In other situations, howeer pitches glide gracefully,
smoothly connecting one chord to another. In yet other 8dns, the adaptation may
cause new “chords” to form as the pitches change. Sound égd®pb9] contains
six short segments:

(i) Asingle measure in 12-tet
(i) The “same” measure after adaptation
(iii) The measure (i) followed immediately by (ii)
(iv) Another measure in 12-tet
(v) The “same” measure after adaptation
(vi) The measure (iv) followed immediately by (v)

Both (i) and (ii) start on &' major chord. The adapted version is slightly closer to
a justly intoned chord, but this is probably imperceptiflee most obvious change
occurs at the second beat. Although the 12-tet version gioguitinues to arpeggiate,
one note of the adapted version slides up. Perhaps becasismihis moving against

a relatively fixed background, it jumps out and becomes thaifinevent” of the
passage. When the chord changes:tmajor at the third beat, ad note remains
suspended. In the adapted version, this repels the sliditey which moves back
down to a(G note on the third beat.



170 8 Adaptive Tunings

Thus, the adaptation has actually added something of nitisitesest. In fact,
adaptation will sometimes change the “chord” being playegbarts (iv) and (v) of
sound example [S: 59], one measure af &hord is played in 12-tet, followed by
its adapted version. Although the basic harmony remaind fix¢he original 12-tet,
the chord changes in the adapted version on the fourth beatchange appears to
be to a nearby, closely related chord, although in reality ib a nearby microtonal
variant of the original.

Sound example [S: 60[Three Ears contains all the measures from sound ex-
ample [S: 59]. Many other similar passages occur—the dlgorcauses interesting
glides and unusual microtonal adjustments of the notewjidin an “easy-listening”
setting. The microtonal movement is done in a perceptualhgible fashion. In the
Scarlatti examples [S: 58], the sliding pitches were a ligbiin sound examples
[S: 59] and in théThree Earsthey are exploited as a new kind of “intelligent” musi-
cal effect.

8.7 Summary

The adaptive tuning strategy provides a new solution to ¢dhg-standing problem
of scale formation. Just intonations (and related scalg)fce the ability to mod-
ulate music through multiple keys, and 12-tet sacrificesctiresonance of intervals.
Adaptive tunings retain both consonance and the abilitydduiate, at the expense
of (real-time) microtonal adjustments in the pitch of theaso The spring tuning
provides a simple physical model of the stresses of misgmisnd the consonance-
based adaptive tuning encodes a basic human perceptioeetisery dissonance
curves.

Adaptive tuning algorithms are implementable in softwar@ardware and can
be readily incorporated into electronic music studiost dssnany MIDI synthesizers
have built-in alternate tunings tables that allow the miasi¢o play in various just
intonations and temperaments, an adaptive tuning featwriel e readily added to
sound modules. The musician can then effortlessly play takeghat continuously
adjusts to the timbre and the performance in such a way as xanize sensory
consonance. One concrete realization appears in Chap. 9.

The behavior of the adaptive tuning algorithm can be deedrib terms of notes
continuously descending a complex multidimensional laage studded with dis-
sonant mountains and consonant valleys. These behavedeacribed mathemati-
cally in Appendix H. For harmonic timbres, the adaptive tunacts like a just into-
nation that automatically adjusts to the key of the piecéh wo specifically musical
knowledge required. For harmonic timbres, the action ofsffyéng tuning and the
consonance-based adaptations are similar. For inharrtiofices, the adaptive tun-
ing automatically adjusts the frequencies of the tones teaby minimum of the
dissonance curve, providing an automated way to play in taéeselated to the
spectrum of the sound. Adaptive tunings are determineddgplectra of the sounds
and by the piece of music performed; chords and melodiesttebedcome more “in
tune with themselves.”
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A Wing, An Anomaly, A Recollection

The adaptive tuning of the last chapter adjusts the pitches
of notes in a musical performance to minimize the sensory
dissonance of the currently sounding notes. This chapter
presentsareal-time implementation callkdaptun (written

in the Max programming language and available on the
CD in the software  folder) that can be readily tailored

to the timbre (or spectrum) of the sound. Several tricks for
sculpting the sound of the adaptive process are discussed.
Wandering pitches can be tamed with an appropr@iatext

a (inaudible) collection of partials that are used in the
calculation of dissonance within the algorithm, but that
are not themselves adapted or sounded. The overall feel of
the tuning is effected by whether the adaptation converges
fully before sounding (or whether intermediate pitch bends
are allowed). Whether adaptation occurs when currently
sounding notes cease (or only when new notes enter) can
also have an impact on the overall solidity of the piece.
Several compositional techniques are explored in detait] a

a collection of sound examples and musical compositions
highlight both the advantages and weaknesses of the method.

9.1 Practical Adaptive Tunings

To bring the techniques of adaptive tunings into sharpandpthis chapter looks at
several examples of the use of adaptation in tuning. In seoeh(ag.ocal Anomaly
[S: 79]), all notes adapt continuously and simultaneouslythers (such asVing
Donevier[S: 85]), all notes are adapted completely before they aumded.Re-
called OpudS: 82] presents an adaptation of a (synthesized) stringefLia which

a “context” is used to help tame excess horizontal (meladjon. Several compo-
sitions (which are listed in Table 9.1) are discussed attteragnd steps are detailed to
highlight the practical issues, techniques, and tradebésdevelop when applying
adaptive tunings.

The next section discusses tAdaptun software, and Sect. 9.3 details some
of the simplifications to the basic algorithm of Chap. 8 that ased to make the
program operate efficiently in real time. The use of a coritediscussed in Sect. 9.4
as a way of imposing a kind of consistency on the adaptatisadoce some of the
melodic artifacts. The bulk of the chapter provides an esitenseries of examples.
Many of these are short snippets exploring some feature eofittaptive process,
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and many are complete compositions. The final section pases sf the aesthetic
guestions that arise in the use of adaptation in musicakztst

9.2 A Real-Time Implementation inMax

Figure 9.1 shows the main screen of the adaptive tuning pnegdaptun , which
was first presented in [B: 171]. The user must first configueepftogram to access
the MIDI hardware. This is done using the two menus lab&8et Input Port
andSet Output Port , which list all valid MIDI sources and destinations. The
figure shows the inputS-428 Port 1 , which is my hardware, and the output
is set tooo IAC Bus # 2, which is an interapplication (virtual) port that allows
MIDI data to be transferred between applications. The agplication ports allow
Adaptun to exchange data in real time with sequencers, softwardegizers, or
other programs. In particular, the outputAdaptun can be recorded by setting the
input of a MIDI sequencer to receive on the appropriate IA€. bu

In normal operation, the user plays a MIDI keyboard. The pogrechannel-
izes and retunes the performance. Each currently soundiegsiassigned a unique
MIDI channel, and the adapted note and appropriate pitcti bemmmands are output
on that channel. As the algorithm iterates, updated pitetdlmmmands continue
to fine tune the pitches. The MIDI sound module must be setdeive on the ap-
propriate MIDI channels with “pitch bend amount” set so ttieg extremes of-64
correspond to the setting chosen in the box lab&Bdvalue in synth . The
finest pitch resolution possible is about 1.56 cents whenithset to 1 semitone,
3.12 cents when set to 2 semitones, and so on.

There are several displays that demonstrate the activityegbrogram. First, the
message box directly under the block labefethpt shows the normalized sensory
dissonance of the currently sounding notes. The bar graghefeft displays the
sensory dissonance as a percentage of the original sensspnence of the current
notes. A large value means that the pitches did not changé,rand a small value
means that the pitches were moved far enough to cause acignifiecrease in sen-
sory dissonance. The large display in the center shows how mates are currently
adapting (how many pieces the line is broken into) and whidthese notes have
adapted up in pitch (the segment moves to the right) or dowpitah (the segment
moves to the left). The screen snapshot in Fig. 9.1 showsdhptation of three
notes; two have moved down and one up. There is a wraparowegfféot on this dis-
play; when a note is retuned more than a semitone, it retorits hominal position.
The number of actively adapting tones is also displayed migalty in the topmost
message box.

The user has several options that can be changed by clickintessage boxés.
One is labelecspeed and depth of adaptation in Fig. 9.1. This repre-
sents the stepsize paramejerfrom (8.2) and (8.3) on p. 157. When small, the

! When aMax message box is selected, its value can be changed by drabeiegrsor or
by typing in a new value. Changes are output at the bottomedftix and incorporated into
subsequent processing.
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Adaptive Tuning
sethares@ece wisc edu

#dapts the fundamentals of notes by minimizing a
calculation of sensory dissonance that is based on
the psycho-acoustic data of Plomp and Levelf.
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Fig. 9.1. Main screen of the adaptive tuning prograddaptun , implemented in théMax
programming language.

adaptation proceeds slowly and smoothly over the dissenandace. Larger val-
ues allow more rapid adaptation, but the motion is less smdoextreme cases, the
algorithm may jump over the nearest local minimum and debé@eto a minimum
far from the initial values of the intervals. The relatioisbetween the speed of
adaptation and “real time” is complex, and it depends on pleed of the processor
and the number of other tasks occurring simultaneously.méssage box labeled

of partials in each note specifies the maximum number of partials that
are used. (The actual values for the partials are discussietail in Sect. 9.3.)

There are two useful tools at the bottom of the main screee.riiénu labeled
input MIDI file lets the user replace (or augment) the keyboard input with
data from a standard MIDI file. The menu has optionsttp , start , andread .
First, a file isread . When started, adaptation occurs just as if the input were ar
riving from the keyboard. The message box immediately betmmenu specifies
the tempo at which the sequence will be played. This is ealpgeiseful for older



174 9 A Wing, An Anomaly, A Recollection

(slower) machines. A standard MIDI file (SMF) can be playedd(adapted) at a
slow tempo and then replayed at normal speed, increasinapiterent speed of the
adaptation. Finally, thall notes off button sends “note-off” messages on all
channels, in the unlikely event that a note gets stuck.

9.3 The Simplified Algorithm

In order to operate in real time (actual performance dependgrocessor speed),
several simplifications are made. These involve the spatiic of the spectra of the
input sounds, using only a special case of the dissonancelaabn, and a simplifi-
cation of the adaptive update.

The dissonance meastria (8.1) on p. 157 is dependent on the spectra of the
currently sounding notes, and so the algorithm (8.3) must hacess to these spec-
tra. Although it should eventually be possible to measuessgiectra from an audio
source in real time, the current MIDI implementation asssiitiet the spectra are
knowna priori. The spectra are defined in a table, one for each MIDI chaanl,
they are assumed fixed throughout the piece (or until the faldhanged). They are
stored in the collectiotfile timbre.col . The default spectra are harmonic with a
number of partials set by the user in the message box on thesoeeen, although
this can easily be changed by edititimbre.col . The format of the data reflects
the format used throughoAdaptun ; all pitches are defined by an integer

100 * (MIDI Note Number)+ (Number of Cents) (9.1)

For instance, a note with fundamental 15 cents above midd¥euld be represented
as6015 = 10060+ 15 becausé0 is the MIDI note number for middI€'. Similarly,
allintervals are represented internally in cents: an @ctsthusl 200 and a just major
third is 386.

Second, the calculation of the dissonance is simplified f(Brfh) by using a
single “look-up” table to implement the underlying dissnoa curves. A nominal
value of 500 Hz is used for all calculations between all pistirather than directly
evaluating the exponentials. In most cases, this will hattke leffect, although it
does mean that the magnitude of the dissonances will be estitaated in the low
registers and overestimated in the high. More importatitly,loudness parameters
a1 andas are set to unity. Combined with the assumption of fixed spetitis can be
interpreted as implying that the algorithm operates on aliiglealized, averaged
version of the spectrum of the sound.

The numerical complexity of the iteration (8.3) is domirtaby the calculation
of the gradient term, due to its complexity (which grows veoirs high dimensions
when there are many notes sounding simultaneously). Onglifization uses an

2 This is further detailed in (H.2).

% In Max, a “collection” is a text file that stores numbers, symbots] bsts.

* This look-up table simplifies the implementation of (8.14E.2) because no transcen-
dental functions need be calculated.
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approximation to bypass the explicit calculation of thedigat. Adaptun adopts a
variation of the simultaneous perturbation stochastic@dmation (SPSA) method
of [B: 180]° To be concrete, the function

where A(k) is a randomly chosen Bernoultil random vector, can be viewed as
an approximation to the gradiegf’ﬁ-). This approximation grows closer asap-
proaches zero. The algorithm for adaptive tuning is then

filk+1) = fi(k) — pg(fi(k)). (9.2)

In the standard SPSA, convergence to the optimal value cgjueanteed if both
the stepsize and the perturbation sizeconverge to zero at appropriate rates, and if
the cost functionD is sufficiently smooth [B: 179]. In the case of adaptive t@gsn

it is important that the stepsize and perturbation siaevanish, because this would
imply that the algorithm becomes insensitive to new notdabeg occur.

In the adaptive tuning application, there is a granulaGtpitch space induced
by the MIDI pitch bend resolution of abolit6 cents. This is near to the resolving
power of the ear (on the order of 1 cent), and so it is reasertatithoose: ande so
that the updates to thg are (on average) roughly this size. This is the strategy fol-
lowed byAdaptun , although the user-chooseable parameter labspeed and
depth of adaptation gives some control over the size of the adaptive steps.
Convergence to a fixed value is unlikely when the stepsizesadalecay to zero.
Rather, some kind of convergence in distribution shoulddpeeted, although a thor-
ough analysis of the theoretical implications of the fixégpsize version of SPSA
remain unexplored. Nonetheless, the audible results aflgeithm are vividly por-
trayed in Sect. 9.5.

9.4 Context, Persistence, and Memory

Introspection suggests that people readily develop a nofitcontext” when listen-
ing to music and that it is easy to tell when the context isatied, for instance, when
a piece changes key or an out-of-tune note is performedoAgh the exact nature
of this context is a matter of speculation, it is clearly tethto the memory of re-
cent sounds. It is not unreasonable to suppose that the haudgtiory system might
retain a memory of recent sound events, and that these mesmoight contribute
to and color present perceptions. There are examples thootighe psychological
literature of experiments in which subjects’ perceptioresraodified by their expec-
tations, and we hypothesize that an analogous mechanisnbenagrtly responsible
for the context sensitivity of musical dissonance.

Three different ways of incorporating the idea of a musicaltext into the sen-
sory dissonance calculation are suggested in [B: 173],érhtipes of being able to
model some of the more obvious effects.

5 This can also be viewed as a variant of the classic Kieferfadtz algorithm [B: 84].
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(i) The exponential windowses a one-sided window to emphasize recent
partials and to gradually attenuate the influence of oldends.

(i) The persistence modelirectly preserves the most prominent recent par-
tials and discounts their contribution to dissonance impprtion to the
elapsed time.

(iif) The context modetupposes that there is a set of privileged partials that
persist over time to enter the dissonance calculations.

All three models augment the sensory dissonance calcolagisclude partials not
currently sounding; these extra partials originate from wWindowing, the persis-
tence, or the context. A series of detailed examples in [B] Khows how each
model explains some aspects but fails to explain others.cbhéext model is the
most successful, although the problem of how the auditosyesy might create the
context in the first place remains unresolved.

To see how this might work, consider a simple context thasiste of a set of
partials at220, 330, 440, and660 Hz. When a harmonic notd or E is played
at a fundamental 0220 or 330 Hz, many of their partials coincide with those of
the context, and the dissonance calculation (which novudes the partials in the
context as well as those in the currently sounding notespiel larger than the
intrinsic dissonance of thel or £. When, however, &4 note is sounded (with
fundamental at abo@33 Hz), the partials of the note will interact with the partials
of the context to produce a significant dissonance.

The context idea is implemented Adaptun using a static “drone.” The check
box labeleddrone enables a fixed context that is defined in the collection file
drone.col . The format of the data is the same as in (9.1) above. For deamp
the drone file for the four-partial context of the previousgagaph is:

1,4500;
2,5202;
3,5700;
4,6402;

(The “02" occurs because the perfect fifth between 330 Hz &@dHZ corresponds

to 702 cents, not 700 cents as in the tempered scale.) Whedrdhe switch is
enabled, notes that are played on the keyboard (or notesutbgilayed from the
input MIDI file menu) are adapted with a cost function that includes both
the currently sounding notes and the partials specifieddnitbne file. The drone is
inaudible, but it provides a framework around which the aa@épn occurs. Examples
are provided in the next section.

9.5 Examples

This section provides several examples that demonstrateadiaptive tuning al-
gorithm and explores the kinds of effects possible with tlaeious options in
Adaptun . Discussions of the compositional process and demormtisatif the artis-
tic potential of the adaptive tunings are deferred untitSed.
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9.5.1 Randomized Adaptation

The motion of the adapting partials in sound example [S: 528 shown pictorially
in Fig. 8.9 on p. 167. When usingdaptun to carry out the adaptation (rather than
(8.3), the true gradient algorithm), the final convergedigaifg may differ from run
to run. This is because the iteration is no longer compleateterministic; the probe
directionsA(k) in (9.2) are random, and the algorithm will follow (slighxbjifferent
trajectories each time. The bottom of the dissonance lapgsis always defined by
the ratio of the fundamentals of the notes (in this cgsé,41g, and1.7¢) but the
exact value ofy may vary.

In most cases, the convergent values ofAdaptun algorithm will be the same
as the converged values of the deterministic version. Aegtan occurs when the
initial intervals happen to be maximally dissonant, thatisen they lie near a peak
of the dissonance surface. The deterministic version Wwilbgs descend into the
same consonant valley, but the probe direction8adiptun 's SPSA method may
cause it to descend in either direction. This can be exgl@tean interesting effect,
as in the second adaptive study [S: 62] or Becalled OpugS: 82] where pairs
of notes are repeatedly initialized near a dissonant pedlabowed to slide down:
sometimes contracting to a unison and sometimes expanalggiinor third.

9.5.2 Adaptive Study No. 1

Sound example [S: 61] is orchestrated for four synthesingdd” voices. When sev-
eral notes are sounded simultaneously, their pitches &a ohanged significantly
by the adaptation. This is emphasized by the motif, whichrzegith a lone voice.
When the second voice enters, both adapt, giving rise td giides and sweeps.
As the timbres have a harmonic structure, most of the respititervals are actu-
ally justly intoned because the notes adapt to align a pardigne lower note with
some partial of the upper. By focusing attention on the pifithes (which begin at
12-tet scale steps), this demonstrates clearly how distany of the common 12-tet
intervals are from their just counterparts.

Perhaps the most disconcerting aspect of the study is théhegjtches wander.
As long as the adaptation is applied only to currently songdiotes, successive
notes may differ: Th&' note in one chord may be retuned from tfienote in the
next. This can produce an unpleasant “wavy” or “slimy” sountds effect is easy to
hear in the long notes that are held while several others anteleave. For instance,
between 0:36 and 0:44 seconds (and again at 1:31 to 1:39% iha three-note
chord played. The three notes adapt to the most consonaiyrieaation. Then the
top two notes change while the bottom is held; again all tladsgpt to their most
consonant intervals. This happens repeatedly. Each tim&ofhtwo notes change,
the held note readapts, and its pitch slowly and noticealsigders. Although the
vertical sonority is maintained, the horizontal retuniags distracting.

The most straightforward way to forbid this kind of behanvioto leave currently
sounding notes fixed as newly entering notes adapt theingstcThis can be im-
plemented by setting the stepsizeto zero for those fundamentals corresponding
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to held notes. Unfortunately, this does not address thedfimedital problem; it only
addresses the symptom that can be heard clearly in this sxantble. A better way
is by the introduction of the inaudible “drone,” or context.

9.5.3 A Melody in Context

Adaptun implements a primitive notion of memory or context in its dedunction.
A collection of fixed frequencies are prespecified in thedilene.col , and these
frequencies enter into the dissonance calculation alththuey are not sounded.

The simplest case is when the spectrum of the adapting saunsikts of a single
sine wave as in parts (a) and (b) of Fig. 9.2. The unheard xbisteepresented by the
dashed horizontal lines. Initially, the frequency of theenis different from any of
the frequencies of the context. If the initial note is clos@ne of the frequencies of
the context, then dissonance is decreased by moving theserdimgether. The note
converges to the nearest frequency of the context, as shgwrekarrow. In (b), the
initial note is distant from any of the frequencies of theteah When both distances
are larger than the point of maximum dissonance (the peatteafurves in Fig. 3.8
on p. 47), then dissonance is decreased by moving furthey. avbais, the pitch is
pushed away from both of the nearby frequencies of the cgrdes it converges to
some intermediate position.
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Fig. 9.2. The dashed horizontal grid defines a fixed “context” agairistiwthe notes adapt.
When the note has a spectrum consisting of a single sine watialms in (a) and (b), then
the note will typically adjust its pitch until it coincidesitiv the nearest partial of the context
as in (a), or else it will be repelled from the nearby partiafishe context as in (b). When
the spectrum has two partials, then the adaptation may bégmpartials as in (c), one as in
(d), or none as in (e). In (f), the partials fight to align thetres with the context, eventually
converging to minimize the beating.
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Generally the timbre will be more complex than a single sig@ev Figure 9.2
shows several other cases. In parts (c), (d), and (e), tHediconsists of two sine
wave partials. Depending on the initial pitch (and the detaf the context), this
may converge so that both partials overlap the context as)jrs¢ that one partial
merges with a frequency of the context and the other doessiot @), or to some
intermediate position where neither partial coincideswlite context, as in (e). Part
(f) gives the flavor of the general case when the timbre is dexnywith many sine
wave partials and the context is dense. Typically, somégtautonverge to nearby
frequencies in the context and some will not.

To see how this might function in a more realistic settingymse that the current
context consists of the no and its first 16 harmonics. When a new harmonic note
occurs, it is adapted not only in relationship to other cuttsesounding notes, but
also with respect to the partials of the Because partials of the adapting notes often
converge to coincide with partials in the context (as in §8rof Fig. 9.2), there
is a good chance that a partial of the note will align with atiphof the context.
When this occurs, the adapted interval will be just, formeuhf the small integer
ratio defined by the harmonic of the note with that of the ceinte

Thus, the context provides a structure that influences thptation of all the
sounding notes, like an unheard drone. In this way, it cae gihorizontal consis-
tency to the adaptation that is lacking when no memory isadth

9.5.4 Adaptive Study No. 2

The next example, presented in [S: 62], is orchestratedbiarsynthesized “violin”
voices. Like the first study, the adaptive process is cleaulyible in the sweeping
and gliding of the pitches. For this performance, howevegraext consisting of all
octaves of” plus all octaves of; was used.

The context encourages consistency in the pitches, mainggjan unheard) tem-
plate to which the currently sounding notes adapt. Althatlnghstudy still contains
significant pitch adaptation, the final resting places amstained so that the ad-
justed pitches are related to the unhe@rdr G. Typically, some harmonic of each
adapted note aligns with one of the octaves oftther G template.

In several places throughout the piece, adjacent noteh¢ol 2-tet scale) are
played simultaneously. For the specified timbres, this & tiee peak of the disso-
nance curve. Depending on exactly which notes are playedyritier in which they
are played, and the vagaries of the random test directiq$ of (9.2), sometimes
the two pitches adapt to an interval at about 316 cents (arjunir third) by moving
apart in pitch, and sometimes they merge into a unison at sotmenediate pitch.
In either case, the primary sensation is of the motion.

6 The drone file contained allC’s 2400, 3600, 4800,6000,... plus all G’s
3100, 4300, 5500, 6700, .. ..
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9.5.5 A Recollection

Many of the kinds of pitch slides and glides that are so olwiauthe two adaptive
studies are exploited in a more structured wajRetalled Opu$S: 82]. Adaptun
was used to play four string voices (a synthesized “strirayigt’). Each tone begins
on a 12-tet pitch and adapts the pitches in real time. Thermdti the algorithm is
unmistakable.

Because the string timbres are harmonic, the retuning cgeseprimarily to
various just intervals. When the pitches begin close toutlhss a 12-tet fifth, the
adjustment is only a few cents. But when the pitches begiavay from JI (such
as a 12-tet minor second), the pitch sweeps are dramatiafAlle pitch bending
is done by the algorithm in real tinfeThis piece provides a nonverbal and visceral
demonstration of the differences between Jl and 12-tet.

9.6 Compositional Techniques and Adaptation

Adaptive tunings are not constrained to any particularestfl music, and the pre-
vious sound examples suggest that a number of interestohgiansual effects are
possible. One avenue of exploration is perhaps obviougMAth Adaptun , and al-
low happy accidents to occur. The adaptive studiesRechlled Opu$S: 82] were
derived from spontaneous improvisations that crystallinéo repeatable form&er-
sistence of TimgS: 81] began with a three-against-two rhythmic bed, anéa&g
improvisation led to the final piece.

Table 9.1 lists the adaptively tuned pieces that appear erCth along with
three compositional parameters. The third column ind&cateether a context was
used during adaptation, as discussed in the previous seting thedrone option
in Adaptun . The fourth column specifies whether the algorithm was abwo
achieve full convergence before the notes are soundeatéiteadi by y) or whether all
intermediate pitches were output (n). This can have a majpact on the sound and
effect of the piece. For examplBersistence of Timaéoes not have the kind of slimy
undulating pitches that are so conspicuoufkecalled OpusThe column labeled
“Adapt on Note-off” specifies whether the adaptation is reelarhen notes end (that
is, each time the number of currently sounding notes charogeshether adaptation
occurs only when new notes begin. This is one of the rea®dng Donevieisounds
more steady thaBxcitalking Very Much

With the exception oRecalled Opusall of the pieces in Table 9.1 were created
using a method ofdaptive randomizatigra compositional technique that is partic-
ularly appropriate for adaptive tunings. The adaptive canidation begins with a
simple rhythmic pattern, adds complexity, orchestratéomg timbral variety without
regard for harmonic or melodic content, and then tames #$sodances by selective
application of the adaptive tuning algorithm. The first sigpo select an arbitrary

" The piece was not performed in one pass, several individusiins were recorded sepa-
rately and then spliced together.
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Table 9.1. Several musical compositions appearing on the CD-ROM uaeta tunings.
Also indicated are whether a context was used, whether goeitdim was allowed to output
intermediate pitches as it adapted (or only after convarggiand whether the adaptation was
conducted at note-off events as well as note-on events.

Name of File Context Converge Adapton See
Piece Fully  Note-off
Adventiles in a Distorium adventiles.mp3 y n y [S: 74]
Aerophonious Intent  aerophonious.mp3 y n n [S: 75]
Story of Earlight earlight. mp3 n n n [S: 76]
Excitalking Very Much  excitalking.mp3 y y n [S:77]
Inspective Liquency inspective.mp3 n n y [S: 78]
Local Anomaly localanomaly.mp3 n n y [S:79]
Maximum Dissonance maxdiss.mp3 n y n [S: 80]
Persistence of Time persistence.mp3 n y n [S:81]
Recalled Opus recalledopus.mp3 y n y [S: 82]
Saint Vitus Dance saintvitus.mp3 n n y [S: 83]
Simpossible Taker simpossible.mp3 y y y [S: 84]
Three Ears three _ears.mp3 n y y [S: 60]
Wing Donevier wing.mp3 y y n [S: 85]

pattern of notes triggering a set of synthesized soundshépitches are essentially
random, the sequence is wildly and uniformly dissonant.|li&sption of the adap-
tive tuning algorithm perturbs the pitches of all currendunding notes at each
time instant to the nearest intervals that maximize consomeSometimes the disso-
nances are tamed and interesting phrases occur. By wingohérresults, separating
desirable and undesirable elements, reorchestratingjgingd the cut-and-paste op-
erations available in modern audio editing software, gfeasind unusual pieces can
be constructed.

There are many possible sources for musical patterns. Thght ive constructed
mathematically (like the three-against-two patterReffsistence of Timethey might
be a complete piec& firee Earsvas first composed in 12-tet and the adaptation im-
posed at a later stage), or they might be only a rhythm p¥ing Donevietbegan as
a standard MIDI drum pdttplayed in an aggressive seven beats per measure). The
classical MIDI archive at [W: 4] contains thousands of MIOES§ free for down-
loading, and there are many other sources on the web of botimeocial and public
domain libraries of MIDI files.

In order to demonstrate the technique concretely, Fig. Bavs the first four
measures of a standard MIDI drum tracKhe information is displayed in a kind of
“piano-roll” notation'®in which the vertical axis represents MIDI note-number. &im
proceeds along the horizontal axis. MIDI note events argvahia bold black. For

8 From the Keyfax [W: 17] collection of drum tracks performegill Bruford.

? Sequenced by Keyfax Software [W: 17] in tBecakbeatsollection.

10 Figures 9.3 through 9.6 show screen snapshots Baital Performer, a commercial audio
and MIDI sequencer [W: 20].
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drum tracks, there is a standard assignment of note numbénsttuments; and
the relevant ones (bass drum, snare, and three cymbals)lesied on the left-hand
side of the figure. This is performed as written in sound eXarftp: 63].

standard MIDI
drum assignment reassignment
- - - -
- - - -
e | e e e — - guitar

share " e omm o " e mm " e omm owm " = mm
bass = = mEEm 2 E m moEE mE m mEE =E om m oEmm

bass

time

Fig. 9.3.A standard MIDI drum file can be played as a percussion pann@example [S: 63]
performs this sequence with the standard instrumentsateticon the left), or it can be re-
orchestrated (sound example [S: 64] reassigns the notestéy gnd bass as indicated on the
right).

One of the interesting features of the MIDI standard is tlwerevents are not
necessarily tied to their default instrumentation. Sowadple [S: 64], for instance,
reorchestrates the four measures in Fig. 9.3 by assignéigiest two notes to bass
guitar (instead of bass drum and snare) and the upper nage#téo (instead of cym-
bals) as indicated by the reassignment on the right-hamed Eibn more useful than
the reorchestration are the editing capabilities offergdniodern software. Notes
(and other MIDI events) can be rearranged in many ways ugimgls cut-and-paste
techniques. Figure 9.4, for example, shows the same fousumesas Fig. 9.3, with
the upper notes (that were originally devoted to the cyn)lvafseated, offset in pitch,
and time-stretched by factors of two (one slower and onerfashs before, this can
be performed on any desired set of instruments. Sound eranplt 65] through
[S: 67] demonstrate three simple variations.

When the instrumentation is finalized (in this case, usimgnioaic samples of
guitar and bass), then the piece can be adapted. This is @&l in [S: 68] using
the default settings iAdaptun . Compare this sparse example with the fully orches-
tratedSimpossible TakdiS: 84], which applied this same method to a set of MIDI
“hip-hop” drum patternd? In order to tame some of the pitch sweeps, a context was
used and all notes were allowed to converge fully. The remgipitch glides are
due to the adaptation of held notes. As all sounding notefjuswhenever a note

! Details of the MIDI file specification can be found at [W: 25].
2 Commercially available from [W: 17].
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time

Fig. 9.4.The standard MIDI file in Fig. 9.3 is edited, creating more pter and interesting
patterns. Sound examples [S: 65] through [S: 67] demomstrat

enters or leaves, the held notes slide to their new “mostatay” pitch. This effect
is already familiar fronThree EardS: 60].

There are many other ways that MIDI data can be transformedeite inter-
esting sequences. Figure 9.5 shows the data of Fig. 9.4daditeveral ways. The
bass guitar part is randomized over an octave, creating abas® line with con-
siderable motion. Using the instrumentation of [S: 65]stbéan be heard in sound
example [S: 69]. The “fast” line is also randomized and tparsed, resulting in a
rapid arpeggiation. This is performed in [S: 70] using thesauitar samples as in
[S: 65]. Finally, the “slow” line of Fig. 9.4 is transposed apd randomized, creating
a constrained random melody. Orchestrating the melody avighinthetic-sounding
flute results in sound example [S: 71].

randomized — — — —

melody T —— —

randomized - e L R =
rhythm R = = R R = . - O O "
randomized s - -

bass

time

Fig. 9.5. The standard MIDI file in Fig. 9.4 is edited, creating more pter and interesting
(randomized) patterns. Sound examples [S: 69] and [S: #@pdstrate.

Although these are interesting in their own way, they candmshined with the
adaptive process to create a large assortment of unuseeisffor example, sound
example [S: 72] is an adapted version of [S: 71]. The soundbieeraligned, almost
lighter in the adapted version, although the pitch glidethim guitar may be dis-
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concerting. Sound example [S: 73] repeats the same pieassing two methods to
reduce the amount of pitch uncertainty: first by allowing¢havergence to complete
before outputting the notes, and then by disallowing adeptavhen notes cease to
sound. This technique is a template of many of the compositio Table 9.1.

9.6.1 A Wing

Wing Donevier[S: 85] is named after a fictional captain who fell at the siefe
Eriastur (itself a fictional medieval town). In 7/4 time,dlpiece began as a standard
MIDI drum file from Keyfax Software [W: 17] in their Bill Brufad collection. The
original is orchestrated solely for percussion and henaeigonal, that is, in no
particular key. It is recorded as a MIDI file, and so it is easyassign different
voices. A context consisting of all octaves of law (65.4 Hz) and all octaves of
low G (98 Hz) was used. The adaptive process moves the pitchebraftak so as
to maximize the instantaneous sensory consonance betieaurtrently sounding
notes and the immutable context.

The result is still atonal, but not overly dissonant. Eachtigal slice of time
is fairly consonant, although melodically (horizontallyere are many small ad-
justments. After adaptation, the MIDI file was reorchestatvith bass, synth,
and drums. The adaptation is allowed to converge compléteigre each note is
sounded, and no adaptation is done when note-off events.obagether, these
choices remove most of the wavering pitches.

The screen snapshot in Figure 9.6 shows the sequence wirfdawanbined
audio/MIDI editor'3 The numbers in the upper right represent measures. The small
icons just below represent miniaturized versions of the Miacks familiar from
Figs. 9.3 though 9.5 that contain MIDI performance data sehere labeled by their
instrumentation (bass, rhy1, rhy2, mel, etc.) and are setti¢ IAC (interapplica-
tion MIDI) # 1 bus and hence tAdaptun . The return path uses IAC # 2, and this
is record enabled so that the adapted data can be recordéattfoer editing and
compositing. The adapted data are also output to “Unitypfansre synthesizéer
Finally, the audio output of the synthesizer is sent to tiggtalito analog converters,
which, in this case, is a Tascam US-428.

9.6.2 An Anomaly

Local Anomaly[S: 79] is another piece in which all notes were retuned adalgt

beginning with a randomized MIDI drum file. The major timbee again guitar-
like (and hence primarily harmonic), but the use of the aakémt is quite different
from bothWing Donevierand the string quart&ecalled OpusBesides the obvious
rhythmic intensity of the piece, the notes come rapidly.gRais a note held much
longer than the time it takes it to converge to the nearby fraoasonant” interval.

13 The program iDigital Performerby Mark of the Unicorn [W: 20].
'* Created by Bitheadz software [W: 2].
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Fig. 9.6. This screen snapshot shows how MIDI information can be sent the sequencer
to Max (which is runningAdaptun ) and then returned to the sequencer for recording. The
adapted MIDI data are then output to a software synthesiztira the results can be heard.

As no context is used (and none of the ‘cures’ for waveringhas are invoked), the
pitch of each note is in constant motion.

Thus, one of the most prominent featured.otal Anomalyis the pitch slides,
which give an “elasticity” to the tuning analogous to a guttanding strings into
(or out of) tune. All glides inLocal Anomalyare created by the adaptive process,
which provides a kind of “intelligent” portamento that begiwhere commanded by
the performer (or MIDI file) and slides smoothly to a nearbyoshconsonant” set
of intervals. The tonal center Recalled Opusvas kept reasonably stable by careful
composition. A context was used to ensure stability\ifig Doneveir In contrast,
the pitches fall where they may inocal Anomalyand there is no clear notion of
musical “key.” It is easy to hear the wriggling about of theabcenter (if indeed
this piece can be said to have one). Perhaps it is betternk dfiit as having an
“average” tonality that happens to have a large variance.

Itis not easy to put these effects into words. The tonaliglirky and greasy, the
drums funky and somewhat dark. The piece has an energetor ndst. Even though
there are both (just) major and (just) minor thirds througthtihe primary perception
is of their wriggling around. There is a sense in whigltal Anomaly‘gets rid of
scales and chords,” bypassing any kind of fixed-pitch saaésnings. At the same
time, it is not without a considerable structure that is Hgguerceptible.

9.7 Toward an Aesthetic of Adaptation

The adaptive tuning strategy can be viewed as a generalizafijust intonation
in two respects. First, it is independent of the key of theimbeing played; that
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is, it automatically adjusts the intonation as the noteshef piece move through
various keys. This is done without any specifically “musidaiowledge such as

the local “key” of the music, although such knowledge can tepiporated in a

simple way via the context, the unheard drone. Second, wdtihaot stressed here,
the adaptive tuning strategy is applicable to inharmoniwelsas harmonic sounds.
This broadens the notion of just intonation to include adamglette of sounds. The
adaptation provides a kind of “intelligent” portamentotthegins where commanded
by the performer and slides smoothly to a nearby “most caasrset of intervals.

A shortcoming of the adaptive tuning approach is that sgnsmnsonance is not
a globally desirable property in music. Typically, a comgrostrives to move from
consonance to dissonance and back again, and so indisatév@pplication of the
algorithm may, at least in principle, lead to pieces that lagpropriate dissonances.
In practice, this may not be a large problem because it isy@wasy to increase
dissonance by increasing the complexity of the sound, famgte, by playing more
notes. Alternatively, the algorithm could be applied stabety to places where con-
sonance is most desired.

An extreme example occurs Maximum Dissonanc€S: 80], which, like its
name, reverses the effect of the algorithm so as to maximéber than minimize)
the sensory dissonance at each time instant. The piecelisdificult to listen to,
especially at first, although it has a certain rhythmic viyaEven with all of the dis-
sonance, it cannot be said to be truly unlistenable (likertisgnatched tuning/timbre
combinations in sound examples [S: 3] and [S: 5]). This idphdy because the dis-
sonance is not uniform; it increases and decreases withummber of notes. With
few notes, the algorithm can only increase the dissonanceh amount; with more
notes, the algorithm is able to increase the dissonancdisagtly.

Considered as a group, perhaps the most obvious feature afitiptively tuned
pieces in Table 9.1 is the pitch glides—rarely do notes sustéiéhout changing
pitch. A sensible strategy when orchestrating such a pete use timbres that fa-
miliarly bend and slide: for example, violin and fretless®aather than harpsichord
and piano. Another technique that is used extensively iselpieces is hocketing;
rather than playing a melodic passage with a single instntahsound, each note is
performed with a different soun¢hspective Liquencgind Aerophonious Intenin-
corporate extensive hocketing. Pitch instabilities are however, an intrinsic prop-
erty of the adaptive process, but rather a function of théiqudar program (i.e.,
Adaptun ) used to carry out the adaptation. For example, pitch glatesabsent
from Wing DonevierandPersistence of Time

The compositional technique of adaptive randomizatiorirsagith a pattern that
is random melodically and harmonically (although not rimitally). Complexity
can be added to the sequence in many ways: duplicating nodesfisetting them
in time or transposing in pitch, reversing patterns in tinamdomizing or inverting
pitches, quantizing, and so on. After orchestrating, soemebdance of tonal order
can be reimposed using the adaptive tuning. Full pieces eatobstructed by cut-
and-paste methods. Of course, more traditional compaositimethods may still be
applied.
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By functioning at the level of successions of partials (aod at the level of
notes), the sensory dissonance model does not deal dieithypitch, and hence
it does not address melody, or melodic consonance. RasctMfB:describes an
experiment in which:

Short musical fragments consisting of a melody part and alsypmous bass
part were mistuned in various ways and in various degreestuMiing was

applied to the harmonic intervals between simultaneouss¢on melody

and bass... The fragments were presented to musicallyettanbjects for
judgments of the perceived quality of intonation. Resuftsveed that the
melodic mistunings of the melody parts had the largest digtg effects on

the perceived quality of intonation...

Interpreting “quality of intonation” as roughly equivaldn melodic dissonance, this
suggests that the misalignment of the tones with the intéemaplate was more
important than the misalignment due to the dissonance legtwienultaneous tones.

Such observations suggest why attempts to retune piecke ocbtnmon practice
period into just intonation, adaptive tunings, or otheotietically ideal tunings may
faill® squeezing harmonies into just intonation requires thabdies be warped out
of tune. If the melodic dissonance described by Rasch ddesnhe harmonic disso-
nance, then the process of changing tunings may introdupedigsonance, albeit of
a different kind. This does not imply that it is impossible ¢afficult or undesirable)
to compose in these alternative tunings, nor does it suglgasthey are somehow
inferior; rather, it suggests that pieces may be more apjatey performed in the
tunings in which they were conceived.

9.8 Implementations and Variations

There are several ways that adaptive tunings can be added itecOrporated in) a
computer-based music environment. These include:

(i) Software to manipulate Standard MIDI Files (or the ealéwt). In such an im-
plementation, the musician or composer generates a SthvdB File (SMF).
The adaptive tuning algorithm is implemented as a softwesgnam that reads
the SMF, adapts the tuning of the notes as described abodeyres a mod-
ified SMF file that can subsequently be played via standarddsowdules or
manipulated further by the musician/composer in a sequgrogram.

(i) A stand-alone piece of hardware (or software to emutateh hardware) that
interrupts the flow of MIDI data from the controller (for isstce, the keyboard),
adapts the tuning, and outputs the modified notes.

5 The effort to improve Beethoven or Bach by retuning piecejsisb intonation produced
a sense that the music was “unpleasantly slimy” (to quoterggeBernard Shaw when
listening to Bach on Bosanquet's 53-tone per octave orgad(B]) or badly out of tune
due to the melodic distortions.
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(iif) The adaptive tuning strategy can be incorporatedatiyento the sound genera-
tion unit (the synthesizer or sampler).
(iv) Direct manipulation of digitized sound.

The software strategy (i) has the advantage that it may bplgiamd inexpen-
sively added to any computer-based electronic music systém disadvantage is
thatitis inherently not a real-time implementation. Onaétiger hand, both the stand-
alone approach (ii) and the built-in approach (iii) are ddpaf real time operation.
Adaptun isinthe second class. As the algorithm requires the spetthee sounds,
this must be input by the operator in both (i) and (ii). Of smyra frequency analysis
module could be added to the software/hardware, but thiddvaarease the com-
plexity. The built-in solution (iii) does not suffer from pof these complications (in-
deed, the synthesizer inherently “knows” the spectrum efsibund it is producing)
and is consequently preferred for MIDI implementationhaltgh it would clearly
require a commitment by musical equipment manufacturers.

The adaptive tuning can also be implemented in hardwareofoware to emu-
late such hardware) that directly manipulates digitizaghslb Such a device would
perform an appropriate analysis of the sound (a Fast Fourgrsform, wavelet de-
composition, or equivalent) to determine the current spettof the sound, run the
adaptive algorithm to modify the spectrum, and then rethenrhodified spectrum
to the time domain with an inverse transform. The deviceatel operated off-line
or in real time if sufficient computing resources were degidtethe task. Such an
implementation is not, however, completely straightfaidvaét may be more of an
adaptive “timbre” algorithm than an adaptive “tuning.” $hg an exciting area for
future research.

Throughout Chaps. 8 and 9, the adaptive tuning algorithmblegs stated in
terms of an optimization problem based on dissonance cwsoleable by gradient
descent methods. Other algorithms are certainly posdtoleinstance, instead of
laboriously descending the error surface, an algorithmhinéxploit the fact that
the adaptation often converges to intervals that align #régls of simultaneously
sounding notes. An algorithm that operated by simply linipgthe partials would
have much the effect of the consonance-based adaptatibawinuch of the over-
head. More generally, other optimization criteria basedtber psychoacoustic mea-
sures of sound quality and solvable by other types of allgaitare also possible. For
example, incorporating a virtual pitch model or a model oskiag might allow the
algorithmto function in a wider range of situations. Indezsithe state of knowledge
of psychoacoustic phenomena increases, new methods dbtidaseem likely.

9.9 Summary

Just as the theory of four taste bud receptors cannot exjlaitypical diet of an

era or the intricacies of French cuisine, so the theorieg$ary dissonance cannot
explain the history of musical style or the intricacies of asterpiece. Even restrict-
ing attention to the realm of sensory dissonance, the ageaagunt of dissonance
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considered appropriate for a piece of music varies wideth sftyle, historical era,
instrumentation, and experience of the listener.

The intent ofAdaptun is to give the adventurous composer a new option in
terms of musical scale: one that is not constraiaguiori to a small set of pitches,
yet that retains some control over consonance and dissen@he incorporation of
the “context” feature helps to maintain a sense of melodisistency while allowing
the pitches to adapt to (nearly) optimal intervals.

This algorithm does not avoid the melodic artifacts asgediavith just intona-
tion, but it automates intonation decisions. Perhaps momoitantly, it can handle
sounds with inharmonic spectra, such as bells, which faflida conventional tuning
theories.
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The Gamelan

The gamelan “orchestras” of Central Java in Indonesia are
one of the great musical traditions. The gamelan consists of
a large family of inharmonic metallophones that are tuned
to either the five-notslendroor the seven-tonpelogscales.
Neither scale lies close to 12-tet. The inharmonic spectra o
certain instruments of the gamelan are related to the unusua
intervals of the pelog and slendro scales in much the same
way that the harmonic spectrum of instruments in the Western
tradition is related to the Western diatonic scale.

10.1 A Living Tradition

The gamelan plays many roles in traditional Javanese sodreim religion and
ceremony to education and entertainment. In recent yeaeserdings of gamelan
music have become available in the Wesirst impressions are often of an ener-
getic, strangely shimmering sound mass punctuated withvoddl gestures. The
exotically tuned ensemble plays phrases that repeat okowar, with variations
that slowly evolve through pieces of near symphonic lengjttheep gong punctuates
sections, and the music is driven forward by vigorous drungnaind dynamic rhyth-
mic articulations. Indeed, the wogamelancan be translated literally as “pounding
of a hammer?

The unique sounds are produced by an assortment of metaheptthat include
numerous gongs and xylophone or glockenspiel-like instnisof various sizes,
timbres, and tones. At first glance, thenangsandkenongsappear to be collections
of upside-down pots and pans hit with sticks, andgaenplayers seem to pound a
small collection of metal bars with hammers. As we will sés {s akin to viewing
a Stradivarius as a wooden box with strings. Gamelan ingtntsrare finely crafted,
carefully tuned, and are the result of a long cultural tiadithat values precision
and refinement in its music, instruments, and musicians.

! For instance, the excellent series from the World Music dipprincludesGamelan Gong
Kebyar of Eka CitdD: 18], Gender Wayang of Sukaw§ii: 19], theKIén&ngan Session of
the Solonese Gameldb: 25], Gamelan Gong Gede of the Batur Temjide 17], and the
Gamelan of CirebofD: 16]. Other recordings are available from the Library afrigress
(Music for the GodgdD: 29]), from CMP records Gamelan Batel Wayang Ramayana
[D: 15]), from Lyrichord (music of I. W. Sadra [D: 38]), anddfim NonesuchNlusic from
the Morning of the WorldD: 27].

2 gamelmeans “hammer,” anéan is a suffix meaning “action.”



192 10 The Gamelan

The first major study of the instruments, repertoire, antbhysof the gamelan
(“the result of twenty-eight years’ listening, collectirand reflecting”) was the land-
markMusic in JavgB: 90]. Kunst discusses the various instruments of the ¢eme
and the tuning systems and observes a difference in thailist@aesthetic between
the Javanese and the Western ear:

of necessity a virtue was born: this partial discrepancybeh vocally and
instrumentally produced tones has developed unmistalkatayan aesthetic
element... a play of tensions alternately arising and gieapng... these dis-
crepancies in intonation are to some extent satisfyinggd#vanese ear.

Kunst’s love of the music and the people is obvious, and halagé a number of
gamelan “themes” so that they would not be lost. Kunst offedére warning:

Once again foreign influences are affecting it [gamelan ojulsut this time
the interloper is... like a corrosive acid, like a transfusfrom a different
blood group, [which] attacks and destroys it in its profoesidessence...
one can almost watch—or rather hear—native music degemgcity by day.

Fortunately, this apocalyptic vision has failed to matéréa and gamelan music has
not only survived, but flourished.

There are many reasons why gamelan music challenges Wésteners. The
timbre of the instruments is unusually bright and harsh. Jtees and tunings are
unfamiliar. Both the tunings and the timbres are discusséhgth in later sections
because they are easily quantifiable. But there are alsoymdfdifferences in the
basic structure of the music. In tiBuide to the Gamelarsorrell [B: 177] describes
the Javanese concept of mmer melodyin the evocative passage:

the concept of an inner melody... is the common basis of alptrts in the
gamelan and yet which is not literally stated by any instmamRather, it is
in the minds of the musicians. It is therefore felt, or, one/may, internally
sung.

Thus, listening to and understanding the inner melody ofaalan piece is different
from listening to and understanding the outer melody of agyomy. In many tra-
ditional Western forms, the themes are stated, developebrestated. In contrast,
the gamelan performance presents many different ways gligisig the same un-
derlying theme. An analogy may be fruitful. A syncopatedthmy has an underlying
pulse. Although this pulse may never be stated literalffprins an essential part of
the listening experience. To truly “understand” the syrated rhythm, it is necessary
to “hear” something that is not there!

10.2 An Unwitting Ethnomusicologist

There are as many different gamelan tunings as there arelay@srgecause instru-
ments in the Indonesian musical tradition are not all tured $ingle standard ref-

3 A modern investigation of the perception of music among tladir@se can be found in
[B: 82].
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erence scale. Rather, each instrument is tuned and timladjiisted to work in its
own orchestral context; each instrument is created for amins with a single en-
semble. Each gamelan is tuned to its own variant of pelogesrdsb. Every kettle
of each bonang, every key of each saron, is hand shaped witmbaand file. The
resultis that a piece played on one gamelan inevitablymdiffeintonation, tone, and
feel from the same piece played on another gamelan.

This presents an intriguing challenge. Recall that Wesd@tonic scales are in-
timately connected fosounds with harmonic spectra. Perhaps a similar relatipnsh
exists between the pelog and slendro scales and the inharsmmds of the saron,
bonang, gender, or gong. Further, perhaps the differeretasebn the tunings of var-
ious gamelans can be explained in terms of the differendesele the spectra of the
various instruments.

An obvious starting point is to search the literature, andawelate the spectra
of the gamelan instruments with the tunings of the gameliaora fvhich they come.
Although several important studies over the years have rdeated the variation
in the tunings of the gamelans, only one published articteli®] has detailed the
spectra of any gamelan instruments, and this was not a ctengtiedy, even of the
one gamelan. Of the metallophones, only jtgongan(a kind of Balinese gender)
and the gong are studied. Clearly, more data are required.

Accordingly, | traveled to Indonesia between August and ébgmer 1995. A
portable DAT machine and microphormade it possible to carry everything needed
for full fidelity recordings, which could be analyzed backle lab. Gathering more
data (i.e., recording each key of each instrument in the tamhevas not straight-
forward. Although equipped for the technological task, kwaderprepared for the
social and cultural aspects. A few months of studyBahasa Indonesiéhe lan-
guage) was adequate for basic survival, but it was not entagbnduct genuine
interviews. Reading several boSksn ethnomusicology (in general) and Indonesia
(in particular) readied me for some of the issues | would wumtf but it was not
enough to provide ready answers.

In particular, it was difficult to approach gamelan masteithwny request, in
part because of the oddity of the task (usually people aremnderested in gamelan
performance and music than in the instruments), in partuscaf language dif-
ficulties, and in part because of property issues. Gamelanseften owned by the
village, and it is considered improper for individuals tefirfrom public resources.
This was further complicated by the diversity of Indonesaniety; each region has
its own customs and sense of propriety. Offering the gameiaster a small gift
earmarked for the gamelan (to help with maintenance andaglaften seemed to
be appropriate.

* In the jargon of the previous chapters, “related to.”

5 Along with rechargeable batteries, a copymferyday Indonesigrand a backpack of es-
sentials.

% Including the excellent general works by Merriam [B: 112faxettl [B: 121], and books
specifically about the gamelan such as those by Kunst [B:3f)fell [B: 177], and Tenzer
[B: 193].
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Eventually, | met Basuki Rachmanto at the University of GadMada in Yo-
gyakarta, who became interested in the project, and helpedafid record eight
complete (pelog and slendro) gamelans. Basuki also intediGunawen Widiyanto,
the son of a respected gamelan-smith in Surakarta. Gunawargad to record nine
complete gamelans in the Surakarta area and helped me toiéuteseveral game-
lan makers and tuners. Without the generous help of BasukGamawen, it would
have taken far longer to have accomplished far less. Iniadditam grateful to Ben
Suharto of the ISI in Yogyakarta, and to Deni Hermawan of th€ISn Bandung for
allowing me to record their “performance” gamelans.

10.3 The Instruments

Most of the idiophones of the gamelan are percussion ingnisrmade from metal.
They are struck with a variety of mallets that range from haosd to woolen ball
heads; harder mallets give a brighter tone with more highigday and softer mal-
lets return a more muted sound. Names of the instrumentshyarggion, and the
names used here (gong, gender, saron, bonang, kenong, @naba common in
the Central Javan cities of Yogyakarta and Surakarta.

Most of the instruments consist of a set of keys, kettlesetislof definite shape,
arranged on a wooden frame so that they may be readily stryitkebperformer.
Each key is hand forged in a charcoal furnace. This is a slaveling process; a crew
of three or four workers can beat a hot slab of metal into a hdamnl shape over
the course of several hout®etailed shaping is done by hammer once it has cooled,
and then the keys are polished. A complete set of keys is tapeke master tuner
using a hand file, although the final tuning is not done unitivéthe instruments are
assembled.

Like most percussion instruments, the metallophones aféneelan have inhar-
monic spectra. Each kind of instrument has its own idiosysiess, and the remainder
of this section looks at each of the instruments in turn. Athgles in this chapter
are from either the Gamelan Swastigithahich is under the capable direction of
Suprapto Atmosutijo, or from Gamelan Kyai Kaduk Manis, wiweas built for Pak
Cokro (K.R.T. Wasitodiningrat), also of Yogyakarta. GaareKyai Kaduk Manis
was built in 1997, is in excellent condition, and hence is adgexample of a mod-
ern gamelan, although it was modeled after one of the pakatelzans in Surakarta.
Gamelan Swastigitha is considerably older, although iersainly post-World War
1.

10.3.1 Saron

Sarons are a kind of metal keyed xylophone. Each key is a ssdidngular chunk
of bronze whose top has been rounded slightly, as in Fig. K&ys are suspended

7 It takes 60 workers about 5 months to build a complete gamelan
8 Ngadinegawan MJ 3/122, Yogyakarta.
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above a trough-shaped frame on two metal pins. Sarons appadarge range of
sizes (and hence pitches), and each usually has betweemdsiirge keys.

Fig. 10.1.Keys of the saron and gender
act much like uniform metal bars, but
details of their shape and contour cause
important differences in the spectra of
the sound.

saron / gender

Sarons are usually played with an interesting two-handelhigue. First, the
wooden hammer strikes a key at an angle so that the mass oatheér does not
interfere with the resonance. The player then mutes the kthe thumb and fore-
finger of the free hand by pinching it. Thus, at each momeetptayer strikes a new
note while damping the old. Fast passages are played by twodi@) players hock-
eting on matched instruments, that is, alternating notagiredetermined way. The
saron often plays the main theme, although it can also bellaying a supporting
role by syncopating or duplicating the main themes. Its keparkling sound is one
of the most characteristic timbres of the gamelan.

The sound, and hence the spectrum of the saron, varies s@angaim gamelan
to gamelan, but the pitch is always determined by the fundéaheThe spectra ap-
pear to come in two basic varieties. The simpler kind is showfig. 10.2, which
plots the spectra of two typical saron keys from gamelan 8gitisa?® The top spec-
trum has partials af, 2.71f, and4.84f, and the bottom spectrum has partials at
f,2.62f,4.53f,4.83f, and5.91f. Over the whole set of instruments, four partials
appear consistently. The median of these values is

f, 2.76f, 4.72f, and5.92f

which may be taken as a kind of generic saron key for this gamé&bserve that this
is close to, but significantly different from, the spectrufao ideal bar. In particular,
the third and fourth partials of the ideal bar aréd f and8.9 f, and the Swastigitha
sarons are uniformly lower.

The second kind of saron spectrum is exemplified by the sarb@amelan Kyai
Kaduk Manis in Fig. 10.3, which have prominent partials at

£, 2.34f, 276 f, 4.75f, 5.08f, 5.91f, and at
£, 2.31f, 2.63f, 4.65f, 5.02f, 6.22.

Essentially, the partials near 2.7 and 4.8 have bifurcaidtia a pair occurs where
previously there was one. An idealized or generic versiothefsarons of Gamelan
Kyai Kaduk Manis is

? Except where explicitly stated, all spectra in this chaptere computed using a 32K FFT.
Each plot represents the behavior in the first 3/4 secondeo$dimple.
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Fig. 10.2.Spectra of two typical keys of a saron from gamelan Swak#ditom Yogya.

f, 2.39f, 2.78F, 4.75f, 5.08f, 5.96f.
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Fig. 10.3.Spectra of two typical keys of a saron from gamelan Kyai Kadiakis from Yogya.

The origin of the bifurcated partials so prominent in theogarof Kyai Kaduk
Manis is not obvious. Perhaps they are caused by some imgarihonuniformity)
in the brass, or perhaps from some accidental deviationysipal dimensions, but
these seem unlikely because the intervals between thegyai consistent across
the keys of all 11 sarons. Rather, it would appear that thibtté is intentional, that
the tuner chose to encourage these closely spaced rHbbiekeed, referring back
to the Swastigitha sarons, the higher of the two pairs aibleighey are prominent

1% perhaps it is inherent in the rounded shape of the saron keyssrhaps it is caused by
some careful sculpting of the physical contour of the kefydot instance, one side of the
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in the bottom spectrum, and the arrow in the upper spectrumtpto a small, but
observable bifurcated partial.

10.3.2 Gender

The gender is a metallophone with thin bronze keys (see FEid.) that are sus-
pended above tubular resonators, much like a vibraphoreeaifltolumn vibrates in
sympathy with certain partials, reinforcing the sound. Whéning a gamelan, the
gender is usually tuned first, and all other instrumentsuaned to the gender.

Genders are often played with soft disk-headed malletsidh a way as to para-
phrase and restate the melody. The padded mallet tendseta ginft, mellow sound.
As the instrument resounds for a long time, the player uguailltes old notes with
the heel of the hand while striking new notes. Larger (lowigched) genders play
slowly, and the smaller and higher pitched instruments nmooee rapidly.

The spectra of two typical gender hits are shown in Fig. 1Dhse have promi-
nent partials at

f, 2.01f, 2.57f, 4.05f, 4.8f, 6.27f, and
£, L9Tf, 2.78f, 4.49f, 5.33f, 6.97f

which can be interpreted as a metal bar (the partials at arhgéf and5.3f) or
as a modified saron bar (the partials at or rie@y and4.8 f) in conjunction with
harmonic partials at or nearf, 4 f, and7 f. This makes physical sense because the
gender is a metal bar. The harmonic patrtials are likely dubg¢aesonances of the
air column.

1063 1650
1262 | 2013

2000 3000 4000

frequency

0 1000

Fig. 10.4.Spectra of two typical gender hits.

key was slightly thinner than the other, then the two sideghinvibrate at slightly different
frequencies.
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In [B: 159], the resonances of four bars ofegongan(a large Balinese gender)
are found to be nearly identical to the resonances of an maPresumably, these
were measured without the air resonances, because thardniatrof the harmonic
partials that are so prominent in Fig. 10.4.

10.3.3 Bonang

A bonang usually consists of two tiers of bronze kettles hHeattle is shaped like
a broad-rimmed gong as in Fig. 10.5, and it is suspended agerdswnward on
two strings tied to a wooden frame. The player holds two hardpped mallets, and
strikes the protruding knobs on the top end. The kettles laeradso bonang are often
arranged antisymmetrically:

65321

12356

in the two ranks so that the performer can easily play (netave) pairs of notes.
The dots indicate notes in the octave above or below.

Fig. 10.5. The kettles of the bonang

and kenong are shaped similarly, but

the rim of the kenong is longer and the
_— knob—= sound generally sustains longer.

N/

rim
bonang

kenong

A typical pelog bonang is similarly arranged:

4653271
1723564

Kunst describes the musical function of the bonangs elatyien

[the bonangs] devote themselves to the paraphrasing ofahretieme. Now
they anticipate it, now they analyze it into smaller valued anitate it in
the octave. Then again, they syncopate it... then they fihepnelodic gaps
with their penetrating tinkling sound.

As the bonang has a unique bell-like shape, there is no ideahich it can be
compared. The spectrum of three different bonang kettles peominent partials at
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f, 1.58f, 3.84f, 3.92f
£, 1.52f, 3.41f, 3.9,
f, 1.46f, 1.58f, 3.4Tf, 3.71f, 4.12f, 4.49f

as shown in Fig. 10.6. The first two are typical and a good gebenang spectrum
is

£, 1.52f, 3.46f, 3.92.

Many of the bonang kettles also demonstrate the behavioifofchting partials
previously encountered in certain of the more complex s&ays. For instance, in
the lower spectrum in Fig. 10.6, the partiald at6 f and1.58 f might be interpreted
as children of the generic bonang partiallad2f, and those a8.47f and3.71f
might be derived from the generic partial3at6 f.

089 1090
239
396 2709

595

476
326 | 514 1209 1343
7 113\0\ //1462

0 1000

20IOO 30IOO 4000
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Fig. 10.6.Spectra of three typical bonang kettles.

The kenong is a kind of kettle with a larger rim that makes arcénd sustained
sound. It is often used to subdivide the long gong phrasessimialler pieces, and
hence it serves a primarily rhythmic function. Spectra & kienong are similar to
those of the bonang, despite the differences in shape.

10.3.4 Gong

Perhaps the most characteristic sound of the gamelan ity dark strokes of the
gong marking the end of each musical phrase. The largessgmamghave a diameter
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up to a meter, weigh 60 or more kilograms, and have a fundahfetjuency of
only 40 or 50 Hz. Gongs may come in a variety of shapes, and1Big. shows a
fairly common profile.

According to tradition, gongs are of divine origin, and thvegre used as a sig-
naling system among the Gods. Kunst [B: 90] reports that spongs are protected
by powerful beliefs; for instance, no European is allowetbiach the sacred gong
at Lodaya. “One civil servant, who ventured nevertheledsuah it, died soon after-
wards.”

Without a doubt, the acoustic behavior of gongs is commitatigure 10.8
shows the first four seconds of a gong stroke, divided into 82K second) seg-
ments. The first ten partials are at frequencies

90, 135, 151, 180, 241, 269, 314, 359, 538, 626
which is
f, LAYF, 1.6TF, 2f, 2.67f, 2.98f, 3.47f, 3.98f, 5.97f, 6.94f

for f = 90 Hz, the perceived pitch. All of these partials are integettiples of 15
Hz ! which is not directly perceptible. Equivalently, the “seaformed by these ten
partials (after reduction back into a single octave) is

1,4/3,3/2, 5/3, T/4, 2

which is a simple just pentatonic scale.

One interesting behavior is the rising and falling of pastes the sound evolves.
For instance, consider the partial at 626 Hz, which slowlyage in amplitude until
3 seconds, when it suddenly begins to regain prominenceldBiynthe partial at
495 Hz falls and then grows, Such energy exchanges give thggigocharacteristic
evolving timbre—as if the partials of the gong are smootkgasping up and down
the pentatonic scale.

Rossing and Shepherd [B: 159] suggest that the two prometatve partials
(at 90 and 180 Hz in this case) that determine the pitch arige fwo axisymmetric
modes of vibration and are tuned by careful control of thref the mass of the
dome to the total mass.

' Rameau [B: 145] would have found this remarkable.

Fig. 10.7.The giant gongs of the gamelan have a
rich deep sound that can last well over 30 sec-
onds. “The sound of the gong, beaten heavily,
rolls on its ponderous beats like the ocean tide.”
Quoted from Kunst [B: 90].
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time period 180
(seconds) 90

538 626

0-0.75

0.75-1.5

3.75-4.0

Fig. 10.8.Partials of the gong rise and
0 200 400 600 800 1000 1200 fall as time evolves. Curves show the
frequency spectrum for successive time periods.

10.3.5 Gambang

The gambang is essentially a Javanese xylophone. Threaoodtaves of wooden
keys lie on soft cushions that are mounted on a wooden fraheldwer keys tend
to be large and flat, and the higher keys are shorter and rodraesound is heavily
damped, more of a plink than a dong. The spectra of typicalbga strikes are
shown in Fig. 10.9. These are very close to the spectrum adeal bar, and hence
the gambang is best thought of in this way.

301
861 1628
2528
218 1147
595 1798
Fig. 10.9.0bserve how these two hits
of the gambang have spectra close to
that of an ideal bar. The top has par-
. L " . . . . . ials in the ratios 1, 2. 4, 8.4 an
1550 5630 3000 7600 tials in the ratios 1, 2.86, 5.4, 8.4 and

the bottom has partials in the ratios 1,
frequency 2.73,5.26, 8.3.
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10.3.6 Other Instruments

Thekendangs a full-bellied wooden drum, not dissimilar to a conga driine head
is traditionally made of buffalo skin that is stretched byams of rattan hoops. The
kendang player is, more than anyone else, the conductoeajamelan. Often, the
kendang signals impending changes by stylized rhythmicagges, and subtle hand
motions are used to indicate which parts are to be emphasized

Besides the fixed pitch instruments of a typical gamelarretiee instruments
that are often used in specific kinds of gamelan styles. Inesstyles, the theme is
played? by therebah a two-stringed bowed lute with a heart-shaped body. By its
nature, the rebab plays far more fluidly than the metallopBomhe strings are often
made from thin copper wire, and the bow is stretched taut loyfimgers of the right
hand, much like the Chineseghu There is no fingerboard as on a violin; rather, the
strings are stopped by pressure from the fingers alone. Bedhe bow is applied
near the bridge, the rebab has a more nasal quality thanalie.vihe spectrum of
the sound is primarily harmonic, as expected from a stririggisiument.

Thesulingis an aerophone, an end blown bamboo tube with tone holepeut a
propriately to sound in the pelog or the slendro scale. Aifoised to cross the
wedge-shaped sound hole by means of an ingenious bambothangncircles the
mouthpiece. It is thus as easy to blow as a Western recotdsraliso easy to bend
the pitches of notes by partially covering the holes, whibbwves the suling to imi-
tate the call of a bird or the inflections of a voice in its richfnamented parts. Like
most instruments based on the resonance of air columnspéogrsm is primarily
harmonic.

Finally, gamelan performances often include singing. Ty be during an in-
terpretation of thevayang kulit(shadow puppets), or it may represent a characters
voice in a dramatic stage performance or a popular show., §areelan music in-
cludes several families of inharmonic instruments, eacth wieir own character,
and yet retains a basic compatibility with harmonic instemts such as the rebab,
the suling, and the human voice.

10.4 Tuning the Gamelan

Gamelan tunings come in two flavors: the five-note slendraladeven-note pelog.
The earliest reported measurements of these tunings areKrmst [B: 90], who
observed that the interval between each note in a slend®isaaqual to 240 cents.
This implies that slendro is similar to 5-tet:

note: 6 1 2 3 5 6
cents: 240 240 240 240 240

The naming of notes is only partially numerical. In slendtere is no 4, and the
scale is often considered to start (and end) on 6.

2 Sometimes the rebab lags the “melody” (#aungan slightly, and sometimes it antici-
pates.
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Pelog, according to Kunst, is more complex, consisting eésaunequal divi-
sions of the octave:

note: 1 2 3 4 ) 6 7 1
cents: 120 150 270 150 115 165 250

Unfortunately, Kunst's tone measurements were conducsatjia monochord (a
stretched string, to which the desired tones are comparedwand so are of limited
accuracy. As more modern investigations show, the abovessage only part of the
story13

First, each gamelan is tuned differently. Hence, the pefagne gamelan may
differ substantially from the pelog of another. Secondinge tend not to have exact
2:1 octaves. Rather, the octaves can be either stretchigttglarger than 2:1) or
compressed (slightly smaller). Third, each “octave” of anglan may differ from
other “octaves” of the same gamelan. And fourth, there igllsgsome note that is
common between the slendro and pelog scales of a given gana¢flaough match-
ing notes differ from gamelan to gamelan.

An extensive set of measurements is carried otfione Measurements of Out-
standing Javanese Gamelans in Yogyakarta and Sural@rti90], which gives the
tunings of 70 gamelan'$. The measurements were taken using an analog electronic
system with an accuracy of about 1 Hz. The technique reqthissall higher par-
tials be filtered out, and so only the fundamentals are regoithis is completely
adequate for measuring the tunings, because the pitché® ahétallophones are
determined by the fundamentals. Unfortunately, it meaasittiormation about the
timbre (spectra) of the instruments has been lost.

Kunst measured the tuning of one saron in each gamelan, araghebated from
that to the tuning of the whole gamelan. This was unfortufatwo reasons. First,
tunings may differ somewhat depending on the register.i8kdéunst failed to ob-
serve that the tunings were not genuinely octave basednBtarice, the notes 6 and
D:6 (or 6 and 6) need not be in an exact 2:1 ratio. This latter fact ésafrthe most
remarkable aspects of the gamelan tunings, at least frorodta&o-centric West-
ern viewpoint. The octave stretching (and compressing)riplya demonstrated in
[B: 190], and pseudo-octaves ranging from 1191 to 1232 aametseported®

Another striking aspect of the data in [B: 190] is the accyrtaowhich gamelans
are tuned. For instance, of the 11 instruments tuned to gitichthe fifth register
of Gamelan Kyahi Kanyutmesem (Table 3 of [B: 190]), all ar¢hivi 3 Hz of 582.
Eight are within 1 Hz of 580. It is therefore not a tenable fosithat gamelan oc-
taves are stretched or compressed by accident, or by ityatbitiune the instruments
accurately enough. Similarly, the differences in tuningneen various gamelans

'3 Kunst also offers an explanation for the tunings of the gamigl terms of von Hornbostel's
theory of a cycle of “blown” (compressed) fifths.

1 QOriginally published in Indonesian in 1972, this book hasrbeecently translated into
English.

!5 Carterette [B: 26] reanalyzes the data from [B: 190] and diess the stretching of the
scales concretely by finding the best exponential fit.
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are far greater than the variation within gamelans. Theetsof gamelan tunings is
intentional.

10.4.1 A Tale of Two Gamelans

This section examines the tunings of Gamelan Swastigith&amelan Kyai Kaduk
Manis in detail. The slendro tuning of Gamelan Swastigithaliown in Table L.2
on p. 362, where the calculation of the fundamental of eagtikaccurate to about
1 Hz. With the exception of the gambatfythe tuning is extremely consistent. Dif-
ferent instruments in the same column have keys at the sate pnd these rarely
differ by more than 1 or 2 Hz. For example, the six metallopgsat note 6 in register
Il are all between 471 and 472 Hz.

The last row of the table shows the median values within eatdmm, and this
represents an idealized tuning for this gamelan. Tramgjatiese values into cents
and arranging by register shows the internal structureisfsflendro scale:

Gamelan Swastigitha: Slendro
register intervals “octave”
| 252 240 244 244 239 1219
I 233 249 243 235 246 1206
I 235 248 238 252 237 1210

average240 246 242 241 241 1210

Each octave is stretched by an average of 10 cents. The scal@arkably uniform;
the mean difference of this scale from 5-tet is 2 cents, aadrtaximum error is 6.
To place this in perspective, consider the just major scilable 6.1 (p. 97) and its
approximation by 12-tet scale steps. The mean differentedam these two is 8.8
cents, and the largest error is 16 cents.

Similarly, the slendro tuning of Kyai Kaduk Manis is giverfiable L.3 on p. 362.
Reformatting this into cents gives:

Gamelan Kyai Kaduk Manis: Slendro
register intervals “octave”
| 231 223 239 247 253 1193
Il 237 237 238 234 250 1196
I 243 239 225 250 242 1199

average237 233 234 244 248 1196

Again, the scale is very close to 5-tet (mean difference®tBnts, maximum differ-
ence eight cents), but the octaves of this tuning are corspdeslightly. All of these
values fall well within the ranges observed in [B: 190].

Pelog tunings for the gamelans are given in Tables L.4 andh.pp. 363 and
364. Rearranging the data gives:

16 1t may be that the gambang is harder to tune than the othesibef its short envelope.
It may also be that the wood becomes nicked, scratched, andetefar more easily than
the metallophones.
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Gamelan Swastigitha: Pelog
register intervals “octave”
| 100 145 301 121 99 162 261 1189
Il 133 153 275 117 106 181 234 1199
MM 123166 269 119 119 173 238 1207

averagel 19 155 282 119 108 172 244 1199

and
Gamelan Kyai Kaduk Manis: Pelog

register intervals “octave”
| 166 161 267 119 119 171 237 1240
I 147145 274 115 104 197 209 1191
I 158 154 258 96 154 180 206 1206
averagel 57 153 266 110 126 183 217 1212

Obviously, pelog is not an equal-tempered scale. Surjodiai et al. [B: 190] aver-
age the tunings from thirty pelog gamelans to obtain

120, 138, 281, 136, 110, 158, 263

but they are clear to state that this “does not mean the bésnbuthe average.”
In fact, a general pattern for pelog scales is

S1, Se, L1, S3, Sa, S5, Lo,

where thesS; represent small intervals and tlig represent large intervaté. The
actual values of thé; and I.; vary considerably among gamelans and even within
the same gamelan, so this pattern cannot be taken toollteral

10.4.2 Conversations about Tuning

Why is your gamelan tuned this way®hile traveling through Indonesia, | asked
this question many times. People who tune gamelans, thos@lai, and those who
build them were often willing to comment, and their answensged from practi-
cal tuning advice to mystical explanations, from detailéstdrical justifications to
friendly ironic smiles that meant “what a silly question.”

Before describing the responses, consider the questiceskéd why the pi-
ano is tuned as it is, perhaps you would describe the hisiguimgression from
Pythagorean to equal temperaments, perhaps comment hoet 4ews modula-
tion through all of the keys, perhaps describe how the majalesoriginates from a
juxtaposition of certain major triads, as an approximatmthe harmonic series, or
as a conjunction of tetrachord&Similarly, it would be unreasonable to expect any
kind of unanimity of answers about gamelan tuning.

' This provides an interesting inversion of the diatonic scatlefined by
L L, S L L L S.

'8 If you were reading this book, you might comment how 12-tedrisapproximation to a
scale related to sounds with a harmonic spectrum.
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The most common answer was to name a gamelan that had beeasuaddn-
ing reference, reflecting a common practice for the initialing of the gender. For
instance, Pak Cokro, the master of Gamelan Kyai Kaduk Maaig, that it was ref-
erenced to a respected gamelan at the palace in Surakar@nd¢ient times it was
necessary to tune the gender right in the palace,” said PakoCthut in modern
times most people use a tape recorder.” A gamelan by Siswarsolftwas similarly
referenced to the gamelan at the National Radio Stafland a gamelan of Mulgo
Samsiy3! was referenced to a gamelan at the University in YogyaKartulgo
Samsiyo uses an electronic tuning device to tune the geriéddirthe others are the
same as the genders,” he said.

Suhirdjan?® a gamelan maker and tuner in Yogyakarta, described thegymor
cedure. “You pick a scale and then tune the gender to that.sthakn all the other
instruments are fit to the gender.” | asked how the initialescachosen. “Just tune
until it sounds right,” he said. This sentiment was echoednfare poetically by Pur-
wardjito?4 an instructor at the Arts College in Surakarta, “Gamelarstaned to
nature. In the west you tune with your mind. In Indonesia, westwith the heart.”

Both Suhirdjan and Purwardjito are proficient with the teghes of tuning. Each
described in detail the parts of the saron key that must tapedrto raise or lower
the pitch, and these accord well with techniques used tosxtylophone keyg® The
bonang family is trickier, but both agreed that filing frone thutside of the rim tends
to lower the pitch, and filing the inside has the oppositectffeiling the knob on the
outside also raises the pitch. The greatest factor, howesvtre angle marked in
Fig. 10.5; smaller angles correspond to lower pitches, argel angles correspond
to high pitches. “This should only be changed in the gongofiggtsince it is dan-
gerous to hammer a bronze kettle—it might crack.” Purwardjpntinues, “It's also
important that the walls be uniform. When the thickness sven, the sound damps
out much more quickly. We say the sound is drowning in watéahgs are hard to
tune. “You never know which way the pitch is going to go wher yiit or file it,”
says Suhirdjan, “Each gong has its own personality.”

Neither tuner uses beats when he tunes, although both arawaek of their ex-
istence. Towards the end of the interviews, | asked “a caraf#d question.” Grab-
bing a bonang, | placed my hand so as to damp out all but theafaadtal. After |
hitit, | whistled the pitch of the fundamental. | then shdftine position of my hand
so as to damp out all but the partial at aboutf, and then highlighted the pitch of
this partiaf® by whistling. There were two kinds of reactions. Some of tiferimers,
like Suhirdjan, denied that there were two different pigtehear both as the same

% Kaplingan Jatiteken Rt. 04/V. (Timor Bengawan Solo) Ds. amdojolaban Skh
Surakarta.

*° RRI, Surakarta.

21 Dk. Gendengan Rt. 1/1V. Ds. Wirun Mojolaban, Sukoharjcedat

22 |SI, Yogyakarta.

2% Condronegaran Mj. 1/951, Gedong Kiwo, Yogyakarta.

24 STSI Surakarta. Jur-Karawitan, Kentingan Jebres.

2% See, for instance, [B: 124].

26 Which to my ear was now the dominant sound.
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pitch... or as different parts of the same pitch,” he saitls flke when you hit the

same kettle softly, it is the same pitch as when you hit it hd@ltey are the same
pitch, but different.” Clearly, Suhirdjan is listening ftically. Very likely he tunes

in a holistic way as well.

Purwardjito’s reaction was different. First he laughedeifthe said, “Ah, | see.
You mean the supportiggtone... There are many kinds of tuning. There is the tuning
in the furnace, where you determine the shape. There is théuimng with file and
hammer. When you tune the gender [to the reference scalehnly pay attention to
the pitch. But when you tune the bonang, the kenong, or thgggou pay attention
to the supportingtones.” This kind of attention is analgtlistening, and presumably
Purwardjito tunes analytically as well.

10.5 Spectrum and Tuning

Just as Western theoreticians do not generally think ingerficorrelating the spec-
trum of an instrument with its tuning, Indonesian gamelarets are unlikely to have
developed their scales with a detailed awareness of thérapEcaheir instruments.
Rather, they used their ears to create compatible scalesstndments.

A key tool in relating harmonic sounds to diatonic (just)lesas the dissonance
curve. The partials of the sound are specified, and then ledescale is defined by
the minima of the dissonance curve. Although gamelan tureersune with remark-
able accuracy, the number of different partials they cambbl control is limited,
usually only two to fou® Such sparse spectra lead to dissonance curves with only a
few widely spaced minima, not enough to explain any of thamxscales. Thus, the
situation for the gamelan is a bit more complex, becausengesinstrument has the
appropriate spectrum.

One clue to the resolution of this dilemma is in the first quiat¢his chapter
where Kunst spoke of the “discrepancy” between the vocaliastiumental tones
of the gamelan. Another clue is that gamelan music includesral kinds of inhar-
monic instruments, and yet it retains compatibility withrianic instruments such
as the rebab, suling, and the human voice. Thus, gamelagsscah be viewed in
terms of the spectra of two different instruments. That &thtpelog and slendro
scales can be viewed as minima of the dissonance €ugenerated by an inhar-
monic instrument in combination with a harmonic sound.

10.5.1 Slendro

Slendro is simpler than pelog both because it contains fewtrs and because it
varies less from gamelan to gamelan. A generic bonang wittafsatf, 1.52f, 3.46 f, 3.92f

27 Gunawen, who was translating the conversation, conferiéid Rurwardjito for several
moments, searching for the right word, eventually setttingsupporting.”

28 Usually only two to four partials are at consistent inteswhiroughout an instrument.

2% The section “Dissonance Curves for Multiple Spectra” in¢hapter “Related Spectra and
Scales” details how such dissonance curves are drawn.
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was experimentally derived in the previous sections. Dngwhe dissonance curve
for this spectrumF' in combination with a harmonic spectrué with partials at
g, 29, 3g, 4g gives the dissonance cuffef Fig. 10.10.

5-tet scale steps

sensory
dissonance

20198 yg5g 132 102 U131 173

Fig. 10.10.SoundsF" (a generic bonang) and (a harmonic sound with four partials) gen-
erate a dissonance curve with many minima close to the stepdeat, which is shown for
comparison.

Observe that many of the minima of this curve occur at or vearisteps of the
5-tet scale, which are themselves very near the steps afthgiendro tunings. Thus,
it is reasonable to interpret slendro tunings using the gammeiples as were used
to derive the just scales as a basis of Western harmonic muodact, the deviation
of slendro from 5-tet (and from the minima of the dissonangee of Fig. 10.10) is
smallef! than is the deviation of the just scale from 12-tet (and fromminima of
the dissonance curve for harmonic sounds). In essencehebeytprovides a better
explanation for the slendro tunings than it does for Westienings.

Besides the coincidence of the minima with scale stepsetam two notable
features of this curve. First, there are three minima vesgeto the octave: at 1.96,
1.98, and 2.0. This variation in minima of the dissonanceemear the octave mir-
rors the variation in “octaves” of the slendro scales, anday provide a hint as to
why there is no single fixed octave in the slendro world. Sdcolserve the mini-
mum at 1.02. With a fundamental of 100 Hz, this minimum wouwdw at 102 Hz,
giving a beat rate of 2 per second. At a fundamental of 500 g nbinimum would
occur at 510 Hz, with a beat rate of 10 Hz. This may be a hint fise@rigin of the
aesthetic of beats that the gamelan is famous for.

One objection to this analysis is that some arbitrary cloare made. For in-
stance, why was; chosen to have four partials? Why not more? Why assume all
partials are of equal importance (by assuming equal ang@g)? Certainly, the par-
ticular values were chosen so that Fig. 10.10 was clear. tHeless, as in all dis-
sonance curves, the fundamental features (in this casaliimenent of the minima
with steps of the 5-tet scale) are relatively invariant t@Brchanges in the assump-
tions. For instance, dropping a partial frathdoes not change any of the minima.

30 Al partials were assumed of equal magnitude.
1 Both in average and in maximum error.
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Adding a partial to7 causes another (extraneous) minimum to occur at 1.44. Delet
ing the partial at 3.92 fronF' causes the minima at 1.02 and 1.96 to disappear.
Changing the amplitudes to more closely match the actuatispenly changes the
height of the various minima, not their location. Indee, fimdamental features are
robust.

10.5.2 Pelog

The pelog scale of one gamelan may differ substantially ftoenpelog of another.
Thus, pelog is not as easily explained as slendro, whichddoaikeasonably approx-
imated by 5-tet.

One approach that appears fruitful is to combine the spectiithe saron with
a harmonic spectrum, in much the same way that slendro wasaged as a com-
bination of the bonang and a harmonic sound. To get a closehnimtween the
minima of the dissonance curve and the scale, however, ibti€mough to use a
saron averaged over all of the gamelans. Rather, the speofrthe sarons actually
used in the gamelan must be employed. For instance, a tyg@oah from gamelan
Swastigitha was given in previous sectionsfa®.76 f, 4.72f, 5.92f. Drawing the
dissonance curve for thig along with a harmonic; containing five partials gives
the dissonance curve of Fig. 10.11. Unlike the slendro scally half of this curve
contains scale steps of the desired scale, so only thistetiiawn. Observe the close
relation between the minima of the curve and the scale sfape &wastigitha pelog
scale.

sensory
dissonance

ratio 1.0 1.18 1.38 1.48 1.57 1.77 1.98
cents O 289 5568 674 786 988 1176
pelog 0 119 274 556 675 783 955 1199

Fig. 10.11.Dissonance curve generated by the spectrum of the Swhstiggiron combined
with a harmonic sound has minima near many of the scale stdips Swastigitha pelog scale.

Although the first step of the scale is missing from the dissae curve, the oth-
ers are clearly present. Some of the scale steps are notdlayactly, for instance,
the second scale step is 289 cents on the curve but is averag@éd for the gamelan.
Actual values over the three octaves of the gamelan are 365a2d 289, so the 289
is actually reasonable. The largest discrepancies ocdheilast two steps. The next
to last step is the only one that occurs on a broad minimumdthers all occur at
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the sharp, well-defined kind), and so it is not surprising thé value would have
the largest variance. Indeed, the value of this step vasigsdre than 40 cents over
the three octaves of the gamelan. The last step (near theepasainderstandable by
the same mechanism as in the slendro scales. Looking oveuhible curve (and not
just this half), there are minima at 1.98, 2.0, and 2.14, hedhree actual octaves of
the gamelan occur at 1.98, 1.99, and 2.01. Again, this magteepreted in terms of
the stretching and/or compressing of the octaves. Ceytdins reasonable that the
actual scales used should reflect the uncertainty of thiplant of the “octave.”

The sarons of Gamelan Kyai Kaduk Manis have somewhat morglesrspec-
tra, and the generic saron with partials at

£, 2.39f, 2.78f, 4.75f, 5.08f, 5.96f

can be combined with a soudéwith five harmonics to give the dissonance curve of
Fig. 10.12. This displays the same qualitative featuresapttevious figure: The first
scale step is missing, and the seventh step (the octave} mmpletely certairi?

By a numerical coincidence, the next to last step is verye;lbat it again falls on a
broad minimum and the exact value cannot be taken too séri@serall, however,
the match between the minima of the dissonance curve andehsured values are
good.

sensory
dissonance

ratio 1 1.19 1.39 149158 1.78 1.98
cents 0 306 571 689 794 1000 1187
pelog 0 157 310 576 686 812 995 1212

Fig. 10.12 Dissonance curve generated by the spectrum of the genesits&Gamelan Kyai
Kaduk Manis combined with a harmonic sound has minima nearyréthe scale steps of
the Kyai Kaduk Manis pelog scale.

This does not imply that gamelan tuners actively listen & phartials of their
instruments and sculpt them consciously so as to match #wrem and the scale.
Gamelan tuners view their task much differently; as a cytlistening and filing that
repeats until the gamelan “sounds right.” Nonethelessgigmtuners like Suhirdjan,
while listening holistically, do manipulate the partiatsthey tune. They do so in an
intuitive way that is the result of a long period of appreesiip, considerable skill
in the techniques of tuning, and a deep insight into the wayghmelans “should”

32 There are again three “octaves” in the full curve. These pat.98, 1.99, and 2.09.
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sound. Tuners like Purwardijito, by listening to the “sugp” tones as he tunes,
may be listening and tuning more analytically. Purwardfiges himself as tuning
“from the heart.” | believe him.

10.6 Summary

A few general observations:

() Inalmost all cases, the lowest spectral peak is the &irdigs reasonable to call
this lowest spectral peak the “fundamental,” because esponds closely to its
pitch.

(i) The gamelan orchestras are “in-tune” with themselwahe sense that whenever
two instruments occupy the same “note” of the scale, thedorehtals are rarely
more than a few Hertz apart.

(iii) The relative amplitudes of the partials are heavilypdedent on the angle, po-
sition, and force of the strike. The frequency of the pastial(comparatively)
insensitive to the excitation.

(iv) The slendro tunings are very close to 5-tet, althoughdbtave (or more prop-
erly, the pseudo-octave) of the scales are often slighttycted or compressed
from a perfect 2:1 octave.

(v) There are two classes of metallophones that are simglaginto understand:
the bar-shaped instruments (saron and gender) and the-kbttped instruments
(bonang and kenong). The acoustic behavior of the gongshwhivery com-
plicated, is an area for further research.

(vi) The spectra of the bar-like instruments of the gamelidfierdfrom the theoreti-
cally ideal bar. The differences are consistent enough tmhsidered purpose-
ful.

(vii) The temporal evolution of the spectra of all bar-likesiruments is simple... all
partials decay. The higher partials decay faster.

(viii) There is no simple theoretical shape to which the spau of the kettle instru-
ments can be compared. The partials of the keys are cornsasteiss each game-
lan.

(ixX) The temporal evolution of the kettle spectra is more ptex than that of the
bar instruments. The cluster of high partials dies awaylduievhereas the par-
tials nearl.5f grow (with respect to the fundamental) as time evolves, inyma
cases becoming the dominant (largest) partial and the mastipent part of the
sound.

The method of dissonance curves can be used to correlatpebtra of instru-
ments of the gamelan with the slendro and pelog scales in tigctvay that they
can be used to correlate harmonic instruments with certaist&h scales. The slen-
dro scale can be viewed as a result of the spectrum of the dnacombination
with a harmonic sound, whereas the pelog scale can be (glighs surely) viewed
as resulting from a combination of the spectrum of the sanshasharmonic sound.
Thus, gamelan scales exploit the unique features of thdarspetthe inharmonic
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instruments of which they are composed, and yet retain & leasnpatibility with
harmonic sounds like the voice.
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Consonance-Based Musical Analysis

The measurement of (sensory) consonance and dissonance
is applied to the analysis of music usidgssonance scores
Comparisons with a traditional score-based analysis of a
Scarlatti sonata show how the contour and variance of the
dissonance score can be used to concretely describe the
evolution of dissonance over time. Dissonance scores can
also be applied in situations where no musical score exists,
and two examples are given: a xenharmonic piece by Carlos
and a Balinese gamelan performance. Another application,
to historical musicology, attempts to reconstruct profeabl
tunings used by Scarlatti from an analysis of his extant work

11.1 A Dissonance “Score”

There are many ways to analyze a piece of music. Approaclbsdim the chord

grammars and thematic processes of functional harmony Bssian [B: 137], the

harmonic and melodic tensions of Hindemith [B: 72], the hamin and intervallic

series of Schoenberg [B: 164], or in terms of the harmonicionoand structural

hierarchy of Schenker [B: 163]. In most such musical analyffee discussion of
(functional) consonance and dissonance is based direttiigeoscore, by an exam-
ination of the intervals, the harmonic context, and the tonation. This chapter

introduces a way to explore the sensory consonance of a piesasic by calculat-

ing the performed dissonance at each time instant. Thetrissallgraph called the
dissonance scorthat shows how dissonance changes throughout the pieciigithe
from consonance to dissonance (and back again) is diresfayed.

Consonance and dissonance are only one aspect of harmanl, igftself only
one part of a complete analysis that must include melody ayithm. Furthermore,
sensory consonance and dissonance are not identical todieetraditional func-
tional consonance and dissonance, and hence the dissos@reemust be inter-
preted carefully. Nonetheless, the dissonance score abt@mpf conveying useful
information that cannot be obtained in other ways. For im=ta different perfor-
mances of the same piece differ by virtue of the instrumesésipidiosyncrasies
of the musicians, and of the acoustic space in which the padoce occurs. Dis-
sonance scores reflect these differences and allow a caupanetween various
performances of the same piece. Dissonance scores careatsavin for music for
which no musical score exists, and hence, they are appidabh wider range of
musics than those based on a formal score.
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11.1.1 Drawing Dissonance Scores

Suppose that a musical piece has been recorded and digifizedpiece is parti-
tioned into small segments, and the sensory dissonance eétimd in each segment
is calculated by the techniques of the previous chapters.digsonance score plots
these values over time. Details are shown in Fig. 11.1.

waveform windowed spectrum line spectrum

waveform

N J frequency fifyfy

frequency

" Peak Dissonance
4{ Window ’—{ FFT Detection Calculation

magnitude

magnitude

Fig. 11.1.Dissonance scores are calculated from a musical perforenaynavindowing, ap-
plying an FFT, simplifying to a line spectrum, calculatitngtdissonance between all pairs of
partials in the line spectrum, and then summing.

For example, one composer known for his innovative use afotiance is the
eighteenth century harpsichordist Domenico Scarlat86d 757). Claude Roland-
Manuel, in the liner notes to [D: 42], comments:

Scarlatti's audaciously original harmonies, and his amzturas—clusters
and blocks of chords inherited from the Spanish guitarngkdissonance
almost to its ultimate limits...

Whether “ultimate” or not, there is no doubt that Scarlatsionatas were innovative
in both their harmonic motion and their use of dissonanceyTirovide an interest-
ing case study for the use of dissonance scores.

Figure 11.2 shows four versions of the dissonance scorehiofitst half (40
measures) of Scarlatti's son&at&380 in £ major. In all cases, the horizontal axis
represents time, which is indicated in measures by the nisvdimve the curves,
whereas the vertical axis is the calculdtesgnsory dissonance. The top score was
calculated from a standard MIDI file, assuming a single ided harpsichord timbre
for each note. Data for the other three performances wewgradat by direct digital
transfer from harpsichord performances on CD by [D: 30],32}, and [D: 42] using
the technique of Fig. 11.1.

For the Scarlatti sonata, the data were partitionedinto 8 K segments and the
FFT of each segment was calculated. The most significantrapéequencies (and

! The prefix K stands for the harpsichordist Ralph Kirkpatrialthor of the standard catalog
of Scarlatti's sonatas.

2 In each curve, the point of maximum dissonance is normatizeahity.
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Fig. 11.2.Dissonance scores for several harpsichord performansaofatti’'s sonata K380.
Numbers indicate measures.

their magnitudes) were then used to calculate the disserareach segmenrtEach
plotted point represents about 0.2 seconds, and the dakeatlines are a moving
average of the dissonance values over 10 points, or abogbBde It is easy to plot
the curves. But what do they mean?

11.1.2 Interpreting Dissonance Scores

To interpret the dissonance scores, it will help to corestiem with other, more
traditional kinds of musical analysis. Figure 11.3 prese¢he musical score of the
first 40 measures of Scarlatti’s sonata K380. The piece begith four repetitions
(with slight variations in register and dynamics) of @/ pattern, each ending in a
trilled open fifth. These four repetitions appear in eachhefdissonance scores as
the first four little hills. In the idealized MIDI performaacthe first pair of hillocks
are identical and the second pair are identical, but lafj@s reflects the fact that
lower octaves have greater sensory dissonance than Hitearsures 9 to 12 consist
of descending runs that outling 7, V. In the idealized performance, this is a short

® This simplification to the “most important” frequency conmgmts is not completely
straightforward. An algorithm is discussed in Appendix @t&lls of the calculations are
given in Appendix E in equation E.6.

* This is a direct result of the widening of the sine wave dissme curves at lower frequen-
cies.
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Sonata K380

Domenico Scarlatti
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Fig. 11.3.Musical score to Scarlatti's sonata K380 (part one of two).

V-shaped segment, reflecting the fact that measures 9 andritdic bass notes,
whereas the run is unaccompanied in the middle measure.

In measure 12, the melodic line begins the first of four reéjpets. Underlying
this repetitive figure is ai’ chord in measures 12 and 14Fg dominant7 in mea-
sure 13, and arl{ diminished in measure 15. Although these may be mild contbare
with (say) passages from Stravinskyrites of Springthey are considerably more
dissonant than the previous sections. Besides the disseiramerent in the bass clef
chords, there is th®4 neighboring tone in the melody, which forms a major seventh
with the drone-likeE. In addition, theA4's in the thirteenth and fifteenth measures
form a repeated tritone. The dissonance of these four messsiclearly visible in
the idealized MIDI performance as the large hump beginninmgeasure 12.

Scarlatti extricates himself from this dissonance by nésgl from B major,
through £ major, and then td”4, with a trilled suspension resolving down to the
third. The melodic figure, which is transposed down twices this to the previous
four measures, and the journey into dissonance and backigleted by the end of
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Fig. 11.3.Musical score to Scarlatti's sonata K380 (continued).

measure 18. In the idealized performance, this return isrgop in the fluctuating

low-level dissonances leading into measure 19.

Similarly, the remainder of the dissonance score can bepreated in terms of
the intervals, chords, and density of notes present in tiggnat score. For instance,
the two small bumps beginning at measure 19 are caused bittienic “hunting
horn” motif, whereas the large plateau starting at meas8itie 2 result of the strong

bass chords that again include af diminished. When repeated at measures 27
and 31, the idealized dissonance score repeats almostyeyast as in the musical
score. When the first half of K380 ends in measure 40 by resgiwd three octaves

of B, the dissonance decreases toward zero. Thus, dissonamnes dectly display
some of the same qualitative information that can be in&tegrindirectly from the

musical score.
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11.1.3 Comparing Dissonance Scores

Recall that sensory dissonance depends not only on thevadebut also on the
spectrum of the sound and its amplituids dissonance scores can be drawn directly
from a recorded performance, they can be used to compaeratiffrenditions of
the same piece. For instance, where one performer mightiexecphrase lightly,
another might strike boldly. The brighter tone with morethfgarmonics will have
greater dissonance, and it will appear differently on tlssaimance score.

Figure 11.2 shows three different interpretations of tts fialf of K380 played
by Newman, Ross, and Sgrizzi. Newman plays the “Magnum Oparpdichord”
built by Hill and Tyre. At almost 11 feet, this lavishly illtrated three-manual instru-
ment has five sets of strings and “may be the largest harpsi@ver constructed”

It has a full, lush sound. Ross plays the harpsichord of AmgHidey, which is a
more traditional double-manual instrument. Sgrizzi pldnesNeupert harpsichord at
the Cathédrale San Lorenzo. Although the liner notes @omi@a information about
the instrument, it clearly has at least two manuals, andithbré of the two are
different: One is bright, and the other is subdued and hi&ep-|

Performances of a piece can vary in many dimensions, inouimpo, dynam-
ics, tone color of the instrument, ornamentation, and ptagseof the recording envi-
ronment such as reverberation, microphone placement,cuadization. These will
all effect the dissonance score. For instance, a hall witielaeverberation time (or
equivalently, a long artificial reverberation added to tbeording) will cause notes
to sound longer. When sustained tones overlap, the disserianreases because
the spectra from all simultaneously sounding partials rdoutes to the dissonance
calculation. Similarly, a faster rendition will tend to leawmore dissonance than a
slower one, all else being equal, because successive nagdapmore. Although
the dynamics of a harpsichord are relatively fixed (appratety the same force is
applied each time a note is plucked), differences betwestniments are significant,
and differences between manuals and registers on the saméanirent are inevitable.
Thus, the performer has considerable control over nuameestfect the perceived
dissonance of the rendition.

Dissonance scores display detailed information about énpnance. For in-
stance, the first eight measures appear as the first four bampise dissonance
curves. Newman’s version parallels the idealized MIDI parfance; the first two
bumps are both small, and the second two bumps are larges.i®ebnilar, except
that the fourth repetition is played with less dissonanem tthe third. The musical
score marks dynamics for these phraseg: for the first and thirdpp for the sec-
ond and fourth. Ross faithfully interprets these dynamickimgs by reducing the
dissonance.

In contrast, Sgrizzi decreases dissonance throughoustin@hrases. The timbre
of the instrument changes noticeably in the lower octavetigpns; presumably,
Sgrizzi has changed manuals, and the effect is to decreasksonance despite the

5 Other factors being equal, a louder sound has greater sedssonance than a softer
sound.
% According to the liner notes of [D: 30].
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lowering of the octave. In measures 9 to 12, Sgrizzi retuorthié brighter register.
By playing these measures legato, the notes of the runsapyexhd these become
the most dissonant passage in the piece.

One of the most obvious features of the dissonance scores iapid change in
the instantaneous dissonances, which form a fuzzy halotdhewaveraged curve.
These fluctuations can be quantified by calculating the swrarsd deviation of the
raw dissonance values from the averaged values. The sthdeaations are:

Sgrizzi 0.124
Newman(0.133
Ross  0.155

In contrast to the human performances, the MIDI performdrazvery little fluc-
tuation, with a standard deviation of only 0.063. This iséese the MIDI disso-
nance score assumes an idealized harpsichord timbre cgtaxactly nine har-
monic partials, an idealized instrument in which each nads wentical except for
transposition, and an idealized (quantized) performdr8ech a performance does
not, of course, constitute an ideal performance, but it goegide a skeleton of the
expected flow of consonance and dissonance throughoutebe. pi

Sgrizzi’'s low standard deviation is especially apparentigncareful handling of
the dissonant chords in measures 12 through 19. Part ofitheverall dissonance of
this portion is likely due to the slow pace of the renditiont the low variance also
demonstrates a meticulous attention to the constancy oftisécal flow. In contrast,
Ross maintains both a high level of dissonance and a largenearthroughout the
phrase. This is due in part to the faster pace, but the highneae is caused by the
rhythmic expression of the bass chords, which are playduddeliberate attacks and
an almost staccato articulation. The variance of Newmaarfopmance is midway
between Sgrizzi and Ross, but it is notable for its cohere@bserve how the third
and fourth hills (measures 5-6 and 7—8) are almost exaatlgame. Similarly, the
“hunting horn” phrase in measures 19-27 is almost identicdle repeat in measures
27-34. Both Ross and Sgrizzi approach the two appearanteis afotif differently.
Ross builds tension by slowly incrementing the dissonawbereas Sgrizzi slowly
relaxes throughout the phrase.

Scarlatti’'s sonatas, although written for harpsichordehaften been adapted for
piano, and many have been transcribed for classical gltgmre 11.4 shows the
dissonance score for a performance of K380 on piano by [DaB#]on guitar by
[D: 14]. Pogorelich exploits the greater dynamic range efgitano to emphasize cer-
tain aspects of the piece. The first theme, for instancepiaKirkpatrick’s dynamic
markings closely, and the dissonance follows the volumelamdegister. Pogorelich
races through measures 12-19, but does so very softly. dhisais the dissonance
so that it peaks in the repeated hunting call of measures d2anThis dissonance
is due more to sheer volume than to the intervallic makeuphefdhords. It is a
sensible, although not inevitable, approach.

" The standard MIDI file is currently available on the Interagthe Classical Music Archives

[W: 4].
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Fig. 11.4.Dissonance scores for two renditions of Scarlatti's soi&&0. Pogorelich per-
forms on piano, and Fisk plays guitar.

Fisk’s realization is almost as fast overall as Pogoredichut the tempo is more
even. Where Pogorelich lingers in the first few measures led tharges through
the next few, Fisk trods along with toe-tapping steadinBssk’s interpretation is
unigue among the performances because he treats the whaote@ures as one
long phrase. Observe how the dissonance score slowly nskfsbs over the course
of the piece, indicating this fluidity of motion. All other germances are segmented
into (more or less) eight measure phrases, and the dissesance rises and falls
in synchrony. Although dissonance scores can give a gaéindtassessment, they
cannot pass judgment on the desirability of such intenpeetecisions.

Dissonance scores must not be viewed carelessly. For ggstiarger variance
of the dissonance score might imply a more expressive paeoce, but it might
also indicate a sloppiness of execution. Smaller variaog@pto more careful con-
trol, perhaps more “technique,” but it might also corregbtima more “mechanical”
rendition. When comparing two dissonance scores of the gaeve, the variation
in dissonance due to the performance is more significanttttmamount of disso-
nance, because both are normalized to unity. For instaméetspof maximum or
minimum dissonance might occur at different places, irtdigethose portions of the
piece the performer wishes to emphasize or de-emphasinda8y, the contour of
the dissonance curve carries much of the important infaongbut it requires an act
of judgment to determine what contour is most desirable fyivan piece.

Thus, dissonance scores can display unique informationtabpiece, and they
may be used as an analytical tool to help concretely desthmigenotion from con-
sonance to dissonance, and back again.

11.1.4 When There Is No Score

The dissonance score is not a notation, but a tool for arsalpdthough it cannot
supply as much information as a musical score, it is applkcabsituations (to xen-
harmonic, aleatoric, serial, or ethnic musics, for exainpleere no scores exist and
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where traditional analytic techniques cannot be appliedd@monstrate the poten-
tial, this section briefly examines a short movement from@3aBeauty in the Beast
and a segment from a Balinese gamelan performance. Thendiss® scores are
drawn, and they are related to various aspects of the mugitherperformances.

Beautiful Beasts

The title track of the symphoniBeauty in the Beadty Carlos [D: 5] is played in two
xenharmonic scales. Thedpha and betascales are nonoctave-based tunings with
equal steps of 78 and 63.8 cents, respectively. Although botles can support
recognizable triads, neither allows a standard diatorates@nd neither repeats at
the octave. Hence, it is not obvious how to apply standardiytioal techniques,
even if a score was available.

Figure 11.5 shows the dissonance score of the first 84 seafrigkauty in the
Beastalong with the waveform, and an indication of how it might beidkd into
thematic sections. Sectiofi is the “beast” motif, which is repeated with variations
in A’. B is a soft transition section featuring wind chimes, whiaway, builds into
the “beauty” themeC. C’ repeats the theme with melody, anddff the melody
slowly fades into the background.

sensory
dissonance

amplitude

time

Fig. 11.5.First 1:24 of CarlosBeauty in the Beasthowing dissonance score, amplitude of
waveform, and thematic structure.

Both the beauty theme and the beast theme have an internelust that is
displayed by the dissonance score; each theme containsi$amnance bumps. In
both A and A’, the paired humps are roughly the same size. The bimodaitsteu
of the beauty theme is less obvious because of the amplitoaeges, which are
apparent from the waveform. The long-term flow of the pieaathe characteristic
motif of motion from consonance, through dissonance, aicl bgain.
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The variance of the performance from its average is 0.958hodigh this is
smaller than any of Scarlatti performances (except fordeelized MIDI version), it
would be rash to draw any conclusions from this. Perhapatiad sariance is due to
the synthesized nature of the work, which might lend preai$o the performance.
Perhaps itis due to the slower overall motion of the piec@eohaps it is something
inherent in the unusual tuning.

Gamelan Eka Cita

The gamelan, an “orchestra” of percussive instrumentd)ésptimary indigenous
musical tradition of Java and Bali. Music played by the gamés varied and com-
plex, with styles that change over time and vary by place iohthe way that styles
wax and wane in the Western traditidBong Kebyay which means “gong burst-
ing forth,” is a vibrant form of gamelan playing that begarBiali in the middle of
the century, and it has flourished to become one of the domgtgles. Each year,
the Bali State Arts Council sponsors the “All Bali Gong Keb¥stival” in which
gamelans from across the island compete. Eka Cita, an dratiesm the village of
Abian Kapas Kaja near Denpassar, won the competition deyesss in a row, and
a recording was made of their concert in [D: 18].

I. Wayan Beratha basdBandranganthe second track on the CD, on the ritual
spear danc8aris Gede This energetic piece contains large contrasts in sound den
sity, volume, and texture. The primary form of the piece ¢stssof a short cycle,
each beginning with a deep gong stroke, and each midpoiensasdt by a higher
gong. The first 87 seconds (the complete piece is over 15 pshatre displayed
in Fig. 11.6, which shows the dissonance score and the wawefbhe cycles are
marked by the grid at the bottom, and they are aligned wittptiteary gong hits.
Many of the gong strokes are visible in the waveform, but thigyre prominently
throughout the segment even when they are not visible.

Indonesia currently maintains a series of Institutes ¢ca TSt or ASTI) and
Universitie$ that support and promote traditional culture, and theyrafégrees in
traditional music, dance, and painting, as well as counsesthinomusicology and
other “modernized” approaches to the study of the arts. ibgckmmersion in the
culture, it is difficult to analyze this (or any other) gamelpiece in more than a
superficial manner. As with the analyses of Western musibérprevious sections,
the intention is to show how the technique of the dissonaoceesmay be applied.
Any conclusions drawn from this analysis must be considezethtive.

The first part ofBaris Gede Bandrangarshown in Fig. 11.6, can be thought of
as containing several sections.is a soft introduction that sets the pace.Bnthe
drummer (who is also the leader of the ensemble) crescemtomlucing the major
“theme” in C' along with the first gong strokes. These gong hits continuzuih-
out the segment, delineating the cycles shown in the bottaan lgp 1, a series of
matching chords overlays the cycle, and this is repeated. and F', two different
“melody” lines occur, again starting and stopping at cyaerdaries.

8 Skola Tinggi Seni Indonesian.
? Such as Gadjah Mada University.
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Fig. 11.6.First 1:27 ofBaris Gede Bandrangahy |I. Wayan Beratha, showing dissonance
score, amplitude of waveform, and rhythmic structure.

The dissonance score reflects some of these changes. Betinalice peaks
markedB are caused by the drum, which marks the beginning and/or eadec-
tion. The peaks af) are a result of the raucous chording, and the smaller peaks
F and F' are produced by the rapid melodic motion of the higher picmetallo-
phones. Perhaps the most striking aspect of this scoreastt ile comparison with
the Western pieces analyzed earlier, is that the dissoraeaies are episodic. That
is, each cycle has a roughly constant dissonance, whichgelsaabruptly at cycle
boundaries.

In the pieces by Scarlatti and Carlos, the contour of theodiasce score de-
lineates the major phrases as it slowly rises and falls. Agyby, in the gamelan
tradition, (sensory) dissonance is used completely diffdy. Abrupt changes in
dissonance are the norm, and these changes seem to reflectttaece and exit
of various instruments at cycle boundaries. If this pattestds (for more than this
single segment of a single composition), then this may bieatide of a fundamental
difference in the musical aesthetic between the gamelaMéstiern traditions.

The standard deviation of the dissonance score of Fig. hbgtats mean (again,
the average is drawn as the darker line) is 0.094. If this eaimterpreted (as in the
Western context) as a measure of the consistency of therpaifwe, then this is a
remarkable figure. It is considerably smaller than any ofSbarlatti performances,
despite the fact that the gamelan is played by several nansiGimultaneously.

11.2 Reconstruction of Historical Tunings

In 12-tet, there is no difference between various musicgs khere are no restric-
tions on modulation, and key tonality is not a significantistare in music. Three
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hundred years ago, the musical context was different. @bbtlut 1780, keyboard
instruments were tuned so that commonly used intervals yerer (closer to just)

than less-used intervals. The resulting nonequal senstgaee a different harmonic
color to each musical key, and these colors were part of theaallanguage of the
time, both philosophically and practically. To understahd musical language of
early keyboard composers, the tuning in which their musis eemceived and heard
is important.

However, few composers documented the exact tunings ugeeimmusic. Al-
though there is sufficient historical evidence that theqebind nationality of a
composer can narrow the choice considerably, there are sig@ificant variances
between historically justifiable tunings for any specifieqd of music. The tuning
preferences of Domenico Scarlatti are particularly uradertbecause he was born
and trained in Italy, but spent most of his career in Portagal Spain, and did all
of his significant composing while under strong Spanish erfte. A method that
might infer information concerning his tuning preferensetely from his surviving
music would therefore be of value to musicians and musidsisg

This section discusses a quantitative method based on aimezsthe sensory
consonance and dissonance of the intervals in a tuning anditbquency of occur-
rence within the compositions. The presumption is that tveposer would avoid
passages using intervals that are markedly out-of-tunéssodant (such as wolf
fifths) except in passing, and would tend on average to engeh#sose intervals
and keys that are relatively pure. This investigation fipgteared in an article co-
authored with John Sankey called, “A consonance-baseaagipto the harpsichord
tuning of Domenico Scarlatti” [B: 160], which finds tuningsat minimize the dis-
sonance over all intervals actually used by Scarlatti irshisatas, and compares the
results to several well-known historical tunings.

The method is equally applicable to other early keyboard pmsers. Barnes
[B: 11] conducts a statistical analysis of the intervalg #q@peared in Bach'’s pieces
to try and determine which tunings Bach was most likely toehased. This is sim-
ilar in spirit to the present approach, but the optimizafiooceeds under a culture-
dependent interval selection and classification scherttegrréhan a psychoacoustic
measure.

11.2.1 Total Dissonance

There are four basic steps to find the most consonant tunireggieece (or collection
of pieces) of music. These are:

(i) Specify the spectrum of each sound
(ii) Find (or count) the number of occurrences of each irdkolass, and
weight by their duration
(iif) Choose an initial “guess” for the optimization algtmn
(iv) Implement a gradient descent (or other local optim@aglgorithm) to
find the nearest “least dissonant” set of intervals
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The bulk of this section describes these steps in detail.

As the Scarlatti sonatas were composed for harpsichordgctrsim was chosen
that approximates an idealized harpsichord string. Thed@iassumed to contain
32 harmonic partials at frequencies

[ 28,3, 32f

where f is the fundamental. The amplitude of the partials is assutnetle away

at a rate of.75", wheren is the partial number. Surviving historical harpsichords
vary considerably in these parameters. The low strings wiesbave more than 80
discernible partials, decreasing with an exponent as high.@ whereas the high
strings of others display as few as 8 partials with a moredrdptay. The amplitudes
of the partials also vary due to the position at which thengti$ plucked (which may
vary even on the same harpsichord), and from interactiomgrthe strings. The
chosen spectrum is a reasonable approximation to the a/scagnd of a harpsichord
in the portion of its range in which a musician is most sewsiib questions of tuning.
Three typical harpsichord timbres are shown in Fig. 11.émnparison.

g
.‘é‘
g
€
i H00 4000 E00) B0
E
s
|I1 ] IJJlll.ll]JIhlll
o 4000 OO0 12000 1B000
Fig. 11.7. Spectra of three notes of a
8 harpsichord with fundamentals at 104
£ Hz, 370 Hz, and 1048 Hz (correspond-
g ing to notesGY, F, andC). All par-
tials lie close to a harmonic series, and
0 5000 10000 1522 the higher notes have fewer harmonics
frequency, Hz than the lower notes.

The sonatas of Scarlatti recordings have been encoded lbyShitkey in Stan-
dard MIDI File (SMF) format:® which is a widely accepted standard for encoding
the finger motions of a keyboard player as a function of tinfese finger motions

1% The files are currently available on the Internet at [W: 4].
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can be used to (re)synthesize the performance. A programwitien to parse the
SMF files and to collate the required information about fespy of occurrence of
intervals and their duration in performance.

Recall that the sensory dissonanbe (f;/ f;) between two notes with funda-
mentalsf; and f; is the sum of all dissonancésbetween all pairs of sine wave
partials. The Total Dissonanc@ ) of a musical passage of notes is defined to be
the sum of the dissonances weighted by the duration ovetwhecintervals overlap
intime. Thus

m—1 m
TD = Z Z Dr(f;/fi) t(i,5)

i=1 j=i+1

wheret(z, j) is the total time during which noteésand; sound simultaneously. Al-
though the amplitude of a single held note of a harpsichooledses with time, it
increases significantly each time a succeeding note isg@ldyeto coupling via their
shared soundboard. Given the high note rates in the somlaissectangular sound
intensity distribution is a reasonable approximation.

An n-note tuning based on the octave contains 1 distinct intervals between
1:1 and 2:1. Observe that thé&) for a musical composition depends on the tuning
because the different intervals have different value®gf f; / f;). By choosing the
tuning properly, the total dissonance of the passage canihienined, or equiva-
lently, the consonance can be maximized. Thus, the probfernamsing the tuning
that maximizes consonance can be stated as an optimizatiblem: Minimize the
“cost” (theT' D of the composition) by choice of the intervals that definettheng.
This optimization problem can be solved using a variety ohtéques; perhaps the
simplest is to use a gradient descent method. This is sitailtdre adaptive tuning
method, but th&" D maintains a history of the piece via thg, j) terms. Adaptive
tunings can be considered a special (instantaneous) case.

Let I be the initial “tuning vector” containing a list of the intes that define
the tuning. A (locally) optimal* can be found by iterating

dTD
[k+1 =TI - /im

until convergence, wherneis a small positive stepsize akds the iteration counter.
The algorithm has “converged” when the change in each eleafe¢he update term
has the same sign. Calculation is straightforward, althosmmewhat tedious. In
most cases, the algorithm is initialized at the 12-tone ktpmapered scale; that is
Iy is a vector in which all adjacent intervals are 100 cents.

A tuning for which a desired composition (or collection ofngoositions) has
smallerT D is to be preferred as far as consonance is concerned. In thextmf
attempting to draw historical implications, the meastiieé may provide reason for
rejecting tunings (those that are overly dissonant) ornsictering tunings (those
with near-optimal values df'D). Such judgments cannot be made mechanically,
they must be tempered with musical insight. The variationalues of thel'D for

! See equation E.7 for details of the calculationd#(f;/ f:).
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different tunings is small, less tha between musically useful tunings, and are
therefore expressed in parts per thousdrigy) difference from 12-tet. A difference
of 1%/, is clearly audible to a trained musical ear in typical musicamtexts!?

Music of course does not consist solely of consonances.gg@rmusic is full of
trills and similar features that involve overlapped secoimdreal performance, and
Scarlatti made heavy use of solidly overlapped secondiyetate dissonances, as a
rhythmic device. Consequently, all intervals smaller ttraee semitones were omit-
ted from the calculations of tHED. This had surprisingly little effect on the values
of the convergent tunings; the precaution may be unnegesstirother composers.

11.2.2 Tunings for a Single Sonata

As harpsichords (in contrast to organs) were tuned fredyergually by the per-
former, it is likely that composers might have changed tpeéferred tuning over
the course of their lifetime, or used more than one tuningeddmg on the music
to be played. Both of these are well documented in the casewofedu. One way to
investigate this is to initialize the tuning vectfy to the intervals of 12-tet, and find
the optimum tuningg* that minimize theél’ D for each sonata individually.

A histogram of all tunings obtained is shown in Fig. 11.8. Tteéght of a bar
shows the number of sonatas for which the optimum tuningaioata note of the
given pitch. As can be seen, for most of the 11 pitches, therénso strong prefer-
ences. The location of the pure fiftisascending and descending frainis shown
below the frequency bars. The minimization process for $asnas small as one
sonata often “locks on” to the predominately nonunison munn at pure fifths.
This effect continues to dominate even when groups of uprtet@atas are evalu-
ated. Although baroque musicians often refined the tuninigesf instruments before
performing suites of pieces using a consistent tonalityiset impractical to com-
pletely retune an instrument every 5 or 10 minutes, the leafya typical sonata pair
with repeats and variations.

The primary formal structure of most of the sonatas follows symmetries:
Tonalities are mirrored about a central double bar, and #tienmaterial repeats
after the double bar (although not always in exactly the sarder). For example,
K1 begins inD minor, progresses td major at the double bar 14, and ends/in
minor bar 31; thematically, bar 1 matches bar 14; 2-5, 22#2%7; 9, 18; 13, 31.
One expects that Scarlatti’s tuning(s) would have comptgateand been consistent
with these symmetries. Many of the single-sonata tuningsddy this optimization
method are not. For example, bars 9 and 18 in K1 are symmigtribesigned to
strongly establish the tonalitie® minor and F major, respectively, but the pure
D — A fifth on which bar 9 is based is inconsistent with the— C fifth of bar
18, a very audible 15 cents smaller than pure in this tuningc@nparison, these
intervals differ by only 4 cents in the Vallottl tuning. Using optimized tunings to

12 For this reason, a numerical precision of nine decimal glacgreater is advisable for the
calculations of7'D.
3 e.9.,702™ mod 1200 fom = —11 to 11.
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Fig. 11.8.The relative distribution of “optimal” tunings when consithg each of the sonatas
individually. Observe the clustering at the Pythagoreamepfifths.

retune sections of music of sonata length does not, therefeem to be a reliable
guide to the practice of Scarlatti, nor to be useful in détecthanges in tuning
preferences over his oeuvre.

11.2.3 Tunings for All Sonatas

When all of the sonatas are treated as a set, this kind ofpeeiedization to particu-
lar intervals does not occur, but there are a large numbeirofima of thelZ" D within
a musically useful range.

One tuning obtained while minimizing from 12-tet (labeleBH in Table 11.1)
has several interesting features. Many theorists, in tisegal still today, consider
the numerical structure of a scale to be important, oftewriag just scales that
consist of the simplest possible number of ratios. The 1-2efined tuning is one
of this class: Take four notes= 1,5 = 9/8, ¢ = 4/3, andd = 3/2. Thend =
4b/3 andd = 9¢/b, so every note is just with respect to all others. Three such
groups overlap to make a 12-notescéle- D — F — G, F — Ff — A— B, Ab —

Bb — Db — Eb. The tuning TDE found to be optimal for the sonatas contairs t
of these quartets. However, unlike many just tunings, thisis specially designed
for use with an extended body of music, namely, the sonataexeTis no historical

evidence that any influential performer or composer actuasied such a tuning,
but it is worth listening to by anyone wishing to hear the sagan a different but

musical way. The technique of minimizifil@D is a fertile source of new tunings
for modern keyboard composers—there are many musicallyasting tunings that
have not been explored.

The relativé* 7D of a number of tunings that are documented in the musical
literature of Scarlatti’'s time are shown in Table 11.2. Thaings are defined in
Table L.1 of Appendix L. Meantone tuning, in which all fiftheeaequal except one
wolf fifth G4 — Eb, was the most common tuning at the close of the Middle Ages.
It was considered to be in the key &f, and it was modified steadily toward equal
temperament by increasing the size of the equal fifths aspinogressed. However,

" All TD values are normalized so that thé of 12-tet is zero.
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Table 11.1. Derived tunings. All values rounded to the nearest cent.

Label cents

TDE 98 200 302 402 506 605 698 800 900 1004 1104
TDA1 86 193 291 386 498 585 697 786 889 995 1087
TDA2 88 200 294 386 498 586 698 790 884 996 1084

as only one note needs to be retuned to transpose any me&umamginto the tuning
for an adjacent fifth (e.g., to add or subtract one sharp ofrfiat the key signature),
many performers did so to improve the sound of their favdetgs.

Table 11.2. Total Dissonanc& D (in © /oo deviation from 12-tet) and strengthof various
historical and derived tunings over all Scarlatti’'s sosata

Tuning 7D s
12-tet 0 0
Bethisy 04 41
Rameaub -05 71
Werkmeister 5 -06 26
d’Alembert -0.8 4.1
Barca -1.0 24
Werkmeister 3 -1.9 3.1
Kirberger 3 -1.9 34
Corrette -2.2 6.8
Vallotti A -25 29
Chaumont -33 7.7
Rameay 40 7.1
1/4 Comma A -5.8 10.3
Kirnberger 2 -6.0 45
TDE -16 2.2
TDA1 -2.3 4.6
TDA2 -7.1 5.6

TheT'D for the set of all Scarlatti sonatas is shown in Fig. 11.9uethe size
of the equal fifths and the position of the wolf fifth. There istearp maximum with
fifths 3.42 cents less than 12-tet when the wolf is betwigeand Bb or betweenkb
andGt, precisely the medieval 1/4-comma tunings in the keyd ehd D. There is
another broader maximum with fifths 1.8 cents larger thatet2which is close to
the ancient Pythagorean tuning with pure fifths. The gersrape of the meantone
T'D of the entire keyboard oeuvre of Scarlatti is, thereforgdoord with historical
musical practice.

Many historical harpsichord tunings have been quantifiedselin [B: 8]; the
tunings used in this study are shown in Table L.1 of AppendipAk the harpsi-
chord scale has 11 degrees of freedom, it is desirable tactesize each tuning
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Fig. 11.9.The relation between consonance, size of equal fifths in axtoea-type tuning,
and position of the unequal wolf fifth, for all sonatas as oni¢.u

by a smaller number of musically useful parameters. The rabaolute difference
between the various tunings and 12-tet gives a kind of “gtigrparameter. Define

s(t) = mean|c(k,e) — c(k,1)]

wherec(k, e) is the pitch in cents of noté from the first note of the 12-tet scale,
c¢(k,t) the corresponding pitch of tunirtgand the functiore has been normalized
so that

meanc(k, e) = meanc(k,1)

to remove the pitch scale dependence of the dissonancadnnttistorically, the
value of s(¢) has decreased with time, from 10 cents for the medieval G/drta
meantone tuning to essentially zero for modern piano tuimggeneral, a low value
of s is associated with tunings that work in a wide variety of keyhigh value with
tunings placing many restrictions on modulation.

Figure 11.10 plots the TD of each tuning (ify, of the TD of 12-tet) versus the
strength of the tuning. If a series of meantone-type tuningsis constructed, with
the size of the equal fifths decreasing from 12-tet (100 $¢n136 cents, the locus of
T'D ands is the solid line shown. (It is the same curve as that for thé between
Eb and Bb in Fig. 11.9.) In Fig. 11.10, a decrease of both The ands represents
an improvement in both consonance and in modulatabilitye8rease in thd' D
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associated with an increasesmequires a choice based on musical context, because
any improvement in consonance will be offset by a reductiothé range of keys in
which the consonance will occur.

0 .
N N U
. Barca . O* d'Alembert
S 3 Vallotti
ey 8
‘N'_ Barca A  OTDA2
§ Vallotti A® \
E French tunings \_ Meantone A
=
§ 47 \-\ @ Rameau #
g Italian & German tunings '\.
s .
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= Kirnberger2 | 1/4 comma
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mean absolute deviation from 12-tet, cents

Fig. 11.10.The vertical axis plots the TD of all sonatas when played & ttmings of Ta-
ble 11.2 as a percentage of the TD of all sonatas when play&g-tet. The horizontal axis
gives the mean absolute deviation of each tuning from thefi@eale.

In general, French tunings sought to purify the sound of mijiwds, whereas
Italian and German tunings were more closely derived froenfifth-based mean-
tone. The two schools may be separated by the dotted lineginl&i10; again, the
T'Dis in accordance with historical knowledge. Both Italianihgs inA show supe-
rior consonance to those i, and Rameau’s “sharp” tuning has greater consonance
than that inBb. (Modulated versions of any tuning have the same strengtihe
expectation from this figure is that Kirnberger 2 should befdoythe best tuning
for the sonatas, with meantone (1/4 comma) second exceipapein some remote
tonalities due to its strength. Next should be the sharpyuof Rameau (again with
possible difficulties in some tonalities), followed by \@li A, and then Barcal.
Unfortunately, other factors intervene.

A primary phrase pattern widely used in Western music, antiqodarly by Scar-
latti in the sonatas, is a gradual increase of musical ter@iéminating in a musical
steady state (stasis) or a release of tension (resolutimergasing pitch, volume,
rapidity, harmonic density, and harmonic dissonance arkenigues of increasing
musical tension. A skilled composer will use these vari@esniques in a mutually
supporting way, in consistent patterns. If, therefore, afsa particular tuning en-
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hances the ebb and flow of musical tension, it may be the tuhatgghe composer
used to hear music. As such a small proportion of potenttahials can be simul-
taneously in perfect tune in one tuning, it is likely that aroaeous tuning at least
occasionally results in a glaring mismatch of musical shape

TheT' D predictions fail with the second tuning of Kirnberger whhisttension
structure is taken into account—the consonances in thisguoften fall in Scar-
latti’s relatively long tonal transition passages and @l frequently come to abrupt
halts with unacceptably dissonant stases. For examplata#il begins the second
section with an4 major triad ascent to afi’ in the treble, and then repeats the fig-
ure in the bass under the sustairfedwith Kirnberger 2,4 — E is almost 11 cents
smaller than just, one of the most dissonant fifths in thentyirin both the VallottiA
and d'Alembert tunings, by comparisaA,— E is a bit less than 1/4 comma smaller
than just, precisely right for an interim pause in the ovenplvard passage of which
the A to E phrase forms a part. Besides frequently failing the tensimology cri-
terion and the symmetry criteria discussed earlier, thechMma meantone tuning
too often produces phrases that stay consistently out &f fointoo long at a time
(although obviously not long enough to affect th® sufficiently), for example, the
chromatic passages in bars 10-14 and 35-38 of K3. In facte thars together with
their symmetric pair 58-63 and 84—-87 cannot be played inistamg tune with any
placement of a 1/4-comma-tuning wolf fifth.

However, although the tonal colors of Rameau are clearlyigeace, so are the
consonances, which fall in the right places, and the turspgrticularly evocative in
many of Scarlatti’s slow plaintive melodic passages (Kbt gikample). The smooth
matches of the Vallottih tonal structure with those implicit in the music are very
consistent, if unremarkable. The French tunings do indeesdtlsnhave problems
with dissonances in many places (the chromatic passage3,dbKexample).

The historical instructions for some tunings are uncergmen deliberately am-
biguous, so modern numeric reconstructions may be sligmgyror. This is almost
certainly the case for the tuning of d’Alembert, which wasa#ed and redescribed
in remarkably varied terms by several authors (e.g., Bgthikthe time. The gradi-
ent algorithm was again applied to successively reducé fhén small steps for the
set of all sonatas, beginning with d’Alembert’s tuning teed of initializing with
12-tet), with the hope that this might correct minor errersvhat is basically a good
tuning. Two routes the algorithm took are shown by dashesklin Fig. 11.10. The
longer (right) curve shows the route when the only critefmrthe change i was
lower T'D. The shorter curve emanating from d’Alembert’s tuning hesliwhen
I was optimized for lowes and lowerT' D simultaneously. The first minimization
proceeded well beyond the optimum musical point along thih, ganding up at a
tuning (TDAZ2 in Fig. 11.10) that made the most common intlsrperfectly conso-
nant but far too many lesser used musically important onasagptably dissonant
(for example, the repeated high— A fifths of K1, 17 cents flat).

Furthermore, if this optimization from the d’Alembert tagiis applied individ-
ually to the few sonatas where the TDAL tuning has residuéitdities, a similar
behavior is observed. At first, the sound improves, and thith, further iteration,
the tuning becomes “overspecialized.” For example, thiediénding many phrases
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of K328, and the chords closing each half, are a bit more dised with TDA1 than

one would wish, although consistently so. Applying the mfirent procedure for
this sonata alone produces the tuning included in Table-tthg fifths and chords
all improve in consonance compared with TDA1, without chagghe sound of the
rest of the sonata adversely or changing the basic coloreofuhing. This is in ac-
cordance with historical practice, where a basic tuningldibe “touched up” for a
while to play a group of pieces that benefited from it (as opdds the minimum-
T'D tunings that varied too much between sonatas to be practical

11.3 What's Wrong with This Picture?

The music hall is austere—it is exactly the kind of place arlatthor a Rameau
might have played. The harpsichord is an immaculate remtoziu made by the
finest craftsmen from a historically authenticated modéle performer is well
versed in the ornamentation and playing techniques of th@gand is perhaps
even costumed in clothes of the time. The music begiimsi2-tet

What's wrong with this picture is the sound. 12-tet was natdugegularly in
Western music until well into the eighteenth century, andexen performers who
strive for authentic renditions often ignore thfsPerhaps this is excusable for Scar-
latti, whose tuning preferences are uncertain, but no sMchse is possible for
Rameau, whose treatise [B: 145] is one of the major thealetiorks of his cen-
tury. Imagine taking a serial piece by Schoenberg or Bahbid, “purifying” it for
play in a major scale. Is the damage to Scarlatti’s visionlasy?

Although firm conclusions about tunings actually used byrlataawait his res-
urrection, the total dissonance of a large volume of musécuseful tool for studies
of 12-tone keyboard tunings in a historical context, algoit is insufficient by it-
self. Use of total dissonance to optimize a 12-tone tunimgafbistorical body of
music can produce musically valuable results, but it musebgered with musical
judgment, in particular to prevent overspecializationtaf intervals.

This chapter has shown how to apply the idea of sensory dise@nto musical
analysis. For instance, there are many possible tuninghiichva given piece of mu-
sic might be performed. By drawing dissonance scores féeréifit tunings (12-tet,
just, meantone, adaptive, and so on), theirimpact can lestigated, at least in terms
of the expected motion of dissonance. Dissonance scord# digp be useful as a
measure of the “distance” between various performancesnBtance, the area be-
tween the averaged curves of two renditions provides arctbgecriterion by which
to say that two performances are or are not similar. One etybi§ that the disso-
nance scores must be aligned (probably by a kind of resagjim that measures
and even beats of one performance are coincident with qgaoneng measures and
beats in the other. Most likely, this alignment must be donbdnd because it is not
obvious how to automatically align two performances wheay tttiffer in tempo.

15 Few recordings of Scarlatti's sonatas are performed in goakiunings. There are dozens
in 12-tet, many played on beautiful period harpsichords lawasting authentic-sounding
blurbs on the cover.
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From Tuning to Spectrum

The related scale for a given spectrum is found by
drawing the dissonance curve and locating the minima. The
complementary problem of finding a spectrum for a given
scale is not as simple, because there is no single “best”
spectrum for a given scale. But it is often possible to find
“locally best” spectra, which can be specified as the solatio
to a certain constrained optimization problem. For somelkin
of scales, such as-tet, properties of the dissonance curves
can be exploited to directly solve the problem. A general
“symbolic method” for constructing related spectra works
well for scales built from a small number of successive
intervals.

12.1 Looking for Spectra

Given a tuning, what spectra are most consonant? Whethepasing inn-tet, in
some historical or ethnic scale, or in some arbitrarily st scale, related spectra
are important because they provide the composer and/arrpeef additional flexi-
bility in terms of controlling the consonance and dissoraoica given piece.

For example, the Pythagorean tuning is sometimes critidimeause its major
third is sharp compared with the equal-tempered third, whisharper than the just
third. This excessive sharpness is heard as a roughnessitimgyeand it is espe-
cially noticeable in slow, sustained passages. Using teckpectrum that is specifi-
cally crafted for use in the Pythagorean tuning, howeveraraeliorate much of this
roughness. The composer or performer thus has the optiomplifitng a smoother,
more consonant third than is available when using unrekgtedtra.

12.2 Spectrum Selection as an Optimization Problem

Any set ofm scale tones specifies a setwof 1 intervals (ratiosy, rs, ..., rm—_1. The
naive approach to the problem of spectrum selection is tosha set of. partials
fi, fa, ..., fn and amplitudes , as, ..., a, to minimize the sum of the dissonances
over allm — 1 intervals. Unfortunately, this can lead to “trivial” timds in two ways.
Zero dissonance occurs when all amplitudes are zero, asdrdiace can always be
minimized by choosing the; arbitrarily large. To avoid such trivial solutions, some
constraints are needed.
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Recall that the dissonance between two tones is defined authef the dis-
sonances between all pairs of partials, weighted by theymtauf their amplitudes.
(Now would be an excellent time to review the sectisrawing Dissonance Curves
on p. 95 in the chaptdRelating Spectrum and Scafehis seems hazy.) If any ampli-
tude is zero, then that partial contributes nothing to tlssahance; if all amplitudes
are zero, there is no dissonance. Thus, one answer to theemaiimization problem
is that the dissonance can be minimized over all the deso&é steps by choosing
to play silence—a waveform with zero amplitude! The simpleay to avoid this
problem is to forbid the amplitudes to changé-

‘ Constraint 1:Fix the amplitudes of the partials.

A somewhat more subtle way that the naive minimization grottan fail to pro-
vide a sensible solution is a consequence of the secondntya@belissonance curves
(see p. 115), which says that for sufficiently large intesydissonance decreases as
the interval increases. Imagine a spectrum in which alliglarseparate more and
more widely, sliding off toward infinity. Such infinitely spse spectra minimize the
dissonance at any desired set of scale steps and give a sédaalf solution to the
minimization problem. The simplest way to avoid this escap@finity is to con-
strain the frequencies of all partials to lie in some finitega. The cost will then be
reduced by spreading the partials throughoutthe set, Wwhileg to keep it especially
low at the scale steps.

Constraint 2:Force all frequencies to lie in a predetermined region}

Fixing the amplitudes and constraining the frequencieb®pfartials are enough
to avoid trivial solutions, but they are still not enough toyide good solutions. Al-
though the resulting scale steps do tend to have reasomablydissonance values,
they often do not fall at minima of the dissonance curves.ditsr an alternative
“cost” that counts how many minima occur at scale steps. Miizing this alterna-
tive cost alone would not be an appropriate criterion bezausnly reacts to the
existence of minima and not to their actual value. But connlgjithis with the orig-
inal (constrained) cost encourages a large number of mitdmacur at scale steps
and forces these minima to have low dissonance.

The final revised and constrained optimization problem ifoews: With the
amplitudes fixed, select a setwpartialsf, f, ..., f» lying in the region of interest
so as to minimize the cost

sum of dissonances number of minim
C=uw : 2
of them — 1 intervals at scale steps

where thew; andw, are weighting factors. Minimizing this cost tends to pldace t
scale steps at local minima as well as to minimize the valubetlissonance curve.

! Although not appealing, such a condition is virtually neszey. For instance, suppose the
a; fori = 1,...,n — 1 were fixed whilez,, was allowed to vary. Then the cost could always
be reduced by choosing, = 0. An alternative might be to fix the sum of the, say,
> a; = a*. Again, the cost could be reduced by setting= v* anda; = 0 for all i # 3.
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Numerical experiments suggest that weightings for whiehrtio ofw; to wy is
about a 100 to 1 give reasonable answers.

12.3 Spectra for Equal Temperaments

For certain scales, such as thetone equal-tempered scales, properties of the disso-
nance curve can be exploited to quickly and easily sculpttspéor a desired scale,
thus bypassing the need to solve this complicated optimizgtroblem.

Recall that the ratio between successive scale steps iati2+the twelfth root
of 2, ¥/2, or about 1.0595. Similarlyp-tet has a ratio of = %/2 between succes-
sive scale steps. Consider spectra for which successivialpare ratios of powers
of s. Each partial of such a sound, when transposed into the satageoas the
fundamental, lies on a note of the scale. Such a spectrumdisedby them-tone
equal-tempered scale.

Induced spectra are good candidate solutions to the ogiimizproblem. Recall
from the principle of coinciding partiadghat minima of the dissonance curve tend
to be located at intervalsfor which f; = rf;, wheref; and f; are partials of the
spectrum ofF'. As the ratio between any pair of partials in an induced spetis
s* for some integek, the dissonance curve will tend to have minima at such ratios
these ratios occur precisely at steps of the scale. Thub, spectra will have low
dissonance at scale steps, and many of the scale steps wilhbma: Both terms in
the cost function are small, and so the cost is small.

This insight can be exploited in two ways. First, it can bedusereduce the
search space of the optimization routine. Instead of seagaver all frequencies in
a bounded region, the search need only be done over indueetiasgMore straight-
forwardly, the spectrum selection problem for equal-teregescales can be solved
by careful choice of induced spectra.

12.3.1 10-Tone Equal Temperament

As an example, consider the problem of designing sounds fidyed in 10-tone
equal temperament. 10-tetis often considered one of thetwemperaments for har-
monic music, because the steps of the 10-tone scale ardicaguly different from
the (small) integer ratios, implying that harmonic tones\ary dissonant. These in-
tervals will become more consonant if played with specidigigned spectra. Here
are three spectra related to the 10-tet scale

£ s0f, s'Tf, s*0f, 570 f, $78f, P,
fosTf s'0f, s*f, 5™, 57 f, s°7f, and
fos'0f, s10F, 20 f, s73f, 520 f, $78f, S0f, S22 f, Y f, S70
wheres = /2. As expected, all three sound reasonably consonant whgadla

the 10-tet scale, and very dissonant when played in staridatdt. But each has its
own idiosyncrasies.

2 The fourth property of dissonance curves from p. 117.
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12-tet scale steps: tritone octave

sensory
dissonance

sensory
dissonance

sensory
dissonance

10-tet scale steps: octave

Fig. 12.1.Dissonance curves for spectra designed to be played in thentOequal-tempered
scale. Minima of the curves coincide with steps of the 1&¢ate and not with steps of 12-tet.

The dissonance curves of all three spectra are shown in Zig), &ssuming the
amplitude of theith partial is0.9°. Observe that only the fifth scale step in 10-tet
closely corresponds to any scale step in 12-tet; it is idahto the 12-tet tritoné In
all three spectra, the dissonance curve exhibits a minintuhedritone, but only the
top curve has a deep minimum there. This is caused by intenact the partials at
s20f, 525 £, ands30 £, which differ by a tritone.

The dissonance curve for the middle spectrum has no minintuimeaoctave.
This might be predicted by looking at the partials, becaus®erof the pairs in this
spectrum are separated by a factostf = 2. On the other hand, both the top and
bottom spectra have partialsf £, s2° f, ands3° f, which helps the octave retain
its familiar status as the most consonant interval other tha unison. The middle
spectrum would be less suitable for octave-based musichizanthers.

The top spectrum was chosen so thatintervals 2, 3, 5, 7, 8, @agpear as ratios
of the patrtials

30 28 25 17 28
s 2 3 S 5 § 7 S 8
= s
S

¥

— =8 = 8 — =8 —_— =8
28 } 425 ’ g20 710 7 g20

)

and several pairs differ by'?. Consequently, these appear as minima of the dis-
sonance curve and hence define the related scale. Simildrbn specifying the
partials for the bottom spectrum, all 10 possible diffeenwere included. Conse-
guently, almost all scale steps occur at minima of the diasoa curve, except for

* This is because 'V/2)> = ( ¥/2)°. In fact, the tritone is a feature of every octave based
tuning with an even number of scale steps, becadge)” = /2 for anyr.
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the first scale step, which is formed by the ratio of the plrtias®® ands35. This
exception may occur because the intesvd close to one-half of the critical barid,
or it may be because the amplitudes of the last two partialsignificantly smaller
than the others, and hence have less effect on the final dissen

Thus the three spectra have different sets of minima, aferdift related scales,
although all are subsets of the 10-tet steps. Each spectagritdhown “music the-
ory,” its own scales and chords. Each sound plays somewffatdditly, with the
most consonant intervals unique to the sound: scale stéps83and 10 for the top
spectrum, but 3, 5, 7, and 9 for the middle. Moreover, keepingind that scale
steps tend to have minima when the partials are specifiecasthidir ratio is a scale
step, itis fairly easy to specify induced spectra for eqemgeraments, and to sculpt
the spectra and scales toward a desired goal. Much of thisigi®on can be sum-
marized by the observation that dissonance curves for gdigpectra often have
minima at scale steps. When the ratio of the partials is eguabkcale step, a partial
from the lower tone coincides with a partial from the uppereiocausing the dip in
the dissonance curve.

Of course, far more important than how the dissonance clwedss the musical
guestion of how the resulting spectra and scales sound. iEoe Pen Fingerson
track [S: 102] of the accompanying CD uses the third 10-tetspm, and it exploits
a number of possible chords. The particular tone qualitg isenuch like a guitar,
and the creation of such instrumental tones is discussdtitSpectral Mappings”
chapter. A possible “music theory” for such 10-tet soungsésented in Chap. 14.

Observe that this sound has no problems with fusion as heatiérewith the
2.1 stretched (and certain other) spectra. Indeed, isbladtes of the spectrum do
not sound particularly unusual, despite their inharmouiire. This is because the
difference between the partials of this spectrum and theégbaof a harmonic tone
are not large. Looking closely at the locations of the plrsaows that each one is
as close as possible to an integer. In essence, it is as ddsgrhonic as a 10-tet-
induced spectrum can be. Concretely:

s10=2 5163 520 =4, s~ 5, 5% ~ 6,

s a7, 530 =8, 532 x 9, 53 ~ 10, ands3® & 11,

The overall effect is of music from another culture (or p@hanother planet).
The chord patterns are clearly unusual, and yet they arettimbloe xentonal motion
of the piece is unmistakable—there is chordal movementlugen, and tensions,
but it is not the familiar tonal language of Western (or anyen} extant music.

How important is the sculpting of the spectrum? Perhapsaiugold sound will
be playable in 10-tet with such striking effect. To hear thegally does make a dif-
ference, track [S: 103] demonstrates the first few barseof Fingersvhen played
with a standard harmonic tone. Wh&an Fingersis played with the related spec-
trum, many people are somewhat puzzled by the curious xaliti@s. Most are de-
cidedly uncomfortable listening tden Fingersplayed with a harmonic spectrum.

* Over a large range of fundamentals®® ands®® lie in the region where the critical band
is a bit larger than a 12-tet whole step. See Fig. 3.4 on p. 43.
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The difference between tracks [S: 102] and [S: 103] is notlsubhe qualitative
effect is similar to the familiar sensation of being outtofie. But the tuning is a
digitally exact ten equal divisions of the octave, and sodffiect might better be
described asut-of-spectrum

12.3.2 12-Tone Equal Temperament

Recall that most musical instruments based on strings destare harmonic; their
partials are closely approximated by the integer ratiohefrtarmonic series. Such
spectra are related to the just intonation scale, and yetyareally played (in the
West, anyway) in 12-tet. Although this is now considerednmalr there was con-
siderable controversy surrounding the introduction otét2 especially because the
thirds are so impureln terms of the present discussion, advocates of JI wistely pl
harmonic sounds in the appropriate related scale. An altiemis to design spectra
especially for play in 12-tet.

As the above example moved the partials from their harmogiies to an in-
duced 10-tet spectrum, the consonance of 12-tet can beasedeby moving the
partials away from the harmonic series to a series based-eny/2. For instance,
the set of partials

12 19 24 28 31 34 36 38
VAR FIE e FIE R FIE A FIE I PR A P P |

is “almost” harmonic, but each of the integer partials hasntmuantized to its nearest
12-tet scale location. The effect on the dissonance cureasyg to see. Figure 12.2
compares the dissonance curve for a harmonic tone with rarteafs to the 12-tet
induced spectrum above (the amplitudes were the same indagtts). The disso-
nance curve for the induced spectrum has the same genetalicas the harmonic
dissonance curve but with two striking differences. Fits, minima have all shifted
from the just ratios to steps of the 12-tet scale: Minima o@&tusteps two through
ten. Second, many of the minima are deeper and more cledihede

Thus, an alternative to playing in a just intonation scalegibarmonic tones is
to manipulate the spectra of the sounds so as to increasetimsionance in 12-tet.
To state this as an imprecise analogy: 12-tet with inducead® is to 12-tet with
harmonic sounds as just intonation with harmonic sounds 12ttet with harmonic
sounds. Both approaches eliminate the disparity betwedathd harmonic tones,
one by changing to the related scale, and the other by chaugirelated spectra.

Some electronic organs (the Hammond organ) produce indi2ddt spectra
using a kind of additive synthesis. Sound begins in 12 hightfency oscillators.
A circuit called a “frequency divider” transposes these fEjfiencies down by oc-
taves, and these are combined as partials of the final souedfelct, this quantizes
the frequencies of the partials to steps of the 12-tet s&leh organs are the first
electronic example of matching spectrum and scale usingcieditimbres.

5 For a discussion of this controversy, see [B: 198] or [B: Biis controversy has recently
been revived now that the technical means for realizingeltgs in multiple keys is avail-
able [B: 43].
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Harmonic Spectrum

sensory
dissonance

Specially designed 12-tet spectrum

sensory
dissonance

12-tet scale steps: octave

Fig. 12.2.Comparison of dissonance curve for harmonic spectrum vistsothance curve for
spectrum with specially designed “12-tet” partials. Boplestra have nine partials, with am-
plitudes decreasing at the same exponential rate.

12.4 Solving the Optimization Problem

Minimizing the costC of p. 236 is an-dimensional optimization problem with a
highly complex error surface. Fortunately, such probleins often be solved ad-
equately (although not necessarily optimally) using aetgrof “random search”
methods such as “simulated annealing” [B: 87] or the “genalgorithm” [B: 65].
After briefly reviewing the general method, a technique &fucing the search space
is suggested.

12.4.1 Random Search

In the simplest kind of “global optimization” algorithm, @ectrum is guessed, and
its cost is evaluated. If the new cost is the best so far, thespectrum is saved. New
guesses are made until the optimum is found, or until somaepeemined number
of iterations has passed. Although this can work well forlkmait is inefficient
when searching for complex spectra with many partials. Eoh $iigh-dimensional
problems, even the fastest computers may not be able tchsbaonigh all possibil-
ities. The algorithm can be improved by biasing new guessgartd those that have
previously shown improvements.

12.4.2 Genetic Algorithm

The genetic algorithm (GA) is modeled after theories of mf¢al evolution, and it
often works reasonably well for the spectrum selection @b Goldberg [B: 65]
gives a general discussion of the algorithm and its many. 0$esGA requires that
the problem be coded in a finite string called the “gene” aadl & fitness” function
be defined. Genes for the spectrum selection problem aresfbloy concatenating
binary representations of thg. The fitness function of the geng, f-, ..., f is
measured as the value of the cost, and spectra are judgee fitiaf the cost is
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lower. The GA searches-dimensional space measuring the fitness of spectra. The
most fit are combined (via a “mating” procedure) into “chifukstra” for the next
generation. As generations pass, the algorithm tends teeape, and the most fit
spectrum is a good candidate for the minimizer of the costedd, the GA tends to
return spectra that are well matched to the desired scaleisdnse that scale steps
tend to occur at minima of the dissonance curve, and the digabnance at scale
steps is low. For example, when the 12-tet scale is spectfied;A often converges
near induced spectra. This is a good indication that theritifgo is functioning and

that the free parameters have been chosen sensibly.

12.4.3 An Arbitrary Scale

As an example of the application of the genetic algorithmh® $pectrum selec-
tion problem, a desired scale was chosen with scale stepdlat875, 1.3125, 1.5,
1.8125, and 2. A set of amplitudes was chosen as 10, 8.8, B/58, 5.2, 4.6,
4.0, and the GA was allowed to search for the most fit spectiitha.frequencies
were coded as 8-bit binary numbers with 4 bits for the intgget and 4 bits for the
fractional part. The best three spectra out of ten trial afrthe algorithm were

f, L8f, 4.9f, 14f, 9.87f, 14.81f, 6.4f, 12.9f,
f, 1.5f, 3.3f, 10.3f, 7.8f, 7.09f, 3.52f, 3.87f, and
£, 2.39F, 9.9275f, T.56f, 11.4f, 4.99f, 6.37f, 10.6f.
The dissonance curve of the best spectrum is shown in Fig. CRarly, these spec-
tra are closely related to the specified scale, because miogrur at many of the

scale steps. The cost function applies no penalty when #rerextra minima, and
each curve has a few minima more than were specified.

12-tet scale steps: octave

sensory
dissonance _,

o

=t T T
1 1.19  1.31 1.51 1.67 1.99 212
115 128 1.4 156 1.79 2.09

frequency ratio

Fig. 12.3.Dissonance curve for the third spectrum has minima thahaldigh many of the
specified scale steps. The extra minima occur because nthypguast) is applied.

12.4.4 Reducing the Search Space

The algorithms suggested above conduct a structured rasearoh for partials over
all frequencies in the region of interest, and they caleutae dissonance of the
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intervals for each candidate spectrum. One way to simptié/search is to exploit
the principle of coinciding partials (property four of dissnce curvésy restricting
the search space to spectra containing intervals equaktsddle steps. For equal
temperaments, this was as simple as choosing partial toasit scale steps, but in
general, it is necessary to consider all possible intefeataed by all partials.

Let the candidate spectrui haver partials at frequencieg,, fa, ..., fn With
fixed amplitudes. Since scale steps can occur at any of ties @itthe f;, letry ; =

fﬁ be all the ratios between successive partialg,= ! ’+2 be the ratios between

partlals twice removed, ang ; = }’” be the general terms Any of thg,; may
become minima of the dissonance curve, and the problemesdachoosing thé;
so that as many of the ; as possible lie on scale steps.

The inverse problem is more interesting. Given a scalwith desired steps
s1, 82, ..., Sm, select arr; ; to be equal to each of the,. Solve backward to find
the candidate partiaf; giving suchr; ;. The costC' of this spectrum can then be
evaluated and used in the optimization algorithm. The aidpgnof this approach
is that it greatly reduces the space over which the algorgbarches. Rather than
searching over all real frequencies in a region, it searcimi over the possible
ways that the-; ; can equal they.

To see how this might work in a simple case, suppose that arepewithn = 5
partials is desired for a scale with = 3 steps. The set of all possible intervals
formed by the partialg: , fa, ..., f5 is:

T’1,2=§—f7°93:§—37“3,4:§3 T45 = j:—

2
_j:a Ta4 = ;—47“3,52%
T4 = Tas = o
1’5_f1

The desired scale steps diie sq, s2, s3). To choose a possible spectrum, pick one of
ther; ; from each column, and set it equal to one of theFor instance, one choice
is

T1,4 = S1, T2 4 = S2, I'3 5 = 83, andT’4,5 = S3,

which leads to the following set of equations:

Ja Ja. _ fs 5

9 = ands, = —
TR TR TR
These can be readily solved for the unknowini terms of the known values 6f; .
For this example, setting the first partial equal to some ecifipd fundamentaf
gives

S1 =

5182

ﬁ=§ﬁh— f, fa=s1f, andfs = sysof.

Assuming that the scale is to be octave based (i.e.,sthat 2), then the actual
frequencies of the partials may be moved freely among thevest The cost of this
spectrum is then evaluated, and the optimization proceztsfare.

% Recall the discussion on p. 117.
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12.5 Spectra for Tetrachords

The problem of finding spectra for a specified scale has bagedsin terms of a con-
strained optimization problem that can sometimes be soliziderative techniques.
Although these approaches are very general, the probleigtisimensional (on the
order of the number of partials in the desired spectrum)atgerithms run slowly

(overnight, or worse), and they are not guaranteed to fintnghsolutions (except
“asymptotically”). Moreover, even when a good spectrunoistd for a given scale,
the techniques give no insight into the solution of othesely related spectrum
selection problems. There must be a better way.

This section exploits the principle of coinciding partisdgransform the problem
into algebraic form. A symbolic system is introduced alorighva method of con-
structing related spectra. Several examples are givertail dend related spectra are
found for a Pythagorean scale and for a diatonic tetrachsodde. A simple pair of
examples then shows that it is not always possible to find selelbed spectra. The
symbolic system is further investigated in Appendix |, wdheeveral mathematical
properties are revealed.

Earlier in this chapter, the principle of coinciding palsiavas used to straightfor-
wardly find spectra for 10-tet. Other equal temperamentea@uelly straightforward.
To see why spectrum selection is more difficult for nonequalrtgs, consider the
Pythagorean diatonic scale, which was shown in Fig. 4.2 dsBpnapped to the
“key” of C'. Recall that this scale is created from a series of just 3Mt&fiftranslated
back into the original octave whenever necessary), anceedlrsof the fifths in the
diatonic scale (the white keys) are just. An interestingattrral feature is that there
are only two successive intervals, a “whole step’aof£ 9/8 and a “half step” of
b = 256/243. This whole step is 4 cents larger than the equal-temperesiove
whereas the half step is 10 cents smaller than in 12-tet.

In attempting to mimic the “induced spectrum” idea of theviwas sections, it
is natural to attempt to place the partials at scale stepfrtimately, the intervals
between scale steps are not necessarily scale steps. FRodesif one partial oc-
curred at the seventty;( = 243/128) and the other at the thirgf( = 4/3), then a
minimum of the dissonance curve might occur at f;/f; = a® = 729/512, which
is not a scale step. Similarly, the ratio between a partidlaand another at 81/64 is
256/243 = b, which again is not a scale step. Almost any nonequal scalsihalar
problems.

12.5.1 A Symbolic System

This section presents a symbolic system that uses the desiade to define an op-
eration that generates “strings” representing spectra sets of partials. Admissible
strings have all ratios between all partials equal to sorterval in the scale, and
thus they are likely to be related spectra, via the propdropimciding partials.
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Basic Definitions

A desired scal& can be specified either in terms of a set of intervgls1, sa, ..., sm
with respect to some fundamental frequenfcyr by the successive ratiog =

Si/Si—1.
So S1 S9 S3 Sm—1 Sm

N AN AN AN NS

For instance, for the Pythagorean major scale of Fig. 4.2 68p
S =1,9/8,81/64,4/3,3/2,27/16,243/128,2/1,

andr; is eithera = 9/8 orb = 256/243 for all .. The intervals; in S are called the
scale intervals

A spectrumF is defined by a set of partials with frequenciesfatfs, ..., fa.
The property of coinciding partials suggests that relafgtsa can be constructed
by ensuring that the ratios of the partials are equal to sstps. The following
definitions distinguish the situation where all ratios dfalrtials are equal to some
scale step, from the situation where all scale steps occarrago of some pair of
partials.

Complementaritylf for eachi andj there is a& such thatJ;—; = s, thenthe spectrum
is calledcomplementaryo the scale.

Completenesdf for eachk there is at least one pair éfandj such thats, = %
then the spectrum is callebmpletewith respect to the scale.

If a spectrum is both complete and complementary, then alisdperfectwith
respect to the given scale. Of course, scales and specttanoebe perfect to sound
good or to be playable, and many scales have no perfect apaitl. Nonetheless,
when perfect spectra exist, they are ideal candidates.

An Example

The simplest nonequal scales are those with only a small aupfidifferent suc-
cessive ratios. For example, one scale generated by twwatde andb has scale
intervals

so=1, s1 =a, sy = ab, s3 = a’h, s4 = a’b?,
s5 = ab?, andsg = a>b> = 2,

wherea andb are any two numbers such thelth = 2. Call this theab-cubed scale.
For theab-cubed scale,

rr=a, ra=>b r3=a, r4 =b, r5 =a, andrg = b.
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To see how it might be possible to build a perfect spectrunttiarscale, suppose
that the first partial is selected arbitrarily &t Then f; must be

(I,fl, (I,bfl, (1,2bf1, (I,Zbel, (1,3})2f1, 0r2f1

because any other interval will cau§3e to be outside the scale intervals. Suppose,
for instance, thaffs = a?bf; is selected. Therfs must be chosen so théiL and

j:—z are both scale intervals. The former condition implies thaatust be one of the
intervals above, whereas the latter restrjgteven further. For instancé; = a®b?f;

is possible becausé’f;% = ab is one of the scale intervals. Byt = a6 f; is not

possible becausé;b;% = ab? is not one of the scale intervals. Clearly, building
complementary spectra for nonequal scales requires moeetican in the equal-
tempered case where partials can always be chosen to betadeFor some scales,
no complementary spectra may exist. For some, no completgragmay exist.

Symbolic Computation of Spectra

This process of building spectra rapidly becomes complegybolic table called
the®-table (pronounced “oh-plus”) simplifies and organizesdheices of possible
partials at each step. The easiest way to introduce thicmttinue with the example
of the previous section.

Let the scalar intervals in theb-cubed scale be writte(l, 0), (1,1), (2,1),
(2,2), (3,2), and (3, 3), where the first number is the exponentasoénd the sec-
ond is the exponent df. As the scale is generated by a repeating pattern, i.e., it is
assumed to repeat at each octg\de3) is equated with(0, 0). Basing the scale on
the octave is not necessary, but it simplifies the discus3iba®-table 12.1 repre-
sents the relationships between all scale intervals. Tle thows, for instance, that
the intervala>b combined with the intervalb gives the scale intervaf?, which is
notated(2, 1) @ (1,1) = (3,2).

Table 12.1. @-table for thezb-cubed scale.

@ [(00 (1,00 (1.1) (1) (22) (32)
0,000 (10 (11 21 22 (32
10)|(10) * (21) * (32 *
L@ (21 22) G2) (00 (1,0
@nley > G2 * (1o *
(22)|(22) 32) (00 (1,0) (1.1) (2,1)
G2[@B2 * o * @1 -~

The * indicates that the given product is not permissible becé@wseuld result
in intervals that are not scalar intervals. Thu) = (2, 1) cannot beb-added to
a = (1,0) because together they form the interedb, which is not an interval
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of the scale. Observe that the “octave” has been exploitegsheser the product

is greater thar®. For instance(1,1) & (3,2) = (4, 3). When reduced back into
the octave (4, 3) becomegq(1, 0) as indicated in the table, expressing the fact that
Z:ZZ = a'b%. At first glance, this set of intervals and theoperator may appear to
be some kind of algebraic structure such as a group or a m@1&@8]. However,
common algebraic structures require that the operatioridsed, that is, that any
two elements (intervals) in the set can be combined usingpkeator to give another
element (interval) in the set. The presence of#lséndicates thatp is not a closed

operator.

Construction of Spectra

The®-table 12.1 was constructed from the scale steps given bybticebed scale;
other scales define analogous tables. This section shows how to usefstables
to construct spectra related to a given scale.

Let S be a set of scale intervals with unit of repetition or “octagé. Let T =
[S, s* + 5, 25+ S, 3s* + 5, ...] be a concatenation ¢f and all its octaves. (The
symbol “+” is used here in the normal sense of vector addjtiBach element of
in S represents an equivalence class ns* of elements irif". Said another wayy
does not distinguish steps that are one or more “octasfeapart.
Example:For theab-cubed scale,

S =1(0,0),(1,0),(1,1),(2,1),(2,2),(3,2)]
with octaves* = (3, 3). Then
st +S= [(3J 3); (4a 3): (4’4)’ (5’ 4), (5: 5): (6: 5)];

25"+ 5 =[(6,6),(7,6),(7,7),(8,7),(8,8),(9,8)],

and so on, and’ is a concatenation of these.
The procedure for constructing spectra can now be stated.

Symbolic Spectrum Construction

(i) Choosety in T, and lets; in S be the corresponding representative
of its equivalence class.
(i) Fori = 2,3,...,choose; in T with corresponding; in S so that
there are; ;_; with
5i=8; Drii—j

forj=1,2,...,i— 1.

The equation in the second step is calleddhequation. The result of the procedure
is a string oft;, which defines a set of partials. By construction, the spettbuilt
from these partials is complementary to the given scale #ddition, all of the scale



248 12 From Tuning to Spectrum

steps appear among either ther ther, then the spectrum is complete and, hence,
perfect.

The@®-equation expresses the desire to have all of the intereteden all of the
partials% be scale intervals. A set af are given (which are defined by previous
choices of the;). Solving this requires finding a singée such that thep-equation
holds for all j up toi — 1. This can be done by searching &jlcolumns of thep-
table for an element; in common. If found, then the corresponding value-of_;
is given in the leftmost column. Whether this step is solgdolr a particular, j
pair depends on the structure of the table and on the patichbices already made
for previouss;. Solution techniques for the@-equation are discussed at length in
Appendix I.

It is probably easiest to understand the procedure by wgrtkirough an exam-
ple. One spectrum related to the tiiecubed scale is given in Table 12.2. This shows
the choice ot;, the corresponding scale stepgwhich are the; reduced back into
the octave), and thg ; that complete thed-equation. As all of the; andr; ;. are
scale steps, this spectrum is complementary. As all scefss £tan be found among
thes; orr; 1, the spectrum is complete. Hence the spectrum of Table $@rfect
for this scale. To translate the table into frequencies liergartials, recall that the
elementg; express the powers afandb times an unspecified fundamenfalThus,
the first partial isf; = a®b3f, the second i, = a°b° f, and so on.

Table 12.2. A spectrum perfect for theb-cubed scale.

i 1 2 3 4 5 6 7K
L (33) (55 (66) (98) (10,9) (11,10) (13,12)
si (00) (22 (00) (32) (1,0) (1) (1,0

rik 22 (11) 32 @1 @11 (22 1

©,0) (1,00 (1,00 (22 (00 2

32 (1) (1) (@11 3

10 (32 (100 4

21 @1 5

1,0) 6

12.5.2 Perfect Pythagorean Spectra

The Pythagorean major scale of Fig. 4.2 on p. 53 is constidoben two intervals:
andb in the ordera, a, b, a, a, a, b. Thus, the scale steps are given by:

1 a a® a’b a3b a*b a®h a’bh? =2
(0,0) (1,0) (2,00 (1 G @1 (1) (5,2)=(0,0)

Typically, ab is a pure fourth. Along with the condition thatb? = 2, this uniquely
specifiess = 9/8 andb = 256/243, and so the scale contains two equal tetrachords
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separated by the standard inter¢a8. These exact values are not necessary for the
construction of the perfect spectra that follow, but they grobably the most com-
mon. Thed-table for this Pythagorean scale is shown in Table 12.3 ot even
necessary thgb, 2) be an exact octave; any pseudo-octave or interval of repetit
will do.

Table 12.3. ¢-table for the Pythagorean scale.

@ |00 (10 (20 1) @E1) @1 61
©00) | ©0) (10 (20 1) (GBI @1 G1I)
(10) | (10) (20 * (1) @41 (G1) *
(20) | (20) * * (41 (1) ¢ *
@11y 61 @1 * (00 (10 (20)
G1) @B @1 (G1) (00 (10 0 *
@41 |@y 1y * (1,00 (0 * *
G1) |61 * * (0 ¢ * *

Table 12.4. A spectrum perfect for the Pythagorean scale.

i1 2 3 4 5 6 7k
. (52) (B3) (104) (124) (145) (155) (17.6)
si (000 (31) (00 (20 @1 G1) (20

rik GB1) (1) (20 (1) (@10 (21 1
00 (41 (1) (31 (31 2

20 (1,00 (51) (00) 3

@1 (20 (20) 4

1) (41 5

(2,0) 6

Spectra can be assembled by following the procedure for sljogpectrum con-
struction, and one such spectrum is given in Table 12.4. @bskat all of thes; and
r; 1, are scale steps, and that all seven scale steps are presarg #mas; and the
r; . Hence, this spectrum is perfect for the Pythagorean séakuming the stan-
dard values for andb, this spectrum has its partials at

81 , 27 , 243 81
2f, 3f, 4f, —=f, —f, —f, and— 7.
123048 5 b Tf Syl and S
The first several partials are harmonic, and this is the &dtgperfect Pythagorean
spectrum to harmonicity. For example, there are no suitzditials betwee(12, 4) ~
5 and(14,5) = 6.75 and thus no way to closely approximate the sixth harmonic
partial 6f. It is easy to check th&tl3, 4) and (14, 4) are not scale steps, and that
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(13,5) = (3,1) forms the intervakb with (12, 4). As ab is not a scale steff|3, 5)
cannot occur in a complementary spectrlim.

The dissonance curve for this Pythagorean spectrum is shiokig. 12.4, under
the assumption that the amplitude of thi partial is0.9°. As expected from the
principle of coinciding partials, this curve has minimattaign with the scale steps.
Thus, there are significant minima at the just fourth anddiféimd at the Pythagorean
third 81/64 and the Pythagorean sixth 27/16, rather thamegjtist thirds and sixths
as in the harmonic dissonance curve. This spectrum will roitoé rough beating
when its thirds or sixths are played in long sustained pa&ssagthe Pythagorean
tuning. There are also two extra minimum that are shallowkapdd. These are not
due to coinciding partials. The exact location and depthhesé minima changes
significantly as the amplitude of the partials are changedisfusual for such ex-
tra minima, they are only barely distinguishable from the@unding regions of the
curve. Thus, perfect spectra, as constructed by the sympralcedure, do give dis-
sonance curves with minima that correspond closely witfessteps of the desired
scale.

12-tet scale steps: foyrth fiﬁh octave

—_

sensory
dissonance

o

11 9/8 81/64 4/3 3/2 " 27/16 243/128 2/1

frequency ratio

Fig. 12.4.Dissonance curve for the spectrum specially designed &y ipl the Pythagorean
diatonic scale has minima at all of the specified scale sTepsextra “broad” minima marked
by stars are not caused by coinciding partials.

12.5.3 Spectrum for a Diatonic Tetrachord

A more general diatonic tetrachordal scale is construateh three intervalg, b,
ande in the ordera, a, b, ¢, a, a, b. The scale steps are:

1 a ab ) a®be a®be a’b’c a*h?c =2

(0,0,0) (1,0,0) (1,1,0) (2,1,0) (2,1,1) (3,1,1) (3,2,1) (4,2,1) = (0,0,0)

As before,a’b is a pure fourth that defines the tetrachord. The new interial
typically given by the interval remaining when two tetraoti®are joined, and so=

" However,(13, 5) = 6 can be used if12, 4) is replaced by 11, 4) = 9/2. This would then
sacrifice the accuracy of the fifth harmonic to increase tloemcy of the sixth. Tradeoffs
such as this are common.
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9/8. There are no standard values foandb. Rather, many different combinations
have been explored over the years. @able for this diatonic tetrachordal scale is
given in Table 12.5. As before, it is not necessary {Ha®, 1) be an exact octave,
although it must define the intervals at which the scale itspea

Table 12.5. ¢-table for the specified tetrachordal scale.
) (0,000 (1,00 @10 210 (2,11 @11 (B.21)

0,0,00] (0,00) (1,00) (11,00 (21,0 @11 @GL1) 321)
100)| @00 * (210 * (311 * (000

11,0 1,100 (21,00  * * (321 (000) @ *
21,0 | 210  * * * (0,00 (1,00) (1,1,0)
211 @11 @11 (321 (000  * * *
G11)] 311 * (000 (1,000 @ * (21,1

G321 (3,21 ©00 * (@110 * (211 @ *

Table 12.6. A perfect spectrum for the specified tetrachordal scale.

i1 2 3 4 5 6 7K
t. (421) 63.2) (842 (1153) (12,6:3) (14,7.4) (16)8,
si (0,00) (2,1,1) (0,00 (3.11) (000 (21,1 (0,0,0)
rik 211 210 @E1,1) 11,0 (211 (210 1
0,000 (1,00) (0,00 (321) (0,00) 2
G311 (210 @11 (@110 3
0,000 (0,00) (0,00) 4
211 (1,0 5
0,000 6

Spectra can be constructed by following the symbolic spettonstruction pro-
cedure, and one such spectrum is given in Table 12.6. Ob#watvall of thes; and
r; , are scale steps and that all seven scale steps are presem #moe; or r; ;.
Hence, this spectrum is perfect for the specified tetraclicahle.

In order to draw the dissonance curve, it is necessary to gacticular values
for the parameters, b, andc. As mentioned above, = 9/8 is the usual difference
between two tetrachords and the octave. Somewhat arbjtiatib = 10/9, which,
combined with the condition that’s = 4/3 (i.e., forms a tetrachord), imply that
a = 1/6/5. With these values, the spectrum defined in Table 12.6 is

[, 28, 3f,4f, 6.57f, 8f, 12f, and16f,

and the resulting dissonance curve is given in Fig. 12.5 viheramplitude of the
ith partial is0.97. Minima occur at all scale steps except the first, the inteva
Although this may seem like a flaw, it is normal for small iMa&s (like the major
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second) to fail to be consonant; the Pythagorean spectruimegbrevious section
was atypical in this respect. Again, although a few broadiménoccur, they are
fairly undistinguished from the surrounding intervalsughthe symbolic method of
spectrum construction has again found a spectrum that isswi¢éd to the desired
scale.

12-tet scale steps: fotlmh filﬂh

1——

octave
h
T .

sensory
dissonance

o

*

1 ab a2 " a2bc adbc’ a2 2
frequency ratio

Fig. 12.5.The dissonance curve for the spectrum related to the datetrachord witha® =

£,b =1 andc = £, has minima at all scale steps except for the first. The brdaihma at

the starred locations are not caused by coinciding partials

12.5.4 When Perfection Is Impossible

The above examples may lull the unsuspecting into a bel@fghrfect spectra are
possible for any scale. Unfortunately, this is not so. Caesfirst a simple scale built
from three arbitrary intervalg, b, andc in the ordera, b, ¢, a. The scale steps are:

1 a ab abe a’be =2
(0,0,0) (1,0,0) (1,1,0) (1,1,1) (2,1,1)=(0,0,0)

As suggested by the notatidi, 1, 1) serves as the basic unit of repetition that would
likely be the octave. The-table for this scale is given in Table 12.7.

Table 12.7. ¢-table for the scale defined by three intervals in the otgérc, a.

@ |00 (100 (@110 (@111)
0,00y (0,00 (1,000 (1,100 (1,1,1)

(1,0,0) | (1,0,0) * (0,0,0)
(1,1,0)| (1,1,0) * * *
111)] 11,1 (0,0,0) * *

The difficulty with this scale is that the elemefit, 1,0) cannot be combined
with any other. The symbolic construction procedure rezpiat each step that the
be expressible as@-sum ofs; and some; ;. Butitis clear that the operation does
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not allow(1, 1, 0) as a product with any element (other than the identity) dubeo
column of«’s. In other words, if the intervdll, 1, 0) ever appears as a partial in the
spectrum or as one of thg ;, then the construction process must halt because no
more complementary partials can be added. In this partiextample, it is possible
to create a perfect spectrum by having the elengént, 0) appear only as the very
last partial. However, such a strategy would not work if éheere two columns of
*'S.

An extreme example for which no perfect spectrum is possstdescale defined
by four different intervals:, b, ¢, andd taken in alphabetical order. The scale steps
are:

1 a ab abc abed = 2
(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0) (1,1,1,1)=(0,0,0,0)

As suggested by the notatiofi,, 1, 1, 1) serves as the basic unit of repetition that
would typically be the octave. The-table for this scale is given in Table 12.8.

Table 12.8. ¢-table for a simple scale defined by four different intervals

@ |©000) (1000 (1100 (11,10)
(0,0,0,00] (0,0,00) (1,0,0,00 (1,1,0,0) (1,1,1,0)
(1,0,0,0) | (1,0,0,0) * * *
(1,1,0,0)| (1,1,0,0) * * *
(1,1,1,0)| (1,1,1,0) * * *

Partials of a complementary spectrum for this scale can loalg intervals that
are multiples of the octavél, 1, 1,1) due to the preponderance of disallowed
entries in thep-table. The only possible complementary spectrur(0i$), 0, 0) f,
(1,1,1,1)£,(2,2,2,2) f, and so on, which is clearly not complete, and hence not
perfect. Thus, a given scale may or may not have perfectrspeltpending on the
number and placement of theentries in the table.

12.5.5 Discussion

Do not confuse the idea of a spectrum related to a given sdétetiee notion of a
perfect (complete and complementary) spectrum for thees@dle former is based
directly on a psychoacoustic measure of the sensory diesera the sound, and
the latter is a construction based on the coincidence oigh&within the spectrum.
The latter is best viewed as an approximation and simplifioaif the former, in the
sense that it leads to a tractable system for determiningfrspeia the principle of
coinciding partials. But they are not identical.
Some scale intervals that appear in the spectrum (i.e., gtt@s; or ther; , of

Tables 12.2, 12.4, or 12.6) may not be minima of the dissamanove. For instance,
the tetrachordal spectrum does not have a minimum at thediat step even though
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it is complete. Alternatively, some minima may occur in thesdnance curve that
are not explicitly ratios of partials. Three such minimawda Fig. 12.5; they are the
broad kind of minima that are due to wide spacing betweemicepairs of partials.

The notion of a perfect spectrum shows starkly that the nmegortant feature of
related spectra and scales is the coincidence of partialsarfe—a result that would
not have surprised Helmholtz. Perhaps the crucial difiszes that related spectra
take explicit account of the amplitudes of the partials, kehs perfect spectra do not.
In fact, by manipulating the amplitudes of the partialssipossible to make various
minima appear or disappear. For instance, it is possibléxbthe problem that the
tetrachordal spectrum is missing its first scale sty increasing the amplitudes of
the partials that are separated by the ratidlternatively, it is often possible to re-
move a minimum from the dissonance curve of a perfect spadiyudecreasing the
amplitudes of the partials separated by that interval. egg although a minimum
due to coinciding partials may be extinguished by manipoggthe amplitudes, its
location (the interval it forms) remains essentially fixédcontrast, the broad type
minima that are not due to coinciding partials move contirslpas the amplitudes
vary; they are not a fixed feature of a perfect spectrum.

As the number of different intervals in a desired scale iases, it becomes more
difficult to find perfect spectra; the-tables become less full (i.e., have more disal-
lowed x entries) and fewer solutions to theequation exist. There are several sim-
ple maodifications to the procedure that may result in spab@tare well matched
to the given scale, even when perfection is impossible. @nple modification is
to allow the spectrum to be incomplete. As very small intesnaae unlikely to be
consonant with any reasonable amplitudes of the partilaés; tmay be safely re-
moved from consideration. A second simplifying strategyigelax the requirement
of complementarity—although it is certainly important tipgominent scale steps
occur at minima, it is not obviously harmful if some extra imia exist. Indeed, if an
extra minimum occurs in the dissonance curve but is neveedla the piece, then
its existence will be transparent to the listener.

A third method of relaxing the procedure can be applied whenthe scale is
specified only over an octave (or over some pseudo-octavelhich case the com-
pleteness and complementarity need only hold over eacheodtar instance, a par-
tial t; might be chosen even though it forms a disallowed intervéh wiprevious
partial¢;, providing the two are more than an octave apart. Thus, ijalécrelax-
ation of various elements of the procedure may allow spetifin of useful spectra
even when perfect spectra are not possible.

Perfect spectra raise a number of issues. For instancegea gianequal scale
sounds different in each key because the set of intervalgistly different. How
would the use of perfect spectra influence the ability to ntatguthrough various
keys? Certain chords will become more or less consonant wlasred with per-
fect spectra than when played with harmonic tones. Whag¢pettof (hon)harmonic
motion are best suited to perfect spectra and their chorddp¥vfect spectra be
useful for some part of the standard repertoire, or will theyonly useful for new
compositions that directly exploit their strengths (andidvheir weaknesses)?
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12.6 Summary

Given a spectrum, what is the related scale®s answered completely in previous
chapters; draw the dissonance curve and gather the indeavabhich its minima
occur into a scale. This chapter wrestled with the more diffimverse question:
Given a scale, what is the related spectru@fe approach posed the question as a
constrained optimization problem that can sometimes hedalsing iterative search
technigues. Reducing the size of the search space inctéadéselihood that a good
spectrum is found. The second approach exploits the pfaoficoinciding partials
and reformulates the question in algebraic form.

Neither approach completely specifies a “best” spectrurthfagiven scale. Both
stipulate the frequencies of the partials, but the optitloramethod assumes a set
of amplitudes a priori, whereas the algebraic proceduneekethe amplitudes free.
Thus, each answer gives a whole class of related spectrattyasound as different
from each other as a trumpet from a violin or a flute from a guN&ither method
gives any indication of how such sounds might be generatetkated. One obvious
way is via additive synthesis, but unless great care is tekaditive synthesis can
result in static and lifeless sounds. An alternative is tgitbevith sampled sounds
and to manipulate the partials so that they coincide witliltsred perfect spectrum.
This technique, called “spectral mapping,” is discussddragth in the next chapter.
A much more difficult question is how acoustic instrumentgimbe given the kinds
of deviations from harmonicity that are specified by peréeud related spectra.
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Spectral Mappings

A spectral mapping is a transformation from a “source”
spectrum to a “destination” spectrum. One application is

to transform inharmonic sounds into harmonic equivalents.
More interestingly, it can be used to create inharmonic
instruments that retain much of the tonal quality of fanmilia
(harmonic) instruments. Musical uses of such timbres
are discussed, and forms of (inharmonic) modulation are
presented. Several sound examples demonstrate both the
breadth and limitations of the method.

13.1 The Goal: Life-like Inharmonic Sounds

A large number of different timbres can be created using splynds with a har-
monic spectrum. It should be possible to get at least as Ergeiety using inhar-
monic sounds. This chapter shows one way to make imitativarimonic sounds,
ones that seem to come from real instruments. This is howterimonic trumpet or
guitar might sound.

Suppose a composer desires to play in some specified sogli $a-tet. As fa-
miliar harmonic sounds are dissonant when played in 1ittey be advantageous
to create a new set of sounds, with spectra that cause mirfitha dissonance curve
to occur at the appropriate 11-tet scale steps. Figure 1&.Example, shows the
dissonance curve for a spectrum that has major dips at matte dbcations of the
11-tet scale steps. This spectrum was designed using thieigees of the previous
chapter, which specifies only a desired set of partials. Rutnaplete spectrum con-
sisting of magnitudes and phases must be chosen to drawdssendince curve and
to transform the sound into a time waveform for playback hafigure, all partials
are assumed equal, giving the sound a rich organish quality.

The most straightforward approach to the problem of soumdhggis from a
specified set of partials is additive synthesis, such agitestin Risset [B: 150], in
which a family of sine waves of desired amplitude and phasesammed. Although
computationally expensive, additive synthesis is conapt straightforward. A ma-
jor problem is that it is often a monumental task to specifpathe parameters (fre-
guencies, magnitudes, and phases) required for the sysfitesedure, and there is
no obvious or intuitive path to follow when generating newsgs. When attempting
to create sounds for new scales, such as the 11-tet timbwe aibds equally chal-
lenging to choose these parameters in a musical way. Makiiyary choices often
leads to organ or bell-like sonorities, depending on theslepe and other aspects
of the sound. Although these can be striking, they can aldoviieng from a com-
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12-tet scale steps
unison M3 P4 P5 octave

11-tet scale steps

sensory
dissonance

o

Fig. 13.1.Dissonance curve for the spectrum with equal amplitudegigwt [l a'' a'” o*?

a® a®® a®! a® a®° a®" a®®], wherea = ''/2. The minima of this dissonance curve occur

at many of the 11-tet scale steps (bottom axis) and not ataktetlscale steps (top axis).

positional perspective. Is there a way to create a full rasfdenal qualities that are
all related to the specified scale? For instance, how care*flke” or “guitar-like”
timbres be built that are consonant when played in this 1iuténg?

A common way to deal with the vast amount of information reediby additive
synthesisis to analyze a desired sound via a Fourier (or)dtaesform, and then use
the parameters of the transform in the additive synthesisuth analysis/synthesis
schemes, the original sound is transformed into a familyired svaves, each with
specified amplitude and phase. The parameters are storeeniom and are used
to reconstruct the sound on demand. In principle, the matibddnalysis/synthesis
allow exact replication of any waveform. Of course, the gbtmbe resynthesized
must already exist for this procedure to be feasible. Unfaately, 11-tet flutes and
guitars do not exist.

Once a sound is parameterized, it is possible to maniputatparameters. For
example, the technique of Grey and Moorer [B: 64] interpddhe envelopes of har-
monics to gradually transform one instrumental tone intmtlaer. Strong and Clark
[B: 186] exchange the spectral and temporal envelopes amangnber of instru-
ments of the wind family and conduct tests to evaluate thedative significance.
Probably the first parameter-based analysis/synthesibaotietwere the vocoder
of Dudley [B: 45] and its modern descendant the phase vocoflEfanagan and
Golden[B: 55], which were designed for the efficient encgdifitransmitted speech
signals.

The consonance-based spectral mappings of this chapter kired of analy-
sis/synthesis method in which the amplitudes and phasekeo$pectrum of the
“source” sound are grafted onto the partials of a specifiegbtidation” spectrum,
which is chosen so as to maximize a measure of consonanceoferproperly, to
minimize a measure of dissonance). The goal is to relocetpattials of the original
sound for compatibility with the destination spectrum, leléaving the tonal quality
of the sound intact. Musically, the goal is to modify the gpem of a sound while
preserving its richness and character. This provides a wajntulate the sound of
nonexistent instruments such as the 11-tet flute and gitgure 13.2 shows the
spectral mapping scheme in block diagram form. The inputdigs transformed
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into its spectral parameters, the mapping block manipsiitese parameters, and
the inverse transform returns the signal to a time-basecdfwaw for output to a
D/A converter and subsequent playback.

source spectrum destination spectrum

input signal © ® output signal

) = 3 (]

° = = °

E : s, 2

s I < s

v E fifp .ty € dd,..dy, §

time frequency frequency time

Spectral Inverse

— Transform Mapping Transform

Fig. 13.2.Block Diagram of a transform-based analysis-synthesistsglemapping. If the
mapping is chosen to be the identity, then the input and dsignals are identical.

13.2 Mappings between Spectra

A spectral mapping is defined to be a transformation from aofet partials
s1, $a2,..., s (called the “source spectrum”) to the partidls d, ..., d, of the
“destination spectrum” for whicll'(s;) = d; for all <. Suppose that aV-point
DFT (or FFT) is used to compute the spectrum of the originahsgresulting in a
complex-valued vectoK . The mappingl” is applied toX (which presumably has
partials at or near the;), and the result is a vectdr(.X'), which represents a spec-
trum with partials at or near th&. This is shown schematically in Fig. 13.3 for an
“arbitrary” destination spectrum.

The simplesfl is a “straight-line” transformation

diy1 —d; disiy1 — diy15;
T(5)2<L>3+<M> 5i <5< s

Si4+1 — Si Si41 — Si

Smoother curves such as parabolic or spline interpolatiansbe readily used, but
problems occur with such direct implementations due to thetjzation of the fre-
guency axis inherent in any digital representation of thecspm. For instance, if
the slope off" is significantly greater than unity, then certain elemefits (©0¥) will
be empty. More seriously, if the slope ‘6fis significantly less than unity, then more
than one element of will be mapped into the same elementifX ), causing an ir-
retrievable loss of information. It is not obvious how to sy combine the relevant
terms.

A better way to think of the spectral mapping procedure is kisd of “resam-
pling” in which the information contained between the fregoiess; ands; 41 is
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Fig. 13.3.Schematic representation of a spectral mapping. The fitstpartials of a harmonic
“source spectrum” are mapped into an inharmonic “destimatpectrum” with partials af,
2.1f,2.9f,3.8f,5.4f,5.8f,7f,8.4f,and8.9f. The spectrum of the original sound (from
the G string of a guitar with fundamental at 194 Hz) is transforrbgdhe spectral mapping
for compatibility with the destination spectrum. The mapgpchanges the frequencies of the
partials while preserving both magnitudes (shown) and @h&sot shown).

resampled to occupy the frequencie to d; ;. Resampling is a standard digital
signal processing technique with a long history and a laitgeature. It generally
consists of two partglecimatiorandinterpolation which together attempt to repre-
sent the “same” information with a different number of sagspl

One presumption underlying spectral mappings is that th& mgportant infor-
mation (the partials of the sound) is located at or neasthaend it is to be relocated
as ‘intact’ as possible near the Figure 13.4 shows an exaggerated view of what oc-
curs to a single partial when performing a straightforwasdmpling with a nonunity
spectral maf'. In essence, the “left half” of the spectrum becomes asymcrfedbm
the “right half,” and the transformed spectrum no longerespnts a single sinusoid.
This is a kind of nonlinear distortion that can produce aled@stifacts.

One way to reduce this distortion is to chose a window of witithabout thes;
that is mapped identically to a window of the same width alkuThe remaining

! One implementation uses a polyphase algorithm with anadiatsing low-pass FIR filter
incorporating a Kaiser window. The examples in this chafiiter ten terms on either side
of z; and use3 = 5 as the window design parameter. These are the defalliatdb ’s
built in “resample” function. An alternative is to usénc(-) interpolation as discussed in

[w: 29].



13.2 Mappings between Spectra 261

spectrum of a
single partial of
the original sound
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Si.q s S;,1 source

@ . .

] (Si.1,8) is (5;:Si41) is
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Fig. 13.4.Resampling causes asymmetries in the transformed spetttatmay cause audible
anomalies.

regions, betwees; +w ands; .1 —w, can then be resampled to fit betwekn-w and
d;+1 — w. This is shown (again in exaggerated form) in Fig. 13.5. [a thethod of
Resampling with Identity WindofRIW), the bulk of the most significant information
is transferred to the destination intact. Changes occuyriarthe less important (and
relatively empty) regions between the partials. We havendiotinat window widths
of about1/3 to 1/5 of the minimum distance between partials to be most effectiv
in reducing the audibility of the distortion.

Spectral mappings are most easily implemented in software(hardware to
emulate such software) in a program:

input spectrum = FFT(input signal)
mapped spectrum = T(input spectrum)
output signal = IFFT(mapped spectrum)

where the functior¥” F'T() is the Discrete Fourier Transform or its fast equivalent,
IFFT() is the inverse, and the RIW spectral mapping is representet. [Dther
transforms such as the wavelet or constant-Q transformgBmight also be useful.
Spectral mappings can be viewed as linear (but time-vajyiagsformations of the
original signal. Let the signal be, and let7' be the matrix that transformsinto its
DFT. Then the complete spectral mapping gives the outpuossig

&= F'TF(x)

whereT is a matrix representation of the resampling procedures iBtglearly linear,
and it is time varying because the frequencies of signalsatgreserved. Often
T fails to be invertible, and the original signalcannot be reconstructed from its
spectrally mapped versioh
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Fig. 13.5.Resampling with identity windows reduces the asymmetrjettansformed spec-
trum.

There are many possible variationsiafFor instance, many instrumental sounds
can be characterized using formants, fixed linear filtersudh which variable exci-
tation passes. If the original samples are of this kind, thisrsensible to modify the
amplitudes of the resulting spectra accordingly. Simjiaah “energy” envelope can
be abstracted from the original sample, and in some sitastibomight be desirable
to preserve this energy during the transformation. In a@aoldithere are many kinds
of resampling (interpolation and decimation), and theesfege parameters (and fil-
ters) within each kind. Trying to choose these parametetsnafly is a daunting
task.

It may be more efficient computationally to implement spaatnappings as a
filter bank rather than as a transform (a good modern appriefitter banks may
be found in [B: 185]), especially when processing a contirsuaudio signal. This
is diagrammed in Fig. 13.6, which shows a bank of filters ¢agyut the analysis
portion of the procedure, a spectral mapping to manipulaeparameters of the
spectrum, and a bank of oscillators to carry out the synshsition. This does not
change the motivation or goals of the mappings, but it doggest an alternative
hardware (or software) approach.

13.2.1 Maintaining Amplitudes and Phases

The tonal quality of a harmonic sound is determined largetyhe amplitudes of
its sinusoidal frequency components. In contrast, thegshabthese sinusoids tend
to play a small role, except in the transient (or attack) iparbf the sound, where
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bandpass oscillators
filters

amp, aimp,
D (4
puialr=
freqy

ampo| Spectral |

input F2

freda | Mapping |

analysis synthesis

Fig. 13.6.A filter-bank implementation of spectral mapping. The ingubandpass filtered,
and the signal is parameterized int@amplitude, phase, and frequency parameters. These are
transformed by the spectral mapping, and the modified paemeériver. oscillators, which

are summed to form the output.

they contribute to the envelope. The transformafiois specified so as to keep each
frequency component (roughly) matched with its originapéitade and phase. This
tends to maintain the shape of the waveform in the attackiqgrorEor example,
Fig. 13.7 shows a square wave and its transformation inté ket timbre specified
in Fig. 13.1. The first few pulses are clearly discernibléniamapped waveform. As
the first few milliseconds of a sound are important in termihefoverall sound qual-
ity, maintaining the initial shape of the waveform conttiésito the goal of retaining
the integrity of the sound.

Fig. 13.7.A square wave and its transformation

—~— '\/Av into a 11-tet version. Maintaining the phase rela-
© tionships among the partials helps the attack por-
2 tion retain its integrity.

g N A /\ A

N ~
0 100 200 300 400 500

sample number

13.2.2 Looping

A common practice in sample-based synthesizers is to “lsophds, to repeat cer-
tain portions of the waveform under user control. Periodictipns of the wave-

form are ideal candidates for looping. Strictly speakimdparmonic sounds such as
result from transformations like the 11-tet spectral magpihave aperiodic wave-
forms. Apparently, looping becomes impossible. On therdthed, the FFT induces



264 13 Spectral Mappings

a quantization of the frequency axis in which all frequenoynponents are inte-
ger multiples of the frequency of the first FFT bin (for instapnabout 1.3 Hz for
a 32K FFT at a 44.1 KHz sampling rate). Thus, true aperioglisiimpossible in a
transform-based system. In practice, it is often possiledp the sounds effectively
using the standard assortment of looping strategies asg &ades, although it is not
uncommon for the loops to be somewhat longer in the modifiecefeam than in
the original.

To be concrete, suppose that the original waveform contalasped portion. A
sensible strategy is to append the loop onto the end of thefaam several times,
as shown in Fig. 13.8. This tends to make a longer portioneftbdified waveform
suitable for looping. It is also a sensible way of filling orddéng the signal until
the length of the wave is an integer power of two (so that theersfficient FFT can
be computed in place of the DFT). The familiar strategy ofdiag with zeroes is
inappropriate in this application. Figure 13.9, for ingt@nshows the results of three
different mappings of the 4500 sample trumpet waveform gf EB.8. Calculating
the DFT and applying the 11-tet spectral mapping of Fig. §iB/és the waveformin
Fig. 13.9(a). This version consists primarily of the attacktion of the waveform,
and is it virtually impossible to loop without noticeablditacts. An alternative is
to extend the waveform to 8K samples by filling with zeroesisTallows use of
the FFT for faster computation, but the resulting stretclhiadeform of Fig. 13.9(b)
is no easier to loop than the signal in 13.9(a). A third akl&ke is to repeatedly
concatenate the original looped portion until the wavefoeaches the desired 8K
length. The resulting stretched version contains a longstag portion, and it is
correspondingly easier to loop.

Fig. 13.8.(a) A 4500 sample trum-
pet waveform with looped region indi-
cated. (b) The same waveform using a
“fill with loop” rather than a “fill with
zeroes” strategy to increase the length
of the wave to 8K samples.

amplitude

0 2000 4000

looped region ~ copies of loop

\

TN

Cs
amplitude

0 2000 4000
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13.2.3 Separating Attack from Loop

The attack portion of a sound is often quite different frora kboped portion. The
puff of air as the flute chiffs, the blat of the trumpets attagkthe scrape of the
violins bow are different from the steady-state sounds efsime instruments. In-
deed, Strong and Clark [B: 186] have shown that it can oftediffieult to recognize
instrumental sounds when the attack has been removed.

Naive application of a spectral mapping would transformabeplete sampled
waveform simultaneously. Because the Fourier transforsrploar time localization
properties, this can cause a “smearing” of the attack podieer the whole sample,
with noticeable side effects. First, the smearing can sionestbe perceived directly
as artifacts: a high tingly sound, or a noisy grating thaee¢p irregularly throughout
the looped portion of the sound. Second, because the &stdae nonuniform, they
make creating a good loop of the mapped sound more difficult.

Thus, a good idea when spectrally mapping sampled soundm¢tance, those
with predefined attack and loop segments) is to map the adtadihe loop portions
separately, as shown in Fig. 13.10. The resulting piecestloam be pasted back
together using a simple crossfade. This tends to maintaimtiegrity of the attack
portion (it is shorter and less likely to suffer from phasd amearing problems), and
to reduce artifacts occurring in the steady state.

Often, a complete sampled “instrument” contains severf¢r@int waveforms
sampled in different pitch ranges and at different dynamiges. The creation of a
spectrally mapped version should map each of these sampilethen assign them
to the appropriate pitch or dynamic performance level. Iditiah, it is reasonable
to impose the same envelopes and other performance paramsetsh as reverb,
vibrato, and so on, as were placed on the original samplesulse these will often
have a significant impact on the overall perception of thdityuaf the sound.

2 Even the looping of familiar instrumental sounds can béric

(@)

amplitude

(b)

amplitude

new loop —_

Fig. 13.9. Spectrally mapped versions of the
; e e R trumpet waveform in Fig. 13.8. (a) Using a DFT
e T e of the original wave. (b) Using an FFT and the
S e “fill with zeroes” strategy. (c) Using an FFT and
the “fill with loop” strategy. Version (c) gives a
0 2000 4000 6000 8000 longer, steadier waveform with more opportunity
sample number to achieve a successful loop.

G}
amplitude
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loop

copies of loop
attack

Spectral Spectral
Mapping Mapping
Inverse Inverse
Transform Transform
new attack ’/

7 N new loop

Fig. 13.10. Transforming the attack
and steady-state (looped) portions sep-
arately helps to maintain the tonal in-
tegrity of the sound.

13.3 Examples

This section presents examples of spectral maps in whidntbgrity of the original

sounds is maintained, and others in which the perceptuatitgeof sounds is lost.
Examples include instruments mapped into a spectrum cansamth 11-tet and
with 88-cet, a cymbal sound mapped so as to be consonant aithamic sounds,
and instruments mapped into (and out of) the spectrum ofa d8pectrally mapped
sounds can be useful in musical compositions, and Tablelis&slall of the pieces
on the CD that feature sounds mapped into the specified scales

13.3.1 Timbres for 11-tone Equal Temperament

Familiar harmonic sounds may be dissonant when played itetldecause minima
of the dissonance curve occur far from the desired scals.sB3pusing an appropri-
ate spectral mapping, harmonic instrumental timbres camansformed into 11-tet
versions with minima at many of the 11-tet scale steps, asshoFig. 13.1. These
can be used to play consonantly in a 11-tet setting. The mgpfsed to generate the
tones in the sound example maps a set of harmonic partials at

fo 28, 3F,4f, 5F, 6f, Tf, 8f, 9f, 10f, 11f

to

11 17 22 26 28 31 33 35 37 38
P P I P L FIE U I e IS PE L PR Pl |
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Table 13.1. Musical compositions on the CD-ROM using sounds that aretsqley mapped
into the specified scale.

Name of Scale File For More
Piece Detail
88 Vibes 88-cet vibes88.mp3 [S: 16]
Anima 10-tet anima.mp3 [S: 106]
Circle of Thirds 10-tet circlethirds.mp3 [S:104]
Glass Lake tom-tom glasslake.mp3 [S:91]
Haroun in 88 88-cet  haroun88.mp3 [S: 15]
Hexavamp 16-tet hexavamp.mp3 [S:97]
Isochronism 10-tet isochronism.mp3 [S: 105]
March of the Wheel 7-tet marwheel.mp3 [S:115]
Nothing Brokenin Seven 7-tet broken.mp3 [S:117]
Pagan’s Revenge 7-tet pagan.mp3 [S:116]
Phase Seven 7-tet phase7.mp3 [S:118]
Seventeen Strings 17-tet  17strings.mp3 [S: 98]
Sonork harmonic  sonork.mp3 [S: 93]
Sympathetic Metaphor 19-tet sympathetic.mp3 [S:101]
Ten Fingers 10-tet  tenfingers.mp3 [S:102]
The Turquoise Dabo Girl 11-tet dabogirl.mp3 [S: 88]
Truth on a Bus 19-tet truthbus.mp3 [S:100]
Unlucky Flutes 13-tet 13flutes.mp3 [S:99]

wherer = %/2 and f is the fundamental of the harmonic tone. All frequencies
between these values are mapped using the RIW method.

Sound example [S: 86] (and video example [V: 11]) contairessdifferent in-
strumental sounds that alternate with their 11-tet vession

(i) Harmonic trumpet compared with 11-tet trumpet
(i) Harmonic bass compared with 11-tet bass
(iif) Harmonic guitar compared with 11-tet guitar
(iv) Harmonic pan flute compared with 11-tet pan flute
(v) Harmonic oboe compared with 11-tet oboe
(vi) Harmonic “moog” synth compared with 11-tet “moog” sint
(vii) Harmonic “phase” synth compared with 11-tet “phasgiith

The instruments are clearly recognizable after mappirgtheir 11-tet counterparts.
There is almost no pitch change caused by this spectral mgppiobably because

¥ The waveforms were taken from commercially available sar@i-ROMs and transferred
to a computer running Matlab program that performed the spectral mappings. After
looping (which was done manually, with the helgwfinity looping software), the modified
waveforms were sent to an Ensoniq ASR-10 sampler. The pesfoces were sequenced
and recorded to digital audiotape. In all cases, the sanferp@nce parameters (filters,
envelopes, velocity sensitivity, reverberation, etc.yevapplied to the spectrally mapped
sounds as were used in the original samples.



268 13 Spectral Mappings

some partials are mapped higher, whereas others are mapped lindeed, the third
partial is mapped lower than its harmonic counterpart (823), but the fifth is
higher (5.14 vs. 5). Similarly, the sixth is lower (5.84 v¥. I6ut the seventh is higher
(7.05vs. 7).

Perhaps the clearest change is that some of the samplesduyaiesd a soft high-
pitched inharmonicity. It is hard to put words to this, but tme In (i) it may almost
be called a “whine.” (ii) has a slight lowering of the pitcls, aell as a feeling that
“something else” is attached. (iii) has acquired a high gjaf in the transition. It
is hard to pinpoint any changes in (iv) and (vi). In (v), it bates easier to “hear
out” one of the partials in the mapped sound, giving it an a@mmoinorish feel. The
natural vibrato of (vii) appears to have changed slightly,ibis otherwise intact.

Despite the fact that all sounds were subjected to the sanpping the per-
ceived changes differ somewhat from sample to sample. BHikely an inherent
aspect of spectral mappings. For instance, the bass hagng $hird partial and a
weak fifth partial compared with the other sounds. As thedtipiartial is mapped
down in frequency, it is reasonable to hypothesize thatdhises the lowering in
pitch. Because the fifth partial is relatively weak, it cahommpensate, as might oc-
cur in other sounds. Similarly, differing amplitudes offi@s may cause the varying
effects perceivable in (i)-(vii).

Such perceptual changes may be due to the way that inharitesiare per-
ceived. For instance, Moore [B: 115] examines the questfdroer much detuning
is needed before an inharmonic partial causes a sound tiointeawo sounds rather
than remain fused into a single percept. Alternativelycienges may be due to arti-
facts created by the spectral mapping procedure. For iostather choices of filters,
windows widths, and so on, may generate different kindstifiats. Poorly imple-
mented spectral mappings can introduce strange effeatexample, in some of the
earliest experiments with spectral mappings, many soucgisitgd a high-pitched
jangling effect. The piec&eventeen Strind$S: 98] features these sounds, and the
jangling provides an interesting high pitched backgrountthe foreground harp. Al-
though this may be acceptable in a single piece as a spefdat,gf is undesirable
overall. This was the major impetus for separating the ktsanxl looped portion of
the sounds in the mapping procedure—separation reducastifiaets significantly.

Isolated sounds do not paint a very good picture of their tienan more com-
plex settings. A short sequence of major chords are playsolind example [S: 87]

(viii) Harmonic oboe in 12-tet
(ix) Spectrally mapped 11-tet oboe in 12-tet

As before, the individual sounds have only a small pitchtshitie striking difference
between (viii) and (ix) shows that the “out-of-tune” percemay be caused by the
structure of the partials of a sound, as well as by pitch ceriral relationships.
Sound example [S: 87](ix) is not literally “out-of-tune” teuse its fundamental is
tuned to the accuracy of the equipment, which is about 1.&cBather, (ix) is “out-

* And presented in video format [V: 12].
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of-spectrum” or “out-of-timbre,” in the sense that the st of the sound interfere
when played at certain intervals (in this case the 12-tebnthjrd and fifth).

The next segments contain 11-tet dyads formed from scade 6t€ and 0-7, and
culminate in a chord composed of scale steps 0-4-6.

(x) Harmonic oboe in 11-tet
(xi) Spectrally mapped 11-tet oboe in 11-tet

Examples (x) and (xi) reverse the situation from (viii) atirg.(Because of the
extreme unfamiliarity of the intervals (observe that ltlsteale steps 4 and 6 do not
lie close to any 12-tet intervals), the situation is perhkgss clear, but there is a
readily perceivable roughness of the 0-4-6 chord in (x) ivabsent from (xi). Thus,
after acclimation to the intervals, (xi) appears arguad$glout-of-spectrum than (x).

Isolated chords do not show clearly what happens in genuirsaal contexts.
The piece, th@urquoise Dabo Girlis played two ways:

Sound example [S: 88] in 11-tet with all sounds spectrallypeal.

Sound Example [S: 89] in 11-tet with the original harmoniasds (first 16
bars only).

The “out-of-spectrum” effect of [S: 89] is far more dramatian the equivalent iso-
lated chord effect of (x), illustrating that the more musittge context, the more
important (rather than the less important) a proper matgbirthe tuning with the
spectrum of the sound becomes.

Hopefully, theTurquoise Dabo Girblso demonstrates that many of the kinds of
effects normally associated with (harmonic) tonal musit gecur, even in strange
settings such as 11-tet, which is often considered amonbgatdest keys in which
to play tonal music. Consider, for instance, the harmoioradf the 11-tet pan flute
melody that occurs in the “chorus.” Does this have the fgetihsome kind of (per-
haps unfamiliar) “cadence” as the melody resolves backsttténic?” Does it not
sound “in-tune” even though there is only one truly famiiiaterval (the octave) in
the whole piece?

Observe that many of the subtle oddities in the mapped tisnf@® noted in (i)-
(vii) of sound example [S: 86]) seem to disappear when caunétized. Even with
careful listening, it is difficult (impossible?) to hear timbharmonicities and artifacts
that were so clear when presented in isolation. All the teshrsed in th&urquoise
Dabo Girl (except the percussion) appear in (i)-(vii). This may be ttua simple
masking of the artifacts. It may also be due to a kind of “cagteffect, in which the
artifact/inharmonicity of one note is captured by (or stned with) other notes, and
thus it becomes part of the musical flow. In either case, thgel@ing of tonalness
(due to the inharmonicity) does not appear to play a largeirotheTurquoise Dabo
Girl, whereas the dissonance predictions of the sensory themreadily upheld.

13.3.2 Spectrum of a Drum

The spectral mapping of the previous example changes thialpamly moderately.
In contrast, mapping from harmonic tones into the spectrfim drum such as a
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tom tom changes the partials dramatically. The extremerimbaicity of the sam-
ple is illustrated in Fig. 13.11, and the severe mapping aslibg heard as drastic
changes in the tonal quality and pitch of the transformettunsents. A harmonic
spectrum ay, 2g, 3¢, 49, bg is mapped tal, 1.67d, 2.46d, 3.2d, 3.8d (which is pre-
cisely245,410,603, 786,934 for d = 245) using the RIW spectral mapping. Of the
guitar, bass, trumpet, and flute, only the flute is recoghézamnd even this is not
without drastic audible changes. One listener remarketthiestransformed sounds
were “glassy—like a finger nail scratching across a glastser’ This description
makes a certain amount of physical sense, because glaasesignd drums heads
are both two-dimensional vibrating surfaces.

g 2g 3g 4g 5g Fig. 13.11.A harmonic spectrum with
T T T 1 harmonic spectrum fundamentaly is mapped into the tom
¥ tom spectrum.

245

magnitude

spectrum of the tom tom

0 500 1000 1500 2000

frequency

Sound example [S: 90] and video example [V: 13] contain sdwdifferent in-
struments and their transformation into the spectrum ofttme tom shown in
Fig. 13.11.

(i) Harmonic flute compared with tom tom flute

(i) Harmonic trumpet compared with tom tom trumpet
(iif) Harmonic bass compared with tom tom bass
(iv) Harmonic guitar compared with tom tom guitar

Clearly, this spectral mapping causes a large change inhbeacter of the
sounds. As before, it is unclear what aspects of the reguttiranges are due to
the way inharmonic sounds are perceived, and what may beadthe tdetails of
the spectral mapping procedure. For instance, each of tihrelsaindergoes a pitch
change, but the pitch change is different for each sounduRrably this is because
the partials of the mapped sounds inherit the amplitudelsenbtiginal sounds. This
is consistent with virtual pitch theory where the ear piclas different “harmonic
templates” (see Sect. 2.4.2 on p. 33) for each arrangemamplitudes.

Again, it is hard to describe in words the kind of effects péred. (i) has a
noticeable pitch change, but it still sounds somethingdikete. The trumpet under-
goes a huge pitch change, and it gains a kind of glassy textheesingle note of the
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bass becomes a minorish chord, and the guitar pluck als@ gathord-like sound
along with jangly artifacts.

Although the transformed timbres do not sound like the umaents from which
they were derived, they are not necessarily useless. Scantpde [S: 91], th&lass
Lake illustrates the transformed instruments (i)-(iv) playethe related scale, with
steps defined by the dissonance curve of Fig. 13.12. This scgiports perceptible
“chords,” although they are not necessarily composed ofifi@nmtervals. The piece
is thoroughly xentonal.

sensory
dissonance

1 1.3 1.55 1.98 2.46 3.83
119 1.511.63 2.35 3.21

frequency interval

Fig. 13.12.The dissonance curve for the tom tom spectrum has an 11-elated scale that
covers a little less than two octaves.

13.3.3 Timbres for 88-cet

Gary Morrison [B: 113] proposed a scale in which the intetvaelween adjacent
notes is 88 cents rather than 100 cents as in 12-tet. As 12 ivisible by 88,
this scale has no real octaves. It can be interpreted as B digisions of a stretched
pseudo-octave with 1232 cents, which corresponds to aoghgie= 2.0373to 1. One
way to specify timbres for this scale is to map from a set ofrfaaric partials to a set
of “88-cet” partials using the mapping

f 2f 3f Af 5f 6f 1f 8 9f  10f
ool { { { { ¢ { { {
f 7“14f T22 7"28f 7“33f erf T39f 1,,42f 7“44f 7,47f

wherer = %/2.0373 and f is the fundamental of the harmonic tone. The locations
of the destination spectrum are taken from Table 13.2, atihdere the is based on
the pseudo-octave rather than the real octave. The dissemanve for this timbre
is shown in Fig. 13.13; observe that the curve has many miair88-cet scale steps
(as expected) and no obvious relationship to the 12-te¢ staps shown above. The
most consonant intervals occur at scale ste@s 6, 7, 9, 12, and14. This is a good
place to begin exploration of this unusual scale.

Two pieces demonstrate this timbre-scale combination tiodcHaroun in 88
[S: 15] is fully orchestrated with 88-cet flute, bass, trutspand synths38 Vibes
[S: 16] is performed on a spectrally mapped vibraphone.
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12-tet scale steps
unison octave

1 T T T T T T T T T T T T |

sensory
dissonance

1 2.0373
88-cet scale steps

Fig. 13.13.The dissonance curve for the 88-cet spectrum has minima @ ofahe 88-cet
scale steps, which are 14 equal divisions of the 2.0373 mseatave.

13.3.4 A Harmonic Cymbal

The previous examples transformed familiar harmonic tesbnto unfamiliar tim-
bres and scales. This example uses spectral mappings siamanfamiliar inhar-
monic sounds into sounds maximally consonant with harmspéctra. The spec-
trum of a cymbal contains many peaks spread irregularlyutinathe whole au-
dible range. For the chosen cymbal sample, the= 35 largest peaks (labeled
pi, © = 1,2,...N) were fit to a “nearby” harmonic template = if by finding
the fundamentaf that minimizes

The solutionisf = Ziip’ , and thep; (source) and; (destination) define the spectral

mapping. The transformed sound retains some of the noisyactea of the original
cymbal strike, but it has become noticeably more harmonit tzas inherited the
pitch associated with the fundamenfalThe two brief segments in sound example
[S: 92] are mirrored in video example [V: 14]:

(i) The original sample contrasted with the spectrally mexppersion
(ii) A simple “chord” pattern played with the original sangpland then with
the spectrally mapped version

The transformed instrument supports both chord progressimd melodies even
though the original cymbal strike does not.

Sonork[S: 93] explores harmonic cymbals in a “prog-rock” settigcept for
the drums, all of the instruments Bonorkwere created from spectrally mapped
cymbals. The origin of the bass, synth, and lead lines is ¢tetely disguised. Some
sounds in the quieter sections retain recognizable chaisiits of the cymbals from
which they derive, and some have gained a kind of fluttery omaler ambience
from the spectral mapping.
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Another example of the mapping of inharmonic instruments fonal counter-
parts is presented in sound examples [S: 94] through [ST96].first presents the
original drum sound, which is clearly incapable of suppatimelody or harmony.
The second plays the spectrally mapped version of the drtoraiharmonic sound,;
it has attained a character similar to a xylophone, and dikgaupports both melody
and harmony. The third example plays both simultaneoushisithe most musical
of the three.

13.4 Discussion

The discussion begins with a consideration of various dspefctimbral change,

and then it suggests additional perceptual tests that rugihier validate (or falsify)

the use of spectral mappings in inharmonic musical apjtinat Several types of
inharmonic musical modulations are discussed.

13.4.1 Robustness of Sounds under Spectral Mappings

How far can partials be mapped before the sound loses coh@sidherwise changes
beyond recognition? It is clear from even a cursory listext fmall perturbations in
the locations of the partials (i.e., mappings that are notlistant from the identity)
have little effect on the overall tonal quality of the souRtlutes and guitars in 11-
tet timbres retain their identity as flutes and guitars. Towescstency of such sounds
through various spectral mappings argues that perceptibtenal quality are not
primarily dependent on the precise frequency ratios of Hrégls. Rather, there is a
band in which the partials may lie without affecting the “Boess” or “guitarness”
of the sound. Equivalently, the partials of such a sound catergo a wide variety
of mappings without significantly affecting its inherenh#b gestalt.

Besides the sounds demonstrated here, the author hasafipen@pped a large
variety (over 100) of sounds into several different destomaspectra, including
stretched timbres with stretch factors from 1.5 to 3.0 (8ed 6] and [B: 100] for a
detailed discussion of stretched timbres), spectra dedigmbe consonant with-tet
forn = 8, ..., 19, and a variety of destination spectra derived from objeath ®s a
tom tom, a bell, a metal wind chime, and a rock. Many of thesauaed in the com-
positions and studies described in Table 13.1. Overaltetisea wide variation in the
robustness of individual sounds. For instance, the souada tom or cymbal sur-
vives translation through numerous mappings, some of thastid. Only the flute
still retains any part of its tonal identity when mapped itlie tom tom spectrum
of Fig. 13.11. Sounds like the guitar and clarinet can be gedrsomewhat without
losing their tonal quality, surviving the transformationa then-tet spectra but not
into the more drastic tom tom spectrum. Other sounds, likevtblin, are fragile,
unable to survive even modest transformations. Thus, hotapings preserve the
perceptual wholeness of the original instruments, and lhistsiruments are equally
robust to spectral mappings.
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Using the RIW spectral mapping technique of the previoutiaes, the attack
portion is mapped separately from the looped portion, wiéettds to maintain the
character of the attack. As the envelope and other perfarenparameters are also
maintained, changes in the timbral quality are likely duenprily to changes in the
spectrum of the steady-state (looped) portion of the sound.

As a general rule, the change in timbral quality of instrute@rith complex spec-
tra tends to be greater than instruments with relativelypsspectra. The flute and
tom tom have fairly simple spectra (only four or five spect@hks) and are the most
robust of the sounds examined, retaining their integrignesrnder extreme spectral
maps. Sounds with an intermediate number of significantsgdqueaks, such as the
guitar, bass, and trumpet, survive transformation thraugtest spectral mappings.
In contrast, sounds like the violin and oboe, which have wenyplex spectra, are
the most fragile sounds encountered, because they wergethaignificantly by a
large variety of spectral mappings.

Perhaps the most familiar ‘spectral mapping’ is transpasitwhich modulates
all partials up or down by a specified amount. As is well knopitch transposition
over a large interval leads to distortions in tonal quakyr instance, voices raised
too far in pitch undergo “munchkinization.” It should not barprising that other
spectral maps have other perceptual side effects.

13.4.2 Timbral Change

Is there a way to quantify the perceived change in a tone?

Even a pure sine wave can change timbre. Low-frequency siwesiare “soft”
or “round,” and high-frequency sine waves are “shrill” oiéming.” Thus, one as-
pect of timbral change is frequency dependent, which magggansible for timbral
changes caused by transposition. A second element of tirtiaage is the famil-
iar notion that tonal quality changes as the amplitudes e{larmonically related)
partials change. This is likely responsible for the timlatiflerences between (say)
a clarinet and a flute playing the same pitch. Spectral magspnggest a third as-
pect of timbral change, that modification of the internalisture of a sound (i.e., a
change in the intervals between the partials) causes peatahanges in the sound.
Depending on the spectral mapping (and the partials of thedsthat is mapped),
this may involve the introduction of (or removal of) inharmicity.

Clearly, any measure of timbral change must account fohaedle mechanisms.
Itis reasonable to hypothesize that perceptions of chargge a

(i) Proportional to the amount of transposition
(i) Proportional to the change in amplitudes of the pastial
(i) Proportional to the change in the frequencies of theipks
(iv) Proportional to the decrease (or increase) in harnign{ce., propor-
tional to the change in tonalness)

Some general trends are suggested. Frequency shifts ifoamamiirection (such
as those of a stretched map, or in a transposition mappinghotsbe as damaging
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to timbral integrity as those that shift some partials higdred others lower (like the
11-tet mapping). Sounds with greater spectral compleXike the oboe) seem to
undergo larger perceptual changes than simpler soundthkkitute.

To minimize the amount of perceptual change, the mappisgould be defined
sothat all slopes are as close to unity as possible, thatikasthe mapping is as near
to the identity as possible, still consistent with the deirminimize dissonance. For
instance, when specifying timbres feitone octave-based equal temperaments, it is
reasonable to place the partials at frequencies that atépheslofr = /2 to ensure
that local minima of the dissonance curve occur at the apaiapscale steps. A
good rule of thumb is to define the mapping by transformingdigiarto the nearest
power ofr. Thus, an 11-tet timbre may be specified by mapping the firshbiic
tor!! (= 2), the second harmonic t87 (~ 3), the third harmonic te?? (= 4), and
so on, as given in Fig. 13.1. Analogous definitions of timdoesscales between 5
and 23 are given in Table 13.2. The spectrum defined by

f2f 3f Af 5f 6f Tf 8Ff 9f 10f 11f 12f
N e S I T T
frpl frpz f'rpa frzu f'rps frps frpv frps f'rpg frpw frpu frpu

is an induced spectrutrfor n-tet, wheref is the fundamental; = /2, and the
exponentg; take on values from theth row of Table 13.2.

13.4.3 Related Perceptual Tests

One way to investigate timbral change is to gather data fisterer tests and apply
a multidimensional scaling technique as in [B: 139]. Fortanse, Grey and Gor-
don [B: 63] swapped the temporal envelopes of the harmorficssttumental tones
and tested listeners to determine how different the mod#@ehds were from the
originals. Such a study could be conducted for sounds forfnoea various spectral
mappings, giving a quantitative way to speak about the @éemreshich sounds retain
their integrity under spectral mappings. The clusterirpéque used by Grey and
Gordon found three dimensions to the sounds, which werepratd as a spectral
dimension, a dimension that represents the amount of charthe spectrum over
the duration of the tone, and a dimension determined priynhyi the “explosive-
ness” or abruptness of the attack. Sounds that undergo msplestral mappings
are likely to change in the first dimension and to remain markess fixed in the
latter two. Instrumental sounds that are mapped so as to fsooant with 11-tet
(say) sound far more like the original instrumental samthes they sound like each
other. An interesting question is whether the spectrallppea sounds might cluster
into a “new” dimension.

The sound examples of this chapter suggest caution in tbpirgtation of results
(such as the above), which rely on listening tests that lagkical context. Taken in
isolation, 11-tet mapped trumpet sounds are very similaatonic trumpet sounds

® Then-tet spectrum that lies closest to a harmonic spectrum.
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Table 13.2. Definitions of the “nearest” induced spectra consonant wittone equal-
tempered scales.

Steps per Partials
Octave p1 p2 ps ps Ps Pe Pr P8 Do Plo P11 P12

5 0O 5 8 10 12 13 14 15 16 17 17 18
6 0 6 10 12 14 16 17 18 19 20 21 22
7 0 7 11 14 16 18 20 21 22 23 24 25
8 0 8 13 16 19 21 22 24 25 27 28 29
9 0 9 14 18 21 23 25 27 29 30 31 32
10 0 10 16 20 23 26 28 30 32 33 35 36
11 0 11 17 22 26 28 31 33 35 37 38 39
12 0 12 19 24 28 31 34 36 38 40 42 43
13 0 13 21 26 30 34 36 39 41 43 45 47
14 0 14 22 28 33 36 39 42 44 47 48 50
15 0 15 24 30 35 39 42 45 48 50 52 54
16 0 16 25 32 37 41 45 48 51 53 55 57
17 0 17 27 34 39 44 48 51 54 56 59 61
18 0 18 29 36 42 47 51 54 57 60 62 65
19 0 19 30 38 44 49 53 57 60 63 66 68
20 0 20 32 40 46 52 56 60 63 66 69 72
21 0 21 33 42 49 54 59 63 67 70 73 75
22 0 22 35 44 51 57 62 66 70 73 76 79
23 0 23 36 46 53 59 65 69 73 76 80 82

and thus should cluster nicely with harmonic trumpet tirsbBait in a 12-tet musical
context, the 11-tet trumpet will sound out of tune, for imet®, when itis played in
concert with harmonic instruments. Similarly, the harneamnumpet will sound out
of tune when played in 11-tetin an ensemble of 11-tet insénis In this contextual
sense, similarly mapped instruments should tend to claefmrately from harmonic
instruments.

13.4.4 Increasing Consonance

Much of the current xenharmonic music is written in just imitions and other scales
that are closely related to harmonic timbres. Many of thetrpopular equal temper-
aments (7,17, 19, 21, and 31, for example) contain intethiatclosely approximate
the intervals of scales related to harmonic timbres. Tre@f course, a body of work
in tunings like 11-tet that are unrelated to harmonic tirsb&ome of these pieces
revel in their dissonance, emphasizing just how strangbasnonic music can be.
Other composers have sought to minimize the dissonancgnie [B: 18] re-
ports that the dissonance between a pair of sounds can beeckdy placing them in
separate perceptual streams. This implies that musiced heat would normally be
dissonant can sometimes be played without dissonancelibteaer can be encour-
aged to hear the lines in separate perceptual streamse@kdimposers can coax
sounds into streaming or fusing in several ways, includargéd contrasts in pitch,
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tone color, envelope, and modulation. These techniquesrgone unexploited in
xenharmonic music, and they can be viewed as a clever wayesfding the problem
of dissonance. They are a solution at the compositional.leve

Spectral mappings provide an alternative answer at theréinidvel. It is possi-
ble to compose consonant music in virtually any tuning byeséghing the spectra
of the instruments so that their timbre is related to therddsscale. Of course, it
is not always desirable to maximize consonance. Rathetettimiques suggested
here are a way to achieve increased contrast in the conssmawicdissonance of
inharmonic sounds when played in nonstandard tuningsgusgiactra that have dis-
sonance curves with minima at the scale steps allows thésevds to be as con-
sonant as possible, thus giving the composer greater ¢awvinthe perceived con-
sonancé. That this is possible even for notorious scales such astlexpands the
range of possible moods or feelings in these scales.

13.4.5 Consonance-Based Modulations

Morphing from one set of related scales and timbres to amasha new kind of
musical modulation. This might consist of a series of passagach with a different
tuning and timbre. For instance, a piece might begin withrtwenic timbres in 12-tet,
move successively through 2.01, 2.02, ... , 2.1 stretch&ales, and then return to
harmonic sounds for the finale. Such consonance-based atmiutan be extremely
subtle, as in the modulation from 2.01 to 2.02 stretchedait also be extremely
dramatic, because it involves the complete timbre of thesias well as the scale
on which the notes are played. Alternatively, such modoletimight move between
variousn-tet structures. By carefully choosing the timbres, therisainstruments
can play in different tunings and the dissonance can belyigbntrolled.

It is also possible to morph from one spectrum to another énetlolution of a
single sustained sound. This can be done by partitioningvtheform into a series
of overlapping segments, calculating a Fourier transfanneéch segment, applying
a different spectral mapping to each segment, and themiefpthe segments. Such
consonance-based morphing of individual tones can be wssthdoth transitions
from one tuning/timbre pair to another, or it can be usedatlyeas way to control
timbral evolution.

At a point when the mapping becomes too severe, individugsean lose co-
hesion and fission into a cluster of individually perceipértials. Bregman [B: 18]
suggests several methods of tonal manipulation that carsée to control the de-
gree to which inharmonic tones fuse. Simultaneous onsetstamd common fluc-
tuations in amplitude or frequency contribute to fusingevdas independent fluctu-
ations tend to promote fissioning. These can be readily usedrapositional tools
to achieve a desired amount of tonal coherence. For instarsmund can be “mod-
ulated” from perceptual unity into a tonal cluster and thaokbagain by judicious

% Itis easy to increase the dissonance by playing more notes tightly clustered chordal
structures; the hard partis to decrease the dissonancautitmoving notes or simplifying
the spectra.



278 13 Spectral Mappings

choice of such tool$.As spectral maps directly affect the amount of inharmowicit
of a tone, a series of spectral maps can be used to approaobssrthe boundaries
of tonal fusion in a controlled manner.

Another form of modulation involves the boundary betweetoahgand rhythm.
For instance, when the cymbal of sound example [S: 92] isgolaysing the original
sample, it is primarily useful as a rhythm instrument. WHesm¢ame sound is trans-
formed into a harmonic spectrum, it can support melodieshamohonies. Consider
a series of spectral mappings that smoothly interpolatedssi these two. At some
point, the melodic character must disappear and the rhytlchmracter predomi-
nate. Careful choice of spectral mapping allows the composgeliberately control
whether the sound is perceived as primarily unpitched agthrhic or as primarily
pitched and harmonic, and to modulate smoothly betweentbextremes.

13.5 Summary

Most of the sounds of the orchestra (minus certain membeéhegfercussion family)
and most of the common sounds of electronic synthesizesst@monic spectra. As
the tonal quality of sounds is not destroyed under many kifidpectral mappings,
whole orchestras of sounds can be created from inharmogadrsp These sounds
can retain much of the character of the sound from which trengwerived, although
they are not perceptually identical. For example, 11-teinss were created that
clearly reflect their origin as guitar and flute samples. €haa® clearly perceived as
instrumental in nature, and they can be played consonantlg-tet.

Itis not necessary to abandon the familiar sound qualifiesrventional musical
instruments to play in unusual scales. The spectral mapmfhthis chapter provide
a way to convert a large family of well-established, musjcakeful sounds into
timbres that can be played consonantly in a large varietycalies. Musical tastes
change slowly, and it can be difficult for audiences to apptecmusic in which
everything is new. The creation of “familiar” sounds thah ¢z played in unusual
scales may help to ease the transition to music not based-tat.12

Alternatively, extreme spectral mappings can be used tergém genuinely new
sounds using familiar instrumental tones as raw materidlemplayed in the related
scales, these tend to retain familiar musical features asclmnsonance even though
the timbres and intervals of the scale are unfamiliar.

Spectral mappings can also be used to transform inharmouiaws (such as cer-
tain cymbals and drums) into harmonic equivalents. Usiegealsounds, itis possible
to play familiar chord patterns and melodies using this rlesscof harmonic percus-
sion instruments. Consonance-based spectral mappingsitpaissible to explore a
full range of tonal possibilities for many different spectr

7 Inharmoniqueby Risset [D: 36] explores this type of modulation using aditike synthe-
sis approach.
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A “Music Theory” for 10-tet

Dissonance curves provide a starting point for the expiorat

of inharmonic sounds when played in unusual tunings by
suggesting suitable intervals, chords, and scales. TraptEr
makes a first step toward a description of 10-tet, using
dissonance curves to help define an appropriate “music
theory.” Most previous studies explore equal temperaments
by comparing them with the just intervals or with the
harmonic series. In contrast, this new music theory is
based on properties of the 10-tet scale and related 10-tet
spectra. Possibilities for modulations between 10-tety&e
are evident, and simple progressions of chords are avaslabl
Together, these show that this xentonal 10-tet systemhs ric
and varied. The theoretical ideas are demonstrated in sgver
compositions, showing that the claimed consonances exist,
and that the xentonal motions are perceptible to the ear.

14.1 What Is 10-tet?

In the familiar 12-tet, the octave is divided into 12 equalisding semitones, which
are in turn divided into 100 barely perceptible cents. ladtel0-tet divides the oc-
tave intoten equal sounding pieces. Each scale step contains 120 cdnmits) i8
noticeably larger than a normal semitone. Figure 14.1 shaws 12-tet and 10-tet
relate.

Because the 10-tet intervals are unusual, it does not malse $e give them the
familiar sharp and flat names: Instead we adopt an “alpheddétiotation in which
each successive tone is labeled with a successive lettéedadlphabet. Thus, the
scale begins with an A note, continues with B, and procequisagletically through
the J note.

The 10-tet tuning has no fifth, no third, no major seconds,remdominant sev-
enths. The only interval common to both 10-tet and 12-tdtejothan the octave) is
the 600-cent interval normally called the tritone, augradrfourth, or diminished
fifth. This is due to the numerical coincidence that:

6 stepsx* 100 cents = 5 steps* 120 cents = 600 cents

Although there are no major, minor, or seventh chords inetpthere are new
“chords” that do not have “real” thirds or fifths. All of the ediorting scales and inter-

! Although not an ideal solution to the notation problem, thEhabetical approach has the
advantage that it can be readily applied to any tuning sytatmepeats at regular intervals.
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12-tet 10-tet 10-tet E neutral scale

C Ocents —— Ocents A
C# 100cents — _ 120 cents B
O 200cents — 240cents C
D# 300 cents —

E 400 cents — 360 cents D
F 500cents —— 480cents E
F# 600cents —— 600cents F
G 700cents —|— 720cents G
G# 800cents — 840 cents H
A 900 cents —

A#1000 cents —| 960 cents |
B 1100 cents —— 1080 cents J
C 1200 cents —'— 1200 cents A

A
4O SIPPIA,

Fig. 14.1.The 10-tet and 12-tet scales have only the octave and tritoeemmon. When
the scale steps of the 10-tet tuning are mapped consegudileaig a standard keyboard, the
octaves precess (as shown by the blackened keys). The lldgkay keys combine to outline
the F-neutral scale.

vals have vanished, replaced by weird-sounding melodérvats and even stranger
xenharmonies. Nothing you learned in music class is true!

14.2 10-tet Keyboard

How shall the 10-tet scale be laid out across the keyboard@tumately, the familiar
12-key-per-octave design is poorly suited to tunings liketdt. One option is to
choose a subset of the 12 keys, and to map the 10-tet pitchmdytdhis subset,
leaving two extra keys “empty.” The primary advantage o$ timethod is that each
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“octave” of keys still plays an octave. The disadvantagd& the normal flow of
10-tet steps is artificially interrupted by the silent keys.

The keyboard layout | prefer is one that assigns successites rof the 10-tet
scale to successive keys. With this 10-tet keyboard, a ti€htematic scale encom-
passes only ten steps. If the scale starts at midglen it ends at théb key ten
steps up or at thé® key ten steps down. Thus, each interval normally fingered as a
dominant seventh is actually an octave. Figure 14.1 showsthis nonoctave rep-
etition plays out across the keyboard by blackening all EesioDbserve how the
sounding octaves precess through the key-octaves at afrat® &eys per octave.
This pattern can be exploited without great difficulty, giaebit of practice.

14.3 Spectra for 10-tet

If 10-tet is so cool, why don’'t more people already use it? fdudle answer is that
there are no 10-tet guitars, flutes, or pianos, hence no raasigersed to play in
10-tet, and no repertoire for them to perform. But there magrtunderlying reason
for this lack—that harmonic tones sound out-of-tune (osdiignt) when played in
10-tet. For instance, as shown in Fig. 14.1, the 10-tetvatdrom E to A is 720
cents. In contrast, a perfect 12-tet fifth is 700 cents. Hetfgel 0-tet interval from E
to Ais likely to be heard as a sharp, out-of-tune 12-tet fifhe full E neutral chord
is even worse.

The problem is not simply that harmonic sounds are dissanali-tet. As we
know, the motion from consonance to dissonance (and badk)ggays an important
role in most music. The problem is that most of the interval$0-tet are dissonant,
assuming harmonic sounds. It is thus very difficult to achithe kinds of contrasts
needed for tonal motion.

Using the ideas of the previous chapters, it is easy to desigotra for sounds
that will appear consonant in the 10-tet intervaFor instance, the dissonance curve
for the mapping from a harmonic spectrum

f 2f 3f Af 5f 6f Tf 8&f 9f 10f 11f 12f
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into a “10-tet spectrum” defined with= /2, is shown in Fig. 14.2. The minima of
this curve are aligned with many of the 10-tet scale stefsr\tals such as the 720-
cent “sharp fifth” and the 480-cent “flat fourth” need not sdutissonant and out-
of-tune when played with sounds that have this spectrunm tvaeugh they appear
very out-of-tune when played with normal harmonic sounds.

The above spectral mapping was applied to a sampled guitagate the “virtual
10-tet guitar” that is featured in the pie€en Fingersn sound example [S: 102]. The
overall impression ofen Fingerds of a strange plucked instrument, like a sitar or a
pipa, played in a musical style from an unknown musical tradi

2 Figure 12.1 on p. 237 contains three such spectra.
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12-tet scale steps: octave

sensory
dissonance

E F G H I J A B C D E
10-tet scale steps: octave

Fig. 14.2.The dissonance curve for a spectrum designed to be playditiet. IMinima coin-
cide with many of the steps of the 10-tet scale and not withssté 12-tet. The notes of the
scale are named using the “alphabetical” notation, stagmE.

Close observation reveals that much of this piece centetsdrthe 10-tet inter-
val E to B (seven scale steps) and its inverse from B to E (tbcake steps). These
intervals are 360 and 840 cents, which are distinct fromtangtavailable in 12-tet,
and dissonant when played with harmonic sounds. As oftearsgcthis dissonance
is perceived primarily as an eerie out-of-tuneness, as dstrated in sound exam-
ple [S: 103], which plays the first few measuresTeh Fingersbut with the original
harmonic sampled guitar rather than with the spectrallypedd. O-tet version. More
properly, this should be called “out-of-timbre” or “out-epectrum,” because the ac-
tual tuning is precisely 10-tet. The contrast between exesnjs: 102] and [S: 103]
is not subtle.

14.4 10-tet Chords

Of course, 10-tet does not have major and minor chords. & doehave real I-1V-
V progressions. It does not have a circle of fifths, becaus®ét not really have
“fifths.” But there are chords, and these chords can be playegnsible musical
progressions. These 10-tet sound patterns are just new &fqtogressions.

Dissonance curves suggest where to begin. Figure 14.2 ghaivé0-tet scale
steps 0, 3,4, 6, 7,9, and 10 occur at the narrow minima cauysedificiding partials.
These are the most consonant intervals in this 10-tet geffine most consonant
chords are found by drawing the 3-D dissonance curve, wlkishawn in Fig. 14.3.
As usual with such curves, the very highest peaks (and thgedealleys) occur
near unisons. These create the two irregular far walls. dihg bumpy strip along the
diagonal is similarly caused by the (near) coincidence efsércond and third notes.
The most musically interesting areas of the terrain areltfeetsmaller mountainous
regions marked A, B, and C.

To get a closer look, the contour plot is drawn in Fig. 14.4] &me axes are
labeled in increments of the steps of the 10-tet scale. Thedge and the bottom
strip correspond to the two far walls of the 3-D version, velasrthe jeweled stripe
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sensory dissonance

1
interval between the first and second note23 S

Fig. 14.3.Dissonance curve for three note chords using the spectrgigrizd for 10-tet has
minima that define the most important 10-tet chords. Thrg®ns of interest are indicated.

across the diagonal represents the second and third notgsmtogether. The three
regions of interest are again labeled A, B, and C, and it isegy that each of these
regions actually contains three distinct minima. The waés in these chords can be
read directly from the figure. The chord featuredi@n Fingersappears in region C,
containing the intervals ¥, and 2. Its complement (the chord containing®,,and
2)isinregion B.

The chords in region A are the most like standard triadsrAss the closest
10-tet interval to a 12-tet fifth, the chords®, ¢ is an obvious candidate.

14.4.1 Neutral Chords

Play middleC', the Eb above, and thé' above that. In the alphabetical notation for
10-tet, these are the E, H, and A notes.

: c e n

D[E] G 1J B D FG
T

“middle C”

Assuming that the timbre is built from the 10-tet spectrumegiin the above spectral
mapping, this will likely sound smooth, but a bit strangeeTord is completed by
closing the octave with th&b key above (but not below). ThiBb key is the E an
octave above the first E, because it is ten steps up. The ctangblerd
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interval between first and second notes
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Fig. 14.4.Dissonance curve for three-note chords using the spectesigmed for 10-tet has
minima that define the most important 10-tet chords. Thrg®ns of interest are indicated.

FH o [a] ¢ [E] H
D[Ef] G 13 B D FG

is called the Eheutral chord

Recall that a normal major chord begins on its root (§3yadds the third (the
note E four semitones above the root) and then the fifth (the tbtleree semitones
higher) to complete th€ major chord”-E-G. In 10-tet, the neutral chord begins on
its root (say E), adds the note that is three 10-tet scale stigiher (the H note), and
then the note that is three more 10-tet scale steps highempleting the E neutral
chord E-H-A). Of course, any note can be used as the root. e tire ten different
notes, there are ten possible neutral chords.

In 12-tet, chords are called major or minor depending on harethe first interval
in the chord is a major third (four semitones = 400 cents) oriomthird (three
semitones = 300 cents). The interval used to build the nezitcad in 10-tet is three
10-tet scale steps, which is 360 cents. As 360 is about halbgawveen the major
and minor thirds, it is neither major nor minor: hence theténeutral.”

Refer back to Fig. 14.4. There are three chords in region Adbaespond to
minima of the dissonance curve that are approximately ggdakp. Perhaps there
are other interesting chords or theoretical structuresctimabe built up around the 1,
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4, r7 chord or the 173, »7 chord. Unfortunately, this is not so, because all three are
intimately related. For instance, suppose the root of thrakchord was transposed
an octave up, while leaving the other two tones fixed. Thernhbee tones would be

in the relationship, %, »'°, which is just a relabeling of ;?, andr”. Similarly,

if the upper tone was transposed down an octave, the thres twauld be in the
relationship 174, 7. Thus, all three chords in region A are different inversiohs
the “same” neutral chord.

14.4.2 Circle of Thirds

There is a very interesting and beautiful chord pattern htet@hat is analogous to
(but very different from) the traditional circle of fifths.

Observe that by changing only one note, it is possible to faedrom the E
neutral chord (containing E-H-A) to a B neutral chord (camitzg B-E-H). One way
to finger this is to simply move the A to a B while holding the Edan constant.
Thus, it is possible to move from the E chord

F C E H
D G 1J B D FG
to the B chord
F A C E H
D G 13 D FG
by moving only one finger. But now it is possible to modulatatol chord (I-B-E)
by raising the H note one step.

F H
DIE] ¢ [1]J

A E H

C
B] D FG

RaisingEto F
H A C E H
DE G [I]J D FG

gives the F neutral chord, and raising Bto C

[F] H A [c] E H
B

DE G [I]J D FG

gives the C neutral chord... and so on. After 10 chord charthesprogression has
moved
E-B-»>l-F-C—-5J-G—-D->A—->H->E

completely around the circle of thirds and back to its stgrtpoint. Because the
root of each chord in this progression is a neutral third Wwelloe previous root,
the complete cycle is called the circle of thirds. The s@igle of Thirds(sound
example [S: 104]) plays around and around this circle ofithifirst fast, then slow,
and then fast again.
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14.4.3 “I-IV-V”

In 10-tet, the nearest interval to a fourth is 480 cents émdtof the familiar 500
cents) and the nearest interval to a fifth is 720 cents (idstéthe normal 700 cents.)
Thus, a I-IV-V progression is not really possible. But, gsthe flat fourth and sharp
fifth in place of the familiar intervals does lead to musigaknsible results. For
instance, moving from E to | is as easy as playing

F [H [A] ¢ E H
D[E] G 1J B D FG

followed by
F H A C E H
D G [1]J D FG
The A chord, which is only a few keys away, can be fingered edbe

F H [A] ¢ E H
DE [G] 13 B [D] FG

oras
H C E H

F
[DJE [G] 13 B D FG

These three chords form the basidssichronismS: 105].

14.4.4 The Tritone Chord

The tritone, also called the augmented fourth and the dahéd fifth, is an interval
of 600 cents. It plays a very special role in conventionaii@ry when it appears in
dominant seventh chords: It helps to define the finality okcaés, and it is often
used as an “engine” that drives modulation from one key téreroFor instance, the
typical V7 — I progression

tritone F=F
B—->C

G—-G
D—C

} major third

contains a tritone that resolves to a major third. Is ther@-telanalog?

The tritone is the only interval (other than the octave) th@bmmon to both the
10-tet and 12-tet systems. In fact, the tritone can fundtianuch the same ways in
the 10-tet system as it does in traditional harmony: It h&dpdefine the finality of
cadences and can be used to modulate between keys.

The chord that does this, callétk tritone chordis built from a root (say G), the
note 5 steps above (B), and the note 3 steps above that (E).

% Observe that this + 3 construction leaves only two steps until the octave. Thhesnte
does have something of the character of a dominant seventh.
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H H

F A C
DE[G] 1J [B] D FG

This G tritone chord feels as if it wants to resolve. The madtiral resolution is to
move the lower note of the tritone up one step, the upper rfotieectritone down
one step, and to leave the third note fixed.

F—F
B— A

riton
ttoe{G—)H

} neutral third

Thus, the G tritone chord resolves to a E neutral chord.

F [H] [A] c [E] H
E G | J B D F G

D

So far, the tritone chord has made a nice analogy with the miamiiseventh chord
of traditional harmony. But there is another kind of tritat®rd that is built from a
root (say D), the note 5 scale steps above (I) and the notd@ stegs above (A).

F H [A] ¢ E H
[DJE ¢ [1]3 B D FG

This tritone chord also wants to resolve. The bottom nothefritone pulls upwards,
the middle note of the tritone pushes down, and the third resteins fixed.

A— A

. I > H
tntone{ -

Do E } neutral third

so the (second kind of) D tritone also wants to resolve to theudral chord.

F [H] [A] ¢ E H
D[E] G 1J B D FG

Thus, in the 10-tet system, there are two different tritamards, both of which
function analogously to the dominant seventh chord of tiaaal harmony. There
are two different ways to approach any given neutral chdreket are two different
cadences resolving to any neutral chord, and there are qoesty a far greater
number of ways to modulate from one 10-tet key to anotherabough the 10-
tet system lacks the dichotomy between minor and major cffaitccontains richer
possibilities of modulation due to the greater number obiré xentonalities.

* Having only neutral chords.
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14.5 10-tet Scales

The traditional major scale is intimately related to majoos. For instance, thg,
F', andG chords contain exactly the notes of themajor scale. Similarly, one can
think of building 10-tet scales from the notes of certaintéOehords.

One approach is to choose a neutral chord (say E with notes\gad the two
tritone chords that lead to it (G with G-B-E, and D with D-I-AQollecting all of
these notes together gives the 7-note E neutral scale

F [H] [A] ¢ [E] H
p[E] [¢] [1J3 [B] [D] F o

which is shown spread out across the keyboard in Fig. 14.1 8% Alternatively,
one could begin with the analogs of I-IV-V (for instance, thel, and A neutral
chords) and define the scale from these notes. This lead textitt same 7-note
scale. Finally, this scale is also the same as the minima efitbsonance curve
(Fig. 14.2) with the addition of the G note.

14.6 A Progression

There are many ways to play in 10-tet. The use of 10-tet isinotdd to any par-
ticular style of music—it is no moréor jazz than it isfor rock or any other style.
Think of it as an expansion of tonality. The 10-tet xentonabkioal language is not
intended to replace the familiar harmonic 12-tet, but to plament it. Lilies are not
intended to replace roses, and the world would be a pooree pléhout either.

This section ends with a simple 10-tet chord pattern thawé lggown fond of.
It begins by moving back and forth between E and I. Then theeeshort D tritone,
followed by a G tritone, and finally a resolution back to E. filiepeat. It is simple,
and maybe even a little catchy.

Begin by alternating the E chord

F [H [A] ¢ [g] H
D[Ef G 1J B D FG

with the | chord.
F H A C H
D[E] ¢ [1]3J D FG
Then, the resolution begins with a D tritone chord (the sdddand),

F H (A] ¢ [E] H

[DJE G [I]3 B D FG

moves through the G tritone chord (the first kind)
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F H A cC [E]
DE[G] 10 [B] D FG

and finally resolves back to E.

F o [a] c [E]  H
D[E] G 1J B D FG

This chord pattern is used throughdutima[S: 106], which also demonstrates that
itis possible to sing in 10-tet.

14.7 Summary

Dissonance curves for a 10-tet spectrum were helpful inggimjng useful intervals,
chords, and scales. These can be combined in numerous way®herent patterns
that, although unfamiliar, are perceivable as sensibléoxeth progressions. “Neu-
tral” chords occupy a place in 10-tet somewhat analogousajomehords in 12-tet,
and two kinds of “tritone” chords can be used as engines ofutatidn and reso-
lution, analogous to the familiar dominant seventh chotttksSE are just a start; it
would be impossible to exhaust an intricate system likeet@ata single chapter.

There is nothing magic about 10-tet, nor about this paricspectrum for 10-tet.
Each of then-tet tunings has its own kinds of related spectra, its oweriratls and
scales, its own chords and chord progressions, and its oaracter and moods.
There are new patterns of sound that can subtly (and not stysahtice and en-
trance, repel, and repulse. Unlike 12-tet, where it is wilfjuimpossible to create
a genuinely new chord pattern or scale, almost nothing isvknabout these-tet
worlds. Similarly, other divisions of the octave (and digits of non-octaves as well)
have their own timing, intervals, consonances, dissorgm@rel their own music the-
ories. Each tuning has its own song to sing.

° Darreg [B: 36] was the first to point out the existence of theseds.






15

Classical Music of Thailand and 7-tet

Thai classical music is played on a variety of indigenous
instruments (such as the xylophone-likaatand pong lang

in a scale containing seven equally spaced tones per octave.
This chapter shows how the timbres of these instruments (in
combination with a harmonic sound) are related to the 7-tet
scale, and then explores a variety of interesting sounds and
techniques useful in 7-tet.

15.1 Introduction to Thai Classical Music

Thai culture has been in contact with other civilizations ¢enturies. Thai music
and instruments reflect influences from China, Indonesid@dia, as well as influ-
ences from the indigenous Khmer, who were conquered wheRhhignvaded from
southern China. The primary ensembles in Thai court musi@a&ind of percussion
orchestra containing wooden xylophones (trgat ek the lower pitchedenat thum
thepong lang, gong-circles reminiscent of Javanese bonangs, melatyuments
such as thei, a multiple reed aerophone, the zither-ljakeh and a variety of drums
and cymbals.

Morton [B: 119] describes the music with evocative mixed apébrs:

The sound of traditional Thai ensemble music might be likiine stream...
here and there little eddies and swirls come suddenly toulface to be
seen momentarily, then to disappear as suddenly... theugathreads of
seemingly independent melodies of the instruments boigether in a long
never-ending wreath.

Morton is describing the technique pblyphonic stratificatioror heterophonic lay-
ering of parts in which variations of a single melody are pthgimultaneously on
a number of different instruments. Some play faster, som&esi some syncopated,
and some with elaborate ornamentation.

One striking aspect of traditional Thai music is that it iay®d in a scale that is
very close to 7-tet. In the liner notes to [D: 12], Sorrell coents:

Theoretically, the Thai scale has seven equidistant netieich means that
the intervals are “in the cracks” between our semitone andlevtone, and
are equal, though in practice some are more equal than bthers

A number of recordings of Thai music are currently availatestrumental
Music of Northeast Thailan{D: 45], Classical Instrumental Traditions: Thailand
[D: 9], and Thailand-Ceremonial and Court Mus|D: 39] give an overview of the
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instrumental techniques, where@keeping AngelD: 12] and theNang Hong Suite
[D: 13] mix traditional music with modern music in both tréidnal and nontradi-
tional styles.

This chapter explores the relationship between the 7-sesaf Thai classical
music and the timbres of the traditional instruments. A$ mélshown, two different
timbres (that of an ideal bar like the renat and a harmoniogpoombine to create
a dissonance curve that has minima at many of the 7-tet siegde. 4 ater sections
show how to create “new” instrumental timbres with analagspectra, and explore
some compositional techniques for 7-tet.

15.2 Tuning of Thai Instruments

How close is the actual tuning of Thai instruments to the tegcal 7-tet scale?
Many traditional Thai pieces begin with a musical figure gidypy the renats alone.
This isolates the sound of the renat and makes it possible&sune the tuning with
reasonable accuracy directly from musical recordings. fjiephone-like renat is
ideal for this because it is a fixed pitch instrument unliledlerophones and stringed
instruments, whose pitches may vary each time a note isglaye

The somewhat tedious is illustrated in sound example [S},M08ich begins
with the first ten seconds @udsabourirom [D: 39], up to the point where the pi
enters. Each of the seven notes present in this introduat®nhen separated (by
a kind of audio cut-and-paste) and played individually. Piteh is determined by
finding the sine wave that has the same pitch as the indivithtak (recall that, for
inharmonic instruments, this is how pitch is defined). Thergbexample alternates
each struck note of the renat with the appropriate sine vawthe frequencies for
each are recorded in Table 15.1. These are then translatedents (equating the
lowest note with O cents) for comparison with the theoréfietet scale.

Table 15.1. Tuning of the renats iSudsaboufrom [D: 39].
Note Frequency (Hz) Cents 7-tet

1 307 0 0
2 337 161 171
3 375 346 343
4 416 526 514
5 456 686 686
6 505 862 857
- - - 1028
7 614 1200 1200

By listening carefully to sound example [S: 108], it becork=ar that each of
the renat strikes is not really a single note; rather, it is twtes being struck at an
octave interval.
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15.3 Timbre of Thai Instruments

Thepong langs a wooden xylophone-like instrument from Northeast Taradl. Like
the boat-shapenat, it is tuned to (approximately) 7-tet. The modes of vibratid
keys of the pang lang and renat, like those of the Javaneseagantrecall Fig. 10.9),
are very close to those of an ideal bafigure 15.1 shows the spectrum of the pong
lang taken from the introduction taam Sithandowon [D: 45].

2393

magnitude

0 1000 2000 3000 4000
frequency

Fig. 15.1.The spectrum of a typical lower register strike of a pong laag four partials close
to those of an ideal bar.

The four largest partials compare closely to those of thalidar:

frequency Hz: 436 642 1246 2393 3873
ratio: f 147f 285f 548f 8.88f
ideal bar: I - 2.76f 5.4f 89f

The spectra of higher pitched notes have less prominenehiggdrtials: The partial
near8.9 f disappears completely, and the partial riedyf is often greatly attenuated.
The partial a642 Hz (near1.47f) is somewhat anomalous. It occurs in several (but
not most) of the spectral measurements of the pong lang Inetofithe renat spectra.

Section 6.7 shows how dissonance curves can be drawn whesotmals with
nonidentical spectra are played. Combining the spectruam adeal bar (an idealized
renat) with a harmonic soun@ containing six partials (such as might result from the
pi or jakeh) gives the dissonance curve shown in Fig. 15.2.

This dissonance curve has minima at or near all of the stefiseo?-tet scale,
except for the fifth step (the nearest minimum to 1.64 is a2,1bGt it is one of the
broad flat minima):

minimas 1.0 1.09 1.21 1.35 1.49 1.80

minimar 1.0 1.11 1.81 2.0
7-tetratio 1.0 1.10 122 135 149 164 181 2.0
7-tetcents 0 171 343 514 686 857 1028 1200

! The spectrum of the ideal bar is discussed in Chap. 2 (see gn@Fig. 2.7), and scales
for the ideal bar are shown in Fig. 6.11 on p. 110.
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sensory
dissonance

1|....|1H

7-tet scale steps

Fig. 15.2.An ideal bar and a harmonic sound with six partials generatissonance curve
with many minima close to the steps of 7-tet, which is showrctomparison.

Hence this dissonance curve provides a concrete cornelagtween the spectrum
of the traditional xylophone-like instruments and the 7tieai scale.

As is obvious from even casual listening, Thai classical imiss stylistically
very different from Western music. It does not contain “hames” or “chords” in
the Western sense. Rather, it is built linearly by juxtapgss number of melody
lines simultaneously. Often there is a single underlyin¢pdiie pattern that no sin-
gle musician actually plays; the melody is stated (and tedtaith many kinds of
variations) in a collective performance. Morton [B: 119haments about the use of
consonance and dissonance in Thai music:

The motor power driving this type of music forward is the aition of
relative consonance at structural points of unison (onesawith relative
dissonances between those points, through the idiomagatnient of the
lines.

How are these variations in consonance and dissonancevadhigthout har-
mony or chords? The various melodic lines overlap each athery complex ways,
and thus many different notes occur simultaneously. Thiessers of notes clearly
have different amounts of sensory dissonance, and this raaynb source of the
driving power Morton perceives in the music.

As the dissonance curve in Fig. 15.2 shows, the instrumamtgmvide a range
of consonances and dissonances as they combine the spettanndealized xylo-
phone with a harmonic spectrum. As more notes are added,ffeeedces can be
even more dramatic. To investigate this, Figs. 15.3 anddw contour plots of the
dissonance surfaces for three simultaneously soundimgnthese are analogous to
the contour plots of Fig. 6.21 on p. 123.

Dissonance surfaces are drawn assuming three notes, gadtnaivn spectrum.
One note is held fixed, and the other two vary over a range obistaves, from an
octave below the fixed note to an octave above. As there ardlifievent timbres
to consider (that of the ideal bar and a harmonic spectrumjetare four possible
surfaces depending on which spectra are assigned to whtels.ra Fig. 15.3, for
instance, the fixed note is harmonic, the second has therspeof the bar, and the
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interval between first and second notes
7-tet scale steps
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Fig. 15.3.This contour plot of a dissonance surface assumes thres.fdte fixed note has
a harmonic spectrum, the second has the spectrum of thelideand the third is harmonic.
Minima of the dissonance curve occur at many of the scalgs ste7-tet, which is shown for
reference on both axes. The x’s represent locations whetexaioccur.

third is harmonic. In Fig. 15.4, the fixed note is again harioonhereas the second
and third both have the spectrum of the bar.

The prominent horizontal stripe in Fig. 15.3 reflects theethegate case where
the first and third notes are tuned the same (in an interval wiigon), and this
gives (to close approximation) a copy of the one-dimengidissonance curve in
Fig. 15.2. Similarly, the horizontal stripes at= 2 ands = 2 depict the situa-
tion where the two harmonic tones form octave intervalsiraggplicating the one-
dimensional dissonance curve. In Fig. 15.4, the prominiagfathal stripe represents
the degenerate case where the second and third notes (witticial spectra) are
tuned the same and the stripe again repeats the one-dimeahdissonance curve.

Far more interesting are the deep isolated minima that dbcaughout the fig-
ures. For example, on Fig. 15.3, locate the fourth scale lst¢ween the first and
second notes (the tick mark just below the lettem the horizontal lattice). Look-
ing down the graph reveals minima (markedxy) at or near more than two-thirds
of the scale steps. Similarly, many other columns (and rawgpth figures show

2 There are two other possibilities, and the correspondingrdig are inpdf form on the
CD in the folderpdf/ . In the figure inlbar2harm3bar.pdf , the fixed note has the
spectrum of the bar, the second note is harmonic, and thethths the spectrum of the bar.
In the file 1Ibar2harm3harm.pdf , the fixed note has the spectrum of the bar, whereas
the other two are harmonic. These figures are qualitatidedyHigs. 15.3 and 15.4, showing
minima at many “chords” with intervals drawn from 7-tet.
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interval between first and second notes
7-tet scale steps
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Fig. 15.4.This contour plot of a dissonance surface assumes three.dte fixed note has a
harmonic spectrum, and the two varying notes have the spedaf the ideal bar. Minima of
the dissonance curve occur at many of the scales steps gfwhieh is shown for reference
on both axes. The x’s represent locations where minima occur

a large number of highly consonant chords (more propentgetimote clusters) that
use intervals in the 7-tet scale.

Let’s oversimplify. Figures 15.3 and 15.4 show that, to & fgproximation,
almost any three-note cluster in 7-tet is reasonably can#oiBo the contrast be-
tween consonance and dissonance that drives Thai musitikelyrio be caused by
differences in the chordal structure. For example, numigettie notes of the 7-tet

scale numerically, the dissonance of note clusters su hga , ?1 , and Z
does not differ greatly. Reinforcing this, there is no noﬁiolThai mlusic theor)} that
specific combinations of notes perform specific functiohgst 2 does not nec-
1
6
essarily play a different role thap 4 | . This is very different from music of the
1

common practice period where, for example, the tonic, damtiand subdominant
serve highly prescribed and conventionalized roles.

This suggests that the contrast driving Thai music museanisome other way.
One possibility grows out of the layering of melodic linelgtpolyphonic stratifi-
cation). Consider a simplified example of a melody that repéaur notesl 2 3 1
at three levels separated by a factor of two in tempo. Theedblayer performs the
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melody once during the time the middle layer plays it twiceaddwhile, the fastest
layer repeats the same melody four times. This can be rapsesechematically as

fastestlevel: 12 3 1123112311231
1-2-3-1-1-2-3-1-— (15.1)
slowestlevel:l - - -2 — — — 3 — — — 1 — — —

where time proceeds horizontally. The initial three notesrison are highly con-
sonant. Similarly, the final stroke is consonant becausenitains the last stroke of
the fastest layer plus whatever sound remains fromithén the slower layers. In
between is a rising and falling dissonance proportionaréuo less) to the number
of different notes sounding simultaneously. For this gattr pattern, the greatest
dissonance would occur at the second stroke (of the slowagst)l where all three
different notes occur simultaneously. Thus, even in trgblyiidealized setting, there
is a journey from consonance into dissonance and back agasis dictated, not by
chord placement or differences in dissonance betweenecjdiut by the temporal
layering of the melodic lines.

To investigate this more concretely, the dissonance $doieig. 15.5 shows the
first two minutes ofLam SithandorD: 45], which uses the “happy soundirsgn
mode type” according to the liner notes. The introductoty splayed on the pong
lang, is evident in the first large hump in the dissonancedhktinates at about 14
seconds. The bulk of the analysis shows a large number of gpeaks of varying
heights that coincide with the phrase length. Each phraperfermed slightly dif-
ferently: with different instruments, with different omentation, and with different
density of orchestration. The drop in the dissonance at &8ss coincides with the
end of the first major section and a return to the main them&l@son [B: 119] sug-
gests, the relative consonance occurs at points of stalaiaison, and dissonance
increases between.

sensory
dissonance

et L w‘, il Ll \UI‘H’H‘ llE "\V r“l",u“ ‘\v‘”‘\
0 20 40 60 80 100 120
time, seconds

Fig. 15.5.Dissonance score for the first two minuted.afn SithandonThe dark line averages
the raw dissonance calculations over 1 second.

% Drawn using the method of Sect. 11.1.
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15.4 Exploring 7-tet

Inspired by traditional Thai music, this section exploresnpositional techniques
and sound design strategies for 7-tet. The first sectiorugéss a variation on the
spectral mapping techniques of Chap. 13 for the sculptimguafiety of instrumental
sounds that have the same spectrum as an ideal bar. Suareediions discuss
variations on the technique of polyphonic stratificatioattare applied to several
musical compositions that can be heard on the accompanying C

15.4.1 Sounds for 7-tet

As the previous sections showed, two kinds of sounds contbifm dissonance
curves with minima at steps of the 7-tet scale: harmonicdsand bar sounds (those
with the spectrum of an ideal bar). There is no shortage @résting harmonic
sounds, but there is no obvious source of timbres with thetapa of a bar other
than the bar instruments themselves (xylophone, glockehsenat, gambang, and
so on).

In principle, the spectral mapping approach of Sect. 1&f&(back to Fig. 13.3
on p. 260) can transform one spectrum into another by chg@smapping from the
source spectrum into the destination spectrum. This intifli@quires that there be
the same number of partials in the destination as in the sodut the spectrum of
a bar is sparse compared with (say) harmonic sounds; thddirsipartials of the
bar (f, 2.76f, 5.4f, and8.9f) span the same range of frequencies as the first nine
partials of a harmonic sound. A naive mapping like

harmonic spectrum:f  2f 3f 4Af

oo o4
spectrumofbar:  f 2.76f 54f 8.9f ...

can cause significant oddities in the resulting mapped sgunadre akin to the trans-
formation from a harmonic sound into the spectrum of a tom-{gsound exam-
ple [S: 90]) than to the milder transformation into the ngath-tet spectrum (as in
sound example [S: 86]).

One variation is to transform from the harmonic spectrunhéotar spectrum by
mapping only the harmonic partials nearest the desiredgpaftthe bar spectrum:

harmonic spectrum:f  3f 5f  9f

ol ool
spectrumof bar:  f 2.76f 5.4f 89f

But what happens taf, 4f, 6f, 7f, 8f, and10f and above? If they are left un-
changed, then the sound is very likely to retain a large dats darmonic character
and it is no longer the kind of sound that is related to thetstale. Figure 15.6
suggests the simplest approach: to “simplify” the specthyntemoving the extra
partials.
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3 Fig. 15.6. Mapping rich harmonic sounds
"g (such as this spectrum of a guitar pluck) into
g the spectrum of a bar can be done by sim-
plifying the spectrum to contain only those
f st st of partials nearest the destination. The result-
J l ing sound has (in this case) a bell-like ring.
f
g | 276t
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For example, sound example [S: 109] plays several harmaniods and their
mapped versions under the transformation of Fig. 15.6idkaurt, 3, 5, and 9 are
mapped using the resampling with identity window (RIW) nuettof Fig. 13.5, and
the remaining partials are attenuated. Three instrumeatseanonstrated: three dif-
ferent notes of a bouzouki, three different notes of a hanp, @ pan flute. Each
harmonic tone is followed immediately by the 7-tet spebtnalapped tone, and it is
easy to hear the differences. Overall there is some shifie@pitch and the sounds
become simpler and cleaner, more like the strike of a befl tha pluck of a guitar.
The next sections place these sounds in their intendednittsital context.

15.4.2 A Naive Approach to 7-tet

The seven equidistant tones of the 7-tet scale (which arepamed with 12-tet in
Fig. 15.7) lie outside the conventional tonal system. ldgdeéth the exception of
the octave, there are no familiar intervals. But as thers@ven tones in the diatonic
scale, perhaps 7-tet can be viewed as a regularization ofifiigr (or minor) scale
in which the alternating whole and half steps are equaligedentially this suggests
a naive mapping

diatonic scale C
$ (15.2)
1

4 e
1<

G
0
5

N

:C D FE
1t 1
7-tet scale: 12 3
which equates the seven equal steps of the 7-tet scale tevtbe anequal steps of
the diatonic scale.

This idea is explored in several sound examples. The “sittty@me” of [S: 2]
is repeated in [S: 110]; first in 12-tet and then in 7-tet udimg identification of
notes in (15.2). It is played with harmonic timbres in [S: 140d with bar timbres
in[S: 111]. Scarlatti’s K380 sonata (which has already bh@®sented in a variety of
historical tunings in sound examples [S: 17] through [S) 22performed in 7-tet in
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12-tet 7-tet Fig. 15.7.The only interval that appears in both 7-tet and
12-tetis the octave. There is no easy way to exploit diatonic
c Ocents == Ocents 1 ical intuitions in the 7-tet tunin
C# 100 cents —| musical Intuitions | u g.
D 200cents — 171cents 2
D# 300cents — 373 cents 3
400 cents —]
F 500cents —— 514cents 4
F# 600 cents —
G 700cents —— 686cents 5
G# 800 cents —]
[— 857cents 6
A 900cents —j
A# 1000 cents —|__ 1028 cents 7
B 1100 cents —
C 1200 cents —— 1200 cents 1

[S: 112]. Both pieces sound flat (in literal and figurativesees) when transformed
into 7-tet. Besides the uneasy out-of-tuneness is the @molblf uniformity of dis-
sonance: What begins in 12-tet as structural elementsr(&aumce, the motion from
[-IV-V-1in [S: 110]) is transformed into a series of tonalsters with no distinguish-
able points of rest. Similarly, the melodic motions in [S2)&ppear aimless in 7-tet
because they no longer end at a sensible place of reposeh@vliet 7-tet version of
K380 is played with harmonic timbres (as in [S: 112]) or wigiestrally mapped bar
timbres (as in [S: 113]), it regains neither the normality tiee flow of the original.
The idea of equating 7-tet to some subset of 12-tet is prgtebiistake.

15.4.3 Composingin 7-tet

A wiser direction is to follow those with experience. Thaiditional music does not
distinguish the functionality of different 7-tet chords g5: 110] through [S: 114]
attempt. Rather, it exploits the possibilities of consa®sand dissonance in 7-tet by
rhythmic means, by superimposing various melodic linesideelines give greater
dissonance; sparser lines give greater consonance. Gie;ahis oversimplifies con-
siderably, but it may be useful in the spirit of finding a rezedale rule of thumb.

Sound examples [S: 115] through [S: 118] explore this rul¢hafmb for 7-tet
in a variety of ways. Inspired by the idea that there is notrgdalistinction in the
dissonance of the various 7-tet chofdslarch of the WheelfS: 115] begins with
a MIDI drum pattern, like the one shown in the piano role notabf Fig. 15.8.
In this representation, time moves along the horizontad.a&ach row represents
a different instrument (in the general MIDI drum definitidar instance, the row
corresponding ta”'1 is the bass drump1 is the snare, and't1, C42, and D42
are various kinds of cymbals). These are labeled. The nelégiaa is to exploit the
feature that such MIDI data can represent any kind of sounpatticular, the right-
hand side of Fig. 15.8 shows one possible mapping from thel d#Ea into a 7-tet
scale. Thus, the (original) performance of a drum set isagu event by event with
a 7-tet instrument such as those of [S: 109].

* In 7-tet, all chords are created equal!



15.4 Exploring 7-tet 301

standard MIDI
drum assignment 7-tet pitches

ride ® EES EES EES ESS SN ES® SSS EES ESS EES ESS ESS ESS S EEE EE

crash .

hat . - . - . . . . . . . . . . .

snare — — — — — — — ——

bass |[¥| um = —  — - — — - — - — e
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time

Fig. 15.8.A standard MIDI drum track is shown in piano roll notation.€ltiack need not
trigger drum sounds; the right margin suggests a possibppmg of the MIDI events into the
seven tones of the 7-tet scale.

If an interesting drum track is chosen, then there is a goadahthat the result-
ing 7-tet performance will be rhythmically interesting. Movariety can be added by
changing the notes. Editing by hand is easy (although tejli@md many MIDI se-
quencerdhave advanced editing capabilities that can manipulateaktein sophis-
ticated ways. For example, Fig. 15.9 shows a selective raimion of the track
in Fig. 15.8 in which the pitch of each note is randomized bynalsamount. This
preserves the register of the notes; the rhythmic pattetheobass drum and snare
becomes a bass line, and the cymbals are randomized withimdine active upper
registers. Such formal manipulations are ideal for gemegategments or phrases
that can be combined to create larger scale piedesch of the WheelfS: 115] is
one such composition. By selective editing, it is easy taterelenser and/or sparser
sections that reliably increase or decrease the dissondsig cut-and-paste meth-
ods, whole sections can be constructed. By orchestratitigwarious timbres, repe-
titions can be disguised and differences can be unified. Treelis repetitive, and
yet has a clear sense of forward motion.

There is no need to begin the compositional process with@upsive trackPa-
gan’s RevenggS: 116] starts with a standard MIDI file of one of Niccolo Raini's
(1782-1840%aprices(No. 24 as performed by D. Lovell) from the Classical MIDI
archives [W: 4]. The translation from the original 12-te¢fib 7-tet was the same as
in Figs. 15.8 and 15.9: each 12-tet half step is mapped topaddtthe 7-tet scale.
Thus, the 7-tet version covers several more octaves thaartpmal because each
fifth (seven half steps) is converted into an octave. Evepreeéditing and orches-
tration, the Caprice is utterly unrecognizable.

The first half of the standard MIDI file worked well in 7-tet. t&f deleting the
second half, | created “new” material by time-reversing fing half. This process

% Such as Cakewalk for PC and Digital Performer for Mac.
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is demonstrated in Fig. 15.10, which takes the first half ef dhum sequence in
Fig. 15.8, reverses it in time, and concatenates it to the Ehid creates a point of
rhythmic symmetry (the axis of time symmetry in Fig. 15.1@)Pagan’s Revenge
the point of symmetry occurs midway through the piece at 1f68ning a kind
of musical palindrome in which the theme proceeds forwardl #aen backward;
eventually ending on the first note. The piece is lavishhhestrated with a variety
of sounds with spectra derived from both the bar and the haicrszries. Globally,
there is a tension between the frenetic pace and the solezanfitual quality and
depth of the timbres.

The technique of polyphonic stratification interlocks nuiolines at different
tempos, usually separated by a factor of two as schematiz€tl5il). A modern
technique pioneered by Steve Reich [D: 35] plays a singl®dielline simultane-
ously at slightly different tempos. At first, the two linegan-phase and the attacks
are simultaneous. The faster version soon pulls ahead aittpartes the slower in a
sequence of rapid double attacks. Later, the two break apara galloping rhythm.
At the midpoint, the two are evenly spaced and are perceisedreocketed melody
moving twice as fast as the original tempo. As time procetfdssame set of per-
ceptions are repeated (although in reverse order) unyilelaentually resynchronize.
This is shown schematically in Fig. 15.11, which indicategesal regimes of rhyth-
mic perception.

Nothing Broken in Sevef8: 117] applies this phasing idea in the 7-tet setting
by playing the same isorhythmic six note melody throughBbtaise Sevefs: 118]
uses an eight note melody. In both examples, the melodydipiayed against itself
at five different tempos, two of which are speeded up (by 1% 2% and two of
which are slowed down (also by 1% and 2%). This creates rawnmhthat repeats
fully only after several days. In order to create more maahgepieces, selected
bits are culled, orchestrated using various 7-tet sounus tleen rejoined. In both
cases, although the original pattern is monotonously €ntpk result increases and

7-tet pitches

—“WAO=NPAO=NPAONN
N OIN WO N wor =

time

Fig. 15.9.The notes of the standard MIDI drum track in Fig. 15.8 arect®fely randomized,
creating more interesting “melodic” and “chordal” pattern
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standard MIDI

drum assignment axis of time symmetry 7-tet pitches
| 2
id .
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time

Fig. 15.10.The notes of the first half of the standard MIDI drum track ig.Hi5.8 are reversed
in time, creating related but distinct rhythms.

double galloping double galloping  double
unison attacks  rhythm speed rhythm  attacks unison
® ® ® ® ® ® ® ® ®* ®* o o o o o o o o o o oo o
® ® ® ® ® ® ® ® ® ® ®* ®* ®* o " o o o o o0 0

time

Fig. 15.11.Two rhythms performed at near identical tempos are perdeliffeerently depend-
ing on their relative phase.

decreases in complexity as the melodies phase againsteh@msWhen there are
five phasing lines, a very large number of “different” rhythare perceptible.

15.5 Summary

The 7-tet tuning of Thai traditional music is related to tloeisds of certain Thai
instruments (those with the spectrum of an ideal bar and mdwEc spectrum) in
much the same way that the tuning of the gamelan orchestradaifesia are related
to the spectra of the traditional metallophones. The 7-tesioal universe is rich,
although it is based on different principles than 12-tetokdls do not have specified
harmonic meanings or functions; rather, clusters of nateste dissonances that are
proportional to the density of the sound. The technique dfgimnic stratification,
in which different instruments perform various levels oftttmic diminution over a
structural melodic pattern, is the traditional way to ceeaotion from consonance
to dissonance (and back again) in the 7-tet system. But Hrerether ways, some of
which are explored and illustrated in the compositionséegily [S: 115] through
[S: 118]) of the previous section.
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Speculation, Correlation, Interpretation, Conclusion

Tuning, Timbre, Spectrum, Scaleegan with a review of
basic psychoacoustic principles and the related notion of
sensory dissonance, introduced the dissonance curve, and
then applied it across a range of disciplines. Most of thekboo
stays fairly close to “the facts,” without undue speculatio
This final chapter ventures further.

16.1 The Zen of Xentonality

Max Mathews says in an interview in [B: 153]:

It's clear that inharmonic timbres are one of the richestrees of new
sounds. At the same time they are a veritable jungle of piisigb so that
some order has to be brought out of this rich chaos beforeadt lie musi-
cally useful.

The organizing principle of this book, the relatedness efsfa and scales expressed
in dissonance curves, brings order to this rich chaos byngithhe composer con-
trol over the amount of sensory consonance or dissonancpassage. By playing
sounds in their related scales, it is possible to realizeettize range from unusual
consonances to startling dissonances.

Risset [B: 149] comments:

the interaction of the components of two (or more) such [infanic] tones
can give rise to privileged “consonant” intervals that apéthe octave and
fifth... an intriguing relation exists between the inneusture of inharmonic
sounds—which can be arbitrarily composed—and the melaaticharmonic
relation between such sounds.

Dissonance curves give concrete form to this “intriguingtien.” The spectrum/scale
connection provides the same kind of xentonal frameworkiibarmonic sounds
that tonality provides for harmonic sounds. These xentsystems vary immensely.
Some have few partials, few scale steps, and a simple musarythOthers have
complex sounds and amazingly complex internal structures.

Although timbres with harmonic spectra are only one kindafred, they thor-
oughly dominate the Western musical idiom. Modern eledtrotusical instruments
are now capable of playing inharmonic sounds, and many dieckome form of tun-
ing table that allows the user to specify the pitch of the piaged by each key. This
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makes it easy for the musician or composer to retune in ariyedesay?” It is now
possible to play “any possible sound in any possible tuting.

When working in an unfamiliar system, the composer cannigtaoe musical
intuition developed in the context of 12-tet. In 10-tet, iiwstance, there are no inter-
vals near the familiar fifths or thirds, and it is not obviousawvintervals and chords
make musical sense. The deepest minima of the dissonanee(outhe dissonance
surface) suggest intervals and chords, many of which carsée fuuitfully in com-
positions.

Dissonance curves suggest that the formation of scaleshanaeb of harmony
is a collaboration between artistic invention and the tienfar spectrum) of musical
sounds. As the palette of accessible tones expands, thetattness of alternative
musical scales and tunings increases. Most likely, thelysldivly seep into public
awareness along with the new timbral palettes afforded Ioypeters, audio signal
processing devices, and electronic musical instrumerdmpgosers and musicians
will slowly become more adept at moving between xentonalesys, just as they
became more adept at modulation through keys when equaktampnt first ap-
peared.

Adaptive tunings constantly adjust the pitches of notesitomize sensory dis-
sonance, freeing music from any fixed scale: tonics wandberds slither up and
down, intervals compress and stretch in a patterned andh&sy way. No doubt
there is an undiscovered art to composing with adaptivengsijust as there is an art
to composing fugues or canons. As with many of the kinds ofimdations of spec-
trum and tunings in this book, this technology could be rgaliilt into electronic
keyboards, making the annoying calculations transpacehiet musician.

16.2 Coevolution of Tunings and Instruments

The harmonic series is related to the just scales; the faniil2-tet system can be
viewed as a practical approximation to these just scalesil&@ly, the spectrum of a
Javanese bonang in combination with a harmonic tone g@&seaalissonance curve
with minima near the steps of an idealized slendro scaleg?slales can be viewed
as a result of the spectrum of a saron in combination withmbaic sound. The 7-tet
scale of Thai classical music can be derived by combiningpeetrum of an ideal
bar (an approximation to the spectrum of the renat) with enbaiic sound, as shown
in Chap. 15. In each casthe scales are related to the spectra of the instruments used
by the culture.

This leads to a musical chicken-and-egg paradox. Which dastethe tuning
or the instruments?

In biology, the process by which two interdependent spemiesinuously adapt
to changes in each other is calledevolution For example, suppose that in order
to more effectively catch flies, a species of frog evolveskgtitongues. Then, in

! For a practical introduction to synthesizer retuning, sé@A[B: 3].
2 From the liner notes of Carlo@eauty in the Beagb: 5].
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order to avoid sticky tongues, a species of flies evolve slipfeet. The spectra of
instruments and their tunings may have similarly coevalVeis easy to imagine a
scenario in which the spectrum of a sound influences the guaiiran instrument,
which impacts the design of newer instruments, which in &ffacts the tuning of
the ensemble.

As any group of instruments that are played together mustibedtin some
coherent way, once a tuning is established, only compatible instruments are
viable. The Western method of pitch standardization is aresible approach, and
the Javanese method of tuning each gamelan ensemble amatdisisical unit is
another. Perhaps this explains why the gamelan traditisrsbevived and thrived
while other equally vibrant forms of music have been absthdyeco-opted. Because
gamelan scales and timbres are so different from those divd®t, they cannot be
effectively combined in the same ensemble.

Perlman [B: 131] calls the belief that there is a naturalld@cal, or physical
reason underlying the use of certain intervals and scafesriational naturalism,”
and traces it though history:

The seventeenth century scientist Christian Huygens ctunjed that, since
“the Laws of [Western] Musick are unchangeably fix'd by Natuthey
should hold not only for the entire earth, but for the inhabis of other
planets as well.

Almost 300 years later, Bernstein [B: 14] echoes this, diagnthat the laws of music
apply not only pangalactically, but pantemporally as well:

All music—whether folk, pop, symphonic, modal, tonal, atopalytonal,
microtonal, well-tempered or ill-tempered, music from tfistant past or
imminent future—all of it has a common origin in the univépg@enomenon
of the harmonic series.

As we have seen, the harmonic series is by no means “univessaimonic sounds
are only one kind of common sound; there are as many kindsuwfdsoas there are
distinct kinds of vibrating objects. Musical systems hagerbuilt on many of these,
and many others are undoubtedly possible.

The counter claim to intonational naturalism, that inté&s'aad scales are purely a
cultural construct, might be called “intonational rel&iw.” After demonstrating the
foolishness of discussing the gamelan in terms of just iion and the harmonic
series, Perlman [B: 131] examines the Javanese conceghloét which refers to
“any particular realization of a tuning system,” althougban also refer to the into-
national preferences and practices of individuals. Perlstenmarizes:

embat is a matter of feelinggsa), not number; its source is the human
voice, not necessary laws of nature; and it is individual,

echoing the beliefs of gamelan tuners who consider intonat be a matter “of the
heart*

% Gamelan instruments are not used separately, and the eleseamd not “mix-and-match.”
* Recall Purwardijito’s comments on p. 206.
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The naturalist vs. relativist debate in intonation resezslte “nature vs. nurture”
controversy. The naturalist view claims that there is a i@y shiological, acoustical,
or psychoacoustical explanation for intervals and scalbgreas the relativist view
denies that such an explanation exists. The analysiging, Timbre, Spectrum,
Scaledoes not fit neatly into this classification, because it ishegifully naturalist
nor fully relativist. To the extent that (sine wave) dissoc& curves are universal
across cultures, and to the extent that music exploits thea@st between sensory
consonance and dissonance, the analysis is naturalisttbeTextent that particular
instruments and tunings have coevolved along distinctgpiatidifferent cultures, it
is relativistic.

Throughout history, many Eurocentric writers have descttithe music of other
cultures as slowly evolving toward the “higher” Westernnfig; which are suppos-
edly based on immutable laws of nature and the harmonicssaiie fact that related
spectra and scales apply cross culturally belies this,usecthe traditional musi-
cal instruments and scales of Indonesia and Thailand careseided in terms of
the same “underlying laws” as Western instruments and schidact, because the
Asian forms use two spectra (rather than a single one as idstern tradition),
it is tempting to reverse the direction of the evolutionampa. As Western music
evolves to include more than one “kind” of sound, it may wakd on more of the
characteristics of the Asian traditions.

16.3 To Boldly Listen

Are there limits to the kinds of sounds humans can appreamteusic?

There are obvious limits to perception. A “piece of musicattis never louder
than—200 dB is inaudible’ The same piece playedZi0 dB is not perceived as mu-
sic, but as pain. A melody that always stays within a singlP #fipitch is heard as a
single tone. A symphony performed exclusively at megaHestiuencies is indistin-
guishable from silence. But assuming that such percepitunéklare not exceeded,
are there limits to the human ability to appreciate sounda@sic? Are there limits
to possible musical styles?

The amazing diversity of musical cultures and styles to bedbothroughout the
world shows that any such limits are very broad. The histényosical styles sug-
gests constantly changing sensibilities of rhythmic, delpharmonic, tonal, and
timbral materials, and it seems undeniable that there acalustyles, undreamed
of today, that will develop in the future.

The only truly universal aspects of music are those basedadodical or per-
ceptual facts. By understanding the human auditory sysiesimould be possible
to differentiate those aspects of music inherent in our neaftom those that are
learned. There are clear cultural biases toward certaihskifi sounds, certain kinds
of rhythmic patterns, particular kinds of scales, but ametiimits to appreciation
must transcend cultural differences.

5 Although John Cage did not perceive this as a limitation.
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A simple analogy may help bring this into perspective. Ther"¢the ear canal,
eardrum, oval window, basilar membrane, etc.) is like “mack” that is relatively
invariant from person to person and culture to culture. Thiaih” (higher levels
of auditory processing) is like programmable “softwareattimplements cultural
conditioning. Those aspects dictated by the hardware avensal, whereas the soft-
ware is rewritten with each new person in each new generatieach new culture.
Thus, aspects of musical style that violate my software aeeceptable to me, but
they may well be acceptable to someone from another timeepta with a different
background. On the other hand, aspects that violate thevaaedare unacceptable
to everyone.

In reviewing the sound examples presented here, there arkims of passages
that may approach limits: those where the partials will nseftogether, and those
where the spectrum is sufficiently mismatched from the tgnin

In the first, the notes have lost their perceptual integegh being perceived as
two or more separate sounds. “Notes” have become “chordsieSzompositiorfs
in modern music have begun to exploit the boundary wheresrfagsion and tonal
clusters fuse, and it may be possible to learn to appreciafiessad sound masses,
although they are not currently used in any common musighd.st

In Plastic City (audio track [S: 38]), the same theme is played in 2.0, 22, 1.
and 2.1 stretched and compressed tunings, each with reélateces. Although it is
difficult for me to listen to the piece with naive ears, manppe feel that 2.2 is
stretched too far, and that 1.9 is compressed too much. fekéng such torturous
excursions, many first-time listeners hear the 2.1 streta®etion and comment,
“now we're back to normal, right?” although of course 2.lethed is far from
“normal.” After repeated exposure, however, the 2.2 andsgé@ions become less
strange, more capable of supporting perceptions analagocisordal motion, yet
each retains its own timbral character.

While recording these sections, a process that requirey hiséenings, | “heard”
the passages as more tonally coherent than | typically do Maweover, | have
learned to switch between perceptual modes (where | hegigbe as either a sound
mass or as notes in a chord), although | have no way of knowieighier of these
corresponds to a naive listener’'s perceptions. This arggafst (lack of) fusion
being a true limit to appreciation. In a musical culture thaéd various stretched
timbres and tunings, members might develop such a switchtiragegy as part of
normal listening. That | was able to overcome this aspectyofimasical conditioning
suggests that certain aspects of the fusion mechanism drefpae software of the
brain.

The second candidate for a limit to appreciation is the mismbetween tuning
and spectrum. In audio tracks [S: 2] to [S: 5], the same bréefspge is played in
standard and stretched 2.1 tunings, each with both stamdfardtretched timbres.
When matched (i.e., 2.0 timbres with 2.0 tunings or 2.1 tislwith 2.1 tunings), the
passage is inoffensive, if somewhat bland. The two misnegkglegments, however,
are more strident than inoffensive, more irritating thaanl. Most likely this is

¢ For instance, [D: 36] and [D: 8.
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because they are uniformly dissonant. The driving forcérubimany styles of music
is the motion from consonance to dissonance and back agmathel mismatched
versions, no such motion occurs, and so the piece appe#cs sta

Similarly, the 10-tet piecden Fingersis a fine, if somewhat unusual sound-
ing piece when played with related timbres. Most first-tins¢éehers (in the United
States) feel that it must be foreign, maybe “Indian.” But wipéayed with standard
harmonic sounds, it takes on an out-of-tune character,hwibimore properly called
out-of-spectrum. Even after numerous performances atehlizgs, it still sounds
out-of-kilter, suggesting that the perceptual mechanisaponsible for the essen-
tial wrongness of the mismatched tuning and spectra (eesay consonance and
dissonance) is at least partially in the hardware of thedrai

Whatever part of such perceptions that are in the hardwabeafar may provide
limits to the human ability to appreciate sound passageastipg toward aesthetic
principles that may be directly correlated with a perceptugchanism.

16.4 New Musical Instruments?

Tuning, Timbre, Spectrum, Scédlas shown how several kinds of instruments in sev-
eral different cultures follow a simple pattern; The instents play pitches that cor-
respond to minima of an appropriate dissonance curve. Whsiguing and tuning
new kinds of musical instruments, it may be advantageousioi this idea.

In the simplest case, the instrument will sound with a palicspectrum. The
dissonance curve of this spectrum will have certain miniamal, the instrument can
be tuned to play these pitches. An orchestra of such institswell then be able to
play as consonantly as possible. If there are large inteimathe dissonance curve
with no minima, then it may be advantageous to augment tHe agth some inter-
mediate pitches so that melodies can be more cogent.

A slightly more complex scenario is when a new instrumemt,(ione with a
“new” spectrum) is to be added to an existing orchestra. ildase, the dissonance
curve can be drawn for the two spectra. The new instrumenteatuned to the
appropriate minima, but the old instruments may also nedxttadjusted for com-
patibility. This is the coevolutionary process in action.

The inverse problem is trickier. Given a desired spectruow ban acoustic in-
struments be designed (or redesigned) so as to have thatusp@c

Strings: Uniform strings have harmonic partials as in a guitar or apia
However, if the contour of the string is changed, or if the gignof the

string is not uniform, or if the string is weighted at strategoints, then
the partials can deviate significantly from harmonicityvideng a method
for readily specifying the kinds of physical manipulaticdhst correspond
to useful spectral deviations is an important first step.

" Indeed, recall that the binaural presentation of the oaigitissonance curve (audio track
[S: 12]) can also be interpreted this way.
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Air Columns:Instruments with a uniform air column make harmonic sounds
and play in scales that are essentially overtones of a sfogldamental
(such as the unfingered scale of a cornet). When the columatds\from
uniformity (for example, varying widths or flares or the atitsti of small air
chambers), then the scale will change, but the spectrumimsrpaimarily
harmonic. On the other hand, many wind instruments like theoghone
can be played inharmonically using extended techniquésasimultiphon-
ics. How to (re)design such an instrument to encourageqpdati kinds of
multiphonics is not obvious. Finding patterned ways toteefghysical and
spectral changes is an important area for the design of singrronic in-
struments.

Bars and BeamsiWhether the bars are fixed at an end, or whether they are
free to vibrate at both, bars and beams already have inhécrpartials.

The exact placement of these patrtials is an interestingissnswers are
available for only a handful of simple geometries.

Others: There are many kinds of oscillators and many kinds of reswaat
that can be used to create audible vibrations. Finding shape topologies
that will generate a specific spectrum is no trivial task.

In some cases, modal frequencies can be determined frorpriinsiples. Perturba-
tion methods can sometimes be applied. Finite element rdstban almost always
be applied, but they are not generalizable, because sobriegproblem does not
usually give any insight into the solution of related probte In short, the design of
fine musical instruments is no easier now than it was in ahtiems.

16.5 Silence Hath No Beats

Consonance and dissonance are only part of the musicati@nelsEven in the realm
of harmony (and ignoring musically essential aspects sean&lody and rhythm),
sensory consonance and dissonance do not tell the wholeIstdeed, progressions
that are uniformly consonant tend to be uniformly dull. Thetidction between sen-
sory and functional consonance and dissonance is not ifisagrt. Although they
often coincide (the minima of dissonance curves for harmtinibres agrees with
just scales, the dissonance score for the Scarlatti sonatelates reasonably well
with more standard analyses), they often do not. For instatte functional con-
sonance of a silent phrase is not meaningfully defined; yehs has the greatest
sensory consonance. Such extreme cases highlight lioniatif the model.

Any model is based on abstractions that limit the scope afitelusions. When
relating an imprecise understanding of the human orgarasartomplex cultural ac-
tivity, when relating an imperfect understanding of theitargt system to the com-
plex behavior called music, limitations are manifest. Eatrthe simplest levels,
much is unknown. For instance, when dealing with inharmepimds, the partials
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may fuse into one perceptual entity, or they may fission inémyn Understanding
this perceptual dichotomy is not trivial, and our ignoraisceot for lack of effort. It
underscores the gross nature of the additivity assumptidissonance calculations;
by clustering sounds differently, it is possible to changeirtapparent dissonance.
Unfortunately, quantification of this phenomenon is weltdred the current state of
psychoacoustic knowledge.

The model used throughotitining, Timbre, Spectrum, Scalses linear combi-
nations of the psychoacoustic data of Plomp and Levelt [B].1Refinements such
as the inclusion of masking effects or of amplitude efféatsuld enhance the model.
In any case, the conclusions of the model (dissonance ¢usueaces, and scores)
are qualitative rather than quantitative. It would be a akistto place too much trust
in small details and little dips in the curves: Only the mdgatures that are readily
audible need be taken seriously.

16.6 Coda

In retrospect, a connection between the way musical ingnissound and the way
they are tuned seems obvious. Almost 100 years ago, Helntealbgnized the con-
nection between harmonic sounds and the just interval®afiitonic scale. Because
most Western instruments have primarily harmonic pastihbsorists and composers
tended to limit their theorizing and composing to musicalicures based on this
one “kind” of sound. But there are many “kinds” of sounds.

It was not until the advent of electronic musical instrunseihiat it became easy
to create a variety of inharmonic sounds and to play them imaréety of scales
and tunings. One conclusion is inescapable: Certain scal@sd good with some
timbres and not with others, and certain timbres sound goosbime scales and
not in others.Tuning, Timbre, Spectrum, Scabkeoposes a way to understand this
relationship: to interpret “timbre” as “spectrum,” and taérpret “sounds good” in
terms of a measure of “sensory consonance.” In this frameveissonance curves
codify those intervals that have the greatest (sensongamances a function of the
spectrum of the sountt is now possible to systematically choose a tuning rell&de
a given sound, or to choose a sound that is related to a gimamgtun both cases, the
intervals aren-tuneandin-spectrumCompositions in nonstandard scales can easily
enjoy contrasts in consonance and dissonance by propgtiscubf the spectra.
Nonstandard sounds can be played consonantly or dissgrmngroper choice of
interval.

Many nonwestern musical cultures use inharmonic instrusaén at least two
cases (the Indonesian gamelan and the percussion orchekiraailand), the same
kind of reasoning that relates harmonic sounds to just ations can be used to
relate the tone quality of the instruments to the nonwesteates. Thus, the sensory
dissonance approach enjoys a cultural independence ttaaeisn musical theories.

8 For instance, the Fletcher—Munson curves.
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The appendices contain information that does not fit well
within the normal flow of the text.

Mathematics of Beats: trigonometric formulas describes fveats occur physi-
cally, in contrast to how they are perceived.

. Ratios Make Cents: formulas (and computer programs)ibesbow to convert

between two of the most common kinds of representations sfealintervals.

. Speaking of Spectra: subtleties in the calculation otspeand application of

the FFT (Fast Fourier Transform program).

. Additive Synthesis: a brief overview (amdatlab program.)
. How to Draw Dissonance Curves: a theoretical presematidvow to parame-

terize dissonance curves and a descriptioMaflab programs that carry out
the needed calculations.

. Properties of Dissonance Curves: formal statements embustrations of the

various results from Chap. 7 “Related Spectra and Scales.”

. Analysis of the time-domain sensory dissonance modeéof. 8.6.
. Behavior of Adaptation: details on the results preseirtéghap. 8.

Symbolic Properties ab-Tables: a method of solving the timbre selection prob-
lem, of finding a related timbre for a given tuning.

. Harmonic Entropy: a measure of harmonicity.

K. Lyrics to Fourier's Song.

Tables of Scales: details several historical and gamtelaimgs.






A

Mathematics of Beats

A basic trigonometric identity relates the sum of two sine@gto the product of a
sine and cosine:

r—y x—{—y)

sin(z) + sin(y) = 2 cos( ) sin( 5 (A1)

Suppose that two sine waves of the same frequenbgve a constant phase differ-
enceg. Then the above identity implies that the sum of the two wavespressible

as 5

= A2
which is a sine wave of frequenay, amplitude2 cos(%), and phas%. Wheng is
near(, the waves are in phase and the interferen@isstructive because the am-
plitude of the sum is near its maximumaak(0) = 1. As ¢ increases, the amplitude
decreases until at = =, the amplitude has shrunk to zero. This is caliegtructive
interference.

When the frequencies differ by an amoufat, their sum is

sin(wt) + sin(wt + ¢) = 2 cos(g) sin(wt +

sin(wt) + sin((w + Aw)t) = 2 cos(%t) sin((w + %)t) (A.3)

When Aw is small, the cosine term is slowly varying compared with $hee term,
and the resulting signal can be viewed as a sine of frequen{ey@—‘“ with a slowly
varying envelope of frequencjiw.
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Ratios Make Cents

This appendix presents formulas for conversion between
ratios and centsMatlab functions are available on the CD
to carry out the calculations.

Cents were first introduced by Ellis (see his annotationsdlrioltz’sOn the Sen-
sations of Toneas a way of simplifying comparisons between various scaihebs

temperaments. As perceptions of musical pitch are appatelyproportional to the
logarithm of the frequency (rather than the frequency fitsglis sensible to use a
log-based measuring system. Ellis chose to define the oasaegual to 1200 cents,
and so it is necessary to scale by a facto%é?% when converting to cents.

ratio |1:1 r:l 2:1
log ratig 0 log(r) log(2)
cents 0 (%) log(r) 1200

Said more simply, a cent is 1/100 of a semitone, and thereQfrednts in a semitone
and 1200 cents in an octate.

There are two reasons to prefer cents to ratios: Where cemntxlded, ratios are
multiplied; and it is always obvious which of two intervatslarger when both are
expressed in cents. For instance, an interval of a just fifillowed by a just third
is (3/2) (5/4) = 15/8, a just seventh. In cents, this is 705=3888. Is this larger or
smaller than the Pythagorean seventh 243/128? Knowingitadatter is 1110 cents
makes the comparison obvious.

Because ratios and cents ultimately contain the same irftbom it is possible
to convert from one to the other. Given a ratigche number of cents is

1200 )
c= | ———= ) logo(r) ~ 3986.314log,4(r),
(logm(Z) g1o(7, 8io(7,

wherelog , is the logarithm base 10.

! Others have chosen different conventions. For instandg) @eps per octave gives the
“millioctave” system.

2 In other words, one cent is equal to an interval'd%/2 ~ 1.00057779 to 1.

% Any logarithm base can be used. For instance, with the ridagréoften abbreviated “In”),

the formula becomes= %ln(r) ~ 1731.2341In(r).
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To convert from cents back into ratios, lebe the number of cents. Then the
ratior is*

¢ logyo(2)
- 10( "810(2)) A 1(0-00025086¢

These formulas are the heart of the tMatlab functionscent2rat.m °and
rat2cent.m ,® which can be found on the CD in tiseftware  folder. As sug-
gested by their names, these convert from ratios to centbacid again. Both are
general enough to accept a vector of inputs. For instandmddhe cent equivalent
of the JI major scale, enter the desired ratios as a vector

r=[1,9/8,5/4,4/3,3/2,5/3,15/8,2],

and then call the routineat2cent by c=rat2cent(r) . The program should
reply
c =[0,203.9,386.3,498,702,884.4,1088.3, 1200].

As the two functions are inverses, enterirgent2rat(c) gives back the JI
major scale, although in decimal form.

* Using natural logs, this is az e0-000577623¢

5 TheMatlab functioncent2rat.m  converts from cents into (the decimal equivalent of)
ratios:

function ratio=cent2rat(cents)
ratio=10."((log10(2)/1200)*cents);
6 TheMatlab functionrat2cent.m  converts from ratios into cents:

function cents=rat2cent(ratio)
cents=1200/log10(2)*log10(ratio);
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Speaking of Spectra

Beware thy methods of musical analysis. Their power to blind
is proportional to their power to enlighten. B. McLarenin
Tuning Digest 120.

In the early part of the nineteenth Century, Jean BaptiseptoFourier showed how
any periodic signal (for instance, a sound with a steady)toare be decomposed into
(and rebuilt fromy a sum of sine wave partials. Such a decomposition is called th
spectrunof the sound, and it is usually graphed with the frequencyohesine wave
partial on one axis and the magnitude on the other. Althobghi$ useful in many
fields, it is particularly appropriate to analyze soundis tvay because the ear acts
as a kind of “biological” spectrum analyzekVhen listening “analytically,” so as to
“hear out” the partials of a souricthe ear carries out a similar decomposition, and
the tonal quality of the sound can often be correlated withsueable features of the
spectrum.

This is not the place for a technical discusdi@fithe mathematics of spectra,
of Fourier transforms, nor of the details of how they are wiaied using the FFT.
Rather, this appendix supposes the availability of a softwautine or command
to calculate the FFT and discusses the tradeoffs and congesrthat are inherent
when evaluating the spectrum of a sound. In other words dtesfis on how to use
and interpret the FFT, rather than on worrying about how itks@r the underlying
mathematics.

A digitized sound is a string of real numbers gamplesthat represent the am-
plitude of the sound at each instant. Suppose that one pefri@/aveform contains
N samples. The spectrum is found by applying the FFT, and thmubof the FFT

! Appendix D details how to implement this rebuilding procesu

2 Different portions of the basilar membrane respond to dfié frequencies. Recall Fig. 2.4
onp. 16.

¥ Recall the discussion of analytic vs. holistic listeningmor4.

* There are already many books in the engineering literaugh as [B: 60] that do this quite
well. TheElements of Computer Musliy Moore [B: 117] has an extensive discussion of
FFTs from a musical perspective and includes programdjstin the C language. THaig-
ital Signal Processing Primeof Steiglitz [B: 182] is less complete but equally compeilin

5 The “Fast Fourier Transform” is the name of an efficient aithon or computer program
that carries out the necessary calculations to find the spacChapter 7 of [B: 76] has a
comprehensive set of worked out examples Btatlab routines for spectral analysis.
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is a string of N complex numbers that are usually written as a magnitude and a
phasé The magnitude spectrum is important to the ear becausedifigsethe size
of the sine wave partials of the sound. The phase spectruahaibsely unimportant
in many applications because it is often impossible to heardifference between
two sounds that have the same magnitude spectrum, evenghttse spectra differ.
The FFT has two remarkable properties. First, it is invégtibhis means that it is
possible to calculate the spectrum from the waveform, oatoutate the waveform
from the spectrum.Said another way, the waveform and the spectrum contain the
same information. Certain aspects of the sound are mordyciéawed in one form
or the other. For instance, the envelope of the sound isesiéam the waveform,
whereas the partials are clearer from the spectrum.
Second, the FFT is linear, implying that the FFT of the sunwarf signals is the
same as the sum of the FFT of the two signals separately. lbagm

FFT(w+v) = FFT(w)+ FFT(v),

wherew andwv are two signals. More generally, if a sound consists of a rarmb
partials, then the FFT of the complete sound is equal to thessaf the FFTs of all
partials. Thus, many of the subtleties of using and undedstg the FFT occur even
in the simplest setting when taking the FFT of a single singawa

C.1 Spectrum of a Sine Wave

When there is only a single partial in the sound, then thetspmccontains only this
one partial. In an ideal setting, the spectrum of a pure siaevis zero everywhere
except at the frequency of the sine wave. But the actual FEIreél sine wave is not
exactly zero, and there are two different kinds of errorandnff (numerical) errors
and artifacts (“edge effects”), that cause the representaf a sine wave to “leak”
or “smear out” to other frequencies. Figure C.1 shows a portif a sine wave in
part (a) and its spectrum, as calculated by thefiRPpart (b). The frequency of the
wave is given by the location of the peak in (b), and the baarithe spectrum, with
magnitude about0~'?, is due to numerical roundoff errors in the computations.

% The magnitude vector is symmetric about the midpoint, aredphase is antisymmetric
about the midpoint. Thus, half of each vector is redundadistypically discarded.

7 This latter operation is often called the Inverse FFT, anislatbbreviatedFFT.

# TheMatlab code used to generate (a) and (b) is:

c=(2*pi)/128; % c defines the frequency of the sine wave.
wave=sin(c*(0:1023)); % the sine wave is 1024 samples long.

plot(wave) % generates the plot in part (a).
magspec=abs(fft(wave)); % “FFT” returns the FFT in compl ex form.

% “abs” takes the magnitude of the FFT.
semilogy(magspec(1:50)) % plots (b) with logarithmic vert ical axis.
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Fig. C.1. Figures (b) and
(@) /\/\/\/ © /\/W (d) show the spectra of the
3

10° 10 sinusoidal segments in (a)
0 and (c). Observe the wildly
10 (b) 102 (d) different scales of the two
_5 .
10 1 spectra; (b) is very close to
1910 10 zero except at the frequency
10.15 100 of the sine wave, whereas
frequency frequency (d) never sinks below 10. (e)

shows several copies of (c)

(e) /\/vv\/\/vv\/\/\/\/\ pasted together.

Contrast this with the sine wave shown in part (c) and its tspe€ in (d). The
peak defining the frequency of the wave is again clearly lasit the remainder of
the spectrum only falls below 10 at high frequencies.

The sine waves (a) and (c) differ only slightly in frequen@hat causes the dra-
matic difference in their spectra? As mentioned beforeFfRE always assumes that
the N samples represent exactly one period of a periodic wavefGancatenating
several copies of (a) does indeed give a longer sine wavec@wiatenating several
copies of (c) gives the waveform shown in (e), which is notllasiausoidal. Thus,
the spectrum (d) really shows how to decompose one peridaeofrionsinusoidal)
signal (e) into sine waves. It is unlikely that this is whatswaally intended when
thinking of the frequency content of (c). Thus, there is a ptax interplay between
the periodicity of the waveform and the length of the FFT.

Given this, it might seem like a good idea to choose the leoftihe FFT to
match the period of the partials. Unfortunately, this is @never possible when
analyzing real sounds, because choosing this length esgkmowing the frequencies
of the partials, and finding these frequencies is the reasotaking the FFT in the
first place.

Think of it another way. The problem (the large magnituderagjdiencies dif-
ferent from the “obvious” frequency of the sine wave) ocduesause the “ends” do
not line up; abrupt changes in the waveform cause the sped¢trismear. One way
to force the ends to line up is to preprocess the data so thasdtaway to zero at
both ends. Then, no matter what the underlying perioditigte will be no abrupt
changes in the waveshape.

One popular approach is to usélammingwindow;'° which is shown in part (a)
of Fig. C.2. Multiplying this window point by pointtimes pgb) (which is the same

? Parts (c) and (d) were generated by identical code, excaptith parameter ¢ was changed
slightly so that an integer number of periods do not fit int® sample length.

1% Named after Richard Hamming, this is a single cycle of a stafel shifted cosine wave.
The formula ish(t) = 0.54 — 0.46 cos(2xt/(N — 1)) for 0 < t < N. The Hamming
window has been enshrined invatlab function called “hamming,” but is only one of
many possible windowing functions. Steiglitz [B: 182] anddfe [B: 117] discuss several
alternatives, each with their own properties.
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waveform as in Fig. C.1(c)) gives the windowed version irt p& The spectrum of
(c) is shown in (d).

/\ Fig. C.2. A hamming window (a)
X is multiplied point by point times a
B /\/\/‘\/\ segment of a sinusoid (b), resulting
in (c). The spectrum, shown in (d),
‘\/\=/\f has significantly lower sidelobes than

in the unwindowed version, although
the peakis somewhat wider.

frequency

Compare the spectrum of this windowed version with the specof the unwin-
dowed version in Fig. C.1(d). In both, the frequency of theusbid is given by the
location of the peak. The windowed version has attenuategntearing by a factor
of almost 10, although the peak is about twice as wide. Thiaiity typical of the
windowing process.

When should a window be used? Windowing is unnecessary waalimg with
a short isolated sound whose start and end are known. In eatypusical synthe-
sizer or sampler, each sound has a well-defined start (atéacka definite steady-
state looped portion. As the loop is periodic, it is an iddakp to apply the FFT
without windowing'! In many other circumstances, when a continuously changing
signal is analyzed, windows are used to reduce end efféétigure C.3 shows this
schematically. A series of offset windows in (a) are muidglpoint by point times
the waveform (b), giving the smaller segments (c). The segsnzan then be readily
analyzed, giving spectral “snapshots” of the evolutiorhef partials of the sound.

Fig. C.3. Overlapping windows ap-
plied to a continuos waveform give
smaller segments that can be ana-
lyzed easily.

End effects are a consequence of the fact that Fourier'seheand hence all
techniques based on the Fourier transform) apply only tmg@iersignals. To calcu-

1 The innards of a typical musical synthesizer are discussgxd 80.
2 Although it is true that windows help to reduce artifactss itvorth remembering that this
is, in effect, lying about the data.
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late the FFT of a “real” signal requires “pretending” thatsitperiodic with period
equal to the length of the sample. Although this can often dmeedwvithout gross
distortion, careful choice of sample lengths and windoweaniques are needed to
reduce the likelihood of misleading results.

C.2 Steady State Analysis

You somehow shake a waveform, and the partials come tunhlirg

Consider a spectral analysis of the sound of a vibratinggthat has a fundamental
pitch of 100 Hz, approximately th& an octave below middI€'. Assume the stan-
dard CD sampling rate of 44.1K samples per second, and thabtind of the string
lasts about three seconds. This gives about 128K samplédt enimpractical to
calculate an FFT of this length. The data should be brokemigpadhunks that can
be analyzed separately. For example, 32K chunks repragedtd second of sound
are reasonabl¥.

First, consider the simple case when the sample is very ¢tgeriodic, as
occurs during the sustained steady-state portion of theds@®ecause strings vibrate
harmonically, there would ideally be a peak at 100 Hz, anaah@00 Hz, another
at 300 Hz, and so on, each with an appropriate amplitude. lBubttput of the
FFT program does not look like this, not exactly. The FFT &tho outputs a 32K
magnitude vector and a 32K phase vector. As only half of eactov is meaningful,
the remainder is discarded.

Each element in the (nonredundant) 16K magnitude vectaoesepts the mag-
nitude of a sine wave at some frequency. In this case, thafireber represents the
magnitude of the DC (zero frequency, or bias term). The stede@ment represents
the magnitude of the sine wave at

sample rate 44100
sample length 32768

= 1.346 Hz.

The next number is the magnitude of the sine wave at frequar&y Hz. Thus,
the output of the FFT cannot represent the sine wave at 100xaizlg because
there is no slot in this representation for 100 Hz. In facg #th bin represents
99.59 Hz and the 75th slot represents 100.94 Hz, so the etleatj)should be at
100 Hz is spread out near the 74th and 75th slots. Similaslyerof the other “real”
frequencies are exactly represented. This quantizatidregfuency is a direct result
of the assumption that the signal is periodic, that it repesaéry 32K. Of course, this
is just a convenient fiction, because the signal from thegttbntinues to die away
for more than 128K samples.

Thus, there are two notions of “period,” and this can be a@®of confusion.
Firstis the notion of the period of the fundamental and itsrtamics. As the funda-
mental of the string is 100 Hz, there will also typically bergg vibrations at 200 Hz,

'3 paraphrased from Marion M. ifuning Digest 314.
' For sounds that change more rapidly, smaller chunks sheulséd.
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300 Hz, 400 Hz, 500 Hz, and so on. The second notion of “peribdt enters into

the FFT analysis is that all frequencies of the analyzedadigppear to be multiples
of 1.346 Hz, which is a direct result of the choice of a 32K FH&d the analysis

used 8K FFTs, everything would have been a multiple of 5.38Hd the representa-
tion of the 100 Hz fundamental would have been even worses,Tthe resolution of

the spectral analysis is directly proportional to the “witf frequency bins, which

determines how accurately the sine wave components canpbesested. This is
similar to the “smearing” observed when analyzing singhe svaves in the previous
section.

These two ideas of period suggest two interpretations osfeetral analysis.
One is literally correct (but useless), and the other is gr@pmation (that is often
useful). A literal interpretation of this FFT data suggebkt the fundamental of the
string is vibrating at 1.346 Hz, and that the 74th, 75th, b4849th (and so on)
harmonics are large. While literally true, this is not a jgartiarly useful way to think
of the vibrating string. Observe that using an 8K FFT, the esagnal would be
interpreted as a fundamental at 5.38 Hz along with some lag®onics: the 18th,
19th, 37th, 38th, and so on. Clearly, a true interpretatfdhestrings motion should
not depend on the size of the FFT used in the analysis.

A better interpretation of the string data is as a fundanmédmeaveen 99.59 Hz
and 100.96 Hz, with a second partial near 200 Hz, and so onthButoes require
that a judgment be made, because the location of the peakdmdstermined. Al-
though the peaks are obvious in some situations, in others th ambiguity between
peaks caused by the instrument (the string) and those duéstesn disturbances, and
artifacts. A later section discusses an algorithm for aaticypeak detection.

C.3 Analysis of the Attack

The previous section showed that Fourier analysis of aypariodic sound (such as
the steady-state portion of the string vibrations) is fel@siLearning about the attack
portion of a sound using Fourier analysis is trickier due kinal of auditory uncer-
tainty principle. The more accurately the frequency contéma sound is known, the
harder it is to tell exactly when it occurs. The more accuyaspecified an event is
in time, the less can be said about the actual frequencies.

To see this in a simple setting, consider a sound that censfist one-half sec-
ond sinusoid with frequency 100 Hz followed by a one-halfoset sinusoid with
frequency 200 Hz. Taking a single FFT over the complete wésvs two large
peaks at 100 Hz and 200 Hz, along with smearing due to endfed to the tran-
sition between the two halves. An FFT of the first half shoves$ {be peak near 100
Hz (plus the inevitable artifacts), whereas an FFT of thesddalf shows just the
peak at 200 Hz, again with artifacts. This is called the “agéarg” property of the
FFT and is inevitable when analyzing a sound that changestone. Larger win-
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dows give more accurate locations for the parttalbut it becomes impossible to
resolve when the various partials actually occur.

Because of this, a sensible strategy is to use several @iff&FTs on the same
data. The larger FFTs help to resolve the actual frequenaresthe shorter FFTs
help to locate when the partials occur. Such techniquesededled in several places
in Chap. 7 “A Bell, A Rock, A Crystal” in the context of analygj the spectra of
inharmonic musical sounds. The auditory uncertainty fpieds also “discussed”
in the last verse of Appendix K.

C.4 Pads and Windows

This section briefly describes a number of techniques fqunoieessing the data be-
fore applying the FFT. None of these should be applied imohignately, but they
may prove useful, especially when trying to analyze a sieglend as accurately as
possible.

Padding with Zeroes

The FFT requires that the number of samples be a power of twsafme highly
composite number). One common technique is to “pad” the w#tazeroes until
the length reaches the next highest power of two. This caniatsease the accuracy
of the representation of the frequencies of the partialsalbiee a longer FFT is used.

Reverse the Waveform

Another way to sensibly lengthen the waveform is to revenskcancatenate. Instead
of taking the FFT ok, s», ..., sk, the data can be augmented to

51,892y ...y 8k—1,SkySk—1,Sk—-2y-.-, 82, 81.

The rationale for this is that the forward and reversed data the same (magnitude)
spectrum. If the “splice point” is chosen carefully so tha tlata varies smoothly
nearsg, then the artifacts can be reduced.

One-Sided Window

When analyzing a sound (such as from a musical synthesizggiropler) that has
explicit attack and looped portions, no window should beligdpto the loop. (In-
deed, this is the one place where Fourier techniques shimetebp genuinely is
periodic.) The attack portion has a definite beginning, tsiend mingles with the
start of the loop. Applying a standard Hamming (or other syatin) window to the

'® For instance, to the nearest 1.346 Hz for a 32K FFT insteaulthit nearest 5.38 Hz for an
8K FFT.
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attack portion will destroy much of the desired informatairihe start of the sound.
Yet applying no window may encourage artifacts due to thapttwhange where the
loop begins. A convenient compromise is to apply a one-sidadow, that is, only
the decaying (second) half of the windéThis leaves the initial portion unaltered,
yet discourages artifacts caused by interface betweermntipeand attack portions.

C.5 Finding Spectral Peaks

Humans are very good at recognizing patterns. For instarie looking at spectral
plots such as Fig. 7.6 on p. 136, it is easy to visually “picK dluie most significant
peaks, and in most cases, these peaks are indeed the mdstigusignificant as-
pects of the sound. Machines are notoriously bad at this &fridsk, for instance,
reading text is a similar kind of pattern recognition prabléhat has not been com-
pletely solved, despite intense effort.

A naive approach to the “peak picking” problem is to find theyéest term in
the magnitude vector and call it the first peak, find the sedargest element and
call it the second peak, and so on. Unfortunately, few peatssmlated outliers;
they usually look like small mountains, with foothills andbpeaks. For example,
the naive approach would find the highest peak in the middéetspm of Fig. 7.6
on p. 136, at 5066 Hz, but it would then find the second higHestent at 5063 Hz,
and the third at 5069 Hz. A slightly more sophisticated apphowould require that
candidate peaks be larger than their immediate neighbatdhsider the complex
of peaks near 5553 Hz on Fig. 7.1 of p. 130. Even a combinatiadheosize and
neighbor criteria would declare there to be many peaks legss though only one
(or maybe two) is sensible. Clearly, a more sophisticatgdaach is required.

The defining aspect of a peak is that it must be larger thantheuwnding re-
gions. The “competitive filtering” ideas of [B: 122] suggelitiding the search for
peaks into three regions: to the left of the candidate peakgright, and the value of
the candidate peak itself. If the candidate is larger tharo(estant times) the sum of
the average to the left plus the average to the right, themlaigesuccessfully found.
This simple algorithm can be effective, but there are twapeaters that must be
chosen. First is the constant, which is typically near orés parameter is roughly
proportional to the steepness of the peak, with larger galegquiring steeper peaks.
The second parameter is the length of the averages. Thidraekiosen based on the
size of the FFT and using any a priori knowledge of how cloggetioer two peaks
can be. For instance, if the frequencies of the FFT differ 34 Hz (as in a 32K
FFT) and the closest expected peaks are 50 Hz apart, thewdlegas should be
taken over no more than 20 values to the left and right.

6 This can be analyzed as a zero (pre)padding, followed byicgijon of a complete Ham-
ming window, but it is simpler to implement directly as a haihdow.
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Additive Synthesis

A brief discussion of somdatlab programs that implement
additive synthesis and resynthesis.

Additive synthesis is the process of summing a collectiosiloé wave partials so as
to make a complex, and hopefully interesting, sound. Fomgte, suppose we wish
to generate sounds with the same partials (the same sp@ctsutine Chaco rock of
Fig. 7.6 on p. 136. The most important partials of the soumdearead directly from

the figure or from the composite spectrum of Fig. 7.7 on p. TBése are

1351, 2040, 2167, 4068, 5066, and7666.

Letting these be the frequencies of thepartials and labeling them; throughw,,,
a new sound can be built as

w(t) = a;env(t) cos(wit + p;),

i=1

where thez; define the amplitudes associated with each partial ang;thee some
(usually arbitrarily specified) phases. The function;éhwepresents the envelope of
partiali, and it can be chosen to help define the character of the sBondhstance,

if all envelopes are constant, ) = 1, then the sound will be steady like an organ
tone. Envelopes that die away exponentially, like;éhv= ¢~*, tend to mimic the
character of a struck, plucked, or percussive timbre.

By construction, the waveforma(¢) has partials at the;, and hence, it has a
dissonance curve with minima at many of the same locatiotiseasriginal sound.
This is one way of generating “new” sounds that are compatilith an existing tim-
bre. For instance, the high percussive tones inGhaco Canyon Rocdfaudio track
[S: 44]) were generated with exponentially decaying envesy and the sustained
organish tones of the middle section were created usingaonsnvelopes.

TheMatlab programaddsynth.m , which generatesvav files via additive
synthesis, appears on the CD in #aftware folder. The frequencies (in Hertz)
are placed in the vectdreq and the corresponding amplitudes and decay rates are
specified inamp anddecay .! The program generates a wavefotime seconds

! The three vectorBeq andampanddecay must all be the same length.
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long at a sampling rater . If there is a soundcard available on the computer, the
sound can be previewed using the command

sound(wave, sr)

which plays the vectowave at the sampling rater . With its default parameters,
addsynth.m generates a harmonic sound with five partials of equal aog#itThe
sound is somewhat different each tiamdsynth.m is run because the decay rates
change (due to theandn function in the definition oflecay ).

One common technique is to use data from the spectrum totressine a sound.
Inthe simplest case, the spectrum may be calculated andrtresiormed back into a
waveform without loss of information. This is demonstratetheMatlab program
resynth.m (also available in theoftware folder of the CD), which calculates
the spectrum of a sound and then carries out a direct resgiatbtthe sound from
the FFT decomposition. With no additional processing, thigotx is identical to
the inputy, at least to numerical precision.

Alternatively, the sound can be sculpted or shaped as deBirenanipulating
the magnitude and/or phase values prior to the resyntidsis would occur at the
place in the code marked with the comment:

% Frequency domain processing goes here:

One possibility is to “move” the most prominent partials taka them compatible
with some desired reference spectrum. This is the idea iggdlin the “Spectral
Mappings” chapter, although the more efficient inverse F&Tded instead of an
additive resynthesis approach.

The programs given here are not computationally efficieathar, they are in-
tended to present the ideas as clearly as possible. Fongesta better way of car-
rying out additive synthesis is given in Steiglitz [B: 182hd a reasonable imple-
mentation of the related phase vocoder is presented in M@orEl7]. Finally, an
important discussion of the impact of additive synthesigl@atronic music is given
in Risset [B: 150].
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How to Draw Dissonance Curves

This appendix describes a parameterization of Plomp and
Levelt's dissonance curves and computer programs thatcarr
out the calculations. It is not necessary to follow the math i
detail to make use of the computer programs. Contrariwtse, i
is not necessary to program the computer to understand the
math.

The Plomp—-Levelt curves of Fig. 3.7 on p. 46 can be convelyiparameterized by
a model of the form
d(z) = e 01" — b (E.1)

wherez represents the absolute value of the difference in frequbrtween two
sinusoids, and the exponeiisandb, determine the rates at which the function rises
and falls. Using a gradient minimization of the squaredrdpeiween the (averaged)
data and the curvé(z) gives values of; = 3.5 andb, = 5.75.1

The dissonance functiaf(z) can be scaled so that the curves for different base
frequencies and with different amplitudes are represecoedeniently. If the point
of maximum dissonance occursadt, then the dissonance between sinusoids at fre-
quency f; with loudness/; and at frequencyfs with loudnessls (for fi < fs)
is

d(f1, fo, 01, b2) = bigfe™Pre(2mD1) _obanlfa=fi)] (E.2)
where )
s=—r (E3)
sifi + s2
and
612 = min(ﬁl,ﬁg). (E4)

The point of maximum dissonaneg¢ = 0.24 is derived directly from the model
(E.1) above. The parameters in (E.3) allow a single functional form to intdge
between the various curves of Fig. 3.8 on p. 46 by sliding teexhance curve along
the frequency axis so that it begins fat and by stretching (or compressing) it so

! An alternative parameterization of the Plomp—Levelt carvproposed by Lafreniere
[B: 92], replaces the difference between exponentials if)(@ith d(xz) = e~ (°8(52)*
where 3 is chosen so thgBx occurs at the point of maximum dissonance and where
T = % is the normalized frequency. The resulting dissonanceasuave qualitatively
similar to the ones presented here, although the cornemsare rounded. Another func-
tional form that may also be useful in this contextlis) = ze 7.
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that the maximum dissonance occurs at the appropriatedrneaguA least square fit
was made to determine the valugs= 0.021 ands; = 19.

The form of equation (E.4) ensures that softer componemtgibate less to the
total dissonance measure than louder components. Fonaestéeither/; or ¢, ap-
proaches zero, theh; decreases and the dissonance in (E.2) vanishes. Conyérsely
the volume of the partials increases, the dissonance isesedhis form is discussed
in Appendix G, and is a refinement of the model in [B: 165], vihéssumed that the
loudnesses were multiplicative.

Calculating loudness is not completely trivial as the déstons in [B: 85],

[B: 154] and [B: 187] suggest. }f(¢) represents a simple harmonic planar wave with
period?’, then the effective pressure is the power

T
P, = H%/O pz(t)dt

of the wave. For a sine wave(t) = Asin(2wfot + ¢) with frequencyf, and
amplitude A, P. = %. The sound pressure level in decibels (dB) is SPL

20 logm(%), whereP,.; is the standard reference 2ify.P& for SPL in air, which

corresponds to the SPL of a barely audible sine wave of fregu&000 Hz. Finally
(and somewhat crudely), the loudness can be approximated as

1 _SPL
E_EZw. (E.5)

The loudnesg is measured isones The form of (E.5) originates from the observa-
tion that an increase of 10 dB corresponds (approximatelgtoubling of loudness.
The fraction1/16 normalizes the loudness so that 40 dB corresponds to one sone
More accurate models than (E.5) would include the effectb@f-letcher—Munson
curves of equal loudness [B: 154], would sum the loudnesifiesahtly depending
on whether they occupy the same critical band, and wouldita&eccount masking
effects.

To calculate the dissonance of more complex sounds? Ibe a collection of
n sine wave partials with frequencigs < f» < ... < f, and loudnesses; for
J = 1,2,...,n. The partials will typically be displayed as thetuple fi, fa, ..., fn.
The dissonance af can be calculated as the sum of the dissonances of all pairs of
partials

DF:%Z;Z;d(fi,fj,&,fj), (E.6)
i=1j=

which is called the intrinsic or inherent dissonance"ofVhen two notes with spec-
trum F' are played simultaneously at an interwalthe resulting sound has a disso-
nance that is the same as that of a single timbre with freqegificanda f; by the
additivity assumption. Thus, (E.6) can be used directlyaizdate the dissonance

2 One Pascal (Pa) is oé/m?>.
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between intervals (and chords) as well as the dissonans®latéd timbres. Defin-
ing the spectrumx F' to contain the frequenciesf;, afs, ..., af, (with loudnesses
¢;), the dissonance df at an intervak is

Dr(a) = Dp+ Dar + Y Y _d(fi,af; i, 4;), (E.7)

i=1j=1

and the dissonance curve generated by the tifilisedefined as the functiobr («)
over all intervals of interest.

The dissonance of a chord of three notes at the intetyalsands can be simi-
larly calculated by adding the dissonances between aligbart

Dp(r,s) = Dg(r) + Dp(s) + Drr(s/r),

where Dr(r) is the dissonance aof at the intervalr, Dr(s) is the dissonance of
F at the intervak, and D, r(s/r) is the dissonance betwee andsF. General-
izations tom sounds, each with their own spectrum, follow the same pbgbyg of
calculating the sum of the dissonances between all sinedtasly sounding partials.

Two computer programs that carry out these calculationslarated in the
software folder on the CD. The firsDissonance(Basic) , is written in Mi-
crosoft’s version of BASIC, and the other iskatlab . Both programs encapsulate
the equations of this section and can be used to draw dissertamves for a tim-
bre withn partials, at frequencies specified in the arfisag with corresponding
amplitudes in the arragmp.

Some details of the implementation might help to follow tliegsam logic. In
the BASIC program, thé andj loops calculate the dissonance of the timbre at a
particular intervablpha , and thealpha loop runs through all intervals of interest.
The first few lines set up the frequencies and amplitudesefithbre. The variable
n must be equal to the number of frequencies in the timbre. Rgrthe program
with its default values generates the dissonance curve Farmonic timbre with
six partials. To change the start and end points of the iatgrusestartint and
endint . To make the intervals further apart, increase . All dissonance values
are stored in the vectatiss . Do not changelstar or any of the variables with
numbers.

The Matlab programs are modular, one definingviatlab function called
dissmeasure.m , which calculates the dissonance of any set of parfialgth
loudnessamp (the partials can be in any order). The main routifigssmain.m
callsdissmeasure.m for each interval of interest to draw the dissonance curve.
A FORTRAN version is also listed in [B: 92].
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Properties of Dissonance Curves

For certain simple timbres, dissonance curves can be coehptharacterized. This
appendix derives bounds on the number and location of mimihtee dissonance
curve and reveals some general properties, as discussdm €. Two simplifica-
tions are made to streamline the discussion. A single dassmfunction is assumed
for all frequencies, and all partials are presumed to haveammplitudes. Thus the
simpler model (E.1) is used in place of the more complete m@&i2)-(E.4) when-
ever convenient.

When F' is a spectrum with partials at frequencigs fa, ..., f», the intrinsic
dissonance (in this simplified setting) is

Dr = 23N d(h 1) (F.1)

i=1j=1

whered(f;, f;) is really a function of a single variable; that #.f;, f;) = d(z) as
defined in (E.1) withe = % and where the last two (amplitude) terms of
(E.2) are assumed unity. Because of the formx of(a f;, o f;) = d(f;, f;), and so
Dr = D,r for any a. In other words, the simplification has removed the depen-
dency on absolute frequency from the dissonance measure.

Using these notations, the dissonance curve (E.7) becomes

Dp(a) = Dy + Do+ 33 d(fisafy). (F2)

i=1 j=1

The first result gives a precise statement of property twmfpo 115, describing the
behavior of the dissonance curve as the intetvgfows large.

Theorem F.1.For any timbreF with partials atf1, fa, ..., fa,
hma—>oo DF(Q) = DF + DaF .

Proof: Clearly,d(z) — 0 asz — oo. Thus,d(f;, af;) — 0 forall i, j asa — oo,
which implies that the double sum in (F.2) approaches zero. A
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Thus, the dissonance decreases as the intergabws larger, approaching a value
that is no more than the dissonances of the timtresand D, .

Various aspects of the dissonance curve (E.1) become immtosthen investi-
gating the locations of possible minima of the dissonancesciBeveral of these are
given here, most following from a direct application of adlcs. Taking the derivative
of (E.1), setting it to zero, and solving shows that the pofimhaximum dissonance

occurs when (b /ba)
« _ n(01/02
" = = by (F.3)
Two partialsf; and f; are said to beeparated by:* if
|f2 - fJ| *
mm(fi, fJ)

The change in dissonancemat 0 is
d'(0) = —b1e™1" 4 boe™02"| g = by — by. (F.4)

Forz > x*, the maximum change in the derivative occurs wigm** ) is minimum.
As

d"(z) = b%e_blz — b%e_bzz, (F.5)

r** = % is where the minimum occurs. After some simplification, thkie
ofd’ atz** is . o

d'(2**) = by (}%) T (}%) T (F.6)

When needed, the valués = 3.5 andb, = 5.75 are used, so that* ~ 0.22,
d'(0) ~ 2.25, 2** = 0.44, andd'(z**) ~ —0.292, although generallys > b; > 0
is enough.

The next result finds conditions under which the unisoa 1 is a minimum of
the dissonance curn@r ().

Theorem F.2.Let F' have partialsfi < fo < ... < f, that are all separated by at
leastz*. Thena = 1is a minimum oDp ().

Proof: As Dy and D, are fixed and equal for alt, only the terms in the double
sum (F.2) change the value 8fr (). There aren terms of the formd(f;, o f;) in
the sum, and for each of these there are 1 terms of the formd(f;, af;) with

i # j. We show that the change if{ f;, o f;) is greater than the sum of all changes
ind(f;, af;) fori # j whena is suitably close to 1.

The change inl(fi, af1) for « = 1 is proportional tod’(0), which is given in
(F.4) asbh, — by (becausex = 1 corresponds t@ = 0). The largest possible value
for any of thed(f;, af;) occurs whenf; anda f; define anz with = z**. Then
d’'(z**) is given in (F.6). Because thg are assumed separated by at legistand
because** = 2z*, the next largest derivative is at ma&{3z*). We now claim that
the sum of all derivative§_;_, |d'(iz*)| is less thanl’(0). Observe that
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b ibg b ibq
by —b b1 —b
d'(iz*) = by (b_1> S (b—1> U =t byt
2 2

Z|d’ (iz* |<Z|d’ (iz*)].

i=2

and that

As thed'(iz*) are all of the same sign, drop the|. Combining the two previous
expressions yields

e bots bitq
— =t
Z: (both — byth) =1L 1o =t
which is approximatelyt = —0.758. Since thef; need not be spaced evenly,

>, 1d'(})] could be as large af| + |d'(z**)] ~ 1.05. In the general case,
d(fi, o f;), theaf; could occur both above and below thehence, thé""_, |d'(+)|
could be as large &&|t| + |d'(z**)|) ~ 2.1. In all cases, the change in the diag-
onal termsd( f;, af;) dominates the sum of the changes in all off-diagonal terms
d(fi, af;), giving the required inequality. A
The requirement in theorem F.2 that the partials be semhhgte* is sufficient
but is certainly not necessary. #f < 7, then the same arguments show that no re-
quirements are needed on the spacing offthbecause the change in eafflf;, o f;)
is over seven times the largest possible value of the changgfi, af;), fori # j
(i.e.,d'(0)/d'(x**) =~ 7.7).
Minima of dlssonance curves tend to occur at ratios of theglar

Theorem F.3.Let timbreF' have partials atf;, f- that are separated by at least.
Then the dissonance curvgr () has a minimum at* = fo/ f1.

Proof: Let timbreGG have partialgg1, g2) = (af1,af2). ThenDp = Dg = D,r,
and any change iy («) must originate from the double sum in (F.2), which con-
tains the termsi(f;,g;) fori = 1,2 andj = 1,2. Fora* = f3/f1, (91,92) =
(f2,af2). As a is perturbed fromn*, the contribution from the terrd(fs, g1) =
d(f2, af1) increases, becauseat, a* fi = fo and sod(f2, g1) = d(f2, f2) = 0.
Thus, the result can be demonstrated by showing that thedserind(fs, g1) is
greater than the decrease in the other three terms comfinedncrease id( f2, g1)
is proportionalta’(0). As f1 andf, are separated by*, the decrease in each of the
other three terms is no greater th#éi(w**). As |d’(0)| > 7|d'(z**)|, this proves the
desired result. A
Thus, the dissonance curve generated by a timbre with [swdid;, f> has a
minimum whena* fi = f,. For example, for the timbre with partials at (500, 750),
* = 1.5. The result asserts that the timhtr&F', with frequencies (750, 1125) is
locally a most consonant interval. In symbal¥; (a* —¢) > Drp(a*) andDp (o* +
€) > Dp(a*) for smalle. Thus, both (748, 1122) and (752, 1128) are less consonant
than (750, 1125). This result is intuitively reasonableshse whervf; # fs, the
dissonance between the partialagt andfs is large, but whem f; = f, this term
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disappears from the dissonance measure. Interestinglyegult can fail wherf;
and f, are too close.

Theorem F.4.Let timbreF' have partialsf, f-. Then there is a > 0 such that for
|f2 — fi] < €, the pointa* = f»/ f1 is not a minimum obr ().

Proof: DefineGG as in theorem F.3. Again, any changelix(«) is a result of the
four terms in the sum of (F.2). For smalt> 0, note thatd(f1, g1 +¢) > d(f1,91) >
d(f1,91 =€), d(f1, g2+ €) > d(f1,92) > d(f1, 92— €), d(f2, 92+ €) > d(f2,92) >
d(f2,92 — €), andd(f2, 91 + €) > d(f2,91). On the other hand{(f2, 91 — €¢) >
d(f2,91) = d(fs, f2) = 0. For smalle, the change in all four terms is approximately
¢(ba — b1) in magnitude. Thus, the dissonance value is decreasédissnovede
closer toF', anda* = f»/ f1 is not a minimum. A

In essence, if the partials and f» are too close, then the minimum At/ f1
disappears. Theorem F.3 shows that a minimum occurs whéalpawincide with
each other. Minima can also occur when the partials are wisieparated. For a
two-partial timbreF’, suppose thaf; and f; are separated by at leakt*. Then
there is an interval of maximum dissonance ne@r = f1 + z*, and another near
afy = fo — x*. Consequently, there must be a minimum for senteetweeny;, =
(fi +2*)/fi anday = (f2 — 2*)/f». The full range of possible dissonance curves
for two-partial timbres is shown in Fig. 6.15 on p. 116.

Theorem F.4 suggests that minima of the dissonance curwebkely for inter-
vals smaller than about half the interval at which maximum dissonance occurs.
Plomp and Levelt estimate that corresponds to a little less thap3 of the critical
bandwidth. Thus, theorem F.4 predicts that scale stepsrdogether than abouy6
of the critical bandwidth should be rare.

The next result describes minima of the dissonance curvénfitares with three
partials.

Theorem F.5.Let timbreF' have partialsfi, fs, f3. Then there are; > 0 andes >
0 such that whenevef; and f, are separated by at least* + ¢;, and f5 and f3
are separated by at least* + ¢5, then minima of the dissonance curve occur at

a1 = fof f1, a9 = f3/f1,andas = f3/ fo.

Proof: LetG have partialgg1, g2, 93) = (afi, af2, afs). Suppose first thaf, —
fi > f3 — f2 + co. Consider the candidate minimum . For smalle, the most
significantterms iDr (a+¢)—Dp (o) ared(f2, g1) andd( fs, g2), because all others
are separated by at least+cs. Fore > 0, d(fa, g1 +¢) > d(f2,¢1), d(fa, g2 +¢) >
d(f_'g, gg), andd(fg, g1 —6) > d(fg, g1) On the other handl,(f;g, g2—€) < d(fg, gg)
Butd'(0) = by — by andd”’(0) = b3 — b2 < 0, so the slope is decreasing. Hence,
|[d(f2,91—€)| > |d(fs, g2—¢)|. ConsequenthDr (a1 +¢€) > Dp (1) andDp(aq —
€) > Dr(a1), showing thaty; is a local minimum. The casg — fo > fo— fi+ ¢
follows identically. The proofs forrs andag are similar. /

Figures 6.16 and 6.17 on pp. 118 and 118 show theorem F.5igadighThe
final result specifies the maximum number of minima that aatiaace curve can
have in terms of the complexity of the spectrum of the sound.
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Theorem F.6.Let timbre F' have partialsfi, fs, ..., f». Then the dissonance curve
generated by has at mos2n? local minima.

Proof: Consider the portion dDr(«) due to the partiaf interacting with a fixed
partial f;. For both very smallx (o ~ 0) and very largex (o — o), d(af, f;) = 0.
Ata = f;/f, d(af, f;) = 0. For the two intervals where f and f; are separated
by z* (one witha f < f; and one withaf > f;), d(af, f;) attains its maximum
value. Thusf interacting with a fixedf; has two maxima and one minima. Eagh
can interact with eaclf;, and there are? possible pairs. A9 (a) consists of:?
such curves added together, there are at me%tmaxima. Consequently, there can
be no more thain? minima. The two extreme minima at= 0 anda = oo are not
included. A

Despite the detalil of this presentation, its main conclussnot inaccessible:
The most (musically) useful minima of the dissonance cueveltto be located at
intervalsa for which f; = af;, wheref; and f; are arbitrary partials of the timbre
F.

The theorems of this appendix assume that all partials asgj@@l amplitude.
The effect of nonequal amplitudes is that some minima magpgisar, some may
appear, and others may shift slightly in frequency. Fortelyathese changes occur
in a structured way. To be concrete, let the timbreave partialsf:, f2, ..., f» With
amplitudes:y, as, ..., a, and letF have the same set of partials but with amplitudes
1,1, ..., 1. As discussed above, the dissonance curvéfaill have up ton? minima
due to coinciding partials that occur at the intervajs= f;/f;. As the amplitudes
a; of F move away from unity, the depth of the dissonance curvg amay change
and the minima at some of the; may disappear (an;; that is a minimum of
D may not be a minimum oDr), and otherr;; may appear (an;; that is not
a minimum of D may be a minimum ofDr). Thus, amplitude variations of the
partials tend to affect which of the;; happen to be minima. The dissonance curve
also contains up ta? minima of the “broad” type. The location of these equilibria
are less certain, because they move continuously with cespeariations in the;.
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Analysis of the Time Domain Model

This appendix expands the model of Sect. 3.6 to account for
more complex sounds and to reproduce the general dissonance
curves (such as Figs. 6.1, 6.2, and 6.7) of Chap. 6. The model
is then examined in some detail. This appendix is based on
collaborative work with Marc Leman of IPEM [W: 16].

Recent time domain models of the pitch extraction mechalssrch as those of Pat-
terson and Moore [B: 130] and Meddis [B: 111]) can succebsfukedict listeners’
performance in a number of areas, including the pitch of thesimg fundamental,
pitch shift due to certain kinds of inharmonic componergpgtition pitch, detection
of the pitch of multiple tones sounding simultaneously, amasical applications
such as harmony and tone center perception [B: 95]. Theselsmtgically consist
of four steps:

(i) A critical band filtering that simulates the mechanicdtefing in the
inner and middle ear
(ii) A half wave rectification that simulates the nonlineainfy of hair cells

(i) A periodicity extraction mechanism such as autockatien
(iv) A mechanism for aggregation of the within-band infotioa

Similarly, the modeling of amplitude-modulation detedtmesholds such as those of
[B: 37] (and references therein) replace the third stepgttah extraction schemes)
with a “temporal modulation transfer function” and a “ddé@¢ The resulting sys-
tems can predict various masking effects and have been osediimine how the
auditory system trades off spectral and temporal resaistio

In contrast, models designed to predict the sensory dissenaf a collection
of complex tones (such as in Chap. 6) typically begin with ectgal analysis that
decomposes the sound into a collection of partials. Whesetpartials are close to
each other in frequency (but not identical), they beat in@atteristic way; when
this roughness occurs at certain rates, it is called semsspnance. This appendix
shows how sensory dissonance can be modeled directly irimfgedomain with
a method that is closely related to the first two (common) sstepcurrent pitch
extraction and amplitude-modulation models.

The computational model of Sect. 3.6 contains an envelofete followed by
a bandpass filter. The simulations shown in Fig. 3.10 dematesthat the model can
account for the dissonance curve generated from two pueasgines. But this sim-
ple model breaks down when confronted with more complex bade inputs. The
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source of the problem is that the envelope detector (thd&ioation nonlinearity fol-
lowed by the LPF) only functions meaningfully on narrowbaighals! In keeping
with (i)-(iv) above, Fig. G.1 suggests passing the inpubtigh a collection of band-
pass filters (such as those in Fig. 3.5) that simulate thea&rribands. This generates
a series of narrowband signals to which the envelope deteatobe applied, and
it gives an approximation to the sensory dissonance witaah eritical band. The
overall sensory dissonance can then be calculated by sugnupiall dissonances in
all critical bands.

critical band
(bandpass) filters rectified signal envelope )
sensory dissonance
C i h ‘ /«—»b\ in high frequencies
fn f
rectification LPF BPF
noninearity g(x) overall
. . sensory
input sound envelope detector <+’: dissonance
A\ VY N V28 B\ h
f2 f
rectification LPF BPF
VAN e v A
f1 h ‘ /f\ sensory dissonance
rectification LPF BpF  n low frequencies

Fig. G.1. The n filters separate the input sound into narrowband signals téindwidths
that approximate the critical bands of the basilar membr&he envelope detectors outline
the beating within each critical band and the final bandpitsssfiaccumulate the energy.
Summing over all bands gives the overall sensory dissonafrtbe sound.

The core of the model lies in the rectification nonlineantyéreg(z) is defined
by equation (3.1) on p. 48). Physically, this originatesrrine hair cells of the basi-
lar membrane, which are mechanically constrained to cekimds of oscillation,
and for which there is considerable neurophysiologicalence [B: 156]. The effect
of the subsequent bandpass filtering is to remove both thesiofrequencies (which
correspond perceptually to slow, pleasant beats and tleaten of loudness) and
the higher frequencies (which correspond to the fundansrdaertones, and sum-
mation tones). The energy of the signal in the passband isghaportional to the
amount of roughness, or sensory dissonance due to thedtiters of frequencies
within the given critical band. Summing these energies fedinaritical bands gives
an overall measure of the sensory dissonance of the sound.

To see how this model works, consider the case where two savesiat fre-
guenciesw; andw, pass through the same critical band filter at equal intessiti

! This generic property of envelope detectors is discussfgl ifi6].
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Forw; near (but not equal) te,, this results in beats as shown in Fig. G.2(a). After
passing through the rectification stage, this becomes(theas shown in G.2(b). To
be concrete, suppose that the inp(#) is the sum of the two sinusoids (w1¢) and
sin(wst + 7). The rectification nonlinearity(z) of (3.1) can be rewritten

9@ (1)) = g2 (i) + 1z ()]

r(t) = g(sin(wlt) + Sin(w2t + "T))

= %(sin(wlt) + sin(wat 4+ m)) + %| sin(unt) + sin(wat + )|

1. 1. ) . 7
=3 sin(unt) + 3 sin(wat + 7) + | sin(v1t) sin(vat + %)|

wherev; = 222 andvy = “’1;“’2 are assumed commensurate.

(@)

(b) r(t)
Fig. G.2. The beating of sine waves.

e, WITe - E max (a) shows the sum of two sine waves
'”””""""””” ”"V"" Emin  ofequalamplitude, which is rectified to
give (b). (c) shows the sum of two sine

envelope . Lo
P waves of unequal amplitude, which is

(@) T M oo, rectified to give (d).

Accordingly, the magnitude spectrum#f) can be calculated as

Fir(t)} = —f{sm(wﬁ)H f{SIH(w2t+T)}+f{ISm(vlt)l}*f{lsm(vzH )

wheresx is the convolution operator. The Fourier series|fon(v1¢)| is
Z cos(2rvit)
4r2 —1 7

and so the magnitude spectrum consists of spikes at the ewerohics ofv;. Sim-
ilarly, the Fourier series dfsin(v2t + % )| has a magnitude spectrum consisting of
spikes at the even harmonics of. As w1 & wa, 11 << vy and the convolution
of F{|sin(v1t)|} with F{|sin(vot + 5)|} consists of a cluster of spikes near zero
(these have magnitud;glh,bﬂ—1 at frequencie€nvi) and similar clusters neatv,

for all integersn.
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From Fig. G.1, the rectification is followed by a bandpaseffiltith passband
frequencies considerably less thap, w,, andvs. Hence, only the spikes near zero
contribute significantly to the energy 8P F {r(¢)}. Summing these terms over the
frequency region of interest gives

4
dvi) = > T (G.1)
f1 <n< fa ’

2vy = 2vy

where f; and f» define the cutoff frequencies of the bandpass filter zndis the
difference frequency. This functiaf(v, ) represents the energy of the beating sinu-
soids within the critical band. Clearly(v, ) is a function of the (difference between
the) frequencies of the two input sine waves.

The following heuristic argument explains how (G.1), whixbvides a time do-
main analog of (E.2), qualitatively reproduces sensorgatiance curves. For = 0
(equivalentlyuw = w-), there are no terms in the sum a#(@-) = 0. Consider fix-
ingw and varyingws. As ws increasesy; increases and more terms (initially) enter
into the sum (G.1), increasing(v;). Eventually, howevery; increases past some
critical value and the rangg fv‘l , :}’721) compresses so that fewer and fewer terms are
summed in (G.1). Asymptoticallyj(v1) returns to zero. Hencé,v;) has a shape
that is qualitatively like the measured dissonance curuebk as shown in Fig. 3.7.
The cutoff frequencieg, and f, of the bandpass filter must therefore be chosen so
that the maximum of this sum occurs at the measured v&lwé maximum sensory
dissonance.

Next, suppose that the two input waves are of unequal andjelétu

s(t) = are?™t 4 aqge? V2t

where again the frequencies of the (complex) sinusoidssarand ws,, andws, >
wy >> ws —wy. If B(w) represents the frequency response of the critical band (and
other pre-rectification) filters then the signal enteringitictification is

o B(u;l)ejwlt + (123(11)2)ejw2t

— ejwlt[ole(wl) + azB(wQ)ej(wz—wﬁt].

Thee/*1* term is the “carrier” and the bracketed term is the enveloéch achieves
its maximum and minimum at

(a1 B(w1)| + a2 B(w2)|)

N | —

Emax=

Frmin = 5 (llas Bl |~ lazB(ws)l)

as shown in Fig. G.2(c).
The previous analysis can now be repeated wfith redefined as

r(t) = Emin y(t) + (Fmax— Emin) z(t)y(t).
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As the Fourier Series of a sum is the sum of the Fourier Sdtiesnet effect is to
increase the amplitudes of the spikes»at and to scale the sum in (G.1) by the
constanttmax — Ein-

This weighting is incorporated into the dissonance mod&l)(By assuming that
the roughness is proportional to the loudness of the beafihg amplitude of the
beats is proportional t&!max — Fmijp. ignoring the effect of the filter®3(-).2 If
a1 > az, then Emax — Epin = %(al + as) — %(al — ag) = aa. Similarly, if
as > ay, Emax— Fyin = §(a1+a2)— %(ag—al) = a1. HenceEmax— Emijn =
min(a1, @s). Thus, the amplitude of the beating is given by the minimurtheftwo
amplitudes.

As the disparity in the amplitudes of the partials increades dissonance(v: )
decreases and the maximum sensory dissonance occurs velygartials have equal
amplitudes. Thus, the time-based model of sensory dissenaturally accounts for
the varying amplitudes of the partials of a sound.

To summarize this analysis: The time-based model of serdisgpnance can
qualitatively reproduce the sensory dissonance curves asi@re found in Plomp
and Levelt [B: 141] and [B: 79] and makes concrete predigi@mgarding amplitude
effects. Details of the shape of the dissonance curves efiedd on the cutoff fre-
guencies of the bandpass filters, their shape, and the atii@gtime. As the model
uses many of the building blocks of standard auditory mqdtes not unreasonable
to view sensory dissonance as a byproduct (or coprodudhesttneural elements.

2 This is reasonable because the important beating (fromdimé of view of the dissonance
calculation) is at the low frequencies near DC.
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Behavior of Adaptive Tunings

This appendix derives concrete expressions for the updatestof the adaptive tun-
ing algorithm and gives detailed statements and proofseofehults. The cost func-
tion

D:ZDF(J{—;) (H.1)
2,7

can be rewritten as

m n n

D= %ZZ Zd(apfl,aqfk,vp,vq). (H.2)

=1 k=1p=1¢g=1

Only the terms inD that includef; need to be considered when calculating the
aD

. dD .
gradmntm. Thus,E is equal to
d 1 m kel 7 1 m kel kel
d_f- 9 Zzzd(apfi’aqfk’vp’v’J) + 9 Zzzd(apfk;aqfiavpavq)
! k=1p=1g¢=1 k=1p=1¢g=1
m n n d
:ZZZ d_fd(apfiﬂaqfkﬂvpa”q) (H.3)
k=1p=1g=1 " t

becausel(f, g, v, w) = d(g, f,v,w) and the derivative commutes with the sums.
Calculating the derivative of the individual terrﬁd(f, g,v,w) in (H.3) is compli-
cated by the presence of the absolute valueandfunctions in (E.2) and (E.3). The
function is not differentiable af = ¢ and changes depending on whetlfer- ¢
org > f. Lettingz* be the point at which maximum dissonance occurs, define the
function%d(f,g, v, w) as
bpae*(f— box* (f—
min(v,w) [(f:if;)e( 1fS1(+fszg)) + (fffi:‘z)(i( 2fs1(+fszg)):| |f f > g

min (v, w) [mme(%) Mme(”f:ﬁ;”)] if f <

I IR EETSE T T T tee)? e g

0 iff=yg




346 H Behavior of Adaptive Tunings

which is a close approximation to the desired derivativeerTlan approximate
gradient is readily computable as the triple sum (H.3) ofnglets of the form
%d(f, g, v, w).

To streamline the results, the same simplifications anctiootaare made as in
the previous appendices. The first theorem demonstratdsetievior of the algo-
rithm when adapting two notes of equal loudness, each dorgisf a single partial.
Figure 8.5 on p. 159 shows this pictorially.

Theorem H.1.Let fy and gq be the frequencies of two sine waves, with< gq.
Apply the adaptive tuning algorithm. Then

(i) go > (1 — s1) fo — s2 implies thatlgx+1 — fe41| > |gx — fx| forall &,

(i) go < (1 — s1)fo — s2 implies thatlgr+1 — frt+1] < |gx — fx| for all k.

Proof: From the form of(%d(f, g,v,w), the updates fof andg are:

* bie* (Fx—9gk) baz* () —9k)
T (gk51+32) ble( Trs1+s2 ) —b?(i( Frsits2

_ K
Fre1 = fr s +5)7

pr”

= 4+ — -
Jrat = Ik (frs1 + s2)

<b1r*(fk—9k)> (bzr*(fk—gk))
Tro1 ¥ Trior ¥
b16 koo — b2€ keres

The terms in brackets are positive whenever

bia*(fr — gx)
fes1+ 52

2a™ (fx —gk).

b
In(by) + > In(by) +
( 1) ( 2) fes1 + sa

Rearranging gives
In(b1) — In(b1) S z*(fx — gx)
by —bo Jes1+s2
As the left-hand side is equal 1d, this can be rewritten

fesi+s2> fo —gr.

Thus,g, > (1 — s1)fx — s implies thatgx+1 > gx. Similarly, fx4+1 < fx, which

together show (a). On the other handyif< (1 — s1) fx — s2, an identical argument

shows thay11 < gx and fry1 > fi for all k. A
The next result is the theoretical counterpart of Fig. 8.6 0h59.

Theorem H.2. Consider two notes’ andG. Suppose that' consists of two partials
fixed at frequencieg anda f witha > 1, and thatG consists of a single partial at
frequencyy, that is allowed to adapt via the adaptive tuning algorithrsséming

that all partials are of equal loudness:

(i) There are three stable equilibria: at = f, atg = of and atg =
(1+0)f/2.
(i) If go << f, then|gxy1 — f| > |gr — f| forall k.
(iii) If go >> af, then|ggy1 — af| > |gr — af| forall k.
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Proof: The total dissonance for this case includes threasteD;;a; = d(f,9) +
d(f,af) + d(g,af). As a and f are fixed,d(f, af) is constant, and minimizing
Dyotar IS the same as minimizing f, g) +d(g, o f). Using the simplified dissonance
measure (E.1) in place of the more complete model (E.2)}(BrH assuming <

g < af, the update foy is

Ght1 = gk — [ble—bl(af—gk) — boe~ba(af—ak) _p ombrlge=1) 4 poebalgr=)|

This has an equilibrium wheaf — g = g1 — f, that is, whery = “ﬁ;%")f. Cal-
culation of the second derivative shows that it is posititzéh#s point as long as
f/2(a — 1) >> 1, which holds for all reasonablg and«. Hence this is a stable
equilibrium. (Note that if the complete model is used, themwch more complex
update develops fgy. This will have an equilibrium near, but not &t,+ «) f/2.)

Due to the nondifferentiability of the dissonance functatnf = g, it is not
possible to simply take the derivative at this point. Thatstyy to show thaf = ¢
is stable is to show that if = f + ¢ for some smalk > 0 then the update decreases
g, Whereas ify = f — ¢ for some smalt > 0 then the update increasgsSupposing
thatg > f, and assuming that(a — 1) >> 1, the gradient is approximately

bre (=D _pye=bal (=D _p, by,

As b, is about twice the size dfy, this is positive. Similarly, foly = f — ¢, the
gradient is approximately

bre~brfle=1) _poe=bafla=l) 4 p)

which is negative. Consequently, = ¢ is a local stable point. The point where
af = g is analyzed similarly. Analogous arguments to those usdtleorem H.1
show that forg << f, g decreases, and fgr>> af, g increases. A






Symbolic Properties of@-Tables

Although@-tables do not form any recognizable algebraic structiney tdo have
several features that would be familiar to an algebraistif&ance, the tables have
an identity element, the operatianis commutative, and it is associative when it is
well defined. These are used to derive a set of propertieséimahelp make intelli-
gent choices in the symbolic timbre construction procedure

Given any set of scale intervafs the®-table derived front has the following
characteristics.

Identity: The “octave” or unit of repetition* acts as an identity element,
ie.,
SSPs=sPs =5 VseS.

CommutativityThe@-table is symmetric, i.e.,
S1 D sg = 89D 81 VSl,SQ S S. (ll)

If one side of (1.1) is undefined (is “equal” t9, then so is the other. Commutativity
of @ follows directly from the commutativity of products of povseof real numbers.

Associativity,The® operator is associative whenever itis well defined. Thus
(51 ® s9) D s3=s1D (52D s3) Vsy,59,53 €S, (1.2)
provided that both sides of (1.2) exist.

Itis indeed possible for one side of (1.2) to exist but notakiger.
Example:Consider the tetrachordal scale withtable 12.5 on p. 251. Observe that
((2,1,1)®(1,0,0))®(2, 1,0) is well defined and equals, 0, 0), but that(2, 1, 1) ®

((1,0,0) ® (2,1,0)) does not exist becaugg, 0,0) @ (2, 1,0) is disallowed. To
further emphasize how unusual this construction is, olestrat by commutativity,
(2,1,1)® (1,0,0) = (1,0,0) @ (2, 1, 1). Substituting this in the above calculation
gives((1,0,0)®(2,1,1)) @ (2, 1,0), which is indeed equal tol, 0,0) & ((2,1,1) &

(2,1,0)), because both sides &k 0, 0).
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The remaining properties af-tables concern “solutions” to thie-equation de-
fined in the symbolic timbre construction procedure

S5 =85 D rii—j- (|3)

Recall that in the procedure, a setgfare given (which are defined by previous
choices of the;). The goal is to find a single; such that the equation (1.3) is well
defined for allj up to: — 1. The properties ofp-tables can help pinpoint viable
solutionsto (1.3).

Theorem I.1. Suppose that; € S have been chosen for gll< k. LetS; be the set
of all non+ entries in thes; column of thep-table. Then for ali > &, s; must be an

element O]}Qk S;.

Proof: First consider the case = k = 2, with s; specified. Then (I.3) requires
choice ofs; such thatsy = s; @ ry 5 for somer; ;. Suchr; ; will exist exactly
whens; € Sq. Fori > 2, s; = s1 @ r; j_; must be solvable, which again requires
thats; € S;. The general casg = s; @ r; ;,—; is similarly solvable exactly when

s; € 8. As thisis true for every < &, s; € ij S;. A
Thus, when building timbres according to the proceduresét§® = N S; de-

i<k

fines the allowable partials at tikéh step. ClearlyS* can never grow larger because
S* o S**1 vk, and it may well become smaller asncreases. This demonstrates
that the order in which the partials are chosen is crucialdteignining whether a
perfect timbre is realizable.

The easiest way to appreciate how the theorem |.1 simplified (imits) the
selection problem is by example.
Example:In Table 12.1 on p. 246, oneg = (3, 2) for somei, then for allk > i, s,
must be(3, 2), (1,0), or (2, 1).
Example:In Table 12.3 on p. 249, oncg = (2,0) has been chosen, then for all
k > i, sy must be eithe(2,0), (4,1), or (5,1). In particular, nos; can be the
identity (0, 0).

Corollary 1.2. Suppose that an elemefitc S appears in every column of the-
table. Then for any choice of, j < i, (1.3) is always solvable witk; = 5.

Proof: As 5 is in every column of the tablg, € S; V;j and hence ¢ jDk S; for any

k. A

In other words, for any € S, there is always & € S such thatt = s @ », and
s0s is always permissible.

Example:In Table 12.5 on p. 251, the identity = (0,0, 0) appears in every
column. Thus, it is always possible to choose a pattialith the equivalence class
s* at any step.

Suppose, on the other hand, that an elengeat S appears nowhere in the-
table other than in the column and row of the identity. Thecannot be used to
define one of the; because ¢ S; for any k and so for any; # s*, s; = 5+ r has
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no solution. Althougts cannot occur among thg, it is still possible that it might
appear among the . Indeed, it will need to in order to find a complete timbre.
Example:The elemens = (2, 1) appears nowhere ip-table 12.3 (from p. 249)
defined by the Pythagorean scale. The timbre was made cantpylensuring that
appears among the ;. of Table 12.4 of p. 249.

Another property ofp-tables is that elements are arranged in “stripes” from
southwest to northeast. For instance, in Table 12.3 of p, 24%ipe of(4, 1) ele-
ments connects thg 1 entry with thel, 4 entry. Similarly, a stripe of3, 1) elements
connect thg, 1 with thel, 3 entries, although the stripe is broken up by, @he fact
that such (possibly interrupted) stripes must exist is trgent of the next theorem.

Given anm note scales, the entries of the correspondingtable can be labeled
asamatria; .} forj =1,2,...,mandk = 1,2, ..., m. Let P; denote theth stripe
of the®-table, thatisp; = {a; 1} for all j andk with j + k =i+ 1.

Example:For the Pythagorean-table:

Py = {(an)}a Py = {(1;0); (0; 1)}) P = {(270)) (Q)O)a (an)}a
Py = {(.Za],)a *, ok, (.Za],)}a Py = {(Sa])a (3a])a *, (3a])a (Ba])a}a etc.
Theorem |.3. For eachs, all non-+ elements of the stripB; are identical.

Proof: By construction, the elements ands; 1 € S are integer vectors, and
they may be ordered so that

Sit1 = Si + €54 Vi, (|-4)

wheree; ; is a unit vector with zeroes everywhere except for a sirigie the jth
entry. Let ¥(s;) represent the sum of the entriesdn = (o1,09,,...,0,), i.e.,
Z(si) = Y2k_; 05, and letZ* represent the sum of the entries in the element that
forms the unit of repetition. Because thieoperation adds powers of the generating
intervals,

E(Sj (&) Sk) = E(Sj) —+ E(Sk) (modE*) (|.5)

whenevers; @ s, is well defined. Because of the ordering, the entries in thipest
P; can be written

S; DSk, Sj-1DSk+1, Sj—2 D Skya,- -

for all positivej andk with j + k =7 + 1. Hence,

Z(Sj (&) Sk) = Z(Sj_1 (&) Sk+1) = (|6)
whenever these are defined. From (18)s;) = Y(sx) implies thats; = s;. Hence
(1.6) shows thak; @ sp = sj_1 @ sk41 = - - - Whenever the terms are defined, and
hence all well-defined elements of the stripe are identical. A

This is useful because stripes define whether a given choithéd?; (and hence
s;) is likely to lead to complete timbres. Suppose th#t a candidate fos; at the
ith step. Whethe# will “work” for all previous s; (i.e., whethers = s; @ r has
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solutions for alls;) depends on whethérappears in all correspondirs. Theorem
1.3 pinpoints exactly wher@ must appear; at the intersection of the coluijrand
the stripe containing. Thus, the procedure can be implemented without conducting
a search fog among all possible columns.
A special case is when a column is “full,” i.e., when it contanox entries.

Theorem |.4. LetS; be a full column corresponding tg € S. Thens; = sy ® r;
is solvable for alls; € S.

Proof: As there aren entries in the columi$; and there aren differents;, it is
only necessary to show that no entries appear twice. Usingttihering (1.4) of the
previous proofS ¢ has elements

s1Dsp, saDsp, o, Sm DSy, (1.7)

which are well defined by assumption. Now proceed by conttaxdti, and suppose
that theith and;jth elements of (1.7) are the same, i€.:0 s; = s; @ s;. Then

E(Si (&) Sf) = E(SJ (&3] Sf) (mOdZ*)
(whereX’ and X* were defined in the previous proof). This implies that
Z(si) + X(sy) = Z(s5) + Z(s7) (modZ¥)

which implies that¥(s;) = X(s;) (mod X*). By the same argument as in the proof
of theorem 1.3, this implies that = s;. But eachs; appears exactly once in (1.7),
which gives the desired contradiction. A

Thus, when a column is full, it must contain every elementhia case, equation
(1.3) puts no restrictions on the choice%f Let {s; } be all elements of that have
full columns. Then &-subtable can be formed by thefsg } that has noillegat en-
tries. For example, Table 12.1 on p. 246 is generated by theébteubed scale. The
elementg0, 0), (1,1), and(2, 2) have full columns and hence can be used to form
a full @-subtable. It is easy to generate perfect timbres for suthtfisubtables be-
cause equation (1.3) puts no restrictions on the choicenigiafor a complementary
timbre. Whether these extend to all elements of the scaleever, depends heavily
on the structure of the non-full part of the table. Findingtires for full subtables
is exactly the same as finding timbres for equal temperametissed-tables have
no disallowedk entries. In fact, fullp-tables form a commutative group, which may
explain why the equal-tempered case is relatively easylt@so

All of the above properties were stated in terms of the colsiofrthed®-table. By
commutativity, the properties could have been stated mgesf the corresponding
rows.

From a mathematical point of view, the symbolic timbre sgtecprocedure
raises a number of interesting issues. The operatidefined here is not any kind of
standard mathematical operator because of the disallewartdries. Yetp-tables
clearly have a significant amount of structure. For instaacy ¢-table can be
viewed as a subset of the commutative group of integerectors(oy, oa, ..., o)
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where theth entry is taken mod;, from which certain elements have been removed.
Can this structure be exploited? Another obvious questtmterns the possibility
of decomposingp-tables in the same kind of ways that arbitrary groups arermec
posed into normal subgroups. Might such a decompositiawathe building up of
spectra for larger scales in terms of spectra defined forlsinspales?
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Harmonic Entropy

Harmonic entropy is a measure of the uncertainty in pitch
perception, and it provides a physical correlate of tonalse
one aspect of the psychoacoustic concept of dissonance. Thi
Appendix shows in detail how to calculate harmonic entropy
and continues the discussionin Sect. 5.3.3.

Harmonic entropy was introduced by Erlich [W: 9] as a refinetod a model by van
Eck [B: 125]. It is based on Terhardt’s [B: 196] theory of hamyg, and it follows in
the tradition of Rameau’s fundamental bass [B: 145]. It pfes a way to measure
the uncertainty of the fit of a harmonic template to a compltaxnsl spectrum. As
a major component of tonalness is the closeness of the Isasfia complex sound
to a harmonic series, high tonalness corresponds to lowmnand low tonalness
corresponds to high entropy.

In the simplest case, consider two harmonic tones. If thedamne to be under-
stood as approximate harmonic overtones of some commonthegt must form a
simple-integer ratio with one another. One way to model tisiss the Farey series
F, of ordern, which lists all ratios of integers up ta For exampleFs is

o 1 1 1 1 2 1 3 2 3 4 5 1

1) 6) 5) 4) 3) 5) 25 5) 3) 4) 5) 6) 1'
A useful property of the Farey series is that the distancedt successive terms is
larger when the ratios are simpler. Let tith element of the series kfe = ‘;—j Then
the region over whicty; dominates goes from the mediartelow to the mediant
above, that is, fron";jzjigj to ZjiZ:: . Designate this region;. Figure J.1 plots
the length ofr; vs. f; for Fs, the Farey series of ordéf. Observe that complex
ratios cluster together, and that the simple ratios tendpaste. Thus, simple ratios
like 1/2, 2/3, and 3/4 have wide regions with large and complex ratios tend to
have small regions with smat};.

For any intervalk, a Gaussian distribution (a bell curve) is used to assoaate

probabilityp; () with the ratiof; in F,,. The probability that interval is perceived
as a mistuning of thgth member of the Farey series is

_(t_i)2/202dt.

(i)=—— |
) = —— €
pj ' o\ 2T ter;

! Recall that the mediant of two ratigsand$ is the fraction;jj:fi.
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Mediant Distance

0 01 02 03 04 05 06 07 08 09 1
Farey Series

Fig. J.1. The mediant distances between entries (the length of;thare plotted as a function
of the small integer ratiog,; drawn from the Farey series of ord&d. The simplest ratios
dominate.

Thus, the probability is high when theis close tof; and low wheni is far from
f;. This is depicted in Fig. J.2 where the probabilities tha perceived ag; 1,
fi+2, and f; 43 are shown as the three regions under the bell curve. Erliohese
this model to incorporate thieg of the intervals and mediants, which is sensible
because pitch perception is itself (roughly) logarithmic.

The harmonic entropy (HE) afis then defined (parallel to the definition of en-
tropy used in information theory) as

HE(i) == p;(i) log(p;(i)).
j

When the interval lies near a simple-integer ratj, there will be one large proba-
bility and many small ones. Harmonic entropy is low. Whenititervali is distant
from any simple-integer ratio, many complex ratios contrdamany nonzero prob-
abilities. Harmonic entropy is high. A plot of harmonic eafly over an octave of
intervals: (labeled in cents) appears in Fig. 5.5 on p. 89. This figurd Usg and
o = 0.007. Clearly, intervals that are close to simple ratios areimfigtished by
having low entropy, and more complex intervals have higimienic entropy.

Generalizations of the harmonic entropy measure to consitge than two
sounds at a time are currently under investigation; oneilpidissinvolves Voronoi
cells. Harmonic series triads with simple ratios are asgedi with large Voronoi
cells, whereas triads with complex ratios are associatéusmall cells. This nicely
parallels the dyadic case. Recall the example (from p. 96 smthd examples
[S: 40]-[S: 42]), which compares the clusters 4:5:6:7 with:1/6:1/5:1/4. In such
cases, the harmonic entropy model tends to agree bettetistigher’'s perceptions
of the dissonance of these chords than does the sensoryamssapproach. Paul
Erlich comments that the study of harmonic entropy is a “puwbrk in progress”
at [W: 9].
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probability pjo() that
iis perceived as fj;2

probability pj3() that

this area gives the probability pj.1() T /
iis perceived as fj;3

that the interval / is perceived as
the simple integer ratio fj; 1

I I ——
f/ G‘+7 fj+2 I 0'+3 7]’+4
li+1 li+2 o 3
mediant between s s *
fiand fiy1 mediant between mediant between
fi+1 and fi12 fiv2 and f1.3

Fig. J.2. Each regionr; 41 extends from the mediant betwegn and f;+: to the mediant
betweenf;4+: and f;4+2. The interval: specifies the mean of the Gaussian curve, and the
probabilitiesp; (i) are defined as the disjoint areas between the axis and the.curv
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Fourier's Song

Also known aJable 4.1: Properties of the Fourier Transform
Fourier's Songwas written by Bob Williamson and Bill
Sethares “because we love Fourier Transforms, and we know
you will too.” Perhaps you have never taken a course where
everything is laid out in a single song. Well, here it is. &g
containing 17% of the theoretical results, 25% of the preatiti
insights, and 100% of the humor of ECE330: Signals and
Systems. The music is played in an additive (overtone) scale
that consists of all harmonics of 100 Hz. It appears on the
CD in sounds/Chapter04/fouriersong.mp3 ; see

[S: 34]. There will be a test in the morning.

Integrate your function times a complex exponential.

It's really not so hard you can do it with your pencil.

And when you're done with this calculation,

You've got a brand new function—the Fourier Transformation

What a prism does to sunlight, what the ear does to sound,
Fourier does to signals, it's the coolest trick around.

Now filtering is easy, you don’t need to convolve,

All you do is multiply in order to solve.

From time into frequency—from frequency to time

Every operation in the time domain

Has a Fourier analog — that's what | claim.

Think of a delay, a simple shift in time,

It becomes a phase rotation—now that'’s truly sublime!

And to differentiate, here’s a simple trick.

Just multiply byjw, ain’t that slick?

Integration is the inverse, what you gonna do?
Divide instead of multiply—you can do it too.

From time into frequency—from frequency to time

Let's do some examples... consider a sine.

It's mapped to a delta, in frequency—not time.
Now take that same delta as a function of time,
Mapped into frequency, of course, it's a sine!
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Sinezx onz is handy, let’s call it a sinc.

Its Fourier Transform is simpler than you think.

You get a pulse that’s shaped just like a top hat...
Squeeze the pulse thin, and the sinc grows fat.

Or make the pulse wide, and the sinc grows dense,
The uncertainty principle is just common sense.

Exercise K.1.Find as many Fourier transform pairs as you can in the lyrics t
Fourier's Song

Exercise K.2.Find as many properties of the Fourier transform in the ytic
Fourier's Songas you can.

Exercise K.3.Mathematically define the function that looks like a “top "hand
explain why its transform is the sinc.

Exercise K.4.Explain what property of the Fourier transform is used in#s¢verse
when the sinc “grows fat” and “grows dense.” Why does thiateeto the uncertainty
principle?
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Tables of Scales

This appendix provides tables of several historical anchieth
tunings. Others can be found throughout the text. A number
of meantone tunings are defined on p. 64, and several well
temperaments appear on p. 65. A large variety of tunings
and scales are derived and defined throughout the chapter
“Musical Scales”

Table L.1. Historical tunings, with all values rounded to the nearesitc

Tuning cents

12-tet 100 200 300 400 500 600 700 800 900 1000 1100
1/4 CommaA 76 193 310 386 503 580 697 772 890 1007 1083
Barca 92 197 296 393 498 590 698 794 895 996 1092
Barca A 92 200 296 397 498 594 702 794 899 998 1095
Bethisy 87 193 289 386 496 587 697 787 890 993 1087
Chaumont 76 193 289 386 503 580 697 773 890 996 1083
Corrette 76 193 289 386 503 580 697 783 890 996 1083

d’Alembert 87 193 290 386 497 587 697 787 890 994 1087
Kirnberger 2 90 204 294 386 498 590 702 792 895 996 1088
Kirnberger 3 90 193 294 386 498 590 697 792 890 996 1088

Marpourg 84 193 294 386 503 580 697 789 890 999 1083
Rameau b 93 193 305 386 503 582 697 800 890 1007 1083
Rameau 76 193 286 386 498 580 697 775 890 993 1083
Valloti 90 196 294 392 498 588 698 792 894 996 1090
Vallotti A 90 200 294 396 498 592 702 792 898 996 1094

Werkmeister 3 90 192 294 390 498 588 696 792 888 996 1092
Werkmeister4 82 196 294 392 498 588 694 784 890 1004 1086
Werkmeister5 96 204 300 396 504 600 702 792 900 1002 1098
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Table L.2. Tuning of each slendro instrument of Gamelan Swastigittlazaues are rounded
to the nearest Hertz.

Gamelan Swastigitha: Slendro
| 1 1
Instument 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2
gender 118 133 155 178 206 236 271
gender 121 135 155 178 205 234 271 310 358 412 471 542 623 719

gender 236 265 310 358 412 471 542 623 719 825 950 1093 1266
saron 272 310 358 412 472 544

saron 544 626 719 828 951 1094 1268
bonang 271 308 355 413 472 544 622 717 825 954 1094 1250
bonang 472 545 622 717 825 954 1094 1268
kenong 357 412 472 623

gambang 238 272 311 361 415 475 545 626 725 828 956 1106 1276

median 120 134 155 178 205 236 271 310 358 412 472 544 623 71985094 1268

Table L.3. Tuning of each slendro instrument of Gamelan Kyai Kaduk MdaAll values are
rounded to the nearest Hertz.

Gamelan Kyai Kaduk Manis: Slendro

| 1 1
Instument 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2
gender 120 140 160 183 210 241 279 320 367 420 480 557 639 733

gender 241 279 320 366 420 482 556 638 733 838 968 1114 1279
gender 120 139 159 182 209 240 277

saron 241 280 322 367 421 482 557

saron 244 281 322 369 423 482 557

saron 482 559 651 738 840 968 1113

saron 484 560 643 738 841 978 1129 1283
saron 483 569 641 739 853 985 1139
bonang 281 322 367 423 484 560 641 736 837 966 1114 1268
bonang 557 643 736 838 972 1113 1281
kenong 242 320 369 421 478 557

gambang 155 180 206 237 275 319 366 415 474 556 637 725 844 9@11P66

median 120 140 159 182 209 241 279 320 367 421 482 557 641 739a30114 1278



Table L.4. Tuning of each pelog instrument of Gamelan Swastigithavallles are rounded to the nearest Hertz.

Gamelan Swastigitha: Pelog
| Il 1

Instrument 12 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4
gender 120 151 160 174 222 234 299 324 354 443 471 599 643 709

gender 240 300 322 354 444 474 600 642 709 887 950 1203 1305 1414
gender 151 160 174 207 222 236 258

saron 300 326 354 415 445 472 524

saron 602 645 709 829 890 953 1052

saron 1205 1312 1427 1674
bonang 300 324 353 415 444 472 525 599 645 711 820 886 950 1042

bonang 602 643 708 828 887 950 1052 1205 1311 1427 1676
gambang 157 178 215 234 258 328 354 444 471 522 645 712 892 9@l 10

median 120 151 160 174 207 222 235 258 300 324 354 415 444 4782844 709 828 887 950 1050 1205 1311 1427 1675
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Table L.5. Tuning of each pelog instrument of Gamelan Kyai Kaduk Maflkvalues are rounded to the nearest Hertz.

Gamelan Kyai Kaduk Manis: Pelog
| Il 1
Instrument 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3

gender 120 149 164 180 225241 303 332 361 451 480 604 661 717

gender 149 164 179 210 223 241 264

gender 241 266 334 359 452 479 537 661 717 891 972 1073 1311 1427
gender 240 304 332 361 451 480 606 662 717 892 972 1213 1307 1425
gender 120 135 166 180 226 241 269 332 361 452 480 538 661 717

saron 306 334 362 423 452 482 540

saron 362 421 452 483 538

saron 618 672 733 860 898 988 1082

saron 612 668 729 844 904 991 1082

saron 974 1116 1233 1453
saron 608 665 727 838 892 977 1101

bonang 310 336 362 424 445 482 538 606 668 728 844 892 973 1074

bonang 604 682 732 840 892 976 1077 1219 1323 1428
kenong 242 332 362 454 478 536 611

median 120 135 149 164 180 210 225 241 266 305 332 361 423 45338607 665 727 844 892 975 1082 1219 1311 1428

79€
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: 14] E. Fisk,Baroque Guitar MusicMasters 0612-67130-2, Ocean, NJ (1993). [Scarlatti

performed on classical guitar.]

:15] Gamelan Batel Wayang Ramayar@VP Records, NY CMP CD 3003 (1990).

[Gamelan music accompanying the Ramayana saga.]

:16] Gamelan of CirebonKing Records, KICC 5130, Tokyo, Japan (1991). [An iron

gamelan from Cirebon, played in the slendro tuning.]

:17] Gamelan Gong Gede of Batur Templking Records, KICC 5153, Tokyo, Japan

(1992). [A Balinese gamelan.]

: 18] Gamelan Gong Kebyar of “Eka Cita,” Abian Kapas Kajging Records, KICC 5154,

Tokyo, Japan (1992). [Award-winning gamelan from Denpg&si.]

:19] Gender Wayang of Sukawati Villag&ing Records, KICC 5156, Tokyo, Japan

(1992). [The gamelan that accompanies the shadow puppet.]

:20] The Gyuto MonksFreedom chants from the roof of the worlykodisc (1989).

[Overtone singing is common in the Tibetan tradition.]

:21] A. J. M. Houtsma, T. D. Rossing, and W. M. Wagenaag]itory Demonstrations

(Phillips compact disc No. 1126-061 and text) Acousticali8ty of America, Woodbury
NY (1987). [A wealth of great sound examples: thorough adi¢fht provoking.]

: 22] Huun-Huur-Tu, “60 horses in my herd,” Shanachie 63QB93). [Throat singing is

integral to these traditional Tuvan songs.]

: 23] On the Edge, Selections of the 1996 International @Gotar Music Society, Hong

Kong (1996).

: 24] E. KatahnBeethoven In The Temperame@asparo Records, No. 332 (1998). [Per-

formances of several Beethoven piano sonatas in authentjperaments.]

: 25] Klénéngan Session of Solonese Gamekdng Records, KICC 5185, Tokyo, Japan

(1994). [Gamelan from the palace (kraton) in Solo, playethigicians from the National
Broadcasting Company (RRI).]

: 26] E.Lyon,Red VelvetSmart Noise Records (1996) [Music that “hypernavigatesa-c

pressed informational world.” Thanks, Eric.]

: 27] Music from the Morning of the Worlé&|lekctra/Asylum/Nonesuch Records, 9 79196-

2, Rockefeller Plaza, NY (1988). [Balinese gamelan and the&yana monkey chant.]

: 28] T. Murail, Gondwana/Désintégrations/Time and Aggderformed by Y. Prin and P.

Plissier, Salabert, Scd8902. [Spectral compositions.]

: 29] Music for the GodsRyko RCD 10315 (1992). [Recorded in 1941 and recently reis-

sued. Compare the early sound of the gamelan with what it éearbe today.]

:30] A. Newman,Scarlatti SonatatNCD 60080, Newport Classic, Rl (1989). [Scarlatti

played on the “Magnum Opus” harpsichord, “maybe the largagtsichord ever built."]

: 31] H. Partch,The BewitchedPerformed by members of the University of lllinois Mu-

sical Ensemble, CRI CD7001, 179 W. 74th St. NY (1990). [Hestdance-satire is per-
formed with a variety of his instruments tuned to his 43-tjust scale.]

1 32] H. Partch,Music of Harry Partch CRI CD7000, New York (1989). [A “best of”

Partch: new scales, new instruments, a new listening expesi]

:33] I. Pogorelich, Domenico Scarlatti SonaterDeutsche Grammophon 435-855-2

(1992). [Scarlatti adapted for piano.]

: 34] L. Polansky,Simple Harmonic MotionArtifact Recordings, Berkeley, CA (1994).

[Works for instruments in just intonation.]

: 35] S. ReichPhase PatternRobi Droli/Newtone, No. 5018, (2000). [Exploits rhythmic

phasing.]

: 36] J.C. RissetSud, Dialogues, Inharmonique, MutatigfisA C 1003, INA.GRM Paris,

France (1987). [Use of inharmonic materials in a “westeoritext.]
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:37] S. RossScarlatti, Best SonataSrato, 2292-45423-2, Erato-Disques, Radio France

(1988). [Scarlatti recorded at the Chapelle du Chateausiisg

38] I. W. SadraKarya, Lyrichord LYRCD 7421. [New music from an influential Indone
sian composer.]

39] Thailand-Ceremonial and Court Music

40] W. A. SetharesXentonality Odyssey Records XEN2001 (1997). [A variety of equal
and unequal temperaments played with related timbres. thvad#p tuned and found-
sound pieces. Thoroughly xentonal. Available from FrogkRdasic, Box 1052, Lebab-
non NH 03766 and from amazon.com.]

:41] W. A. SetharesExomusicologyOdyssey Records EXO2002 (2002). [A variety of

equal and unequal temperaments played with related timiveéaptively tuned and
found-sound pieces. Thoroughly xentonal. Available framaaon.com.]

:42] L. Sgrizzi, Vingt-quatre Sonates pour ClaveciAgcord, 1491014, France (1984).

[Scarlatti played on the harpsichord at the Cathedrale $a@rizo.]

:43] J. Teller,My Inner Ear, The Tyte Institute, Hesselogado 4,3 DC-2100, Copenhagen,

Denmark. [Concert for three samplers in the spiral corrfdhe Roundtower.]

: 44] F. TerenziMusic from the Galaxiedsland Records, Inc., New York (1991). [Maps

from interstellar radio telescope data into sound wavesatorg interesting outer space
sounds.]

: 45] Instrumental Music of Northeast Thailaniding Records, KICC 5124, Tokyo, Japan

(1991). Pong langis a kind of wooden xylophone and a style of music.]






S: Sound Examples on the CD-ROM

The sound files on the CD-ROM are saved in.thp3 format,
which is readable usingWindows Media Player or
Quicktime . Navigate toTTSS/sounds/Chapter/ and
launch the*.mp3 file by double clicking, or by opening the
file from within the player. Referencesin the body of thettext
sound examples are coded wjt] to distinguish them from
references to the bibliography, discography, video exaspl
and web links. The sound examples may also be accessed
using a web browser. Open the fil@ SS/Contents.html

in the top level of the CD-ROM and navigate using the html
inteface.

Sound Examples for Chapter 1

[S: 1] Challenging the octavéchalloct.mp3 0:24 ). The spectrum of a sound is con-
structed so that the octave betweeand2 f is dissonant while the nonoctayeto 2.1 f
is consonant. See p. 2 and video [V: 1].

[S: 2] A simple tungsimptunl.mp3 0:47 ). Harmonic timbres in the 12-tet scale set the
stage for the next three examples. Chord pattern is takenfiastic City, sound example
[S: 38]. See pp. 3 and 309.

[S: 3] The “same” tune(simptun2.mp3 0:47 ). Harmonic timbres in the 2.1-stretched
scale appear uniformly dissonant. See p. 3.

[S: 4] The “same” tune(simptun3.mp3 0:47 ). 2.1-stretched timbres are matched to the
2.1-stretched scale. See p. 3.

[S: 5] The “same” tune(simptun4.mp3 0:47 ). 2.1-stretched timbres in 12-tet appear
uniformly dissonant. See p. 3.

Sound Examples for Chapter 2

[S: 6] Virtual pitch ascendingvirtpitchup.mp3 0:22 ). Harmonic and inharmonic
timbres alternate with sine waves at the appropriate Vigiteh. See Table 2.2 on p. 35
for a listing of all frequencies in this example.

[S: 7] Virtual pitch descendinfyirtpitchdown.mp3 0:22 ). Harmonic and inharmonic
timbres alternate with sine waves at the appropriate Vipitieh. Comparing this example
with [S: 6] shows how virtual pitch may be influenced by comt®ee Table 2.2 on p. 35
for a listing of all frequencies in this example.
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[S:

[S:

Sound Examples for Chapter 3

: 8] Beating of sine wavegbeatsl.mp3 0:24 ). See p. 40 and video [V: 5].

(i) A sine wave of 220 Hz (4 seconds)
(i) A sine wave of 221 Hz (4 seconds)
(iii) Sine waves (i) and (ii) together (8 seconds)

: 9] Beating of sine waves (beats2.mp3 0:24 ). See p. 40 and video [V: 6].

(iv) A sine wave of 220 Hz (4 seconds)
(v) A sine wave of 225 Hz (4 seconds)
(vi) Sine waves (iv) and (v) together (8 seconds)
10] Beating of sine waves l(beats3.mp3 0:24 ). See p. 40 and video [V: 7].
(vii) A sine wave of 220 Hz (4 seconds)
(viii) A sine wave of 270 Hz (4 seconds)
(ix) Sine waves (vii) and (viii) together (8 seconds)

: 11] Dissonance between two sine wagg@sediss.mp3 1:06 ). A sine wave of fixed

frequency 220 Hz is played along with a “sine wave” with freqay that begins at 220 Hz
and slowly increases to 470 Hz. See p. 45 and video [V: 8].1€i§.6 on p. 45 provides
a visual representation.

1 12] Dissonance between two sine waves: Binaural Presentéioedissbin.mp3

1:06 ). The same as [S: 11], exceptthe sine wave of fixed frequenmgrined completely

to the right and the variable sine wave is panned completelyet left. Using headphones
will ensure that only one channel is audible to each ear. Tésodance percept is still

present, although diminished. See p. 49.

Sound Examples for Chapter 4

13] Dream to the Beafdreambeat.mp3 5:28 ). A 19-tet pop tune with a bass that
beats like the heart. A microtonal love song. See p. 58.

:14] Incidence and Coincidendgncidence.mp3 5:23 ). What happens when you

play simultaneously in different tunings? Each note in ffiget melody is “harmonized”
by a note from 12-tet, resulting in some unusual inharmooims textures. The distinc-
tion between “timbre” and “harmony” becomes confused,altfh the piece is by no
means confusing. See p. 58.

:15] Haroun in 88(haroun88.mp3 3:36 ). In all 12-tet instruments (like the piano),

there are 100 cents between adjacent stdpsun in 88uses a tuning in which there are
88 cents between adjacent steps, a scale first explored lyyMBarison [B: 113]. One
feature of this scale is that it does not repeat at the octastead, it has 14 equal steps
in a stretched “pseudo-octave” of 1232 cents. One way tooéqlch “strange” tunings
is to carefully match the tonal qualities of the sounds toghsicular scale. See pp. 59,
267, and 272.

1 16] 88 Vibeqvibes88.mp3 3:47 ). Also in the 88-cent-per-tone tuning@ Vibedea-

tures a spectrally mapped “vibraphone.” See pp. 59, 2672d2ad

:17] Sonata K380 by Scarlattk380tet12.mp3 1:29 ). Performed in 12-tet in the key

of C. See pp. 60 and 216.

: 18] Sonata K380 by Scarlafk380JImajC.mp3 1:29 ). Performed in just intonation

centered in the key af'. See p. 60.

: 19] Sonata K380 by Scarlatk380JIC+12.mp3 1:29 ). Performed in just intonation

centered in the key af’ and 12-tet simultaneously. The notes where the differeaces
greatest stand out clearly. See p. 60.
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: 20] Sonata K380 by Scarlattk380JImajC+.mp3 1:29 ). Performed in just intona-

tion centered in the key af'. See p. 62.

: 21] Sonata K380 by Scarlatk380JImeanC.mp3 1:29 ). Performed in the quarter

comma meantone tuning centered in the keg/oSee p. 66.

: 22] Sonata K380 by Scarlatk380JImeanC+.mp3 1:29 ). Performed in the quarter

comma meantone tuning centered in the keg'¢f See p. 66.

: 23] Imaginary Horseqimaghorses.mp3 3:58 ). This sequence contains the har-

monic spectra of a piano and a “perc flute,” which are matclethé simple integer
ratios

1/1 6/5 4/3 3/2 8/5 9/5 2/1
to form a Just Intonation scale that was called “solemn m@sioa” by Lou Harrison. The
consequence is a piano and synth duet with galloping pidnami bucking synth lines
that does not sound solemn to me. See p. 62.

: 24] Joyous Dayjoyous.mp3 4:35 ). This uses the just intonation

1/1 9/8 5/4 3/2 5/3 15/8 2/1

created by Lou Harrison. To my ears, it is a majestic, exteggmsounding tuning. See
p. 62.

: 25] What is a DreamPwhatdream.mp3 3:51 ). Although the ancient Greeks did not

record their music, they did write aboutit. They noticedrlationships between musical
pitches and mathematical ratios. Some of the ancient sfedlésto disuse, among them
the “aeolic” scale, which uses the justly tempered pitches

1/1 9/8 32/27 4/3 3/2 128/81 16/9 2/1

Lyrics expertly crafted by a non-ancient Greek, George &eth See p. 62.

: 26] Just Playing(justplay.mp3 2:52 ). In this piece, the 12 notes of the keyboard
are mapped:
cents: 0 19 205 267 386 498 583 702 766 884 969 1088

mappedto:C ¢4 D Dy E F Fi G Gf A A B
interval: 1.0 1.011 1.125 1.167 1.25 1.33 1.4 1.5 1.56 1.67 1.75 1.87
ratio: 1/1 xix 9/8 7/6 5/4 4/3 7/53/211/7 5/3 7/4 15/8

This includes all ratios of the JI major scale, along witha &tras. The small interval
betweerC' andC}, for which there is no (small integer) just ratio, was usethprily for
trills. See p. 62.

27] Signs(signs.mp3 3:41 ). One of the more prolific ancient Greeks (from the point
of view of discovering and codifying musical scales) wasitas, who lived about 400
B.C. Although his music has been lost, his tunings have gedviThis song is played
in one of Archytas’ chromatic scales that is based on eqe#ddthords” (a set of four
descending notes, see p. 55) with the intervals

28/27 243/224 32/27

Itis rather amazing that the sonorous beauty of scales sutblisavere surrendered by the
European musical tradition for centuries in exchange fogybbkard that could be played
equally in all keys. See p. 62.
28] Immanent Spherémsphere.mp3 4:17 ). Each note is an overtone of a single
underlying fundamental. See p. 68.
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[S: 29] Free from Gravity(freegrav.mp3 3:28 ). The melodic and harmonic motion
conform to a simple additive scale, a regular lattice thganizes pitch space additively
in frequency. See p. 68.

[S: 30] Intersecting Sphere@ntersphere.mp3 3:33 ). The basic timbre is harmonic,
and all partials of all tones are integer multiples of 50 HheTuning is similarly a
spectral scale consisting of all multiples of 50 Hz (althougnly a small subset are ac-
tually used.) The timbres were created using additiveessyinthesis with the program
Metasynth [W: 23], and the results were passed through waiimnlinearities in Mat-
lab [W: 21]. This causes many new overtones at ever highquéecies that eventually
hit the fold over frequency (22050 for normal CD recording§idegin descending. Be-
cause 22050 is divisible by 50, when the partials fold bawody tstill lie on the same 50
Hz lattice—they just augment (or decrease) the amplitudia@fpartials. So no matter
how many nonlinearities are used, the sound remains witlgisame harmonic template.
Much of the character (the “hair-raising on end”) of the tiethis due to this unorthodox
method of creating the sounds. See p. 68.

[S: 31] Over Venugovervenus.mp3 4:25 ). This melody floats above a single low tone,
playing on the multidimensional harmonics. See p. 68.

[S: 32] Pulsating Silencefpulsilence.mp3 3:33 ). A single living note that changes
without moving, that grows while remaining still. Even ifette was only one note, there
would still be music. See p. 68.

[S: 33] Overtune(overtune.mp3 3:54 ). Additive synthesis can create very precise and
clean sounds. All partials are from the same harmonic seSes p. 68.

[S: 34] Fourier's Song(fouriersong.mp3 3:54 ). Also known asTable 4.1: Properties
of the Fourier Transformthis song was written by Bob Williamson and Bill Sethares
“because we love Fourier Transforms, and we know you will"téerhaps you have
never taken a course where everything is laid out in a siragig S\ell, here it is...a song
containing 17% of the theoretical results, 25% of the peatinsights, and 100% of the
humor of ECE330: Signals and Systems. The music is played edditive (overtone)
scale that consists of all harmonics of 100 Hz. See p. 68 drthiss web pages at [W: 8].
Lyrics appear in Appendix K.

Sound Examples for Chapter 6

[S: 35] Tritone dissonance curvgridiss.mp3 1:06 ). This is the auditory version of
Fig. 6.2. See p. 97 and video [V: 9].

[S: 36] Tritone chime(trichime.mp3 0:37 ). First, you hear a single note of the “tritone
chime.” Next, the chime plays the three chords from Fig. Bt chords are then repeated
using a more “organ-like” tritone timbre. See p. 98 and vifléd.0].

[S: 37] Tritone chord patterngtrichord.mp3 0:52 ). This sound example presents two
chord patterns, each repeated once. Which passage apmrarsansonant, the major or
the diminished?

(&) F' major,C major,G major,C major
(b) C dim, D dim, D dim, C dim
Which of the next two patterns feels more resolved?

(c) C dim, C major,C dim, C major
(d) € major,C dim, C major,C dim

Musical scores for these four segments are given in Fig S&dé.p. 99.
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38] Plastic City: A Stretched Journdplasticity.mp3 6:00 ). The “same” piece is
played with harmonic sounds in 12-tet, with 2.2-stretchmehsls, with 1.87-compressed
sounds, and finally with 2.1-stretched sounds, all in thedpective stretched or com-
pressed tunings. See pp. 59, 104, and 309.

1 39] October21sfoctober21.mp3 1:42 ). There are no real octaves (defined as a fre-

quency ratio of 2 to 1) anywhere in this piece. The soun@@xtober 21sare constructed
so that the octave betwegnand2 f is dissonant, whereas the nonoctave betwgand
2.1f is consonant. Thus, the unit of repetition is a “stretchezlip®-octave” with a fre-
quency ratio of 2.1 to 1. As the structure of the timbres artched to the structure of the
scale, these nonoctave intervals can be consonant, evha &eal) octave is dissonant.
The same 2.1-stretched tones were demonstrated in [S:epB&9 and 105.

:40] A note with partials at 4:5:6:44567.mp3 0:08 ). This note/chord is built from

four sine wave partials with frequencies 400, 500, 600, d&@Hz. See p. 96.

:41] A note with partials at 1/7:1/6:1/5:1/47654.mp3 0:08 ). This note/chord is built

from four sine wave partials with frequencies 400, 467, 56 700 Hz. See p. 96.

:42] 4:5:6:7 vs. 1/7:1/6:1/5:1/44567 _7654.mp3 0:16 ). The two notes from sound

examples [S: 40] and [S: 41] alternate. Which is more constin@ee p. 96.

Sound Examples for Chapter 7

: 43] Tingshaw(tingshaw.mp3 4:03 ). The tingshaw is a small handbell with a bright

and cheerful ring, and it is played in a scale determined byspiectrum of the bell itself.
Tingshawis discussed extensively in Chap. 7. See p. 127.

: 44] Chaco Canyon Rodfchacorock.mp3 3:38 ). Piece based on the rock described

at length in Chap. 7. See pp. 135 and 327.

: 45] Duet for Morphine and Cymbgmorphine.mp3 3:21 ). Each angle in an x-ray

diffraction pattern can be mapped to an audible frequemansforming a crystalline
structure into sound. In this piece, complex clusters oégoterived from morphine crys-
tal resonances are juxtaposed over a rhythmic bed supplitetbmore percussive timbre
of the cymbal. The mapping technique is described at lemg@hiap. 7. See p. 141.

Sound Examples for Chapter 8

1 46] Adaptation of stretched timbres: minor chogstreminoradapt.mp3 0:06 ).

Stretched timbres play a 12-tet minor chord. After adaptatthis converges to the
stretched minor chord detailed in Table 8.2. See p. 162.

1 47] Adaptation of stretched timbres: major chogstremajoradapt.mp3 0:06 ).

Stretched timbres play a 12-tet major chord. After adamtatthis converges to the
stretched major chord detailed in Table 8.2. See p. 162.

: 48] Circle of fifths in 12-tef(circle12tet.mp3 0:38 ). The circle of fifths moves

through all 12 keys, demonstrating one of the great strexjtth2-tet: reasonable conso-
nance in all keys. See p. 162.

1 49] Circle of fifths inC major just intonatior{(circleJICmaj.mp3 0:38 ). Thecircle

of fifths demonstrates one of the liabilities of JI: keys thia distant from the tonal center
are unuseable. See p. 162.
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[S:

50] Circle of fifths in adaptive tuninécircleadapt.mp3 0:38 ). Applying adapta-
tion to the circle of fifths allows all chords to maintain theple integer ratios, combining
the best of 12-tet (modulation to all keys) with the consamesf JI. See p. 162.

:51] Syntonic comma example: HyntonJidrift. mp3 0:43 ). Each repeat of the

phrase in Fig. 8.7 the tuning drifts lower. See p. 164.

:52] Syntonic comma example: 12-t&tyntonl12tet.mp3 0:21 ). The phrase of

Fig. 8.7 is performed in 12-tet. See p. 164.

: 53] Syntonic comma example: adaptive tuni(gyntonadapt.mp3 0:21 ). The

phrase of Fig. 8.7 does not drift yet maintains fidelity to #imple integer ratios when
played in adaptive tuning with harmonic sounds. See p. 164.

: 54] Listening to adaptatior{listenadapt.mp3 0:32 ). Each note has a spectrum

containing four inharmonic partials &t 1.414f, 1.7f, and2f. Three notes are initial-
ized at the ratios 1, 1.335, and 1.587 (the 12-tet scale stes andGb) and allowed
to adapt. The final adapted ratios drel.414, and1.703. The adaptation is done three
times:

(i) With extremely slow adaptation (very small stepsize)

(i) Slow adaptation

(i) Medium adaptation
See pp. 95 and 166.

:55] Scarlatti's K1 Sonata in 12-tetk001tet12.mp3 0:32 ). The first phrase of the

sonata. See Fig. 8.10 on p. 167.

:56] Scarlatti's K1 Sonata in adaptive tunii@00ladaptX.mp3 0:32 ). Poor choice

of stepsizes can lead to wavering pitches in the adaptiieduSee Fig. 8.10 on p. 167.

:57] Scarlatti’'s K1 Sonata in adaptive tunink00ladapt.mp3 0:32 ). Better choices

of stepsizes can ameliorate the wavering pitches. See Rig.0 p. 167.

: 58] Wavering pitchegwaverpitch.mp3 0:21 ). The second measure of Domenico

Scarlatti's harpsichord sonata K1 is played three ways:
(i) Scarlatti's K1 sonata in 12-tet.

(i) Scarlatti's K1 sonata with adaptation. Observe the @rang pitch under-
neath the trill at the end of the second measure.

(i) Scarlatti's K1 sonata with adaptation, modified so tthaew” notes are
adapted ten times as fast as held notes. The wavering pifchpisrcep-
tible.

Seep. 167.

:59] Sliding pitchegslidepitch.mp3 0:45 ). The kinds of pitch changes caused by

the adaptive tuning algorithm are often musically intedlig responses to the context of
the piece.
(a) A simple chord sequence from major to G major is transformed by the
adaptive tuning algorithm. The sliding pitch of one notengsout. Each mea-
sure is played separately, then together.
(b) The adaptive tuning algorithm “changes” the chord onftheth beat.
Seep. 169.

:60] Three Ears(three _ears.mp3 4:24 ). As each new note sounds, its pitch (and

that of all currently sounding notes) is adjusted microtiyn@ased on its spectrum) to
maximize consonance. The adaptation causes interestdesgind microtonal pitch ad-
justments in a perceptually sensible fashion. Listen ferttho previous segments from
[S: 59]. Many similar effects occur throughout. See pp. IIA1, and 182.
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Sound Examples for Chapter 9

:61] Adaptive Study No. (adapt _studyl.mp3 2:36 ). Example of the pitch glides

and wavering pitches usiridaptun . See p. 177.

:62] Adaptive Study No. 2adapt _study2.mp3 2:28 ). Using Adaptun 's context

feature, the wandering of the pitch is reduced. See pp. 1d71a8.

:63] Compositional technique: example (breakdrumsl1.mp3 0:10 ). A standard

MIDI drum file from the Keyfax Software [W: 17] “Breakbeat” ttection is performed
using drum sounds. See Fig. 9.3 on p. 182.

:64] Compositional Technique: example (Breakdrums2.mp3 0:10 ). The same

MIDI file as in [S: 63] is reochestrated with guitar and basgaguSee p. 182.

: 65] Compositional technique: examplgl@eakmapl.mp3 0:20 ). Editing the MIDI

data in Fig. 9.3 leads to the sequence in Fig. 9.4 on p. 183ofigmal cymbal part is
time stretched and offset in pitch.

:66] Compositional technique: example (reakmap2.mp3 0:20 ). A variant of

[S: 65]. See p. 183.

1 67] Compositional technique: exampldgtreakmap3.mp3 0:20 ) Another variant of

[S: 65]. See p. 183.

1 68] Compositional technique: exampldlfeakadaptl.mp3 0:23 ). Adaptation the

standard MIDI file of Fig. 9.4 using no context and defaultiegs in Adaptun . See
p.182.

1 69] Compositional technique: examplgbteakrand1.mp3 0:20 ). The sequencein

Fig. 9.4 and sound example [S: 65] is transformed by randiogiithe bass line over an
octave. See p. 183.

: 70] Compositional technique: example(l8reakrand2.mp3 0:20 ). Randomization

of the “fast” line in Fig. 9.4 leads to this arpeggiated guifee p. 183.

: 71] Compositional technique: example(reakrand3.mp3 0:20 ). Randomization

of the “slow” line in Fig. 9.4 leads to this synthesized megloBee p. 183.

: 72] Compositional technique: example (feakadapt2.mp3 0:21 ). After adapta-

tion, example [S: 71] sounds very different. See p. 183.

: 73] Compositional technique: example (reakadapt3.mp3 0:47 ). Sound exam-

ple [S: 71] is adapted with full convergence of the algoritAtne sound example is played
twice: first without the melody, and then with. See p. 183.

: 74] Adventiles in a Distoriunfadventiles.mp3 4:46 ). An adaptively tuned com-

position featuring frenetically distorted guitars. Se@ 1.

: 75] Aerophonious Intentaerophonious.mp3 3:24 ). An adaptively tuned composi-

tion orchestrated using an extreme form of hocketing. S&8p.

: 76] Story of Earlight(earlight. mp3 3:53 ). An adaptively tuned recitation of whis-

pers and flutes. See p. 181.

: 77] Excitalking Very Muchexcitalking.mp3 3:32 ). An adaptively tuned conver-

sation between a synthetic bass and a synthetic clarinefp SE31.

: 78] Inspective Liguencginspective.mp3 3:46 ). An adaptively tuned piece where

no note remains fixed. See p. 181.

: 79] Local Anomalylocalanomaly.mp3 3:27 ). This piece was created from a stan-

dard MIDI drum track, which was randomized and orchestratadg various percussive
stringed sounds such as sampled guitars and basses. Tameltdissonant but highly
rhythmic soundscape was input ididaptun , and the notes adapted toward consonance.
No context was used. See pp. 181 and 184.

: 80] Maximum Dissonancémaxdiss.mp3 3:24 ). Instead of minimizing the disso-

nance, this piece maximizes the dissonance at every tirteninSee pp. 181 and 186.
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[S:

[S:

[S:

[S:

[S:

81] Persistence of Timéersistence.mp3 4:54 ). Polyrhythms beat three against
two, a paleo-futuristic audio conundrum where all intesvadlapt to maximize instanta-
neous consonance. See pp. 180 and 181.

82] Recalled Opugrecalledopus.mp3 3:45 ). At each instant in time, these “vio-
lins” strive to minimize dissonance. See pp. 177,181, ard 18

83] Saint Vitus Dancégsaintvitus.mp3 3:32 ). Begin with a MIDI drum pattern.
Use the pattern to trigger a sampled guitar sound; it is wilii§sonant because the pitches
are essentially random. At each time instant, perturb ttehes of all currently sounding
notes to the nearest intervals that maximize consonanas.itborn an adaptively tuned
dance.

84] Simpossible Takgsimpossible.mp3 3:20 ). An adaptively tuned composition
that began as a hip hop drum pattern. See pp. 181 and 182.

: 85] Wing Doneviefwing.mp3 3:17 ). An adaptively tuned composition in seven beats

per measure. See pp. 181 and 184.

Sound Examples for Chapter 13

: 86] 11-tet spectral mappings: before and aftem11tet.mp3 1:20 ). Several differ-

ent instrumental sounds alternate with their 11-tet spgtmapped versions:
(i) Harmonic trumpet compared with 11-tet trumpet
(i) Harmonic bass compared with 11-tet bass
(i) Harmonic guitar compared with 11-tet guitar
(iv) Harmonic pan flute compared with 11-tet pan flute
(v) Harmonic oboe compared with 11-tet oboe
(vi) Harmonic “moog” synth compared with 11-tet “moog” siint
(vii) Harmonic “phase” synth compared with 11-tet “phasgrith
See p. 266 and video [V: 11].

:87] 12-tet vs. 11-teftiml1lvs12.mp3 0:37 ). A short sequence of major chords are

played:
(viii) Harmonic oboe in 12-tet
(ix) Spectrally mapped 11-tet oboe in 12-tet
(x) Harmonic oboe in 11-tet
(xi) Spectrally mapped 11-tet oboe in 11-tet
See p. 268 and video [V: 12].

88] The Turquoise Dabo Gir{dabogirl.mp3 4:16 ). Many of the kinds of effects
normally associated with (harmonic) tonal music can oa@en in such strange settings
as 11-tet (which is often considered among the hardestgsnimwhich to play tonal mu-
sic). Consider, for instance, the harmonization of theettlpain flute melody that occurs
in the “chorus.” Does this have the feeling of some kind ofla@s unfamiliar) “cadence”
as the melody resolves back to its “tonic?” Spectral mappirte instrumental sounds
allows such xentonal motion. See pp. 58 and 269.

: 89] The Turquoise Dabo Girl (first 16 bargjlabogirlX.mp3 0:29 ). In 11-tet, but

using unmapped harmonic sounds. The “out-of-timbre” parée unmistakable. See
p. 269.

:90] Tom Tom Spectral Mappings: Before and Aftemspec.mp3 0:37 ). Several dif-

ferent instrumental sounds alternate with versions mappethe spectrum of a tom tom:
(i) Harmonic flute compared with tom tom flute
(i) Harmonic trumpet compared with tom tom trumpet
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(iii) Harmonic bass compared with tom tom bass
(iv) Harmonic guitar compared with tom tom guitar
See p. 270 and video [V: 13].

:91] Glass Lakdglasslake.mp3 3:08 ). Instruments that are spectrally mapped “too

far” can lose their tonal integrity. When guitars, bassesl, flutes are transformed into
the partial structure of a drum (a tom tom), they are almostewgnizable. But this does
not mean that they are useless. All sounds in this piece p¢faethe percussion) were
demonstrated in [S: 90]. The “tom tom” scale supports peikp‘chords,” though the
chords are not necessarily composed of familiar intervieden Staley played a key role
in writing and performingslass LakeSee pp. 267 and 271.

:92] A harmonic cymbatharmcym.mp3 0:23 ). A cymbal is spectrally mapped into a

harmonic spectrum. The resulting sound is pitched and dedisupporting melodies
and chords.
(i) The original sample contrasted with the spectrally nexpgersion
(i) A simple “chord” pattern played with the original sanepland then with
the spectrally mapped version
See p. 272 and video [V: 14].

193] Sonork(sonork.mp3 3:15 ). The origin of each sound is a cymbal, spectrally

mapped to nearby harmonic templates to create the bash, symt other instrumental
sounds. See pp. 267 and 272.

:94] Inharmonic drum(inharmdrum.mp3 0:59 ). This drum sound is incapable of

supporting melody or harmony. See p. 272.

: 95] Harmonic drum(harmdrum.mp3 1:29 ). The drum sound from [S: 94] is spec-

trally mapped to the nearest harmonic template. It can n@paa both melody or har-
mony. See p. 272.

:96] Harmonic and inharmonic drurtharm+inharm.mp3 1:29 ). The sounds from

[S: 94] (the original inharmonic drum) and [S: 95] (the spally mapped version) are
combined. See p. 272.

: 97] Hexavampthhexavamp.mp3 3:22 ). A “classical” guitar is spectrally mapped into

16-tet and overdubbed with itself. See pp. 58 and 267.

1 98] Seventeen String&7strings.mp3 3:22 ). A sampled Celtic harp is transformed

for compatibility with 17-tet. See pp. 58, 268, and 267.

1 99] Unlucky Flutes(13flutes.mp3 3:51 ). Flutes, guitars, bass, and keyboards are

spectrally mapped into 13-tet. All instruments clearlyanettheir tonal identity, and yet
sound harmonious even on sustained passages. Compard&itl3tet demonstration
on Carlos'Secrets of SynthedI3: 6], which is introduced, “But the worst way to tune is
probably this temperament of 13 equal steps.” See pp. 58 @ind 2

:100] Truth on a Bugtruthbus.mp3 3:22 ). A 19-tet guitar piece that is unabashedly

diatonic. If you were not listening carefully, you might igiae that this was a real guitar,
tuned normally, and played skillfully. You would be very wagh See pp. 267 and 58.

:101] Sympathetic Metaphdsympathetic.mp3 3:59 ). This guitar has 19 tones in

each octave, and the melody dances pensively on a delitetielgced timbre. Peter Kidd
plays the excellent fretless bass. See pp. 58 and 267.

Sound Examples for Chapter 14

:102] Ten Fingers(tenfingers.mp3 3:18 ). Demonstrates the kind of consonance

effects achievable in 10-tet. The guitar-like 10-tet timisr created by spectrally mapping
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a sampled guitar into an induced spectrum. The full title hi§ fpiece islf God Had
Intended Us To Play In Ten Tones Per Octave, Then He Would Gizea Us Ten Fingers
See pp. 58, 239, 267, 281, and 310.

: 103] Ten Fingers: harmonic guitatenfingersX.mp3 0:28 ). The first 16 bars of

Ten FingerdS: 102] are played with a harmonic (sampled) guitar. Bheof-spectrum
effect is unmistakable. See p. 281.

: 104] Circle of Thirds(circlethirds.mp3 3:41 ). There is an interesting and beau-

tiful chord pattern in 10-tet that is analogous to (but veiffedent from) the traditional
circle of fifths. This piece cycles around tliércle of Thirdsover and over: first fast, then
slow, and then fast again. See p. 285.

: 105] Isochronisn(isochronism.mp3 3:55 ). When there are ten equal tones in each

octave, special tone colors are needed to align the paitimsconsonant patterns. See
p. 267 and p. 286 for a description of the 10-tet chord padtern

: 106] Anima (anima.mp3 4:03 ). Uses modified timbres to effect a balance between

coherence and chaos, between the obvious and the obscerng. 3&7. Exploits the 10-
tet tritone chords described starting on p. 288.

:107] Swish(swish.mp3 3:20 ). Timbres constructed iNletasyntrswirl and mutate as

the piece evolves in 5-tet, which is analogous to a wholesoaée inside 10-tet. See p. 58.

Sound Examples for Chapter 15

:108] Tuning of a classical Thai piedg¢hai7tet.mp3 0:28 ). Demonstrates the pro-

cedure whereby the tuning of a piece can be found from therdéwp Begins with the
first 10 seconds dsudsaboufrom [D: 39] and then separates the melody into individual
notes, each of which is compared with a sine wave to deteritsinpétch. See Sect. 15.2
on p. 292.

:109] Comparison of harmonic sounds and their spectrally mappe@t Arersions

(7tetcompare.mp3 0:25 ). Three instruments are demonstrated:
(i) Three different notes of a bouzouki
(i) Three different notes of a harp
(i) A pan flute
See pp. 298 and 300.

:110] Comparison between 7-tet and a 12-tet major sq@s12.mp3 1:19 ). The

theme of the simple tune from sound example [S: 2] is playesd iiir 12-tet and then
in 7-tet, using the “naive” mapping between 7-tet and theodiie (major) scale defined
in (15.2) and using harmonic timbres. See p. 299.

:111] Comparison between 7-tet and a 12-tet major s¢als12bar.mp3 1:19 ). The

theme of the simple tune from sound example [S: 2] is playstlifir 12-tet and then in
7-tet, using the “naive” mapping between 7-tet and the diatmajor) scale defined in
(15.2) with timbres have been mapped to the spectrum of ai ide. See p. 299.

:112] Scarlatti's K380 in 7-tefK380tet7.mp3 1:29 ). Using the “naive” mapping be-

tween 7-tet and the diatonic (major) scale of (15.2), Sttéisltheme looses its harmonic
meaning. More conventional tunings of K380 can be heard imdaxamples [S: 17]
through [S: 22]. The timbres are harmonic. See p. 299.

:113] Scarlatti's K380 in 7-te{K380tet7bar.mp3 1:29 ). Usingthe “naive” mapping

between 7-tet and the diatonic (major) scale of (15.2),I8ttes theme loses its harmonic
meaning. More conventional tunings of K380 can be heard imdaxamples [S: 17]
through [S: 22]. The timbres have been mapped to the specframideal bar. See p. 299.
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[S: 114] Scarlatti's K380 in 12-tefK380tetl2bar.mp3 1:29 ). This performance of
K380 uses timbres that have been mapped to the spectrum d¢albiar. See p. 299.

[S: 115] March of the Wheelénarwheel.mp3 3:38 ). The notes of a standard MIDI drum
track are mapped into the 7-tet scale, creating the rhytfonicdation for this piece. The
notes are randomized, creating a variety of serendipitalsdies. See pp. 58 and 300.

[S: 116] Pagan’s Revengéagan.mp3 3:55 ). The notes of a standard MIDI file (Pa-
ganini’s Caprice No.24 performed by D. Lovell) are mapped ifrtet, creating the foun-
dation for this piece. At the halfway point, the MIDI data fretfile was time reversed so
that the theme proceeds forward and then backward—finadlingron the first note. See
pp. 58 and 302.

[S: 117] Nothing Broken in Seve¢broken.mp3 3:29 ). A single six-note isorhythmic
melody is repeated over and over, played simultaneouslyatdifferent speeds. See
pp. 58 and 302.

[S: 118] Phase Sevefphase7.mp3 3:41 ). Asingle eight-note isorhythmic melody is re-
peated over and over, played simultaneously at five diftespaeds. See pp. 58 and 302.






V: Video Examples on the CD-ROM

The video files on the CD-ROM are saved in tlwi

format, which is readable usingindows Media Player

or Quicktime . Navigate toTTSS/Videos/ and launch

the *.avi file by double clicking, or by opening the file
from within the player. References in the body of the text to
the video examples are coded wji] to distinguish them

from references to the bibliography, discography, and sbun
examples. The video examples may also be accessed using a
web browser. Open the filETSS/Contents.html in the

top level of the CD-ROM and navigate using the html inteface.

[V: 1] Challengingthe Octavghalloct.avi 0:21 ). See p. 2 and sound example [S: 1].
The spectrum of the sound is constructed so that the octawebrf and2 f is dissonant
while the nonoctave to 2.1 f is consonant.

[V: 2] Pitch of Periodic Soundépitchclicks.avi 0:21 ). See p. 33. The five buzzy
sounds all have the same period; the pitch jumps up an octawmevghere between (a)
and (e).

[V: 3] Virtual Pitch of Harmonic Partialgvirtpitch.avi 0:29 ). See p. 33. Sine waves
at frequencieg040, 1300, and1560 are presented individually and then together. With
all three sounding, the primary percept is of a low buzzy sloatra pitch corresponding
to 260 Hz.

[V: 4] Virtual Pitch of Inharmonic PartialqvirtpitchX.avi 0:30 ). See p. 33. Sine
waves at frequenciel$60, 1320, and1580 are presented individually and then together.
With all three sounding, the primary perceptis of a low buzaynd at a pitch correspond-
ing to about264 Hz, although this is less clear than when the partials ammbaically
related, as in [V: 3].

[V: 5] Beating of Sine Wavegeatsl.avi 0:23 ). See p. 40 and sound example [S: 8].

[V: 6] Beating of Sine Waves(beats2.avi 0:23 ). See p. 40 and sound example [S: 9].

[V: 7] Beating of Sine Waves li(beats3.avi 0:23 ). See p. 40 and sound example
[S: 10].

[V: 8] Dissonance Between Two Sine Walgasediss.avi 1:06 ). See p. 45 and sound
example [S: 11]. A sine wave of fixed frequency 220 Hz is plag&rhg with a “sine
wave” with frequency that begins at 220 Hz and slowly incesas 470 Hz.

[V: 9] Tritone Dissonance Curvéridiss.avi 1:04 ). See p. 97 and sound example
[S: 35]. This is the auditory version of Fig. 6.2.

[V: 10] Tritone Chime(trichime.avi 0:42 ). See p. 98 and sound example [S: 36].
First, you hear a single note of the “tritone chime.” Nexg thime plays the three chords
from Fig. 6.3. The chords are then repeated using a more fidiga’ tritone timbre.

[V: 11] 11-tet Spectral Mappings: Before and Afi@gimlltet.avi 1:15 ). See p. 266
and sound example [S: 86]. Several different instrumemtahds alternate with their 11-
tet spectrally mapped versions.
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[V:12] 12-tetvs. 11-teftimllvsl2.avi 0:38 ). See p. 268 and sound example [S: 87].
A short sequence of chords is played that compares spgatajpped 11-tet sounds to
harmonic sounds when playing chords drawn from the 11-tdesc

[V: 13] Tom Tom Spectral Mappings: Before and Aftemspec.avi 0:44 ). See p. 270
and sound example [S: 90]. Several different instrumertahds alternate with versions
mapped into the spectrum of a tom tom:

[V: 14] A Harmonic Cymbal(harmcym.avi 0:23 ). See p. 272 and sound example
[S: 92]. A cymbal is spectrally mapped into a harmonic spentthe resulting sound
is pitched and capable of supporting melodies and chords.



W: World Wide Web and Internet References

This section contains all web links referred to throughout
Tuning, Timbre, Spectrum, ScalReferences in the body of

the text to websites are coded wiiv:] to distinguish them

from references to the bibliography, discography, and sbun
and video examples. The web examples may also be accessed
using a web browser. Open the fil@SS/Links.html in

the top level of the CD-ROM and navigate using the html
interface.

[W: 1] Alternate tuning mailing listhttp://groups.yahoo.com/group/tuning/ [This group and
[W: 18] continually discuss techniques of creating and yaia music that is outside the
Western tradition.]

[W: 2] Bitheadz, Ing.http://www.bitheadz.com [Makers of audio tools such & thity soft-
ware synthesizer.]

[W: 3] How harmonic are harmonicsfttp://www.phys.unsw.edu.ajw/ harmonics.html
[Discussion of inharmonicities in strings and air columstinments.]

[W: 4] Classical MIDI Archiveshttp://www.classicalarchives.com/ [Thousands of stadd
MIDI files are available here free for listening, studyingdaenjoying.]

[W: 5] Content Organghttp://www.content-organs.com [An organ maker thatrsfthe her-
mode tuning in its organs.]

[W: 6] Corporeal Meadowshttp://www.corporeal.com/ [Website devoted to HarrytBtar
Partch’s music, instruments, and personality are all mdfilere.]

[W: 7] J. A. deLaubenfels, “Adaptive Tuning Web Site,”
http://  www.adaptune.com/ [Also, see John's personal welagep at
http://personalpages.bellsouth.net/j/d/jdelaubditntm for sound examples and
further details on the spring method of adaptive tuning.]

[W: 8] ECE330: Signals and Systemof. Sethares’ class website for the course on Fourier
transforms is:
http://feceserv0.ece.wisc.edigthares/classes/ece330.html and the official university
website is:
http://www.engr.wisc.edu/ece/courses/ece330.html

[W: 9] P. Erlich on Harmonic Entropyhttp://tonalsoft.com/td/erlich/entropy.htm [Erliciise
cusses models of harmonic entropy in a series of posts touhiad Digest beginning in

Sept. 1997.]
[W: 10] P. Erlich, “The forms of tonality,” http://lumma.gftuning/erlich/ Also available on
the CDTTSS/PDF/erlich-forms.pdf . [Concepts of tone-lattices, scales, and no-

tational systems for 5-limit and 7-limit music.]

[W: 11] P. FrazerMidicode Synthesizehnttp://www.midicode.com [Implements a method of
dynamic retuning in a software syntheizer.]

[W: 12] Freenote Musigchttp://microtones.com/new.htm [Dedicated to microlandtars and
recordings.]
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[W: 13] Frog Peak Musig http://www.frogpeak.org/ [This composer’s collective a gold
mine of alternatively tuned music.]

[W: 14] The Justonic Tuning Systeirttp://www.justonic.com/ [Jutonic’s pitch palette uses
any 12-tone just, or harmonic scale to create a 3-dimenka@ray of tones that can be
used to automatically retune a synthesizer as it plays.]

[W: 15] The Hermode Tunindhttp://www.hermode.com/ [A form of automated tuning im-
plemented in the Waldorf Virus C synthesizer. Website haxdgbemonstrations of the
uses of adaptive tunings.]

[W: 16] Institute for Psychoacoustics and Musiattp://www.ipem.rug.ac.be/ [Part of the
University of Ghent, IPEM is Belgium’s premier center foeetronic music.]

[W: 17] Keyfax Softwarehttp://www.keyfax.com [Professionally recorded stanidMIDI
files.]

[W: 18] Make Micro Music mailing listhttp:// groups.yahoo.com/ group/ MakeMicroMusic/
[This group and [W: 1] continually discuss techniques ofatirg and analyzing music
that is outside the Western tradition.]

[W: 19] Making Microtonal Music Websiténttp://www.microtonal.org/ [A gathering point
for people who are actively making microtonal music, andtfarse who would like to
join them.]

[W: 20] Mark of the Unicorn http://www.motu.com/ [Makers of music hardware and soft-
ware,includingDigital Performer, a MIDI and audio sequencer.]

[W: 21] Matlab, http://www.mathworks.com/ [General purpose prograngiémguage com-
mon in signal processing and engineering: “the languageabfitical computing.”]

[W: 22] Max 4.0 Reference Manuahttp://www.cycling74.com/products/didoc.html [Web-
site of Cycling ‘74, distributers of Max programming langga See also [B: 210].]

[W: 23] Metasynthhttp://www.uisoftware.com/ [A powerful graphic tool feound manipu-
lation and visualization.]

[W: 24] Microtonal Dictionary, http://tonalsoft.com/ [Joseph Monzo’s online dictionaif
musical tuning terms is an excellent resource.]

[W: 25] MIDI file formats describegchttp://www.sonicspot.com/guide/midifiles.html

[W: 26] W. Mohrlok, The Hermode Tuning Systeffihis provides a comprehensive de-
scription of the operation of the hermode tuning, and is lals& on the CD in
TTSS/pdflhermode.pdf ]

[W: 27] Scala Homepagénttp://www.xs4all.nkhuygensf/scala/ [Powerful software tool for
experimentation with musical tunings.]

[W: 28] Tuning, Timbre, Spectrum, Scaltp://eceserv0.ece.wisc.edgthares/

[W: 29] Smith, J. O. “Bandlimited interpolation—interpagion and algorithm,” http://ccrma-
www.stanford.edufjos/resample/ [Excellent discussion of audio signal pssoe with
focus on interpolation techniques.]

[W: 30] John Starrett's Microtonal Musichttp:// www.nmt.edukjstarret/ microtone.html
[Great resource for microtonal music, instruments, antstbo

[W: 31] Tune Smithyhttp://www.tunesmithy.connectfree.co.uk/ [A programn &lgorithmic
music composition that includes extensive microtonal sufgnd a dynamic tuning fea-
ture.]

[W: 32] Vicentino’s adaptive-JI of 1555http:// tonalsoft.com/ monzo/ vicentino/ vi-
centino.htm [Vicentino’s “Second tuning of 1555” is compdsof two chains of 1/4-
comma meantone that can avoid comma drift.]

[W: 33] Access “Virus” Synthesizemhttp://www.access-music.de/ [The hermode tuning is
available in the Virus synthesizer.]

[W: 34] Waldorf Synthesizersttp://www.waldorf-music.de [First commercial implemnta-
tion of an adaptive tuning.]
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resolution, 77

sensoryseedissonance, sensory
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