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SUMMARY

This paper presents an adaptive autoregressive (AR) approach to the blind image deconvolution problem
which has several advantages over standard adaptive FIR filters. There is no need to figure out the
optimum filter support when using an AR deconvolution filter because it is the same as the support of the
blur. Thus there is no distortion introduced by the finite support of the FIR filter. While an FIR filter
provides an approximate inverse to the blur at convergence, the AR filter converges to an approximation of
the blur itself. Hence, the method can be used for blur identification. Simulations suggest that convergence
of the adaptive AR filter coefficients occur rapidly and the improvement in signal-to-noise ratios are higher
than in the FIR case for a given blur (and with the same step-size for the adaptive algorithms). When the
adaptive AR method is derived naively to minimize the dispersion, it requires a recursion within a recursion
which is computationally complex. We propose a simplification that removes the inner recursion,
and prove conditions under which this simplification is valid when dealing with binary images. Simula-
tions are used to show that the method may also be applied to certain multi-valued images as well.
Copyright # 2005 John Wiley & Sons, Ltd.

KEY WORDS: image restoration; blind image deconvolution; blur identification; constant modulus
algorithm; recursive adaptive filtering; local stability analysis

1. INTRODUCTION

A recorded image is usually a degraded version of the original because physical imaging systems
are not perfect. Blur and observation noise are the most common degradations seen in recorded
images, and often are unavoidable. The central problem in the field of image restoration is to
reconstruct an unobservable true image from an observed degraded image.

If the blur, which is often called the point spread function (PSF) in the literature, is assumed
to be a linear shift invariant (LSI) system, an observed image can be written (ignoring
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observation noise) as the two-dimensional (2-D) convolution of the true image with the blur.
Restoration of the true image in the case of a known blur has been studied extensively and given
rise to a variety of solutions [1–4]. However, the blur is unknown in many practical cases.
Hence, restoration of the true image must be performed from the degraded image alone, and
this is called blind image restoration.

A modern comprehensive survey of existing blind image deconvolution methods can be found
in the papers by Kundur and Hatzinakos [5, 6], according to which blind image deconvolution
methods can be divided into two major groups: (i) those which estimate the PSF a priori
independent of the true image so as to use it later with one of the linear image restoration
methods, and (ii) those which estimate the PSF and the true image simultaneously. Algorithms
belonging to the first class tend to be computationally simple, but they are limited to situations
in which the PSF has a special parametric form, and the true image has certain features.
Algorithms belonging to the second class, which are usually computationally more complex,
must be used for more general situations. More recently, recursive schemes such as those in
References [7, 8] have been introduced.

A computationally simple blind image deconvolution method that is applicable to minimum
or mixed phase blurs was presented and analysed in Reference [9]. The method is essentially a
2-D version of the constant modulus algorithm (CMA) [10, 11] that is commonly used in the
field of communications for blind equalization. CMA is applicable whenever the unknown input
arises from a ‘finite alphabet’. Since the pixels in a digitized image are drawn from a finite
alphabet (often 256 levels, though sometimes as few as two}), the CM cost may also be useful in
the deblurring and denoising of images. The reader is referred to Reference [12] and the
references therein for a detailed introduction to the CMA and its analysis in the context of one-
dimensional (1-D) adaptive equalization.

A 2-D version of the FIR CMA was introduced in Reference [13]. The present paper provides
an analogous method that uses an adaptive 2-D autoregressive (AR) filter for deconvolution.
This has several important advantages. First, analysis of the FIR implementation has shown
that given a step-size and a PSF, there is an optimum support for the FIR filter that must be
determined experimentally. There is no need to figure out the optimum support when using an
AR deconvolution filter because the optimum support is the same as the support of the blur.
Second, the FIR filter provides an approximate inverse to the blur at convergence while the AR
filter converges to an approximation of the blur itself.

In 1-D, implementing an adaptive algorithm is not possible for a non-causal channel without
introducing an appropriate delay. This causality issue does not impose a constraint for the blind
image deconvolution problem since the observed degraded image can be used as an initial
restored image. For notational simplicity, this paper focuses on 2-D AR filters and FIR blurs
with spatially causal supports.} The results can easily be extended to the non-causal case with
suitable changes in the notation.

One way to understand the behaviour and performance of adaptive algorithms is by analysing
the convergence. A static convergence analysis consists of characterizing the positions of
stationary (minimum) points of the cost function, while a dynamic analysis investigates the
stability, convergence and consistency of the adaptive filter coefficients.
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In the ideal case, when there is no noise, a global minimum of the cost function occurs when
the deconvolution filter is the inverse of the PSF, which is the desired solution. This paper
demonstrates a sufficient condition on the PSF under which the recursive realization converges
to the desired solution for a binary image. As will be seen, the presence of regressor filtering in
the gradient makes the algorithm computationally costly. It is natural, then, to consider an
algorithm that is simplified by removing the regressor filtering, and we perform a local stability
analysis of this simplified algorithm. Conditions on the PSF under which this simplification is
valid are explicitly derived. Because exponential stability of the linearized dynamical system to a
given stationary point is a sufficient condition for local stability of the non-ideal noisy adaptive
system to a region about that stationary point [14], this paper frames the convergence analysis
by demonstrating the exponential stability of the linearized system. Thus, although the analysis
ignores the observation noise, the results are robust to the presence of (suitably small) noises.

The paper is organized as follows. The blind image deconvolution problem is formulated for
spatially causal blurs in Section 2. A statistically optimum fixed AR filter, which minimizes the
mean square error between the true image and the restored image, can be designed when the
autocorrelation function of the true image and the cross-correlation between the true image and
the degraded image are known. Design of this filter, which is the subject of Section 3, will be
called supervised linear recursive image deconvolution since the true image is assumed known.
The recursive blind algorithm is derived in Section 4 in detail. Local stability of the simplified
algorithm is presented in Section 5. Experimental results are provided in Section 6. Section 7
concludes the paper.

2. PROBLEM FORMULATION

A model that describes the relationship between the unobservable true image and the observed
degraded image is required by all blind image deconvolution algorithms. In general, blurs are
assumed to be linear, though they may be shift-invariant or shift-variant. Similarly, the
observation noise may be modelled as multiplicative or additive. This paper assumes a shift-
invariant blur and additive observation noise. Hence, the observed M �N degraded image
gðm; nÞ for m ¼ 0; . . . ;M � 1; n ¼ 0; . . . ;N � 1 is given by

gðm; nÞ ¼ f ðm; nÞ*hðm; nÞ þ vðm; nÞ ð1Þ

gðm; nÞ ¼
XA�1

k¼0

XB�1

l¼0

hðk; lÞf ðm� k; n� lÞ þ vðm; nÞ ð2Þ

where hð0; 0Þ ¼ 1; f ðm; nÞ; hðm; nÞ; vðm; nÞ and ½0;A� 1� � ½0;B� 1� represent the ðm; nÞth pixel
of the true image, the PSF of the degrading system, additive noise that is independent of the true
image, and the support of the PSF, respectively. The linear image degradation model is depicted
in Figure 1.

In blind image restoration, the PSF hðm; nÞ is unknown. Therefore, the true image f ðm; nÞ
must be estimated directly from the degraded image gðm; nÞ: While the values of the pixels of the
true image are unknown, certain statistical properties are known; typically pixel values must be
one of a small number of possibilities. As shown in References [9, 13], ambiguities in both gain
and delay are inherent to blind image deconvolution, i.e. scaling the true image pixel values by a
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and the PSF coefficients by a�1 simultaneously, and advancing the true image by an integer-
valued vector while delaying the PSF by the same vector do not change the observed image,
where a is a real fixed non-zero gain. Keeping these ambiguities in mind, the blind image
deconvolution problem can be stated more precisely as follows: Obtain an estimate of the form
#f ðm; nÞ � af ðm�m0; n� n0Þ for some real a=0 and for some integers m0; n0 when only the
observed image gðm; nÞ is measurable. Both the true image f ðm; nÞ and the PSF hðm; nÞ are
assumed unknown.

For the rest of the paper, pixel values of the true image are assumed odd integer-valued, i.e.
pixel values may be�1;�2; . . . ;�L� 1; where L is the number of grey levels in the true image,
unless otherwise stated. Many real images are 8-bit having 256 grey levels between 0 and 255.
These images can be transformed to have odd-integer-valued grey levels by thresholding based
on the probability density function of the image.

3. SUPERVISED LINEAR RECURSIVE IMAGE DECONVOLUTION

Consider the general linear recursive image deconvolution problem shown in Figure 2(a), in
which the goal is to estimate the true image f ðm; nÞ by designing a statistically optimum fixed
filter wðm; nÞ that minimizes the mean square error (MSE) between the true image f ðm; nÞ and
the restored image #f ðm; nÞ: It is well known that design of wðm; nÞ requires that the
autocorrelation function of the true image and the cross-correlation function between the true
image and the degraded image be available. Suppose that this information is available. Later
sections show how to roughly achieve the same goal even if this information is unavailable.

Derivation of the optimum filter in the spatial domain using Figure 2(a) is tedious. Derivation
becomes straightforward in the 2-D Z-domain using the equivalent system depicted in Figure
2(b). In the following, all signals in Figure 2 will be assumed stationary. Note that the MSE can
be written as

MSE :¼E½ðf ðm; nÞ � #f ðm; nÞÞ2�

¼ rff ð0; 0Þ þ r#f #f ð0; 0Þ � 2r
f #f
ð0; 0Þ ð3Þ

where rff ðk1; k2Þ; r#f #f ðk1; k2Þ and r
f #f
ðk1; k2Þ are the autocorrelation functions of f ðm; nÞ; #f ðm; nÞ

and the cross-correlation function between f ðm; nÞ and #f ðm; nÞ which are given by

rff ðk1; k2Þ :¼ E½f ðm; nÞf ðmþ k1; nþ k2Þ� ð4Þ

r#f #f ðk1; k2Þ :¼ E½#f ðm; nÞ#f ðmþ k1; nþ k2Þ� ð5Þ

r
f #f
ðk1; k2Þ :¼ E½f ðm; nÞ#f ðmþ k1; nþ k2Þ� ð6Þ
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h (m,n) Σf (m,n)

v (m,n)

g (m,n)

Figure 1. Linear image degradation model.
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ruvðk1; k2Þ is the corresponding power spectrum Suvðz1; z2Þ given by

Suvðz1; z2Þ ¼
X1

k1¼�1

X1
k2¼�1

ruvðk1; k2Þz
�k1
1 z�k2

2 ð7Þ

The 2-D inverse Z-transform gives

ruvðk1; k2Þ ¼
1

ð2pjÞ2

I
C1

I
C2

Suvðz1; z2Þz
k1�1
1 zk2�1

2 dz1 dz2 ð8Þ

where both C1 and C2 are clockwise closed contours in the region of convergence of Suvðz1; z2Þ:
The MSE can be written in the 2-D Z-domain by substituting Equation (8) in Equation (3) with
k1 ¼ k2 ¼ 0 which gives

MSE ¼ rff ð0; 0Þ þ
1

ð2pjÞ2

I
C1

I
C2

½S#f #f
ðz1; z2Þ � 2S

f #f
ðz1; z2Þ�z�1

1 z�1
2 dz1 dz2 ð9Þ

where S#f #f
ðz1; z2Þ is the power spectrum of #f ðm; nÞ and S

f #f
ðz1; z2Þ is the cross-power spectrum

between f ðm; nÞ and #f ðm; nÞ: The power spectral relationships in Figure 2(b) can be found readily
(see Reference [15]) which are

S#f #f
ðz1; z2Þ ¼ Tðz1; z2ÞTðz�1

1 ; z�1
2 ÞSggðz1; z2Þ ð10Þ

S
f #f
ðz1; z2Þ ¼ Tðz1; z2ÞSfgðz1; z2Þ ð11Þ

where Tðz1; z2Þ is the 2-D Z-transform of tðm; nÞ; Sggðz1; z2Þ is the power spectrum of gðm; nÞ and
Sfgðz1; z2Þ is the cross-power spectrum between f ðm; nÞ and gðm; nÞ: The MSE can be written in
terms of Tðz1; z2Þ by using Equations (10) and (11) in Equation (9) from which the optimum
Tðz1; z2Þ which results in the minimum MSE is given by

Tnðz1; z2Þ ¼
Sfgðz1; z2Þ
Sggðz1; z2Þ

ð12Þ
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w (m,n)

Σg (m,n)
+

−
f (m,n)

(a)

f (m,n)g (m,n) t (m,n)

(b)

AR filter

Figure 2. Supervised linear recursive image deconvolution: (a) unsimplified system;
and (b) simplified equivalent system.
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The optimum Wðz1; z2Þ (where Wðz1; z2Þ is the 2-D Z-transform of wðm; nÞÞ is given by

Wnðz1; z2Þ ¼
1

Tnðz1; z2Þ
� 1 ð13Þ

The optimum wðm; nÞ is then obtained by taking the inverse 2-D Z-transform of Wnðz1; z2Þ�:

4. INTRODUCTION TO THE CM COST

Even though traditional uses of the CM cost have all been 1-D, the CM cost can be extended for
use in 2-D. The CM cost term was introduced for blind equalization of communication signals
over dispersive channels by Godard [10] and Treichler and Agee [11]. This section generalizes
the CM cost for use in 2-D by reformulating the cost for a real-valued zero-mean true image
f ðm; nÞ and a real-valued PSF hðm; nÞ: It is assumed that each grey level of the true image is
equally likely.k The CM cost is given by

JCM :¼ E½ð#f 2ðm; nÞ � gÞ2� ð14Þ

JCM :¼ E½#f 4ðm; nÞ� � 2gE½#f 2ðm; nÞ� þ g2 ð15Þ

JCM :¼ E½#f 4ðm; nÞ� � 2s2f kf E½#f
2ðm; nÞ� þ s4f k

2
f ð16Þ

where g and kf are the dispersion constant and normalized kurtosis of the true image defined by

kf :¼
E½f 4ðm; nÞ�

ðE½f 2ðm; nÞ�Þ2
ð17Þ

g :¼
E½f 4ðm; nÞ�
E½f 2ðm; nÞ�

ð18Þ

Note that g ¼ s2fkf : It is evident from (14) that the CM cost penalizes the deviations (or

dispersion) of #f 2ðm; nÞ from the constant g; which is why it is sometimes called dispersion

minimization. Plotting the CM cost versus the adaptive filter parameters results in a surface
called the CM cost surface. The method of recursive blind image deconvolution via dispersion
minimization attempts to estimate the true image by starting at some location on the surface and
following the trajectory of steepest descent.

5. RECURSIVE BLIND IMAGE DECONVOLUTION VIA DISPERSION
MINIMIZATION

In a blind image deconvolution setting, the supervised linear recursive image deconvolution
method explained in Section 3 is inapplicable because the true image f ðm; nÞ is unknown. As in

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45
kA suitable preprocessing of the true image such as histogram equalization may be required to satisfy this condition.
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#f ðm; nÞ using the CM cost. Figure 3 depicts the recursive blind image deconvolution method,
where the degraded image gðm; nÞ is applied to an adaptive AR filter whose purpose is to
estimate the true image f ðm; nÞ: Since the true image is unknown, a desired image (the true image
in the ideal case) must be generated artificially from the estimated true image #f ðm; nÞ: The
function of the zero-memory non-linearity (the rightmost term in Figure 3) is to generate an
‘artificial’ image #fNLðm; nÞ so that an error term eðm; nÞ :¼ #fNLðm; nÞ � #f ðm; nÞ that drives the
recursive algorithm can be obtained. The zero-memory non-linearity is chosen such that the
error term eðm; nÞ corresponds to the negative gradient of JCM:

Transforming the 2-D signals and filters to the corresponding 1-D signals and filters using
appropriate index mappings is useful to simplify the derivation of the recursive algorithm.
A 2-D filter wðm; nÞ with support ½0;A� 1� � ½0;B� 1� can be transformed to a 1-D filter wðkÞ
by the ‘lexicographic ordering’ T1 : R2 ! R1 such that k ¼ mBþ n; where

R2 ¼ fðm; nÞ j 04m4A� 1; 04n4B� 1g ð19Þ

R1 ¼ fk j 04k4AB� 1g ð20Þ

Similarly, a 2-D signal f ðm; nÞ can be transformed to a 1-D signal f ðkÞ by the ‘local
lexicographical ordering of support ½0;A� 1� � ½0;B� 1�’ T2 : R2 ! R1 such that

R2 ¼ fðr; sÞ jm� A4r4m; n� B4s4ng ð21Þ

R1 ¼ ft j k� ABþ 14t4kg ð22Þ

where 04m4M � 1; 04n4N � 1; and k ¼ T2ðm; nÞ is a suitable function of ðm; nÞ: The output
of the AR filter at the jth iteration #f jðm; nÞ is an estimate of the true image given by

#f jðm; nÞ ¼ gðm; nÞ �
XA�1

r¼0

XB�1

s¼0

wjðr; sÞ#f jðm� r; n� sÞ; ðr; sÞ=ð0; 0Þ ð23Þ

This estimate can be rewritten using T1 and T2 as

#f jðkÞ ¼ gðkÞ �
XAB�1

i¼1

wjðiÞ#f jðk� iÞ ð24Þ
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Σ

Σw (m,n)

g (m,n)
f (m,n)

f   (m,n)
NL

+

−

e (m,n)Optimization
   Algorithm

Zero-memory
 Nonlinearity

Adaptive AR filter

+

−

Figure 3. Recursive blind image deconvolution via dispersion minimization method.
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where gðkÞ; #f jðkÞ and wjðiÞ are the 1-D representation of the degraded image, the output of the
AR filter and the adaptive filter coefficients at the jth iteration resulting from applying the index
mappings to their 2-D counterparts.**

The adaptive AR filter should be close to the global minimum of the CM cost JCM to produce
a reliable estimate at its output. Initially, the adaptive filter is far from being at a local or global
minimum of JCM: Hence, the estimate #f jðkÞ is not reliable enough, though it may be used in an
adaptive scheme to obtain a better estimate for the next pixel by minimizing the CM (dispersion)
cost. Gradient descent (GD) methods are generally used to solve for CM estimators because
closed-form expressions do not usually exist. Since exact GD requires statistical knowledge of
the degraded image that is unavailable in real applications, stochastic GD method are utilized.
The general form of the recursive stochastic GD algorithm for minimizing the CM cost is

wjþ1ðlÞ ¼ wjðlÞ � m
dJCM

dwjðlÞ
; l ¼ 1; . . . ;AB� 1 ð25Þ

where m is a small positive step-size. Because it is not possible to minimize an expected value
directly, the method uses an instantaneous estimate J of JCM given by

J :¼ 1
4
ð#f 2j ðkÞ � gÞ2 ð26Þ

The constant factor 1
4
in Equation (26) is used to cancel a factor 4 that appears in the formula for

dJ=dwjðlÞ: Therefore, for the kth pixel coefficients of the adaptive filter are updated according to

wjþ1ðlÞ ¼wjðlÞ � m
dJ

dwjðlÞ

¼wjðlÞ � m
dJ

d#f jðkÞ

d#f jðkÞ
dwjðlÞ

ð27Þ

The first derivative of Equation (27) is

dJ

d#f jðkÞ
¼ ð#f 2j ðkÞ � gÞ#f jðkÞ

It is not possible to write a closed-form expression for the second derivative in Equation (27),
but the derivative can be calculated iteratively using regressor filtering. To derive this term, note
that #f jðkÞ can be written as

#f jðkÞ ¼ gðkÞ �
XAB�1

i¼1

wjðiÞ#f jðk� iÞ ð28Þ

#f jðkÞ ¼ gðkÞ � wjðlÞ#f jðk� lÞ �
XAB�1

i¼1

wjðiÞ#f jðk� iÞ; i=l ð29Þ

Taking the derivative of both sides of Equation (29) with respect to wjðlÞ gives

d#f jðkÞ
dwjðlÞ

¼ �#f jðk� lÞ �
XAB�1

i¼1

wjðiÞ
d#f jðk� iÞ
dwjðlÞ

; i=l ð30Þ
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** In the 1-D representation, note that j is the time iteration variable, while k is the spatial position.
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Let

jj;lðkÞ :¼ �
d#f jðkÞ
dwjðlÞ

ð31Þ

Then, Equation (30) can be written in terms of jj;lðkÞ as

jj;lðkÞ ¼ #f jðk� lÞ �
XAB�1

i¼1

wjðiÞjj;lðk� iÞ; i=l ð32Þ

Substituting Equation (31) in Equation (27) results in

wjþ1ðlÞ ¼ wjðlÞ þ mð#f 2j ðkÞ � gÞ#f jðkÞjj;lðkÞ ð33Þ

This can be vectorized as

wjþ1 ¼ wj þ mð#f 2j ðkÞ � gÞ#f jðkÞujðkÞ ð34Þ

where wj and ujðkÞ are the adaptive filter coefficients vector and the regressor filter vector for the
kth position given by

wj :¼ ½wjð1Þ;wjð2Þ; . . . ;wjðAB� 1Þ�T ð35Þ

ujðkÞ :¼ ½jj;1ðkÞ;jj;2ðkÞ; . . . ;jj;AB�1ðkÞ�
T ð36Þ

Regressor filtering defined in Equation (32) makes implementation of the recursive algorithm
costly. A simplified algorithm that bypasses the regressor filtering would be preferred. An
approximate gradient for the recursive case uses the currently available data vector in place of
the regressor filtered version, that is,

ujðkÞ ¼ ½#f jðk� 1Þ; #f jðk� 2Þ; . . . ; #f jðk� ABþ 1Þ�T ð37Þ

Equations (29), (34) and (37) constitute the recursive blind image deconvolution via dispersion
minimization. Each iteration corresponds to processing a pixel of the observed degraded image
gðkÞ: The output of the adaptive AR filter is an estimate of the true image f ðkÞ; and the
coefficients wðkÞ provide an estimate of the PSF hðm; nÞ at convergence.

The simplified recursive algorithm is not a stochastic gradient descent algorithm because of
the removal of the regressor filtering. Consequently, it is important to study its behaviour to find
conditions on the PSF under which the algorithm converges to a desirable solution.
Equivalently, it is required to find a sufficient condition on the PSF such that the regressor
filtering defined in Equation (32) can be omitted, i.e. jj;lðkÞ can be approximated by #f jðk� lÞ:
Derivation of a sufficient condition is discussed next.

6. LOCAL STABILITY ANALYSIS

This section finds conditions on the PSF that ensure local stability of the simplified algorithm
for a binary images. The approach used here is similar in spirit to that in Reference [16].
The analysis is based on determining a state-variable equation for the algorithm, linearizing
the state-variable equations about a desired solution, and finding a sufficient condition on the
PSF such that the linearized system is exponentially stable to the origin. This ‘strong’
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form of stability then guarantees robustness to suitable disturbances such as observation
noise.

In the absence of observation noise vðkÞ; the true image f ðkÞ can be perfectly restored by
setting WðzÞ ¼ HðzÞ � 1; where WðzÞ and HðzÞ are the 1-D Z-transforms of wðkÞ and hðkÞ which
result from applying the mapping T1 to wðm; nÞ and hðm; nÞ: Hence, HðzÞ � 1 achieves the global
minimum of the JCM; and will be used as the desired solution. At the jth iteration, the estimation
error vector X1; jðkÞ defined as

X1; jðkÞ :¼ ½f ðk� 1Þ � #f jðk� 1Þ; . . . ; f ðk� ABþ 1Þ � #f jðk� ABþ 1Þ�T ð38Þ

and the coefficient errors vector X2;j

X2; j :¼ ½hð1Þ � wjð1Þ; . . . ; hðAB� 1Þ � wjðAB� 1Þ�T ð39Þ

will be used as state-variables. The reason for choosing X1; jðkÞ and X2; j is that when the adaptive
filter satisfies WðzÞ ¼ HðzÞ � 1; then both state vectors are equal to zero, resulting in perfect
image restoration. For a binary image, there is sufficient condition on the PSF such that
algorithm (34) with ujðkÞ given as in (37) is locally stable to WðzÞ ¼ HðzÞ � 1: This result will be
given in Theorem 2. Some definitions and results available from the 1-D recursive adaptive filter
theory are needed to fully understand what the theorem means and its proof. Background
information can be found in Reference [17].

Definition 1
A rational transfer function GðejoÞ with real coefficients is ‘positive real’ (PR) if

Re½GðejoÞ�50 8o 2 ð�p;p� ð40Þ

A transfer function is ‘strictly positive real’ (SPR) if

Re½GðejoÞ� > 0 8o 2 ð�p; p� ð41Þ

Lemma 1
If a rational transfer function GðejoÞ is SPR, so its inverse 1=GðejoÞ: (A proof is found in
Reference [17].)

Definition 2 (persistent excitation)
Let the notation R > 0 ðR50Þ mean a symmetric matrix R is positive definite (positive semi-
definite). Similarly, let the notation R1 > R2 ðR15R2Þ mean R1 � R2 is positive definite (positive
semi-definite) for symmetric matrices R1; R2: Consider now a scalar sequence fuð�Þg and build a
K-element vector

uðkÞ :¼ ½uðkÞ; uðk� 1Þ; . . . ; uðk� K þ 1Þ�T ð42Þ

Then, the sequence fuð�Þg is said to be ‘persistently exciting’ (PE) if there exists some integer L;
and positive constants a; b such that for all k

05aI4
XkþL

i¼k

uðiÞuTðiÞ4bI51 ð43Þ
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where I is the identity matrix. If fuð�Þg is a stationary stochastic sequence, (43) can be simplified
to

E½uðkÞuTðkÞ� > 0 ð44Þ

Definition 3 (exponential stability)
The state variable equations

xðnþ 1Þ ¼ AðnÞxðnÞ ð45Þ

are said to be ‘exponentially stable to the origin’ if for any bounded initial condition jjxðn0Þjj51
with arbitrary n0 the resulting state vector sequence fxð�Þg satisfies

jjxðnÞjj4ban�n0 jjxðn0Þjj 8n5n0 ð46Þ

where b is some fixed constant and 04a41:

Theorem 1 (the Hyperstability theorem)
Consider the closed-loop system depicted in Figure 4 with input uðkÞ and output yðkÞ satisfyingXN

i¼0

uðiÞyðiÞ4K2 ð47Þ

where K is a constant independent of N: Then, for all initial conditions both the input and
output are exponentially stable to the origin if and only if GðejoÞ is SPR.

The local stability analysis of the recursive algorithm for a binary true image is based on the
Hyperstability theory of Popov [18], which encompasses a particular class of non-linear
feedback systems, including those which arise in adaptive IIR filtering. Pioneered by Landau
[19], the Hyperstability theory has been a important tool for analysis of the adaptive IIR
filtering systems [20, 21]. The main result whose proof is given in Appendix A can be stated now.

Theorem 2
For a binary image, in the absence of observation noise vðkÞ; a sufficient condition for local
stability of the simplified recursive algorithm (34) with ujðkÞ given as in (37) to WðzÞ ¼ HðzÞ � 1
is that the lexicographically ordered PSF hðkÞ satisfies an SPR condition, i.e.

Re½HðejoÞ� > 0 8o 2 ð�p;p� ð48Þ
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Figure 4. Non-linear time-varying feedback system.
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Equation (48) is a sufficient condition. If this condition is not satisfied, the simplified recursive
algorithm is not necessarily locally unstable. Several of the most common point spread functions
encountered in practice are motion blur, uniform out-of-focus blur, atmospheric turbulence
(Gaussian) blur and scatter blur. Motion and out-of-focus blurs do not satisfy the SPR
condition. Gaussian and scatter blurs may or may not satisfy the SPR condition depending on
their parameters. If a PSF does not satisfy the SPR condition, one needs to implement the
recursive algorithm without ignoring the regressor filtering to guarantee stability.

7. SIMULATION RESULTS

The theory developed is supported with two computer experiments in this section. In the first
experiment, the simplified recursive algorithm is shown to work for an SPR blur. It is also
shown to work for a non-SPR blur in the second experiment. The classical 8-bit grey-scale
Pepper and Lena images were used as true (test) images in the experiments. Histogram
equalization was performed on the test images that results in approximately uniformly
distributed images. Then, their means were subtracted from the histogram equalized images
yielding zero-mean uniformly distributed images. Finally, uniform quantizations having
different step-sizes were applied to the zero-mean uniformly distributed images to obtain test
images. The performance was tested at 70 dB blurred signal-to-noise ratio (BSNR) defined as

BSNR ¼ 10 log10
ð1=MNÞ

PM
m¼1

PN
n¼1 z2ðm; nÞ

s2v

( )
ð49Þ

where zðm; nÞ is the noise free blurred image, i.e. zðm; nÞ ¼ gðm; nÞ � vðm; nÞ in (1) and s2v is the
additive noise variance. The improvement in signal-to-noise ratio (ISNR) metric was used for
the purpose of testing the performance of the method. This metric is given by

ISNR ¼ 10 log10

PM
m¼1

PN
n¼1 ½f ðm; nÞ � gðm; nÞ�2PM

m¼1

PN
n¼1 ½f ðm; nÞ � #f ðm; nÞ�2

( )
ð50Þ

where f ðm; nÞ and gðm; nÞ are the original and degraded images and #f ðm; nÞ is the estimated true
image. BSNR is at most 50 dB when images are digitally recorded. If BSNR is above 40 dB; the
noise is not visible. However, as BSNR goes below 20 dB; the noise becomes more prominent
than the blurring and blind image deconvolution methods become useless.

Because the CM cost is non-convex, the method may converge to a local minimum instead of
the global minimum of JCM depending on how it is initialized. If there is no a priori information
about the PSF, the adaptive AR filter is initialized using a zero value for all coefficients (as
opposed to a 2-D impulse function initialization in the FIR case). If there is a priori information
about the PSF, this information may provide a better initialization. Since it was assumed that
the PSF is unknown, a 2-D filter with zero coefficients was used as the initial adaptive filter.

Experiment 1
Figure 5 depicts the real part of the 128-point discrete fourier transform (DFT) of the PSF used
in this experiment. It is clear that the SPR condition is satisfied by this PSF. Figures 6–9
illustrate the 2; 4; 8; 16-level true (left column), degraded (middle column) and estimated true
images (right column) at 70 dB BSNR, respectively. Table I provides the true PSF hðm; nÞ
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and coefficients of the adaptive filter at convergence for each level. Adaptive filter coefficients
converge to the true PSF well, though the performance worsens as the number of grey level
increases. This is an expected result because as the number of grey level (kurtosis) increases, the
CM cost surface flattens making convergence of the filter coefficients slow [12].
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Figure 5. A PSF which satisfies the SPR condition.

Figure 6. Deconvolution result for the SPR PSF, L ¼ 2: ISNR ¼ 64:46 dB:

Figure 7. Deconvolution result for the SPR PSF, L ¼ 4: ISNR ¼ 45:30 dB:
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Figure 8. Deconvolution result for the SPR PSF, L ¼ 8: ISNR ¼ 43:54 dB:

Figure 9. Deconvolution result for the SPR PSF, L ¼ 16: ISNR ¼ 38:80 dB:

Table I. An SPR PSF and adaptive filter coefficients at convergence for L ¼ 2; 4; 8; 16:

wðm; nÞ

ðm; nÞ hðm; nÞ L ¼ 2 L ¼ 4 L ¼ 8 L ¼ 16

ð0; 0Þ 1 � � � �
ð0; 1Þ 0.7155 0.7147 0.7003 0.7215 0.7278
ð0; 2Þ 0.3536 0.3533 0.3356 0.3479 0.3611
ð0; 3Þ 0.1707 0.1715 0.1721 0.1583 0.1733
ð0; 4Þ 0.0894 0.0905 0.0777 0.0755 0.0554
ð1; 0Þ 0.7155 0.7148 0.7109 0.7247 0.7239
ð1; 1Þ 0.5443 0.5440 0.5210 0.5501 0.5469
ð1; 2Þ 0.2963 0.2979 0.2814 0.3086 0.3208
ð1; 3Þ 0.1527 0.1542 0.1499 0.1646 0.1834
ð1; 4Þ 0.0831 0.0827 0.0863 0.0887 0.0864
ð2; 0Þ 0.3536 0.3538 0.3649 0.3792 0.3916
ð2; 1Þ 0.2963 0.2974 0.2858 0.3093 0.3251
ð2; 2Þ 0.1925 0.1930 0.1865 0.2004 0.2096
ð2; 3Þ 0.1141 0.1127 0.1088 0.1256 0.1428
ð2; 4Þ 0.0680 0.0671 0.0895 0.0852 0.0754
ð3; 0Þ 0.1707 0.1701 0.1627 0.1805 0.1736
ð3; 1Þ 0.1527 0.1512 0.1457 0.1611 0.1733
ð3; 2Þ 0.1141 0.1121 0.1097 0.1185 0.1117
ð3; 3Þ 0.0775 0.0765 0.0793 0.0802 0.0699
ð3; 4Þ 0.0512 0.0533 0.0707 0.0412 0.0151
ð4; 0Þ 0.0894 0.0910 0.1135 0.0362 0.0287
ð4; 1Þ 0.0831 0.0839 0.1032 0.0673 0.0716
ð4; 2Þ 0.0680 0.0683 0.0846 0.0682 0.0351
ð4; 3Þ 0.0512 0.0517 0.0610 0.0402 0.0018
ð4; 4Þ 0.0370 0.0365 0.0518 �0.0052 �0.0537
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Two observations are in order for this experiment. First, the PSF used in this experiment is a
5� 5 scatter blur with parameter b ¼ 1 whose coefficients are given by

hðm; nÞ ¼
C

ðb2 þ ðm2 þ n2ÞÞ3=2
ð51Þ

Blind deconvolution results using the optimum support for the adaptive FIR filter were given in
References [9, 13] for this PSF, where the ISNR was in the 20–7 dB range (depending on the
number of grey levels in the true image). ISNR is in the 64–38 dB range when using an adaptive
AR deconvolution filter (depending on the number of grey levels). The main reason for the
improvement is that the adaptive AR filter does not suffer error from a non-optimal support as
does the adaptive FIR filter.

Second, it was observed from simulations that convergence of the adaptive AR filter occurs
faster than that of the adaptive FIR filter. Even though around 1000 iterations were required for
convergence of the adaptive FIR filter, convergence took place after 200 iterations in the
adaptive AR filter case. This difference between the convergence speeds of the two cases may be
explained by noting that the AR convolution requires fewer coefficients to be updated in each
iteration. The optimum support for the adaptive FIR filter was 7� 7 (see Reference [13]), so
there are 49 adaptive coefficients requiring update at each iteration. However, the optimum
support for the adaptive AR filter is 5� 5 since the blur is 5� 5; so there are only 25 adaptive
parameters.

Experiment 2
Figure 10 depicts the real part of the 128-point DFT of the PSF used in this experiment. This
time the SPR condition is not satisfied. Figures 11–14 illustrate the 2; 4; 8; 16-level true (left
column), degraded (middle column) and estimated true images (right column) at 70 dB BSNR,
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Figure 10. A PSF which violates the SPR condition.
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respectively. Table II provides the true PSF hðm; nÞ and the adaptive filter coefficients at
convergence for each level. Adaptive filter coefficients converge to the true PSF reasonably well.
The errors between the converged adaptive filters and the PSF are worse than when the SPR
conditions was satisfied.

As stated before, the SPR condition is only a ‘sufficient’ condition for local stability of the
simplified recursive algorithm. If the true image has little spectral content at the frequencies
where the blur violates the SPR condition, the simplified algorithm is expected to work since the
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Figure 12. Deconvolution result for the non-SPR PSF, L ¼ 4: ISNR ¼ 39:72 dB:

Figure 13. Deconvolution result for the non-SPR PSF, L ¼ 8: ISNR ¼ 36:45 dB:

Figure 14. Deconvolution result for the non-SPR PSF, L ¼ 16: ISNR ¼ 34:03 dB:

Figure 11. Deconvolution result for the non-SPR PSF, L ¼ 2: ISNR ¼ 40:51 dB:
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algorithm will go in the right direction most of the time. On the other hand, when the true
image has large spectral content at the frequencies where the blur violates the SPR condition,
the algorithm will go in the wrong direction most of the time, and eventually will become
unstable.

8. CONCLUSIONS

FIR filters are more common than IIR filters because adaptive FIR filters can always be made
stable by adjusting the step-size, while adaptive IIR filters may become unstable no matter how
small the step-size. Moreover, adaptive algorithms based on FIR filters are usually
mathematically more tractable than those based on IIR filters. Nonetheless, there are
substantial gains to be made by exploiting the more general IIR structure.

The contribution of this paper is twofold. First, it introduces the use of the CM cost for
estimating a grey-scale true image distorted by a LSI blur where the true image and blur are
unknown, by minimizing the CM cost using an adaptive 2-D AR filter. The method imposes
only mild constraints on the unknown blur and is useful as long as the true image is sub-

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

Table II. An non-SPR PSF and adaptive filter coefficients at convergence for L ¼ 2; 4; 8; 16:

wðm; nÞ

ðm; nÞ hðm; nÞ L ¼ 2 L ¼ 4 L ¼ 8 L ¼ 16

ð0; 0Þ 1 � � � �
ð0; 1Þ 0.8538 0.8811 0.8780 0.8826 0.8601
ð0; 2Þ 0.5760 0.6147 0.6107 0.6360 0.5673
ð0; 3Þ 0.3536 0.3796 0.3751 0.4249 0.3828
ð0; 4Þ 0.2160 0.2142 0.2072 0.3206 0.3664
ð1; 0Þ 0.8538 0.8711 0.9154 0.9487 0.9200
ð1; 1Þ 0.7401 0.7683 0.7273 0.7863 0.7644
ð1; 2Þ 0.5154 0.5150 0.4641 0.5266 0.5421
ð1; 3Þ 0.3260 0.2921 0.2645 0.3006 0.3992
ð1; 4Þ 0.2037 0.1555 0.1370 0.2439 0.3756
ð2; 0Þ 0.5760 0.5969 0.6290 0.6618 0.6058
ð2; 1Þ 0.5154 0.5010 0.4500 0.4888 0.5379
ð2; 2Þ 0.3852 0.3247 0.3153 0.3162 0.4158
ð2; 3Þ 0.2617 0.1948 0.1902 0.1689 0.2579
ð2; 4Þ 0.1729 0.1387 0.1212 0.1701 0.1860
ð3; 0Þ 0.3536 0.3692 0.3948 0.3867 0.3711
ð3; 1Þ 0.3260 0.2891 0.2824 0.2444 0.3362
ð3; 2Þ 0.2617 0.2149 0.2410 0.1769 0.2426
ð3; 3Þ 0.1925 0.1755 0.1656 0.1179 0.0941
ð3; 4Þ 0.1362 0.1550 0.1425 0.1845 0.0997
ð4; 0Þ 0.2160 0.2577 0.2967 0.2036 0.1959
ð4; 1Þ 0.2037 0.2321 0.2553 0.1001 0.0907
ð4; 2Þ 0.1729 0.2263 0.2400 0.1136 0.0379
ð4; 3Þ 0.1362 0.1978 0.1889 0.1350 0.0230
ð4; 4Þ 0.1028 0.1438 0.1646 0.2254 0.1799
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Gaussian (the true image dispersion constant is less than 3) and the BSNR is above about 30 dB:
Second, we have shown how an adaptive 2-D AR filter may be more suitable than an adaptive
2-D FIR filter for blind image deconvolution in terms of ISNR and convergence speed, at least
when both filters are updated by minimizing the CM cost.

One limitation of the AR case is the presence of regressor filtering, which makes realization of
the AR method computationally costly. A simplified algorithm that bypasses the regressor
filtering was proposed. The SPR condition for the lexicographically ordered PSF was shown to
be sufficient condition for local stability when applied to binary images. Unfortunately, some
PSFs do not satisfy the SPR condition. Fortunately, this does not necessarily imply instability of
the simplified method, which was shown to work for some non-SPR blurs. If the true image has
little spectral content at the frequencies where the PSF violates the SPR condition, it is
conjectured that the simplified method will remain viable. Otherwise, the complete AR
algorithm may be used where the simplified method fails.

This work can be extended in several ways to improve computational aspects of the proposed
algorithm and to make it a reliable, practical method for blind image deconvolution. Important
areas for further investigation are: (i) overcoming limitations, thus increasing performance of
the method, (ii) generalizing local stability analysis to more general situations.

The limitations of the dispersion minimization algorithm are of two kinds: convergence of the
adaptive filter to a (bad) local minimum of the CM cost instead of the global minimum, and
decreased performance as the true image normalized kurtosis increases. The former is due to the
non-convex structure of the CM cost and lack of smart adaptive filter initialization methods.
The latter occurs when the kurtosis of the true image increases, for instance when the number of
levels increases.

In our experiments, the adaptive AR filter was initialized at zero, which may cause
the algorithm to suffer from convergence to a local minimum. Is there an initialization method
that guarantees convergence to the global minimum of the CM cost? If so, how can this
initialization be chosen? If there is a priori information about the blur (for instance, if it is
known to be Gaussian) then better initialization strategies are possible. These might keep the
adaptive filter from converging to a local minimum of the CM cost, as well as help speed
convergence.

Three methods might help increase the performance of the method. First, pixel values of
images, in general, do not satisfy the CM assumption. Therefore, better results may be obtained
if the more general ‘multimodulus cost’ [22] is used. Second, if the real-valued true image is
represented as a complex-valued image, then an increase in the true image kurtosis implies a
smaller deviation from the CM assumption in the complex-valued image. This method also
requires a complex-valued adaptive filter that can be implemented using four real-valued
adaptive filters, with computational complexity four times that of the real case. Third, suppose
that the true image is 8-bit, so its kurtosis is far from the constant modulus assumption.
Obtaining a binary (1-bit) image by quantizing the degraded image, and then applying
the dispersion minimization method to the binary image would produce better results than
applying the method to the degraded image. Next, the adaptive filter at convergence for the
binary case could be used to initialize the adaptive filter in the dispersion minimization
algorithm on a 2-bit image obtained by quantizing the degraded image, and so on. This
‘bootstrapping’ initialization scheme might provide much faster convergence and increased
performance since at each level a better initialization is used for the adaptive filter compared to
the blind zero filter initialization.
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APPENDIX A: PROOF OF THEOREM 2

The proof will be given using the following steps.

1. Determine the sate equations that describe the error system ½X1;jðkÞ;X2;j �T:
2. Linearize the error system about the solution WðzÞ ¼ HðzÞ � 1; which is equivalent to

X1;jðkÞ ¼ X2;j ¼ 0:
3. Apply the ‘Hyperstability theorem’ to show that if the PSF is SPR, then the linearized error

system is exponentially stable. Under this condition, the simplified recursive algorithm
converges to WðzÞ ¼ HðzÞ � 1:

Step 1: For a binary image ðg ¼ 1Þ; the recursive algorithm using simplified updates is given by

wjþ1ðlÞ ¼ wjðlÞ þ m#f jðkÞ#f jðk� 1Þð#f 2j ðkÞ � 1Þ; 14l4AB� 1 ðA1Þ

Note that since f ðkÞ ¼ �1; #f 2j ðkÞ � 1 can be written as

#f 2j ðkÞ � 1 ¼ ð#f jðkÞ � 1Þð#f jðkÞ þ 1Þ ¼ ð#f jðkÞ � f ðkÞÞð#f jðkÞ þ f ðkÞÞ ðA2Þ

Let ejðkÞ and tjðkÞ be the estimation error and the time varying factor for the kth pixel:

ejðkÞ :¼ f ðkÞ � #f jðkÞ ðA3Þ

tjðkÞ :¼ 1
2
ð #f 2j ðkÞ þ #f jðkÞf ðkÞÞ ðA4Þ

Then, the simplified recursive algorithm given in Equation (A1) can be expressed as

wjþ1ðlÞ ¼ wjðlÞ � m#f jðk� lÞejðkÞtjðkÞ ðA5Þ

State variable equations for X1;jðkÞ that describes the dynamics of the estimation errors will be
derived first. Recall that the degraded image gðkÞ is given by

gðkÞ ¼
XAB�1

i¼0

hðiÞf ðk� iÞ; hð0Þ ¼ 1 ðA6Þ

Therefore, the true image f ðkÞ can be expressed in terms of the degraded image gðkÞ as

f ðkÞ ¼ gðkÞ �
XAB�1

i¼1

hðiÞf ðk� iÞ ðA7Þ

From (A7) and (24), the estimation error f ðkÞ � #f jðkÞ can be written as

f ðkÞ � #f jðkÞ ¼ �
XAB�1

i¼1

hðiÞf ðk� iÞ þ
XAB�1

i¼1

wjðiÞ#f jðk� iÞ ðA8Þ

Since adding and subtracting
PAB�1

i¼1 hðiÞ#f jðk� iÞ to the right-hand side of (A8) does not change
its value, (A8) can also be written as

f ðkÞ � #f jðkÞ ¼ �
XAB�1

i¼1

hðiÞ½ f ðk� iÞ � #f jðk� iÞ� �
XAB�1

i¼1

½hðiÞ � wjðiÞ� #f jðk� iÞ ðA9Þ

From Equation (38), X1; jþ1ðkþ 1Þ is given by

X1; jþ1ðkþ 1Þ ¼ ½f ðkÞ � #f jðkÞ; . . . ; f ðk� ABþ 2Þ � #f jðk� ABþ 2Þ�T ðA10Þ
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Define the following matrix and vectors:

H :¼

�hð1Þ �hð2Þ . . . �hðAB� 1Þ

1 0 . . . 0

0

..

. . .
. . .

. . .
. ..

.

0 . . . 0 1 0

2
6666666664

3
7777777775

ðA11Þ

#f jðkÞ :¼ ½#f jðk� 1Þ; #f jðk� 2Þ; . . . ; #f jðk� ABþ 1Þ�T ðA12Þ

h :¼ ½�hð1Þ;�hð2Þ; . . . ;�hðAB� 1Þ�T ðA13Þ

b :¼ ½1; 0; . . . ; 0�T ðA14Þ

Then, X1;jþ1ðkþ 1Þ is given by

X1;jþ1ðkþ 1Þ ¼ HX1;jðkÞ þ bfTj ðkÞX2;j ðA15Þ

which is the state equation for X1;jðkÞ; where X2;j is given by (39). Now, the state equation for
X2;j that describes the dynamics of the coefficient errors will be derived. Observe that by (A8),
ejðkÞ is equal to

ejðkÞ ¼ hTX1;jðkÞ � #f Tj ðkÞX2;j ðA16Þ

Therefore, Equation (A5) can be written as

wjþ1ðlÞ ¼ wjðlÞ � m#f jðk� lÞtjðkÞðhTX1;jðkÞ � #f Tj ðkÞX2;jÞ ðA17Þ

Subtracting both sides of (A17) from hðlÞ; writing the resulting expression for 14l4AB� 1; and
using the definition of X2;j gives

X2;jþ1 ¼ mtjðkÞ#f jðkÞhTX1;jðkÞ þ ðI � mtjðkÞ#f jðkÞ#f T
j ðkÞÞ ðA18Þ

In summary, the error system describing the dynamics of the recursive algorithm is given by
(A15) and (A18) which are

X1;jþ1ðkþ 1Þ ¼ HX1;jðkÞ þ b#f T
j ðkÞX2; j ðA19Þ

X2;jþ1 ¼ mtjðkÞ#f jðkÞhTX1;jðkÞ þ ðI � mtjðkÞ#f jðkÞ#f Tj ðkÞÞX2;j ðA20Þ

Step 2: Local stability of maps (A19) and (A20) about the solution X1;jðkÞ ¼ Xj;2 ¼ 0 is
determined by linearizing the maps about this solution. The linearized maps are given by

X1;jþ1ðkþ 1Þ ¼ HX1;jðkÞ þ bfTðkÞX2;j ðA21Þ

X2;jþ1 ¼ mfðkÞhTX1;jðkÞ þ ðI � mfðkÞfTðkÞÞX2;j ðA22Þ
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which can be compactly written as

X1;jþ1ðkþ 1Þ

X2;jþ1

" #
¼

H bfTðkÞ

mfðkÞhT ðI � mfðkÞfTðkÞÞ

" #
X1;jðkÞ

X2;j

" #
ðA23Þ

where fðkÞ :¼ ½f ðk� 1Þ; f ðk� 2Þ; . . . ; f ðk� ABþ 1Þ�T:
Step 3: Define the following signal:

ujðkÞ :¼
XAB�1

i¼1

½hðiÞ � wjðiÞ� #f j ðk� iÞ ðA24Þ

Given (39) and (A12), ujðkÞ is equal to

ujðkÞ ¼ XT
2;j
#f jðkÞ ðA25Þ

Consider the closed-loop system depicted in Figure A1 with input ujðkÞ and output ejðkÞ:
Exponential stability of ujðkÞ and ejðkÞ to the origin is equivalent to exponential stability of
(A23) to zero since ejðkÞ ¼ ujðkÞ ¼ 0 gives #f jðkÞ ¼ f ðkÞ; wjðkÞ ¼ hðkÞ; which is the desired result.
From the ‘Hyperstability theorem’ (Theorem 1), ejðkÞ and ujðkÞ are exponentially stable to the
origin if the transfer function from ujðkÞ to ejðkÞ is SPR. Given (A8), (A13) and (A24), ejðkÞ is
equal to

ejðkÞ ¼ hTX1;jðkÞ þ ujðkÞ ðA26Þ

Given (A25), (A21) can be written as

X1;jþ1ðkþ 1Þ ¼ HX1;jðkÞ þ bujðkÞ ðA27Þ
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Figure A1. The recursive image deconvolution parameter and estimation error closed-loop system.
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From (A26) and (A27), the transfer function from ujðkÞ to ejðkÞ is equal to

hTðzI �HÞ�1bþ 1 ¼
1

1þ
PAB�1

i¼1 hðiÞz�i
¼

1

HðzÞ
ðA28Þ

Consequently, the linearized system (A23) is exponentially stable to the origin (equivalently,
the simplified recursive algorithm (34) with jjðkÞ given as in (37) is locally stable to
WðzÞ ¼ HðzÞ � 1) if

Re
1

HðejoÞ

� �
> 0 8o 2 ð�p;p� ðA29Þ

or by Lemma 1

Re½HðejoÞ� > 0 8o 2 ð�p;p� ðA30Þ

provided the true image f ðkÞ is persistently exciting.
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